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RESEARCH ARTICLE
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1 Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University,
Johnson City, Tennessee, 37614, United States of America, 2 Department of Biomedical and
Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island, 02881,
United States of America

☯ These authors contributed equally to this work.
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Abstract
XPC-RAD23B (XPC) plays a critical role in human nucleotide excision repair (hNER) as this

complex recognizes DNA adducts to initiate NER. To determine the mutagenic potential of

structurally different bulky DNA damages, various studies have been conducted to define

the correlation of XPC-DNA damage equilibrium binding affinity with NER efficiency. How-

ever, little is known about the effects of XPC-DNA damage recognition kinetics on hNER.

Although association of XPC is important, our current work shows that the XPC-DNA disso-

ciation rate also plays a pivotal role in achieving NER efficiency. We characterized for the

first time the binding of XPC to mono- versus di-AAF-modified sequences by using the real

time monitoring surface plasmon resonance technique. Strikingly, the half-life (t1/2 or the

retention time of XPC in association with damaged DNA) shares an inverse relationship

with NER efficiency. This is particularly true when XPC remained bound to clustered

adducts for a much longer period of time as compared to mono-adducts. Our results sug-

gest that XPC dissociation from the damage site could become a rate-limiting step in NER

of certain types of DNA adducts, leading to repression of NER.

Introduction
The human genome is constantly under assault from exogenous and endogenous causes of
DNA damage. The formation and propagation of the resulting adducts can be particularly
destructive when these mutations occur within tumor suppressing genes, leading to tumorigen-
esis [1–4]. Consequently, human cells have several effective DNA repair pathways to protect
against the plethora of genotoxic bombardments to the genome [5]; however, the mechanism
by which damage-recognition proteins distinguish damage sites remains uncertain. Mutations
that arise in genes associated with the nucleotide excision repair pathway (NER) result in a
multitude of genetic disorders such as xeroderma pigmentosum, which is characterized by sen-
sitivity to sunlight and, ultimately, the development of carcinomas [6].
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NER is utilized to remove primarily bulky adducts, plus cross-links, and various other
lesions [7–9]. NER is either associated with transcription in transcription-coupled repair
(TCR) or is independent of transcription in global genome repair (GGR). GGR in Escherichia
coli consists primarily of a collaborative effort of three proteins that both recognize and incise
damaged bases: UvrA, UvrB, and UvrC [10]. Two UvrA molecules associate and then form a
trimeric complex with UvrB. This trimeric complex is thought to be the DNA damage sensor.
UvrA facilitates UvrB binding and positions UvrB to confirm the existence of a damage site.
Once UvrB is in the correct position, UvrA utilizes its ATPase activity to dissociate from the
preincision complex. UvrB then recruits UvrC endonuclease, which incises the damaged
DNA strand by 3’ and 5’ cleavages flanking the damage site [11–14]. In human GGR the
UvrA2B functional equivalent is Xeroderma pigmentosum group C (XPC) in complex with
RAD23B (XPC-RAD23B, henceforth XPC). The XPC complex acts in the DNA damage rec-
ognition step, thus initiating GGR [15]. XPC has been shown to bind at the site of many
types of damage in vitro and in UV-treated cells arrives at damage sites before other NER fac-
tors [9,16–18]. Once at the damage site XPC recruits the multi-subunit transcription factor
TFIIH, including the helicase subunits of XPB and XPD, followed by XPA for damage confir-
mation, fork binding and subsequent recruitment of replication protein A (RPA) for single-
stranded DNA (ssDNA) stabilization, and XPG and XPF-ERCC1 for the dual incisions [19–
22].

Crystal structures of the yeast XPC-RAD23B ortholog, Rad4-Rad23, in association with
undamaged or damaged DNA revealed a mechanism by which XPC hops along DNA until a
thermodynamically stable recognition complex is formed, which effectively distinguishes
damaged from non-damage sites [23,24]. Further studies have supported this hypothesis by
suggesting that residence time of XPC on damages may play a role in the relationship
between XPC binding and NER efficiency [25,26]. Binding affinity of XPC at the damage site
has been suggested to be the rate-limiting step for NER [25,27,28]. Although various efforts
have been made to correlate the equilibrium binding of damage recognition to overall NER
efficiency, little is known about the role of the kinetics of damage recognition in the NER
process.

Arylamines and heterocyclic amines are notorious environmental carcinogens. The DNA
adduct-forming arylamines can be found naturally in the environment, in addition to a num-
ber of unnatural sources such as cigarette smoke and hair dyes. Heterocyclic amines are most
notably abundant in meat that has been cooked at high temperatures. It is inevitable that a per-
son will be exposed to one or both of these carcinogens in his/her lifetime. Each of these muta-
gens has been documented to cause many types of cancer, such as breast, liver, and bladder, to
name a few [2]. Metabolic activation of these amines in vivo produces C8-substituted dG as the
major bulky DNA adduct [29]. A well-known example is the human bladder carcinogen 4-ami-
nobiphenyl [30]. The prototype environmental arylamine 2-aminofluorene produces two
major DNA adducts via in vivo activation: N-(20-deoxyguanosin-8-yl)-2-aminofluorene (AF)
and N-(20-deoxyguanosin-8-yl)-2-acetylaminofluorene (AAF) (Fig 1A) [31]. Their fluorine
derivatives FAF and FAAF have been used extensively as 19F NMR conformational models for
these bulky arylamine lesions [32–34]. Conformational studies have shown that FAF in a fully
paired duplex DNA can adopt an equilibrium between two prototype conformers, while the N-
acetylated FAAF exhibits an additional conformation due to a single bulky acetyl group on the
central nitrogen. This equilibrium exists between major groove binding anti B-type conform-
ers, base-displaced syn stacked S conformers, and minor groove binding of the syn adduct
wedge (W) conformer (Fig 1C) [33,35]. Usually, the damage produced is a single mono-adduct:
however, cluster di-adducts can form in vivo, though less frequently than mono-adducts as dis-
cussed previously [36–38]. Past work has shown that adduct conformation is strongly
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dependent on the flanking sequence, which modulates mutational and repair outcomes
[27,39–41]. One such sequence is the mutational hotspot known as the NarI sequence (5’-. . . C
G1G2CG3CC. . . -3’) (Fig 1B), which has been extensively studied [33,42].

