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We investigate global dynamics of the following systems of difference equations xn+1 = β1xn/
(B1xn + yn), yn+1 = (α2 + γ2yn)/(A2 + xn), n = 0, 1, 2, . . ., where the parameters β1, B1, β2, α2,
γ2, A2 are positive numbers, and initial conditions x0 and y0 are arbitrary nonnegative numbers
such that x0 + y0 > 0. We show that this system has up to three equilibrium points with various
dynamics which depends on the part of parametric space. We show that the basins of attractions of
different locally asymptotically stable equilibrium points or nonhyperbolic equilibrium points are
separated by the global stable manifolds of either saddle points or of nonhyperbolic equilibrium
points. We give an example of globally attractive nonhyperbolic equilibrium point and semistable
non-hyperbolic equilibrium point.

1. Introduction

In this paper we consider the following rational system of difference equations

xn+1 =
β1xn

B1xn + yn
,

yn+1 =
α2 + γ2yn

A2 + xn
,

n = 0, 1, 2, . . . , (1.1)

where the parameters β1, B1, β2, α2, γ2, A2 are positive numbers, and initial conditions x0 and
y0 are nonnegative numbers such that x0+y0 > 0. System (1.1)was mentioned in [1] as one of
three systems of open problem 3 which asked for the description of global dynamics of some
rational systems of difference equations. In notation used to labels systems of linear fractional
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difference equations used in [1] system (1.1) is known as (3.19) and (4.1). In this paper, we
provide the precise description of global dynamics of the system (1.1). We show that the
system (1.1)may have between zero and three equilibrium points, which may have different
local character. If the system (1.1) has one equilibrium point, then this point is either locally
asymptotically stable or saddle point or nonhyperbolic equilibrium point. If the system
(1.1) has two equilibrium points, then they are either locally asymptotically stable, and
nonhyperbolic, or locally asymptotically stable and saddle point. If the system (1.1) has three
equilibrium points then two of the equilibrium points are locally asymptotically stable and
the third point, which is between these two points in South-East ordering defined below, is a
saddle point. The major problem for global dynamics of the system (1.1) is determining the
basins of attraction of different equilibrium points. The difficulty in analyzing the behavior
of all solutions of the system (1.1) lies in the fact that there are many regions of parameters
where this system possesses different equilibrium points with different local character and
that in several cases the equilibrium point is nonhyperbolic. However, all these cases can be
handled by using recent results in [2]. The dual of this system is the system where xn and
yn replace their role, and it was labeled as system (4.1) and (3.19) in [1]. Dynamics of this
system immediately follows from the results proven here, by simply replacing the roles of xn

and yn.
System (1.1) is a competitive system, and our results are based on recent results about

competitive systems in the plane, see [2, 3]. System (1.1) has a potential to be used as a
mathematical model for competition. In fact, the first equation of (1.1) is of Leslie-Gower
type, and the second equation can be considered to be of Leslie-Gower type with stocking (or
immigration) represented with the term α2, see [4–7]. Here β1, γ2 are the inherent birth rates
while B1 andA2 are related to the density-dependent effects on newborn recruitment. Finally,
α2 affects stocking for species with state variable yn.

In Section 2, we present some general results about competitive systems in the plane.
In Section 3 contains some basic facts such as the nonexistence of period-two solution of
system (1.1). In Section 4 analyzes local stability which is fairly complicated for this system.
Finally, in Section 5 gives global dynamics for all values of parameters. This section finishes
with an introduction of a new terminology for different type scenarios for competitive
systems that can be used to give a simple classification of all possible global behavior
for system (1.1). The interesting feature of this paper is that there are five regions of the
parameters in which one of the equilibrium points is nonhyperbolic, and yet we are able to
describe the global dynamics in all five cases. To achieve this goal, we use new method of
proving stability of nonhyperbolic equilibrium points introduced in [2].

2. Preliminaries

Consider a first-order system of difference equations of the form

xn+1 = f
(
xn, yn

)
,

yn+1 = g
(
xn, yn

)
,

n = 0, 1, 2, . . . , (x−1, x0) ∈ I × I, (2.1)

where f, g : I×I → I are continuous functions on an intervalI ⊂ R, f(x, y) is nondecreasing
in x and non-increasing in y, and g(x, y) is non-increasing in x and nondecreasing in y. Such
system is called competitive. One may associate a competitive map T to a competitive system
(2.1) by setting T = (f, g) and considering T on B = I × I.
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We now present some basic notions about competitive maps in plane. Define a partial
order � on R

2 so that the positive cone is the fourth quadrant, that is, (x1, y1) � (x2, y2) if
and only if x1 ≤ x2 and y1 ≥ y2. For x,y ∈ R

2 the order interval �x,y� is the set of all z such
that x � z � y. A set A is said to be linearly ordered if � is a total order on A. If a set A ⊂ R

2

is linearly ordered by �, then the infimum i = infA and supremum s = supA of A exist

in R
2
= [−∞,∞] × [−∞,∞]. If both i and s belong to R

2, then the linearly ordered set A is
bounded, and conversely. We note that the ordering �may be extended to the extended plane

R
2
in a natural way. For example, (0,∞) � (a, b) if a ≥ 0 or a = ∞. If x ∈ R

2, we denote with

Q�(x), � ∈ {1, 2, 3, 4}, the four quadrants in R
2
relative to x, that is, Q1(x, y) = {(u, v) ∈ R

2
:

u ≥ x, v ≥ y}, Q2(x, y) = {(u, v) ∈ R
2
: x ≥ u, v ≥ y}, and so on.