Fig 1. Adduct structures and sequences. (A) Structure of AAF [N-(2’-deoxyguanosin-8-yl)-2-acetylaminofluorene], AF [N-(2’-deoxyguanosin-
8-yl)-2-aminofluorene] and fluoro models, FAAF [N-(2-deoxyguanosin-8-yl)-7-fluoro-2-acetylaminofluorene], FAF [N-(2’-deoxyguanosin-8-yl)-
7-fluoro-2-aminofluorene]; (B) Fully-paired 16-mer duplexes containing the central NarI sequence (CGGCGCC) used in SPR, EMSA and in vitro
NER constructs illustrating the placement of the adducted bases at G1, G2, and G3 positions; (C) Major groove views of the B-, S-, andW-
conformers of AAF. Modified-dG (red), dC (green) opposite the lesion site (orphaned C), fluorene (grey CPK),N-acetyl (magenta).

doi:10.1371/journal.pone.0157784.g001
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The reparability of adducts in the NarI sequence has been tested in both the E. coli UvrABC
and human endonuclease systems and were found to be sequence dependent [27,33,43]. In
addition, different repair efficiencies of the same lesions were observed between the two sys-
tems [27,33]. Furthermore, recent work has attempted to correlate the binding affinities of
repair proteins with adduct excision or NER efficiency [25–27]. Yeo and colleagues, imple-
menting electrophoretic mobility shift (EMSA) and dual-incision assays, concluded that
increased DNA thermodynamic destabilization, XPC-RAD23B binding, and overall NER effi-
ciency of AAF adducts are directly correlated [25]. In contrast, Mu et al. showed that NER effi-
ciencies of the same AAF lesions are correlated with greater extents of base sequence-
dependent local untwisting and minor groove opening together with weaker stacking interac-
tions [27]. Lee et al. have found minimal differences in XPC binding affinities of lesions derived
from bulky polycyclic aromatic hydrocarbons while observing dramatic differences in NER
efficiency [26]. These three individual reports employed different bulky adducts in their stud-
ies; however, Shell et al. demonstrate that XPC acts as a general sensor for DNA damage, with
a preferential binding to damage sites, but concluded that lesion identity is not a determinant
of XPC binding affinity [44].

In the present study, we analyzed the kinetic aspects of E. coli UvrA2 and human XPC pro-
tein interactions with AAF adducts in the NarI sequence context by surface plasmon resonance
(SPR) analysis and defined the relationship with NER. SPR has the significant advantage over
other methods designed to observe protein-DNA interactions in that the interaction can be
observed in a dynamic real-time environment, much closer to native conditions. We show that
at lesion clusters the kinetic off-rate of XPC has an inverse correlation to repair efficiency. In
other words, the t1/2 (time required for 50% of the bound XPC to dissociate from the DNA, t1/2
(s) = ln(2)/kd,) of the damage recognition complex inversely correlates to NER efficiency. This
work reveals the significance of the dynamics of XPC recognition of conformationally diverse
DNA adducts in NER. Here, we describe a new model for XPC activation of NER where the
off-rate of XPC from the lesion site, particularly in the case of clustered lesions, is the rate-lim-
iting step of NER, and propose applying this finding to design a more efficiently targeted
approach to cancer therapy.

Materials and Methods

Caution
2-Aminofluorene derivatives are mutagens and suspected human carcinogens and, therefore,
must be handled with caution.

Crude desalted oligodeoxynucleotides (1 μmol) were purchased from Operon (Eurofin,
Huntsville, AL) and purified by reverse phase HPLC. All HPLC solvents were purchased from
Fisher Inc. (Pittsburgh, PA).

Substrate preparation and characterization
Modified duplexes of 55 bp DNA substrates containing mono-FAAF and di-FAAF adducts in
the NarI sequence context were constructed as previously described [32,35,38]. The HPLC
purification system consisted of a Hitachi EZChrome Elite system with an L2450 diode array
as a detector and a Clarity column (10 mm × 150 mm, 3 μm) (Phenomenex, Torrance, CA).
Purification of oligodeoxynucleotides was carried out using a 20 min linear gradient mobile
phase system from 5 to 20% (v/v) acetonitrile with 100 mM ammonium acetate buffer (pH 6.5)
at a flow rate of 2.5 mL/min.
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Preparation of arylamine-modified template
The modified 55-mer biotinylated DNA templates were prepared according to published pro-
cedures [45–47]. Mono- and di-adduct oligodeoxynucleotides in the NarI modified strand
were purified by HPLC (described above) and characterized by Shimazdu Axima MALDI-TOF
mass spectrometry as previously reported [38] (Fig 1 and S3 Fig). 5’-Biotinylated 55-mer (1
OD) was annealed with 55-mer complementary strand (1.05 ODs) in 1x HBS-EP+ buffer for 5
min at 95°C. Identical unmodified duplexes were concurrently prepared as controls. The
annealed oligodeoxynucleotides then were used for SPR experiments.

Oligonucleotide sequence used for surface plasmon resonance
5’-biotin-CCACTCCTATCCACCATCCATCTTACTCTCG1G2CG3CCATCACCACTCACCACCA
CA-3’
3’-GGTGAGGATAGGTGGTAGGTAGAATGAGAGC C GC GGTAGTGGTGAGTGGTGGTGT-5’
G1, G2, and/or G3: dG or dG-FAAF

Purification of XPC-RAD23B protein complex
XPC-RAD23B protein was prepared from Sf21 insect cells infected with recombinant baculo-
virus expressing XPC and RAD23B proteins (graciously provided by A. Sancar, University of
North Carolina, Chapel Hill). The XPC-RAD23B complex was purified as described previously
[48,49]. Protein concentration was determined using the Bio-Rad protein assay. Following
purification by size-exclusion chromatography, SDS-PAGE (10%) andWestern blotting con-
firmed the purity of the XPC-RAD23B complex.

Immobilization of streptavidin on CM5 chip and DNA coating
SPR measurements were conducted with a Biacore T200 (GE Healthcare). Streptavidin (SA)
was immobilized on a CM5 dextran chip using an amine-coupling method [45,47]. Four flow
cells were immobilized with streptavidin amine to ~2,200 resonance units (RU). Flow cell 1
was used as a reference. Before the coating of biotinylated DNA templates over SA, the surface
was washed with 50 mMNaOH five times, each with 60s pulses at 100 μl/min to remove any
free SA until the change in response units was below 5 RU. The surface was further injected
3–4 times with HBS-P+ running buffer (10 mMHEPES, 150 mMNaCl, 0.05% non-ionic sur-
factant P20) to remove any residual NaOH in the microfluidics path and to stabilize the sur-
face. Biotinylated unmodified and various FAAF-modified DNA duplexes (0.025 nM) were
injected at 100 μl/min for 240–300s over the flow cells 2, 3, or 4 to achieve 2–5 RU relative to
flow cell 1, which was a blank reference. Any unbound DNA was washed away with running
buffer.