A map T on a set B ⊂ R
2 is a continuous function T : B → B. The map is smooth on B if

the interior of B is nonempty and if T is continuously differentiable on the interior of B. A set
A ⊂ B is invariant for the map T if T(A) ⊂ A. A point x ∈ B is a fixed point of T if T(x) = x, and
a minimal period-two point if T2(x) = x and T(x)/= x. A period-two point is either a fixed point or
a minimal period-two point. The orbit of x ∈ B is the sequence {T�(x)}∞�=0. A minimal period
two orbit is an orbit {x�}∞�=0 for which x0 /= x1 and x0 = x2. The basin of attraction of a fixed point
x is the set of all y such that Tn(y) → x. A fixed point x is a global attractor on a set A if A
is a subset of the basin of attraction of x. A fixed point x is a saddle point if T is differentiable
at x, and the eigenvalues of the Jacobian matrix of T at x are such that one of them lies in
the interior of the unit circle in R

2, while the other eigenvalue lies in the exterior of the unit
circle. If T = (T1, T2) is a map on R ⊂ R

2, define the sets RT (−,+) := {(x, y) ∈ R : T1(x, y) ≤
x, T2(x, y) ≥ y} and RT (+,−) := {(x, y) ∈ R : T1(x, y) ≥ x, T2(x, y) ≤ y}. For A ⊂ R

2 and
x ∈ R

2, define the distance from x toA as dist(x,A) := inf {‖x − y‖ : y ∈ A}.
A map T is competitive if T(x) � T(y) whenever x � y, and T is strongly competitive

if x � y implies that T(x) − T(y) ∈ {(u, v) : u > 0, v < 0}. If T is differentiable, a sufficient
condition for T to be strongly competitive is that the Jacobian matrix of T at any x ∈ B has the
sign configuration

(
+ −
− +

)

. (2.2)

For additional definitions and results (e.g., repeller, hyperbolic fixed points, stability,
asymptotic stability, stable and unstable manifolds) see [8, 9] for competitive maps, and
[10, 11] for difference equations.

IfA is any subset of R
k, we shall use the notation clos (A) to denote the closure ofA

in R
k, and A◦ to denote the interior of A.

The next results are stated for order-preserving maps on R
n and are known but

given here for completeness. See [12] for a more general version valid in ordered Banach
spaces.

Theorem 2.1. For a nonempty set R ⊂ R
n and � a partial order on R

n, let T : R → R be an order-
preserving map, and let a, b ∈ R be such that a ≺ b and �a, b� ⊂ R. If a � T(a) and T(b) � b, then
�a, b� is invariant and

(i) there exists a fixed point of T in �a, b�,

(ii) if T is strongly order preserving, then there exists a fixed point in �a, b� which is stable
relative to �a, b�,



4 Abstract and Applied Analysis

(iii) if there is only one fixed point in �a, b�, then it is a global attractor in �a, b� and therefore
asymptotically stable relative to �a, b�.

Corollary 2.2. If the nonnegative cone of � is a generalized quadrant in R
n, and if T has no fixed

points in �u1, u2� other than u1 and u2, then the interior of �u1, u2� is either a subset of the basin of
attraction of u1 or a subset of the basin of attraction of u2.

Define a rectangular region R in R
2 to be the cartesian product of two intervals in R.

Remark 2.3. It follows from the Perron-Frobenius theorem and a change of variables [9]
that, at each point, the Jacobian matrix of a strongly competitive map has two real and
distinct eigenvalues, the larger one in absolute value being positive, and that corresponding
eigenvectors may be chosen to point in the direction of the second and first quadrant,
respectively. Also, one can show that if the map is strongly competitive then no eigenvector
is aligned with a coordinate axis.

Theorem 2.4. Let T be a competitive map on a rectangular region R ⊂ R
2. Let x ∈ R be a fixed point

of T such that Δ := R ∩ int(Q1(x) ∪ Q3(x)) is nonempty (i.e., x is not the NW or SE vertex of R),
and T is strongly competitive on Δ. Suppose that the following statements are true.

(a) The map T has a C1 extension to a neighborhood of x.

(b) The Jacobian matrix JT (x) of T at x has real eigenvalues λ, μ such that 0 < |λ| < μ, where
|λ| < 1, and the eigenspace Eλ associated with λ is not a coordinate axes.

Then there exists a curve C ⊂ R through x that is invariant and a subset of the basin of attraction
of x, such that C is tangential to the eigenspace Eλ at x, and C is the graph of a strictly increasing
continuous function of the first coordinate on an interval. Any endpoints of C in the interior of R
are either fixed points or minimal period-two points. In the latter case, the set of endpoints of C is a
minimal period-two orbit of T .

We shall see in Theorem 2.7 and in the examples in [2] that the situation where the endpoints
of C are boundary points of R is of interest. The following result gives a sufficient condition
for this case.

Theorem 2.5. For the curve C of Theorem 2.4 to have endpoints in ∂R, it is sufficient that at least one
of the following conditions is satisfied.

(i) The map T has no fixed points nor periodic points of minimal period two in Δ.

(ii) The map T has no fixed points in Δ, det JT (x) > 0, and T(x) = x has no solutions x ∈ Δ.

(iii) The map T has no points of minimal period two in Δ, det JT (x) < 0, and T(x) = x has no
solutions x ∈ Δ.

In many cases, one can expect the curve C to be smooth.

Theorem 2.6. Under the hypotheses of Theorem 2.4, suppose that there exists a neighborhood U of x
in R

2 such that T is of class Ck on U ∪ Δ for some k ≥ 1, and that the Jacobian matrix of T at each
x ∈ Δ is invertible. Then, the curve C in the conclusion of Theorem 2.4 is of class Ck.

In applications, it is common to have rectangular domains R for competitive maps.
If a competitive map has several fixed points, often the domain of the map may be split
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into rectangular invariant subsets such that Theorem 2.4 could be applied to the restriction
of the map to one or more subsets. For maps that are strongly competitive near the fixed
point, hypothesis (b) of Theorem 2.4 reduces just to |λ| < 1. This follows from a change of
variables [9] that allows the Perron-Frobenius theorem to be applied to give that at any point,
the Jacobian matrix of a strongly competitive map has two real and distinct eigenvalues,
the larger one in absolute value being positive, and that corresponding eigenvectors may be
chosen to point in the direction of the second and first quadrant, respectively. Also, one can
show that in such case no associated eigenvector is aligned with a coordinate axes.