Kinetics analysis
The binding kinetics for the interaction of UvrA or XPC with DNA was determined by inject-
ing the UvrA (0–500 nM) or XPC (0–5 nM) in HBS-P+ running buffer containing 5 mM
MgCl2, 1 mM DTT and BSA (100 μg/mL). The flow rate was 100 μL/min for 30 s followed by
dissociation for 60 s. The DNA surface was conditioned by a sequential injection involving 1x
HBS-P+ running buffer, 3x HBS-P+ buffer, and 4x HBS-P+ buffer (prior to addition of
enzyme). The surface was regenerated with a 30 s injection of 0.05% SDS with a flow rate of
100 μL/min, followed by a wash with HBS-P+ running buffer. Experiments were repeated 3x
with duplex injections of the indicated concentrations. UvrA binding studies were performed
in the presence of ATP (0.5 mM). All SPR sensograms were double referenced and fitted using
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a simple 1:1 Langmuir model (S1 Fig). Processing included zeroing and cropping data, aligning
injection times, fitting of binding curves and off-rate analysis. The equilibrium dissociation
constant (KD) for ternary systems was calculated using the steady-state affinity analysis in the
BIA-Evaluation software package v2.0 provided by the manufacturer, General Electric. The
average of the data (with standard deviation) of KD, ka, and kd is shown in Tables 1 and 2. The
Scrubber software package (BioLogic Software) was used to process off-rate analysis of raw
XPC-H23B SPR binding sensograms. Curve fittings were not ideal for certain UvrA data (S2
Fig), which affected the reliability of rate constants (see Results).

Electrophoretic mobility shift assay (EMSA)
Binding of XPC to various DNA substrates was analyzed by a gel mobility shift assay as
described previously [49]. Typically, DNA substrates (0.5–1 nM) were incubated with varying
concentrations of protein at 30°C in 20 μL of binding buffer [20 mMHepes-KOH, pH 7.9, 75
mM KCl, 5 mMMgCl2, 1 mM DTT, 5% glycerol, 100 μg/mL acetylated BSA (Promega)]. Reac-
tions then were placed on ice, 2 μL of 80% (v/v) glycerol was added, and the mixture was imme-
diately loaded onto a 3.5% native polyacrylamide gel and electrophoresed at 80 V in 1× TBE
buffer for 2 h at 4°C. The gels were dried and exposed to phosphoimage screens overnight.
Quantification of the radioactivity was carried out using a Fuji FLA-5000 scanner with the Ima-
geGuage software.

Table 1. Correlation of XPC-RAD23B binding and dissociation parameters, melting temperature, and hNER efficiencies of FAAF-modifiedNarI
substrates.

NarI-FAAF SPR (KD) (M) SPR (ka) (M
-1s-1) SPR (kd) (s

-1) t1/2 (s) Tm(°C)(ΔTm) hNER

CCG1*G2CG3CC (G1-mono) 1.8 (±0.02) x 10−9 1.1 (±0.01) x 107 1.9 (±0.02) x 10−2 24 (±0.5) 68.6 (-5.3) 1 (±0.14)

CCG1G2*CG3CC (G2-mono) 0.9 (±0.01) x 10−9 6.9 (±0.17) x 107 6.3 (±0.16) x 10−2 44 (±0.4) 66.0 (-7.9) 0.69 (±0.03)

CCG1G2CG3*CC (G3-mono) 1.1 (±0.01) x 10−9 3.7 (±0.07) x 107 4.2 (±0.08) x 10−2 38 (±0.1) 65.6 (-8.3) 0.65 (±0.06)

CCG1*G2*CG3CC (G1G2-di) 7.6 (±0.26) x 10−11 1.0 (±0.008) x 108 2.5 (±0.01) x 10−3 102 (±1.3) 60.6 (-10) 0.69 (±0.08)

CCG1*G2CG3*CC (G1G3-di) 1.6 (±0.76) x 10−11 1.4 (±0.008) x 108 6.7 (±0.05) x 10−3 282 (±2.9) 56.5 (-14.1) 0.30 (±0.05)

CCG1G2*CG3*CC (G2G3-di) 0.42 (±0.34) x 10−11 1.4 (±0.01) x 108 1.4 (±0.01) x 10−3 492 (±4.5) 52.7 (-17.9) 0.12 (±0.02)

There is an inverse relationship between off-rate kinetics and human NER of the di-adducted dG-FAAF substrates. SPR (ka), SPR (kd) and SPR (KD) are

the association rate (ka), dissociation rate (kd) and equilibrium dissociation constant (KD) values determined by SPR analysis of the interaction of XPC with

mono- and di-adducts and t1/2 (s) is the calculated half-life of the protein-DNA complex. The Tm(°C)ΔTm data are the thermodynamic stability as previously

reported [33,38]. The hNER efficiency is relative to the data displayed in Fig 2.

doi:10.1371/journal.pone.0157784.t001

Table 2. Binding and dissociation parameters of UvrA2 binding to FAAF-modifiedNarI substrates.

NarI-FAAF SPR (KD) (M) SPR (ka) (M
-1s-1) SPR (kd) (s

-1)

CCG1*G2CG3CC (G1-mono) 1.3 (±0.01) x 10−9 4.9 (±0.05) x 106 0.6 (±0.005) x 10−2

CCG1G2*CG3CC (G2-mono) 2.4 (±0.04) x 10−9 1.8 (±0.005) x 106 0.4 (±0.002) x 10−2

CCG1G2CG3*CC (G3-mono) 3.9 (±0.05) x 10−9 1.8 (±0.004) x 106 0.7 (±0.002) x 10−2

CCG1*G2*CG3CC (G1G2-di) 4.9 (±0.46) x 10−10 6.2 (±0.06) x 106 0.3 (±0.02) x 10−2

CCG1*G2CG3*CC (G1G3-di) 2.7 (±0.46) x 10−10 5.2 (±0.01) x 106 0.1 (±0.01) x 10−2

CCG1G2*CG3*CC (G2G3-di) 5.0 (±1.33) x 10−10 4.7 (±0.01) x 106 0.2 (±0.02) x 10−2

The association rate (ka), dissociation rate (kd) and binding affinity constant (KD) values of the interaction of UvrA with FAAF-modified NarI mono- and di-

adducts in the presence of ATP determined by SPR analysis of the interaction of UvrA2.

doi:10.1371/journal.pone.0157784.t002
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Construction of closed-circular plasmid with adducts
The following double-stranded oligonucleotide was cleaved by KpnI and Xba1 (both lower-
case) for insertion into the multiple cloning site of the vector pTZ19U between the XbaI and
KpnI restriction sites using the QuikChange II Site-Directed Mutagenesis Kit (Agilent Technol-
ogies). The 16-mer sequence containing the NarI hotspot of Fig 1B is underlined.
NER_ins1 5’-CGGggtaccCCGCTCTCGGCGCCATCACTTAGtctagaCTAG-3’
NER_ins2 3’-GCCccatggGGCGAGAGCCGCGGTAGTGAATCagatctGATC-5’

The NER-pTZ19U plasmid was propagated in E. coli (DH5α) cells, which were infected
with virus M13KO7 (NEB) to generate single-stranded plasmid which was purified using the
M13 isolation maxi kit (Omega Biotek). Closed-circular double-stranded plasmid containing
adduct was made by priming the single-stranded NER-pTZ19U plasmid with 5’-phosphory-
lated 16-mer oligos (Fig 1B) containing adduct in the presence of Sequenase 2.0 (Affymetrix)
and T4 DNA ligase (Promega) following the manufactures protocol. Closed-circular plasmid
DNA containing adduct then was purified by agarose gel electrophoresis and elution.

HeLa whole-cell extract preparation
Whole cell extracts were prepared from HeLa cell pellets purchased from the National Cell
Culture Center. The thawed cell pellet was resuspended in four packed-cell volumes (PCV)
of 10 mM Tris-HCl pH 8.0, 1 mM EDTA, 5 mMDTT, then incubated on ice for 20 min. The
cells were lysed by homogenization in a Dounce homogenizer using eight strokes of the B
pestle. Four PCV of 50 mM Tris-HCl pH 8.0, 10 mMMgCl2, 2 mM DTT, 25% sucrose (w/v),
50% glycerol (v/v) were added and the mixture was stirred gently. One PCV of saturated
(NH4)2SO4 (pH 7.0) was added slowly, then the mixture was stirred for 20 min at 4°C. The
lysate was clarified by centrifugation at 11,500xg for 30 min at 4°C. The supernatant was trans-
ferred to a fresh tube and solid (NH4)2SO4 (0.33g/ml of suspension) was added. The suspen-
sion was mixed for 30 min and 0.01 ml of 1M NaOH per 10 grams of (NH4)2SO4 was added.
The precipitated proteins were collected by centrifugation at 11,500xg for 30 min and resus-
pended in dialysis buffer (25 mMHepes-KOH pH 7.9, 100 mM KCl, 12 mMMgCl2, 0.5 mM
EDTA, 2 mMDTT, 12% glycerol) and was dialyzed against the same buffer overnight. Follow-
ing dialysis the extract was clarified by centrifugation at 10,000xg for 10 min and aliquots of
the supernatant were stored at -80°C.

Dual incision assay
The dual incision assay was adapted from Shivji et al. [50]. All incisions were carried out in a
total reaction volume of 10 μl. A reaction mixture with 100 μg HeLa whole-cell extract protein
in 5x repair buffer [200 mMHepes-KOH, 25 mMMgCl2, 110 mM phosphocreatine (di-Tris
salt, Sigma), 10 mM ATP, 2.5 mMDTT and 1.8 mg/ml BSA, (adjusted to pH 7.8), 0.2 μl 2.5
mg/ml creatine phosphokinase (rabbit muscle CPK, Sigma)] was preincubated at 30°C for 10
min. The incision reaction was started with the addition of 50 ng of adduct-containing plasmid
DNA, and incubation was continued for another 45 min at 30°C. Samples were placed on ice
for 10 min, then 0.5 μl of 1 μM 3’-phosphorylated primer (5’GGGGCAGGTGATGGCGCC
GAGAGGGATCCCC-3’) was added and the mixture was heated to 95°C for 5 min and
allowed to cool to room temperature for 15 min. Then, a sequenase/[α-32P]-dCTP mix was
added at 0.25 U of sequenase and 2.5 μCi of [α-32P]-dCTP per reaction. The reaction mixture
was incubated at 37°C for 3 min before addition of dNTP mix (50 μM dCTP and 100 μM
dATP, dGTP, dTTP) followed by an additional 12 min incubation. The reaction was stopped
by addition of loading dye and heated to 95°C for 5 min before electrophoresis through a 12%
Sequagel (National Diagnostics). Reaction products were visualized with a Fuji Film FLA-5000.
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Results

Model systems
Mono- and di-FAAF adducted substrates were prepared within the NarI core sequence (5’ -CT
CTCG1G2CG3CCATCAC-3’, Fig 1B) as previously reported [33,38,39] and their correspond-
ing duplexes were used to examine their structural and thermodynamic properties (see below).
The fluorinated FAAF has been used as a powerful 19F NMR probe for investigating arylamine
induced conformational heterogeneity [32–34]. This common NarI sequence was ligated to
prepare 55 bp substrates for SPR and double-incision assays on closed circular plasmid DNA.
Depending on the location of the FAAF, the mono-adducts were designated as NarI-G1,
NarI-G2 or NarI-G3, in which G1, G2 and G3 signify the position of modified guanine. The di-
adducts were designated as NarI-G1G2, NarI-G2G3, or NarI-G1G3, in which the numbers sig-
nify the positions of FAAF-modified guanines (Fig 1B). Note, these adducts can exist in the B,
S or W conformations (Fig 1C) with the distribution between conformers strongly influenced
by the sequence context and nature of other adducts within the Nar1 sequence [35,51].