Smith performed a systematic study of competitive and cooperative maps in [9, 13, 14]
and in particular introduced invariant manifolds techniques in his analysis [13–15] with
some results valid for maps on n-dimensional space. Smith restricted attention mostly to
competitive maps T that satisfy additional constraints. In particular, T is required to be a
diffeomorphism of a neighborhood of R

n
+ that satisfies certain conditions (this is the case if

T is orientation preserving or orientation reversing), and that the coordinate semiaxes are
invariant under T . For such class of maps (as well as for cooperative maps satisfying similar
hypotheses), Smith obtained results on invariant manifolds passing through hyperbolic fixed
points and a fairly complete description of the phase-portrait when n = 2, especially for
those cases having a unique fixed point on each of the open positive semiaxes. In our
results, presented here, we removed all these constraints and added the precise analysis
of invariant manifolds of nonhyperbolic equilibrium points. The invariance of coordinate
semiaxes seems to be serious restriction in the case of competitive models with constant
stocking or harvesting, see [16] for stocking.

The next result is useful for determining basins of attraction of fixed points of
competitive maps. Compare to Theorem4.4 in [13], where hyperbolicity of the fixed point
is assumed, in addition to other hypotheses.

Theorem 2.7. (A) Assume the hypotheses of Theorem 2.4, and let C be the curve whose existence is
guaranteed by Theorem 2.4. If the endpoints of C belong to ∂R, then C separates R into two connected
components, namely,

W− := {x ∈ R \ C : ∃ y ∈ C with x �se y},
W+ := {x ∈ R \ C : ∃ y ∈ C with y �se x},

(2.3)

such that the following statements are true:

(i) W− is invariant, and dist(Tn(x),Q2(x)) → 0 as n → ∞ for every x ∈ W−.

(ii) W+ is invariant, and dist(Tn(x),Q4(x)) → 0 as n → ∞ for every x ∈ W+.

(B) If, in addition to the hypotheses of part (A), x is an interior point of R, and T is C2 and strongly
competitive in a neighborhood of x, then T has no periodic points in the boundary of Q1(x) ∪ Q3(x)
except for x, and the following statements are true.

(iii) For every x ∈ W− there exists n0 ∈ N such that Tn(x) ∈ intQ2(x) for n ≥ n0.

(iv) For every x ∈ W+ there exists n0 ∈ N such that Tn(x) ∈ intQ4(x) for n ≥ n0.

Basins of attraction of period-two solutions or period-two orbits of certain systems or maps can
be effectively treated with Theorems 2.4 and 2.7. See [2, 6, 11] for the hyperbolic case; for the
nonhyperbolic case, see examples in [2, 17].
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If T is a map on a set R and if x is a fixed point of T , the stable set Ws(x) of x is the set
{x ∈ R : Tn(x) → x}, and unstable setWu(x) of x is the set

{
x ∈ R : there exists {xn}0n=−∞ ⊂ R s.t. T(xn) = xn+1, x0 = x, lim

n→−∞
xn = x

}
. (2.4)

When T is noninvertible, the setWs(x)may not be connected and made up of infinitely many
curves, orWu(x)may not be a manifold. The following result gives a description of the stable
and unstable sets of a saddle point of a competitive map. If the map is a diffeomorphism on
R, the sets Ws(x) and Wu(x) are the stable and unstable manifolds of x.

Theorem 2.8. In addition to the hypotheses of part (B) of Theorem 2.7, suppose that μ > 1 and
that the eigenspace Eμ associated with μ is not a coordinate axes. If the curve C of Theorem 2.4 has
endpoints in ∂R, then C is the stable set Ws(x) of x, and the unstable set Wu(x) of x is a curve in R
that is tangential to Eμ at x and such that it is the graph of a strictly decreasing function of the first
coordinate on an interval. Any endpoints of Wu(x) in R are fixed points of T .

The following result gives information on local dynamics near a fixed point of a
map when there exists a characteristic vector whose coordinates have negative product
and such that the associated eigenvalue is hyperbolic. This is a well-known result, valid in
much more general setting which we include it here for completeness. A point (x, y) is a
subsolution if T(x, y) �se(x, y), and (x, y) is a supersolution if (x, y) �seT(x, y). An order interval
�(a, b), (c, d)� is the cartesian product of the two compact intervals [a, c] and [b, d].

Theorem 2.9. Let T be a competitive map on a rectangular set R ⊂ R
2 with an isolated fixed point

x ∈ R such thatR ∩ int(Q2(x)∪Q4(x))/= ∅. Suppose that T has aC1 extension to a neighborhood of x.
Let v = (v(1), v(2)) ∈ R

2 be an eigenvector of the Jacobian matrix of T at x, with associated eigenvalue
μ ∈ R. If v(1)v(2) < 0, then there exists an order interval I which is also a relative neighborhood of x
such that, for every relative neighborhood U ⊂ I of x, the following statements are true.

(i) If μ > 1, then U ∩ intQ2(x) contains a subsolution, and U ∩ intQ4(x) contains a
supersolution. In this case, for every x ∈ I ∩ int (Q2(x) ∪ Q4(x)), there exists N such
that Tn(x) /∈ I for n ≥ N.

(ii) If μ < 1, then U ∩ intQ2(x) contains a supersolution and U ∩ int Q4(x) contains a
subsolution. In this case, Tn(x) → x for every x ∈ I.

In the nonhyperbolic case, we have the following result.

Theorem 2.10. Assume that the hypotheses of Theorem 2.9 hold, that T is real analytic at x, and that
μ = 1. Let cj , dj , j = 2, 3, . . . be defined by the Taylor series

T(x + tv) = x + vt + (c2, d2)t2 + · · · + (cn, dn) tn + · · · . (2.5)

Suppose that there exists an index � ≥ 2 such that (c�, d�)/= (0, 0) and (cj , dj) = (0, 0) for j < l. If
either

(a) c�d� < 0, or (b)c� /= 0, T(x + tv)(2) is affine in t, or (c) d� /= 0, T(x + tv)(1) is affine in t,
then there exists an order interval I which is also a relative neighborhood of x such that, for
every relative neighborhood U ⊂ I of x, the following statements are true.
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(i) If � is odd and (c�, d�) �se(0, 0), then U ∩ intQ4(x) contains a supersolution, and
U ∩ intQ2(x) contains a subsolution. In this case, for every x ∈ I ∩ int(Q2(x) ∪
Q4(x)), there existsN such that Tn(x) /∈ I for n ≥ N.

(ii) If � is odd and (0, 0) �se(c�, d�), then U ∩ int Q4(x) contains a subsolution and
U ∩ int Q2(x) contains a supersolution. In this case, Tn(x) → x for every x ∈ I.

(iii) If � is even and (c�, d�) �se(0, 0), then U ∩ int Q4(x) contains a subsolution and
U∩int Q2(x) contains a subsolution. In this case, Tn(x) → x for every x ∈ I∩Q4(x),
and for every x ∈ I ∩ int (Q2(x)), there existsN such that Tn(x) /∈ I for n ≥ N.

(iv) If � is even and (0, 0) �se(c�, d�), then U ∩ int Q2(x) contains a supersolution and
U ∩ int Q4(x) contains a supersolution. In this case, Tn(x) → x for every x ∈
I ∩Q2(x), and, for every x ∈ I ∩ int(Q4(x)) there exists,N such that Tn(x) /∈ I for
n ≥ N.

3. Some Basic Facts

In this section, we give some basic facts about the nonexistence of period-two solutions, local
injectivity of map T at the equilibrium point.

3.1. Equilibrium Points

The equilibrium points (x, y) of the system (1.1) satisfy

x =
β1x

B1x + y
,

y =
α2 + γ2y

A2 + x
.

(3.1)

Solutions of System (3.1) are

(i) x = 0, y = α2/A2 − γ2 when A2 > γ2, that is,

E1 =
(
0,

α2

A2 − γ2

)
. (3.2)

(ii) If x /= 0, then using System (3.1), we obtain

y = β1 − B1x,

0 = x2B1 − x
(
B1
(
γ2 −A2

)
+ β1
) − (β1

(
A2 − γ2

) − α2
)
.

(3.3)

Solutions of System (3.3) are

x3,2 =
B1
(
γ2 −A2

)
+ β1 ±

√
D0

2B1
, y2,3 =

B1
(
A2 − γ2

)
+ β1 ±

√
D0

2
, (3.4)
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Table 1

E1 A2 > γ2, α2 >
(β1 + B1(A2 − γ2))

2

4B1
or

A2 > γ2, α2 ≤
(β1 + B1(A2 − γ2))

2

4B1
, β1 <

α2

A2 − γ2
, B1 >

β1
A2 − γ2

E1 ≡ E2 ≡ E3 A2 > γ2, β1 =
α2

A2 − γ2
, B1 =

α2

(A2 − γ2)
2

E1 ≡ E3 A2 > γ2, β1 =
α2

A2 − γ2
, B1 >

α2

(A2 − γ2)
2

E1 ≡ E2, E3 A2 > γ2, β1 =
α2

A2 − γ2
, B1 <

α2

(A2 − γ2)
2

E1, E2, E3 A2 > γ2, B1(γ2 −A2) +
√
4B1α2 < β1 <

α2

A2 − γ2
, α2 > B1(A2 − γ2)

2

E1, E3 A2 > γ2, β1 >
α2

A2 − γ2

E1, E2 = E3 A2 > γ2, (A2 − γ2)B1 < β1, (B1(γ2 −A2) − β1)
2 − 4B1α2 = 0

E2, E3 A2 < γ2, (B1(γ2 −A2) − β1)
2 − 4B1α2 > 0, β1 > B1(γ2 −A2)

E2 = E3 A2 < γ2, (B1(γ2 −A2) − β1)
2 − 4B1α2 = 0, β1 > B1(γ2 −A2)

e1, e2 A2 = γ2, β
2
1 − 4B1α2 ≥ 0

No equilibrium γ2 ≥ A2 and α2 ≤
(β1 + B1(A2 − γ2))

2

4B1
, β1 < B1(γ2 −A2) or

γ2 ≥ A2 and α2 >
(β1 + B1(A2 − γ2))

2

4B1

where D0 = (B1(γ2 − A2) − β1)
2 − 4B1α2, which gives a pair of the equilibrium points E2 =

(x2, y2) and E3 = (x3, y3).
Geometrically, the equilibrium points are the intersections of two equilibrium curves:

C1 : x = 0 ∪ y = −B1x+β1 andC2 : y = α2/(A2−γ2+x). Depending on the values of parameters,
C2 may have between 0 and 3 intersection points with two lines which constitutes C1.

The algebraic criteria for the existence of the equilibrium points are summarized
in Table 1.

Where

e1 =

⎛

⎜
⎝

β1 +
√
β21 − 4B1α2

2B1
,
β1 −

√
β21 − 4B1α2

2

⎞

⎟
⎠,

e2 =

⎛

⎜
⎝

β1 −
√
β21 − 4B1α2

2B1
,
β1 +

√
β21 − 4B1α2

2

⎞

⎟
⎠.

(3.5)

Remark 3.1. Observe the following: If the system (1.1) has two or three equilibrium points E1,
E2, and E3 then, E1 � E2 � E3. Indeed, consider the critical curve C2 : y = α2/(A2 − γ2 + x).
Observe that y(0) = α2/(A2 − γ2), y(x2) = y2, and y(x3) = y3. It is obvious that the following
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holds 0 ≤ x2 ≤ x3. Since, the critical curve C2 decreases, we have y(0) ≥ y(x2) ≥ y(x3), that is,
E1 � E2 � E3.

Lemma 3.2. Assume that x0 = 0, y0 ∈ R
+ = (0,∞). Then the following statements are true for

solutions of the system (1.1).

(i) If A2 > γ2, then xn = 0, for all n ∈ N, and yn → α2/(A2 − γ2), n → ∞.

(ii) If A2 < γ2, then xn = 0, for all n ∈ N, and yn → ∞, n → ∞.

(iii) If A2 = γ2, then yn = y0 + (α2/γ2)n, and xn = 0, for all n ∈ N, yn → ∞, n → ∞.

Assume that x0 /= 0 and (x0, y0) ∈ R
+
2 . Then, the following statements are true for all n =

1, 2, . . .:

(iv) xn ≤ β1/B1.