Thermodynamics of mono- and di-FAAF adducts and E. coli NER
We previously studied the structures and thermodynamics of mono- and di-FAAF duplex
adducts derived from the afore-mentioned NarI-16-mer sequence [33,38]. The thermodynamic
results summarized in S1 Table revealed that di-adducts produced an additive effect on duplex
destabilization relative to the mono-adducts. Briefly, the lesion-induced thermal instabilities
(Tm, S1 Table) were substantially greater for di- (-10.0 ~ -17.9°C) over mono-adducts (-5.3 ~
-8.3°C). Within the di- adducts, the thermal stability was generally in the order of NarI-G1G2

> NarI-G1G3 > NarI-G2G3. Molecular dynamic simulation data indicated that the perturba-
tions of nucleotide base stacking are a major contributor to the observed sequence effect. The
di-adducts were more reparable in E. coli than the corresponding mono-adducts [33,38]. More-
over, we observed a dramatic trend in repair efficiency in E. coli which parallels the reductions
in thermal stability, i.e., NarI-G2G3 > NarI-G1G3 >> NarI-G1G2. Taken together, these results
indicate the importance of base stacking and related thermal and thermodynamic instability in
the repair of bulky cluster arylamine DNA adducts. However, assessing the overall thermody-
namic stability of di-adducts was complicated by the fact that the di-adducts sample a complex
range of S/B/W-conformational heterogeneity [38]. The single FAAF adduct at the G3 position
of the NarI sequence exhibited a preference for the S conformation (61%). Interestingly, greater
instability was observed for the G3-containing NarI-G2G3 and NarI-G1G3 duplexes that pro-
duce a higher combined S population (~76 and ~95%, respectively) than NarI-G1G2 (~49%).
In addition, the greater proximity of two FAAF lesions in NarI-G2G3 (e.g., just one base apart)
compared to that in NarI-G1G3 (two bases apart) possibly could induce a greater helical
distortion.

Human NER of mono- and di-FAAF adducted DNA
To examine the efficiency of NER in excising the mono- and di-FAAF lesions in the human
system, oligonucleotides containing FAAF were generated within the NarI sequence, as
described above. These modified oligonucleotides then were incorporated into a closed circular
plasmid and subjected to excision with extracts from untreated HeLa cells, which contain the
complete NER machinery. A complementary oligonucleotide with a 4-guanine overhang that
matches the incision product then was used to generate a radioactive product for visualization
and quantification of incision products. Incision experiments were carried out in triplicate
under identical conditions, and then the relative incision was measured by separating the
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incision extension products in a denaturing urea gel as shown in Fig 2. In contrast to the
unmodified substrate the modified substrates generated products ranging in size from 25–34
bases.

Of the FAAF adducts, NarI G1-FAAF was observed to have the maximum incision; there-
fore, all other NarI adducts were normalized to G1 (Fig 3). The relative incision, therefore, was
1 for G1, 0.69 for both G2 and G1G2, 0.65 for G3, 0.30 for G1G3, and 0.12 for G2G3. The
observed order for incision efficiency in the mono-adducts was G1 > G2 ~ G3. The relative
hNER efficiencies of the di-FAAF adducts in the NarI sequence were G1G2 > G1G3 > G2G3.
Previous work on these same mono-adduct substrates has yielded a variety of conclusions
[25,27,28]; however, this is the first report to include hNER incision analysis of cluster di-AAF

Fig 2. NER dual incision at adducts in theNarI sequence in the human NER system. Plasmids
containing site-specific mono-FAAF (lanes G1, G2, G3) or di-FAAF adducts (lanes G1G2, G2G3, G1G3), were
incubated with HeLa whole-cell extracts. Detection of excision products was monitored by 3’-end-labeling
using a complementary oligonucleotide containing a 5’-GGGG base overhang. The reaction products were
resolved on a 12% denaturing polyacrylamide gel run under constant current. The range of excision products
is indicated on the left of the gel.

doi:10.1371/journal.pone.0157784.g002

XPC Dissociation from damaged DNA Is a Determining Factor of NER Efficiency

PLOS ONE | DOI:10.1371/journal.pone.0157784 June 21, 2016 9 / 21



adducts. One interesting observation is that the most thermodynamically stable di-adduct,
G1G2, has no base separating the lesions and, in this respect, is structurally comparable to the
UV-induced cyclopyrimidine dimer (CPD) adduct. Work from the Min lab has allowed a bet-
ter understanding of how XPC binds undamaged and damaged DNA, specifically via the CPD
adduct [23,24]. Other observations indicate comparability between the cluster di-adduct G2G3,
which has FAAF adducts separated by one intact nucleotide base, and di-nuclear cis-platinum
complexes [52]. These observations, discussed in further detail below, potentially have signifi-
cant biological implications.

E. coli and human NER produce different incision efficiency patterns on
common substrates
Interestingly, there is no direct correlation when comparing the NER incisions between the E.
coli and human systems (Fig 3) [33,38]. Our previous work revealed that in the E. coli system
mono-FAAF adducts were excised in the order of G3 ~ G1 > G2 while di-FAAF adducts were
excised in the order of G2G3 > G1G3 > G1G2 [33,38]. In the E. coli system, the di-adducts over-
all are more readily incised by the UvrABC system than the mono-adducts; in contrast, in the
human system the mono-adducts have significantly greater incision versus the di-adducts.
Another interesting observation is that the mono- and di-adducts that produced the most inci-
sion product in the E. coli system (G3 and G2G3), led to the least incision product in the human
system [33,38].

Although many processes in eukaryotic cells are conserved from prokaryotic systems and
operate by similar mechanisms, in the case of NER the issue becomes more complex in that the
UvrABC system is made up of only three proteins while in the human system nearly 30

Fig 3. The efficiencies of NER at adducts in the NarI sequence in the human NER system. The relative
incision rates of mono-FAAF and di-FAAF adducts in the histogram were calculated by normalizing the
mono- (yellow) and di-adducts (blue) relative to the NarI-G2G3 FAAF value for the NarI-G1 FAAF value for the
human system. Quantification of NER efficiencies was from at least three independent experiments.

doi:10.1371/journal.pone.0157784.g003
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proteins carry out the same function. Also, in humans multiple pathways arose to deal with the
repair of a much more complex genome that also exists in a chromatin structure. On the con-
trary, adducts that destabilize and disorder the DNA are the best substrates for the E. coli sys-
tem [33,38] but are poorer substrates in the human system. This leads to the assertion that
there are factors other than damage recognition that influences activation of NER in the
human system.