(v) yn ≤ c(γ2/A2)
n + (α2/(A2 − γ2)) and

(a) yn ≥ B1α2/(B1(A2 − γ2) + β1) + ε1, A2 > γ2, where ε1 is arbitrarily small positive
number.

(b) yn ≤ α2/(A2 − γ2) + ε2, ε > 0,A2 > γ2, where ε2 is arbitrarily small positive number.

Proof. Since (i)–(iv) are immediate consequences of the system (1.1), we will prove only (v).
Take x0 = 0 and y0 ∈ R

+. Then, we have xn = 0 for all n ∈ N, and

yn+1 =
α2

A2
+

γ2
A2

yn. (3.6)

Solution of (3.6), when A2 /= γ2 is

yn = c

(
γ2
A2

)n

+
α2

A2 − γ2
(3.7)

which immediately implies (i) and (ii). Statement (iii) follows from (3.6).
Equation

xn+1 =
β1xn

B1xn + yn
(3.8)

implies that

xn ≤ β1
B1

. (3.9)

Using the last inequality, we have

yn+1 =
α2 + γ2yn

A2 + xn
≥ α2 + γ2yn

A2 +
(
β1/B1

) =
B1α2

A2B1 + β1
+

γ2B1

B1A2 + β1
yn, (3.10)



10 Abstract and Applied Analysis

which by difference inequality theorem [18] implies the following

yn ≥ c

(
γ2B1

A2B1 + β1

)n

+
B1α2

B1
(
A2 − γ2

)
+ β1

≥ B1α2

B1
(
A2 − γ2

)
+ β1

+ ε1, n −→ ∞. (3.11)

Furthermore, second equation in (1.1) implies that

yn+1 ≤ α2

A2
+

γ2
A2

yn (3.12)

which, by the difference inequalities argument, see [18], implies that yn ≤ un, where un

satisfies (3.6). In view of (3.7)we obtain our conclusion.

3.2. Period-Two Solution

In this section, we prove that System (1.1) has no minimal period-two solution which will be
essential for application of Theorems 2.5–2.7. The map T associated to System (1.1) is given
by

T
(
x, y
)
=
(

β1x

B1x + y
,
α2 + γ2y

A2 + x

)
. (3.13)

Lemma 3.3. System (1.1) has no minimal period-two solution.

Proof. We have

T
(
T
(
x, y
))

= T

(
β1x

B1x + y
,
α2 + γ2y

A2 + x

)

=

(
β21x(A2 + x)

B1β1x(A2 + x)+
(
α2 + γ2y

)(
B1x + y

) ,

(
B1x + y

)(
α2(A2 + x)+ γ2

(
α2 + γ2y

))

(A2 + x)
(
A2
(
B1x + y

)
+β1x

)

)

.

(3.14)

Period-two solution satisfies

β21x(A2 + x)

B1β1x(A2 + x) +
(
α2 + γ2y

)(
B1x + y

) − x = 0, (3.15)

(
B1x + y

)(
α2(A2 + x) + γ2

(
α2 + γ2y

))

(A2 + x)
(
A2
(
B1x + y

)
+ β1x

) − y = 0. (3.16)

We show that this system has no other positive solutions except the equilibrium points.
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Equation (3.15) is equivalent to

x
(
yα2 + x2B1β1 −A2β

2
1 + x

(−β21 + B1
(
α2 +A2β1

))
+ y2γ2 + xyB1γ2

)
= 0 , (3.17)

− xy2A2 + x2B1α2 + x2y
(−A2B1 − β1

)
+ y
(
A2α2 + α2γ2

)
+ x
(
A2B1α2 + B1α2γ2

)

+ y2
(
−A2

2 + γ22

)
+ xy

(
−A2

2B1 + α2 −A2β1 + B1γ
2
2

)
= 0.

(3.18)

If x = 0 then we obtain the fixed point E1. So assume that x /= 0. Then, using (3.17), we
have

yα2 + x2B1β1 −A2β
2
1 + x

(
−β21 + B1

(
α2 +A2β1

))
+ y2γ2 + xyB1γ2 = 0. (3.19)

Equation (3.19) implies that

y2 =
−yα2 − x2B1β1 +A2β

2
1 − x

(−β21 + B1
(
α2 +A2β1

)) − xyB1γ2

γ2
. (3.20)

Substituting (3.20) into (3.18), we have

x +A2 = 0 (3.21)

or

A2
((
y + xB1

)
α2 + (x +A2)

(
xB1 − β1

)
β1
)

+
((
y + xB1

)
α2 − xyβ1

)
γ2 + β1

(−xB1 + β1
)
γ22 = 0.

(3.22)

Equation (3.21) implies that x = −A2, and (3.23) implies that

y =
A2
(
(x +A2)β21 − xB1

(
α2 + (x +A2)β1

)) − xB1α2γ2 +
(
xB1 − β1

)
β1γ

2
2

A2α2 +
(
α2 − xβ1

)
γ2

. (3.23)

Replacing (3.23) into (3.19), we get

−x2B1 − α2 + β1
(
A2 − γ2

)
+ x
(−A2B1 + β1 + B1γ2

)
= 0, (3.24)

−
(
β1
(
α2 + β1

(
A2 − γ2

))(
A2 + γ2

)2) + x
(
α2 + β1

(
A2 − γ2

))(
A2 + γ2

)(
A2B1 − β1

)
+B1γ2

)

+ x2β1
(
A2

2B1 +A2B1γ2 + β1γ2
)
= 0.

(3.25)
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Solutions of (3.24) are the equilibrium points.
Consider (3.25). Discriminant of this equation is given by

Δ =
(
4β21
(
A2

2B1 +
(
A2B1 + β1

)
γ2
)
+
(
α2 + β1

(
A2 − γ2

))(
β1 − B1

(
A2γ2

))2)

× (α2 + β1
(
A2 − γ2

))
.