UvrA2 and XPC binding to FAAF adducts in the NarI sequence context
In E. coli or human NER, UvrA2 or XPC is required for the recognition of adduct-induced
destabilization of DNA structures as the initial step [9]. The incision efficiency of the UvrABC
system on mono- and di-FAAF-adducted DNA has been thoroughly studied in our past work
[33,38] and the incision efficiency of the human system on these adducts is presented in the
present study. To determine the KD, ka, and kd of the UvrA2, and XPC interactions with the
FAAF adducts we employed SPR molecular interaction analysis. By real-time monitoring of
UvrA2 and XPC binding, a more informed conclusion can be drawn of their binding to and
dissociation from adducted DNA. First, as a preliminary test, a traditional method, EMSA, was
employed to demonstrate complex formation of XPC and FAAF-adducted DNA (Fig 4A). The
gel shift binding pattern is consistent with the previous reports that XPC can bind an adducted
oligonucleotide as a multimer at high concentrations, as shown by the two slower migrating
bands [25,26]. It was thought that the formation of the slower migrating band could be through
biochemical manipulation of the enzyme [25,26]. This EMSA result is of XPC binding to the
G1 adduct and is representative of the results obtained for all other adducted substrates (data
not shown).

Next, mono- and di-FAAF-adducted DNA was used to determine XPC and UvrA2 associa-
tion and dissociation rates by SPR. The SPR binding results are shown in Fig 4 and S2 Fig, in
which the average of the triplicate data is displayed. Use of the usual simple 1:1 Langmuir-type
binding model did not produce desirable closeness of fit between the protein and modified
DNA (S1 Fig). The fitting for XPC binding was improved somewhat (for di-adducts especially)
by applying the ‘heterogeneous ligand’model which is designed to accommodate the interac-
tion of one protein analyte with two ligand sites on the surface. The usual remedy such as
reducing the magnitude of the concentration gradient did not significantly mitigate the lack of
ideal curve fittings, nor did decreasing the density of the immobilized DNA construct on the
surface or increasing the flow rate. It is clear that the adduct-induced conformational heteroge-
neity of our substrates contributes many non-ideal molecular complexities, e.g., molecular dif-
fusion affects, analyte heterogeneity [53,54], steric hindrance, and protein-DNA binding
cooperativity and stoichiometry (e.g., see EMSA in Fig 4A). These factors affected the kinetic
rate constants, which made them less reliable. However, we observed a dramatic difference in
equilibrium dissociation constant (KD) values with XPC and association and dissociation rates
between mono- and di-adducts (Table 1). A similar trend was observed with UvrA (Table 2
and S2 Fig). In the SPR experiments, ATP was added to the binding buffer for UvrA2 because
ATP appeared to stabilize the dimer. This observation is consistent with the known ATPase
activity of UvrA2 for adduct binding [55].

The binding of UvrA2 and XPC to lesions in the NarI sequence is more stable with the di-
FAAF adducts than the mono-FAAF adducts. Importantly, our SPR binding results are similar
to previous work demonstrating the binding affinity of XPC to cisplatin-damaged DNA
[56,57]. It is of note that the thermostability (ΔTm) of these adducts varies and that the di-
adducts have the lowest thermostability (G1 >G2 > G3 >> G1G2 > G1G3 > G2G3) (S1 Table).
The binding of UvrA2 to the di-adducts was observed to be stronger than binding to the mono-
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Fig 4. XPC binding to damaged DNA in theNarI sequence. (A) Representative image of XPC binding to NarI-G1 in an EMSA assay. XPC protein, at
increasing concentration, was incubated with a FAAF-damaged 55-bp oligo. Sensograms showing XPC binding kinetics to mono-FAAF (B) and to di-
FAAF adducted substrates (C). SPR responses were recorded for the binding of XPC NER protein (5, 2.5, 1.25, 0.625, 0.313, and 0.156 nM) to FAAF-
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adducts (Table 2). This is in agreement with the finding that the NER efficiency in E. coli is
higher for the di-adducts over the mono-adducts. The tightest UvrA2-FAAF binding was to
G1G3 where the adducts are separated by two intact nucleotide bases with a dissociation rate of
2.7 x 10−10. Interestingly, the correlation between equilibrium constants and NER efficiency for
UvrA2 and XPC with mono- versus di-FAAF-adducted DNA are conversely related. In the case
of XPC-FAAF binding, the di-adducts bound with significantly slower dissociation (off) rates
relative to the mono-adducts. These results are consistent with conformational changes accom-
panying the protein-DNA interactions, which could provide the basis for deciphering the bind-
ing/repair mechanisms. Comparing KD values (Table 1), the di-FAAF-adducted DNAs show
more stable XPC binding than the mono-adducts. The tightest XPC binding was to G2G3 with
a dissociation rate of 0.42 x 10−11. The low KD for XPC di-adduct binding signifies a much tigh-
ter association of XPC protein to clustered lesions. Table 1 summarizes these findings of XPC
binding compared to the thermodynamic stability, the XPC-DNA complex half-life, and the
incision efficiencies of FAAF adducts in the human NER system. It should be noted that the
G1G2 adduct has a longer half-life but similar incision to the mono-adducts, G1 and G3. Inter-
estingly, this is the only cluster adduct studied in which the adducts are on adjacent nucleotide
bases and its binding half-life is much shorter than those of G1G3 and G2G3 with the di-adducts
separated by at least one intact nucleotide bases.

By calculating the half-life we observed that XPC-DNA complexes containing the di-FAAF
adducts were on average at least 8 times more stable than complexes with the mono-FAAF
adducts (Fig 4B and 4C, Table 1). In the extreme case the half-life of XPC-DNA complexes
containing NarI di-G2G3-FAAF was 20 times longer than that of NarI mono-G1-FAAF. The
half-life demonstrates an inverse relationship with the hNER efficiency (Fig 5). This indicates
that the longer XPC stays bound to the adduct site, the less productive the human NER process.
These data are provocative as they suggest that a strong DNA damage recognition or binding
itself does not necessarily guarantee efficient NER.

modified full DNA duplexes. The recorded data are displayed as black lines while red lines represent curve fitting. The half-life (t1/2) is indicated above the
curves (in yellow box) and is defined as the time it takes for half of the XPC-DNA complex to dissociate. The fitted curves obtained from fittings using a
one-independent site model (“Scrubber”) are displayed (See Methods).

doi:10.1371/journal.pone.0157784.g004

Fig 5. Comparison of hNER efficiency and half-life (t1/2) of the XPC-DNA complex. The data points were
analyzed independently as mono- or di-FAAF adduct groups and the two dashed lines indicates the group
trends. Mono- and di-adducts are indicated on the right.

doi:10.1371/journal.pone.0157784.g005
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Discussion
Various studies have attempted to relate the protein binding interactions involved in DNA dam-
age recognition with NER excision efficiency utilizing a wide array of DNA damages [26,58]. This
work proposes a novel mechanism beyond the conventional concept that the binding capability of
DNA damage recognition proteins directly relates to the ability of the repair process to remove
the damage from DNA. The presented SPR/hNER results suggest strongly that di-FAAF adducts
fail to produce a productive complex for hNER even though the damage recognition binding is
strong. In other words, robust XPC binding (KD of 10−9 ~ 10−10 M) may be required for initiation
of hNER. However, unusually strong XPC binding (KD<10−11) and, more importantly, the
extremely slow dissociation of di-FAAF adducts, and thus the long residence time (t1/2) of XPC at
the damage site, could be detrimental to recruitment of subsequent downstream proteins to com-
plete the hNER process (Fig 5). We demonstrate that in addition to the equilibrium binding affin-
ity of XPC for DNA damage, kinetics and the off-rate of the interaction also play critical roles in
determining the NER efficiency. This is particularly true for certain types of DNA adducts, such
as the di-FAAF examined here, which have a long XPC residence time during DNA damage rec-
ognition. Since dissociation of XPC from the damage site after initial recognition is necessary for
subsequent binding of other repair factors in the mechanism of NER [15,58,59], it is possible that
such an extended residence of XPC at the damage site would likely make dissociation the rate-lim-
iting step of NER. This could lead to inefficient DNA repair even though the XPC-damaged DNA
binding affinity is high. Our findings may help us better understand the complex mechanisms
relating protein binding and adduct clearance viaNER.

For the mono-FAAF adducts we observed that the repair efficiency of the G1 adduct was sig-
nificantly higher than that of the G2 and G3 adducts, in agreement with the shorter half-life of
XPC on DNA adducted at the G1 rather than the G2 or G3 positions (Table 1). This contrasts
with different reported preferences for repair in HeLa cell extracts of adducts at the G2 position
[27,28] or at the G3 position [25]. These differences in NER preferences may stem from the
nature of the DNA constructs used in the respective studies. The long-range sequence context
of the DNA in which the adducted NarI site is embedded differs significantly between our con-
struct and that of Yeo et al. as do the plasmids carrying these constructs (pTZ19U vs. pBlue-
script II SK+, respectively) [25]. In addition, the studies reporting a preference for repair of
adducts at the G2 position employed relatively short (<150 bp), linear, and internally labeled
constructs that may display different torsional stresses on the DNA double helix in the HeLa
extracts. Most studies on sequence context on NER efficiencies focus on the position effects
within the NarI sequence rather than the influence of the long-range sequence in which it is
embedded or the effect of super-helical stresses within the circular plasmids. Further studies
are needed to resolve the influence of these experimental parameters on the NER efficiencies.
However, the SPR, thermodynamic, EMSA and repair efficiency data reported here are inter-
nally consistent in highlighting the importance of the half-life of the XPC-DNA complex in
determining NER efficiency.

Our finding that the increased residence time of XPC on damaged DNA containing di-
adducts reduces repair efficiency is consistent with the in vivo studies of NER protein binding
dynamics to chromatin and at damaged DNA sites, especially for XPC [60]. However, we ana-
lyzed reconstituted systems of short adducted dsDNAs of non-UV induced DNA damage plus
purified XPC-RAD23B or adducted plasmid DNA plus a fractionated extract from HeLa cells
not exposed to UV. Thus, our data may not directly correlate to cellular studies showing an
observed influence of DDB2 (damaged DNA-binding 2) protein. This is also possibly true for
the effects of the ubiquitin-dependent p97 segregase and centrin-2 on XPC binding/release
dynamics from UV-damaged chromatin DNA [61]. Further studies are needed to test how
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such cellular factors might reduce the binding and retention time of XPC on DNA containing
mono- and di-FAAF adducts, and to extend these analyses to UV-induced damage. However,
our data are consistent with their observation that the prolonged retention of XPC in chroma-
tin or an increase t1/2 reduces the NER efficiency [61], though the prolonged retention in the
previous UV-induced damage study was due to the deficiency of p97 segregase.

The E. coli NER system has been studied for decades, leading to many breakthroughs in our
understanding of how cells can repair DNA damage. These studies have provided vital infor-
mation that is applicable to our understanding of the human NER system; however, these two
systems are not directly comparable when considering damage recognition. Tight binding of
recognition proteins may imply a better incision substrate, and this is true for E. coli, but in the
human system much tighter binding can lead to a longer residence time, which results in a
decrease in substrate processing. Analysis of previously reported structures of XPC- and
UvrA2B (or UvrA2B2)-damaged DNA interactions may provide some understanding of our
observed differences of the FAAF adduct incisions between hNER and UvrABC systems [62–
64]. In both E. coli and human systems a damage recognition protein is required to initiate the
NER. UvrA2B and XPC-RAD23B, respectively, fill this role in the GGR sub-pathway of NER.
Interestingly, although both protein complexes recognize DNA damage, dissociation of these
proteins from the damage site after recognition is quite different. In the case of UvrABC,
UvrA2 dissociates, while UvrB remains bound to the damage. In contrast, in hNER, RAD23B
dissociates shortly after binding; however, XPC remains bound [65]. Interestingly, structural
evidence revealed that UvrA2 makes contact with the DNA that flanks the damage site and has
no contact with the lesion itself [64], while UvrB establishes lesion contact, utilizing a β-hairpin
domain to insert into the DNA strands and flip-out bases opposing the lesion [63,66]. On the
other hand, XPC appears to be responsible for both roles carried out by UvrA2 and UvrB of the
UvrA2B complex since XPC also inserts its β-hairpin domain between DNA strands at the
damage site [23,24]. The β-hairpin insertion is likely to make protein-DNA interaction more
stable and, thus, the protein less likely to dissociate from DNA. Since UvrA2 does not carry out
β-hairpin insertion while XPC does, it is possible that UvrA2 would be energetically easier to
dissociate from DNA than XPC whose dissociation is more damage-type dependent. Thus, the
type of di-FAAF adduct may increase the affinity of XPC at the damage site, leading to a longer
residence time. For mono-FAAF adducts, in contrast, a normal t1/2 keeps the dissociation from
being a rate-limiting step, remaining close to the regular binding-repair efficiency correlation.
Our data supports the notion that XPC has an increased residence time at clustered lesion sites,
making the dissociation from the lesion the rate-limiting step.