(3.26)

Now, Δ ≥ 0 implies that

x1 = −
(
A2 + γ2

)(
Δ1 +

√
Δ
)

2β1
(
A2

2B1 +
(
A2B1 + β1

)
γ2
) , x2 = −

(
A2 + γ2

)(
Δ1 −

√
Δ
)

2β1
(
A2

2B1 +
(
A2B1 + β1

)
γ2
) , (3.27)

where

Δ1 =
(
α2 + β1

(
A2 − γ2

))(−β1 + B1
(
A2 + γ2

))
. (3.28)

Using (3.23), we obtain

y1 = − Δ2 −
√
Δ

2
(
A2

2B1 +
(
A2B1 + β1

)
γ2
) , y2 = − Δ2 +

√
Δ

2
(
A2

2B1 +
(
A2B1 + β1

)
γ2
) , (3.29)

where

Δ2 = A2
2B1β1 + α2

(
β1 − B1γ2

)
+ β1γ2

(
β1 + B1γ2

)
+A2

(
β21 − B1

(
α2 − 2β1γ2

))
. (3.30)

We prove the following claims.

Claim 3.4. For all values of parameters y2 < 0.

Proof. If Δ2 > 0, then y2 < 0. Now, we assume that Δ2 ≤ 0. Then,

y2 < 0 ⇐⇒ Δ2 +
√
Δ > 0 ⇐⇒ Δ −Δ2

2 > 0, (3.31)

Δ −Δ2
2 = −4β1

(
A2

2B1 +
(
A2B1 + β1

)
γ2
)(

A2B1
(−α2 + β1γ2

)
+ γ2
(
β21 + B1

(−α2 + β1γ2
)))

.

(3.32)

Equation (3.32) implies that

Δ −Δ2
2 > 0 ⇐⇒ α2 >

A2B1β1γ2 + β21γ2 + B1β1γ
2
2

B1
(
A2 + γ2

) . (3.33)
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Since Δ2 ≤ 0 if and only if

B1 >
β1

A2 + γ2
, α2 ≥

A2
2B1β1 +A2β

2
1 + 2A2B − 1β1γ2 + β21γ2 + B1β1γ

2
2

A2B1 − β1 + B1γ2
,

A2
2B1β1 +A2β

2
1 + 2A2B − 1β1γ2 + β21γ2 + B1β1γ

2
2

A2B1 − β1 + B1γ2
− A2B1β1γ2 + β21γ2 + B1β1γ

2
2

B1
(
A2 + γ2

)

=
β1
(
A2

2B1 +
(
A2B1 + β1

)
γ2
)(
β1 + B1

(
A2 + γ2

))

B1
(
A2 + γ2

)(−β1 + B1
(
A2 + γ2

)) > 0.

(3.34)

This implies that (3.33) is true. That is y2 < 0.

Claim 3.5. Assume that x1 ≥ 0. Then that y1 < 0.

Proof. Assume that x1 > 0. This is equivalent to

A2 < γ2, B1 +
β1
(
A2 + 3γ2

)

A2
2 − γ22

> 0, (3.35)

α2 ≤ −
(

β1
(
A2
(
A2B1 + β1

)
+ 3β1γ2 − B1γ

2
2

)(
β1 + B1

(
A2 + γ2

))

(
β1 − B1

(
A2 + γ2

))

)

. (3.36)

Now

y1 < 0 ⇐⇒ Δ2 ≥ 0, Δ −Δ2
2 < 0, (3.37)

which is equivalent to

Δ2 ≥ 0 ⇐⇒ B1 <
β1

A2 + γ2
, α2 ≤ −

(
β1
(
A2 + γ2

)(
β1 + B1

(
A2 + γ2

))

β1 − B1
(
A2 + γ2

)

)

(3.38)

or

B1 ≥
β1

A2 + γ2
. (3.39)

Also,

Δ −Δ2
2 < 0 ⇐⇒ α2 <

β1γ2
(
β1 + B1

(
A2 + γ2

))

B1
(
A2 + γ2

) . (3.40)
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Since,

β1
(
A2
(
A2B1 + β1

)
+ 3β1γ2 − B1γ

2
2

)(
β1 + B1

(
A2 + γ2

))

(
β1 − B1

(
A2 + γ2

)) +
β1γ2
(
β1 + B1

(
A2 + γ2

))

B1
(
A2 + γ2

)

=
β1
(
A2

2B1 +
(
A2B1 + β1

)
γ2
)(
β1 + B1

(
A2 + γ2

))2

B1
(
A2 + γ2

)(
β1 − B1

(
A2 + γ2

))2 > 0.

(3.41)

This inequality and (3.36) imply (3.40).
Since

β1
(
A2
(
A2B1 + β1

)
+ 3β1γ2 − B1γ2

2)(β1 + B1
(
A2 + γ2

))

(
β1 − B1

(
A2 + γ2

))2 −
(

β1
(
A2 + γ2

)(
β1 + B1

(
A2 + γ2

))

β1 − B1
(
A2 + γ2

)

)

=
2β1
(
A2

2B1 +
(
A2B1 + β1

)
γ2
)(

β1 + B1
(
A2 + γ2

))

(
β1 − B1

(
A2 + γ2

))2 > 0.

(3.42)

Last inequality, (3.36) and (3.39) imply that Δ2 ≥ 0. So we prove, if x1 > 0, then y1 < 0.
Assume that x1 = 0.
We have

x1 = 0 ⇐⇒ Δ1 +
√
Δ = 0. (3.43)

Since,

Δ2
1 −Δ = 4β21

(
α2 + β1

(
A2 − γ2

))(
A2 + γ2

)2(
B1A

2
2 + B1γ2A2 + β1γ2

)
, (3.44)

we have that x1 = 0 if and only if

A2 < γ2, α2 +A2β1 = β1γ2, Δ1 ≤ 0, (3.45)

which is true, because

Δ1 :=
(
α2 + β1

(
A2 − γ2

))(−β1 + B1
(
A2 + γ2

))
. (3.46)

Replacing α2 with β1(γ2 −A2) in the formula for y1, we obtain that y1 = −β1.

Hence, there does not exist period-two solution.
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4. Linearized Stability Analysis

The Jacobian matrix of the map T , given by (3.13), has the form

JT =

⎛

⎜
⎜
⎜
⎜
⎝

β1y
(
B1x + y

)2 − β1x
(
B1x + y

)2

− α2 + γ2y

(A2 + x)2
γ2

A2 + x

⎞

⎟
⎟
⎟
⎟
⎠

. (4.1)

The determinant of (4.1) is given by

det JT
(
x, y
)
=

β1
(
yA2γ2 − xα2

)

(x +A2)2
(
y + xB1

)2 . (4.2)

The value of the Jacobian matrix of T at the equilibrium point E = (x, y), x /= 0 is

JT
(
x, y
)
=

⎛

⎜⎜⎜
⎝

y

B1x + y
− x

B1x + y

− y

A2 + x

γ2
A2 + x

⎞

⎟⎟⎟
⎠

. (4.3)

The determinant of (4.3) is given by

det JT
(
x, y
)
=

y
(
γ2 − x

)

(A2 + x)
(
B1x + y

) , (4.4)

and the trace of (4.3) is

TrJT
(
x, y
)
=

y

B1x + y
+

γ2
A2 + x

. (4.5)

The characteristic equation has the form

λ2 − λ

(
y

B1x + y
+

γ2
A2 + x

)
+

y
(
γ2 − x

)

(A2 + x)
(
B1x + y

) = 0. (4.6)

Theorem 4.1. Assume that A2 > γ2. Then there exists the equilibrium point E1 and

(i) E1(0, α2/(A2 − γ2)) is locally asymptotically stable if β1 < α2/(A2 − γ2),

(ii) E1 is a saddle point if β1 > α2/(A2 − γ2). The corresponding eigenvalues are

λ1 =
γ2
A2

∈ (0, 1), λ2 =
β1
(
A2 − γ2

)

α2
∈ (1,+∞), (4.7)
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(iii) E1 is nonhyperbolic if β1 = α2/(A2 − γ2). The corresponding eigenvalues are

λ1 =
γ2
A2

∈ (0, 1), λ2 = 1, (4.8)

and the corresponding eigenvectors are (0, 1) and (−1/α2, 1), respectively.

Proof. The Jacobian matrix (4.1) at the equilibrium point E1(0, α2/(A2 − γ2)),

JT (E1) =

⎛

⎜
⎜
⎝

β1
y

0

−α2 + γy

A2
2

γ2
A2

⎞

⎟
⎟
⎠. (4.9)

Note that the Jacobian matrix (4.9) implies that the map T is not strongly competitive
at the equilibrium point E1.

The determinant of (4.9) is given by

det JT
(
x, y
)
=

β1
y

γ2
A2

=
β1γ2
(
A2 − γ2

)

α2A2
. (4.10)

Note that, under the hypothesis of Theorem, the determinant is greater than zero.
The trace of (4.9) is

TrJT
(
x, y
)
=

β1
y

+
γ2
A2

=
β1
(
A2 − γ2

)

α2
+

γ2
A2

. (4.11)

An equilibrium point is locally asymptotically stable if the following conditions are
satisfied

∣∣TrJT
(
x, y
)∣∣ < 1 + det JT

(
x, y
)
< 2. (4.12)

Now, these two conditions become

β1
(
A2 − γ2

)

α2
+

γ2
A2

< 1 +
β1γ2
(
A2 − γ2

)

α2A2
< 2. (4.13)

Condition

β1
(
A2 − γ2

)

α2
+

γ2
A2

< 1 +
β1γ2
(
A2 − γ2

)

α2A2
(4.14)

implies that

(
A2 − γ2

)
β1 < α2. (4.15)
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If β1 < α2/(A2 − γ2), then this condition is satisfied.
Condition 1 + (β1γ2(A2 − γ2))/α2A2 < 2 is equivalent to

β1γ2
(
A2 − γ2

)

α2A2
< 1. (4.16)

It is easy to see that the condition is satisfied if β1 < α2/(A2 − γ2).
Next, we prove (ii).
An equilibrium point is a saddle if and only if the following conditions are satisfied

∣
∣TrJT

(
x, y
)∣∣ >

∣
∣1 + det JT

(
x, y
)∣∣,

Tr2JT
(
x, y
) − 4det JT

(
x, y
)
> 0.

(4.17)

The first condition is equivalent to

(
A2 − γ2

)
β1 > α2, (4.18)

which is satisfied if β1 > α2/(A2 − γ2). The second condition is equivalent to

(
β1
(
A2 − γ2

)

α2
− γ2
A2

)2

> 0. (4.19)

Finally, we prove (iii).
An equilibrium point is nonhyperbolic if the following conditions are satisfied

∣∣TrJT
(
x, y
)∣∣ =

∣∣1 + det JT
(
x, y
)∣∣,

(
det JT

(
x, y
)
= 1 or

∣∣TrJT
(
x, y
)∣∣ ≤ 2

)
.

(4.20)

The first condition is equivalent to

(
A2 − γ2

)
β1 = α2, (4.21)

which is satisfied if β1 = α2/A2 − γ2.
The second condition becomes

β1
(
A2 − γ2

)

α2
+

γ2
A2

= 1 +
γ2
A2

< 2, (4.22)

establishing part (iii).

We now perform a similar analysis for the other cases in Table 1.
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Theorem 4.2. Assume that

A2 > γ2, B1
(
γ2 −A2

)
+
√
4B1α2 < β1 <

α2

A2 − γ2
, α2 > B1

(
A2 − γ2

)2
. (4.23)

Then E1, E2, and E3 exist and

(i) the equilibrium point E1 is locally asymptotically stable,

(ii) the equilibrium point E2 is a saddle point. Furthermore, if B1(γ2 − A2) +
√
4B2α2 < β1 <

α2/(A2 +B1γ2) and α2 > B1A
2
2, then the smaller eigenvalue belongs to the interval (−1, 0),

and the larger eigenvalue belongs to (1,+∞). In all other cases, the smaller eigenvalues is
in (0, 1).

That is |λ1| < 1 is given by

λ1 =
β1γ2 + (A2 + x2)y2 −

√(
β1γ2 + (A2 + x2)y2

)2 + 4β1(A2 + x2)
(
x2 − γ2

)
y2

2β1(A2 + x2)
, (4.24)

and the corresponding eigenvector is

v1 =
(
β1γ2 − (A2 + x2)y2

+
√(

β1γ2 + (A2 + x2)y2

)2 + 4β1(A2 + x2)
(
x2 − γ2

)
y2, 2β1y2

)
.