Fig 6A shows a ‘hypothetical’ 3D model of the G1 mono-FAAF adduct that was printed (not
simulated), derived from the published Rad4-CPD DNA structure (PDB ID# 2QSG) [24]. The
G1 mono-FAAF and G2G3 di-FAAF (not shown, additional FAAF site designated as red�)
adducts exhibit distinctive differences in hNER (1 vs. 0.12 relative efficiencies) (Fig 3) and XPC
residence time (24 vs. 495 s) (Table 1), as well as DNA thermal stability (ΔTm -5.3 vs. -17.9°C)
(S1 Table). The CPD mismatch site was simply replaced by FAAF (yellow,�) for visualization
of the G1 mono-FAAF. The mono-lesion is expected to produce a similar NER complex as the
CPD; that is, Rad4 inserts a β-hairpin into the damaged site with most of the modified strand
being fully exposed and the mismatched bases (cyan) on the complimentary strand flipped out
the double helix. The di-G2G3 adduct, however, contains two FAAF adducts on separated by
one intact nucleotide base and is likely to exhibit very different conformations that are respon-
sible for its unusually strong binding and slow dissociation (Table 1). Possibilities include addi-
tional DNA interactions with the BHD3/BHD2 and TGD protein segments of XPC protein;
the latter have been considered to be responsible for the highly kinked DNA conformations.
These additional XPC-lesion interactions could provoke conformational alterations, which
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Fig 6. Proposedmodel for XPC interaction with DNA-adduct site. (A) 3D-printed model (not simulated) to illustrate the
potential binding of the yeast XPC-RAD23B ortholog, Rad4/Rad23, to the mono-G1-FAAF duplex based on PDB ID 2QSG. The
β-hairpin domains (BHD2 and BHD3) and the transglutaminase-homology domain (TGD), which are involved in protein-DNA
interaction, are indicated. The domains were adapted from previous crystal structure analysis by Min et al. [24]. The duplex
sequence used in this model is identical with that of Min’s crystal work except that the CPD lesion was replaced by FAAF-G1
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may affect the logistics of the subsequent verification step. One potential future study is to crys-
talize Rad4 or XPC complexed with the afore-mentioned mono-G1 and di-G2G3-FAAF
adducts used in this study. If successful, the results are likely to provide valuable structural
insights on XPC-DNA interactions that contribute to the large discrepancy in their residence
time and reveal important clues regarding the structural requirements for recruitment of other
NER proteins and subsequent lesion verification.

Tight binding during damage recognition may imply a better substrate for incisions, and
this is true for E. coliNER, but in the human system binding too tightly can lead to a longer res-
idence time, which decreases DNA repair (Fig 6B). In addition to the new insights into under-
standing the mechanisms of hNER, the inverse relationship between the t1/2 of tight binding
and NER efficiency suggests a novel strategy as a new therapeutic approach in cancer therapy.
Given that DNA damaging agents have been widely exploited for anticancer activities, target-
ing properly spaced di-adducts or a cluster-like drug that effectively stalls XPC or other damage
recognition proteins could lead to strong resistance to repair and, thus, a higher efficiency in
killing cancer cells. Recent studies have introduced new models that utilize residence time in
drug design and to increase the efficacy of known drugs [67,68]. These models could be applied
to our system allowing for design of novel drugs that could increase the residence time of XPC
on damaged DNA for cancer therapeutics.

In summary, the present study suggests that dissociation of XPC from adducted DNA is the
determining factor for successful NER elimination of adducts. In recognizing the types of
adducts that are comparable to Nar1-G2G3 and NarI-G1G3 cluster adducts, XPC can be stalled
on these damage sites, preventing clearance of induced adducts. Exploiting the high prolifer-
ative rate of cancer cells and the slow dissociation rate of XPC from clustered adducts allows
for a more efficiently targeted approach to cancer therapy. Furthermore, the current work also
advances our understanding of the intricacies of the NER mechanism.

Supporting Information
S1 Fig. Variation of curve fitting between the heterogeneous ligand and langmuir fitting
models. Representative SPR sensograms of mono- (A) and di-adducted (B) duplexes demon-
strating the variation of curve fitting using the heterogeneous ligand fitting model (top) and
the 1:1 Langmuir fitting model (bottom). The XPC protein concentrations used were 2.5, 1.25,
0.62, 0.31, and 0.15 nM.
(TIF)

S2 Fig. The effects of ATP on the UvrA binding to FAAF-damaged DNA in the NarI
sequence. Sensograms showing UvrA binding kinetics to mono-adducted substrates in the
absence of ATP (A) or in the presence of ATP (B) and to di-adducted substrates in the absence
of ATP (C) or in the presence of ATP (D). SPR responses were recorded to of the binding of
UvrA NER protein (250, 125, 62.5, 31.2, 15.6, and 7.8 nM) to modified full DNA duplexes. The
recorded data are displayed as black lines while red lines represent curve fitting. The fitting
curves obtained from fittings using a one-independent site model are displayed.
(TIF)

(yellow *, as shown). The site of additional FAAF in the di-G2G3-adduct is designated in red asterisk. The insertion of the BHD3
β-hairpin was accompanied with flipping of the mismatched bases (cyan) on the complimentary sequence. (B) A schematic
illustrating the proposedmechanism of action where XPC is loosely bound to mono-FAAF adducted DNA (left) or tightly bound to
di-FAAF adducted DNA (right). Following dissociation of XPC from the damage site subsequent NER factors are recruited to
complete the excision of the damaged base; however, in the di-adduct situation XPC is retained on the damaged DNA, delaying
successful NER completion.

doi:10.1371/journal.pone.0157784.g006
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S3 Fig. Representative MALDI-TOF mass spectra.MALDI-TOF mass spectra analysis of
unmodified (orange) or FAAF-modified (red) substrates (55-mer).
(TIF)

S1 Table. Thermal and thermodynamic parameters of mono- and di-FAAF modified NarI
duplexes. Comparative thermodynamic parameters are listed for the FAAF-modified sub-
strates. This is a summary of previously reported data for mono- and di-FAAF substrates
[33,38]. The average standard deviations for − ΔΔH, − ΔΔG, and ΔΔTm are ±3.0, ±0.4, and
±4.0, respectively [33,38]. ΔΔH = ΔH(modified duplex)– ΔH (control duplex). ΔΔG = ΔG
(modified duplex)– ΔG (control duplex). ΔΔTm = ΔTm (modified duplex)– ΔTm (control
duplex).
(TIF)
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