(4.25)

Eigenvalue λ2, where |λ2| > 1, is given by

λ2 =
β1γ2 + (A2 + x2)y2 +

√(
β1γ2 + (A2 + x2)y2

)2 + 4β1(A2 + x2)
(
x2 − γ2

)
y2

2β1(A2 + x2)
. (4.26)

(iii) The equilibrium point E3 is locally asymptotically stable.

Proof. By Theorem 4.1, (i) holds.
Evaluating the Jacobian matrix (4.3) at the equilibrium point E2, we obtain

JT =

⎛

⎜⎜
⎝

y

β1
− x

β1

− y

A2 + x

γ2
A2 + x

⎞

⎟⎟
⎠. (4.27)

Note that the Jacobian matrix (4.27) implies that the map T is strongly competitive.
The determinant of (4.27) is given by

det =
yγ2

β1(A2 + x)
− x y

β1(A2 + x)
, (4.28)
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and the trace of (4.27) is given by

TrJT
(
x, y
)
=

y

β1
+

γ2
A2 + x

. (4.29)

The equilibrium point E2 is a saddle if and only if (4.17) is satisfied. The first condition is
equivalent to

y

β1
+

γ2
A2 + x

>

∣
∣
∣
∣1 +

yγ

β1(A2 + x)
− x y

β1(A2 + x)

∣
∣
∣
∣ (4.30)

which is equivalent to

y(A2 + x) + β1γ2 > β1(A2 + x) + y
(
γ2 − x

)

=⇒ y(A2 + x) + β1
(
x − (A2 − γ2

)) − y
(
γ2 − x

)
> 0

=⇒ y
(
A2 + x − γ2

) − β1
(
A2 − γ2 + x

)
> −x y

=⇒ (A2 − γ2 + x
)(
y − β1

)
> −x y

=⇒ (β1 − y
)(
A2 − γ2 + x

)
< x y.

(4.31)

In light of (3.3) β1 − y2 = B1x2, and by using (3.4), A2 − γ2 + x2 = y3/B1. Now, we have

B1x2
y3

B1
< x2y2. (4.32)

This implies that y3 < y2 which is true.
Condition

Tr2JT
(
x, y
) − 4det JT

(
x, y
)
> 0 (4.33)

is equivalent to

(
y2

β1
− γ2
β1(A2 + x2)

)2

+
x2y2

β2(A2 + x2)
> 0, (4.34)

which is true.
To prove the second part of the statement (ii), we use the characteristic equation (4.6)

of System (1.1) at the equilibrium point. Now, we have

λ1 + λ2 =
y

β1
+

yγ2

(A2 + x)β1
, λ1λ2 =

y
(
γ2 − x

)

(A2 + x)β1
. (4.35)
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Since the map T is strongly competitive, the Jacobian matrix (4.27) has two real and
distinct eigenvalues, the larger one in absolute value being positive.

The first equation implies that either both eigenvalues are positive, or the smaller one
is negative. First, we show that, under hypothesis (ii) of theorem, the product of these two
eigenvalues is less than zero. In order to prove that, it is enough to prove that γ2 − x2 < 0.

We have

γ2 − x2 = γ2 −
B1
(
γ2 −A2

)
+ β1 −

√(
B1
(
γ2 −A2

) − β1
)2 − 4B1α2

2B1

=
B1
(
A2 + γ2

) − β1 +
√(

B1
(
γ2 −A2

) − β1
)2 − 4B1α2

2B1
.

(4.36)

Now γ2 − x2 < 0 if and only if

B1
(
A2 + γ2

) − β1 +
√(

B1
(
γ2 −A2

) − β1
)2 − 4B1α2 < 0, (4.37)

which holds if

β1 > B1
(
A2 + γ2

)
,

(
B1
(
A2 + γ2

) − β1
)2 − (B1

(
γ2 −A2

) − β1
)2 + 4B1α2 > 0,

B1
(
A2 + γ2

)
< β1 <

α2

A2
+ B1γ2,

α2

A2
+ B1γ2 −

(
A2B1 + γ2B1

)
=

α2 −A2
2B1

A2
> 0 ⇐⇒ B1 <

α2

A2
2

.

(4.38)

Also, we have

α2

A2
+ B1γ2 −

(
B1
(
γ2 −A2

)
+ 2
√
B1α2

)
≥ 0. (4.39)

In all other cases γ2 − x2 > 0.
This proves that the smaller eigenvalue is negative. Since the equilibrium point is a

saddle point, it has to belong to (−1, 0). The larger one belongs to (1,+∞). The proof of second
statement is similar.

Now, we prove that E3 is locally asymptotically stable.
Notice that

∣∣TrJT
(
x, y
)∣∣ < 1 + det JT

(
x, y
)
< 2 (4.40)

implies that y2 > y3 which is true.
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Theorem 4.3. Assume that

A2 > γ2, β1 >
(
A2 − γ2

)
B1,

(
B1
(
A2 − γ2

)
+ β1
)2 − 4α2B1 = 0. (4.41)

Then E1, E2 = E3 exist and:

(i) The equilibrium point E1 is locally asymptotically stable.

(ii) The equilibrium point E2 = E3 = (B1(γ2 − A2) + β1/2B1, B1(A2 − γ2) + β1/2) is
nonhyperbolic. The eigenvalues of the Jacobian matrix evaluated at E2 are

λ1 = 1, λ2 =
A2

2B
2
1 − β21 + 2B1β1γ2 − B2

1γ
2
2

2β1
(
A2B1 + β1 + B1γ2

) , (4.42)

and the corresponding eigenvectors, respectively, are

(
− 1
B1

, 1
)
,

((−A2B1 + β1 + B1γ2
)(
A2B1 + β1 + B1γ2

)

2B1β1
(
A2B1 + β1 − B1γ2

) , 1

)

. (4.43)

Furthermore, if β1 > B1(A2 + γ2), then λ2 ∈ (−1, 0). If B1(A2 − γ2) < β1 < B1(A2 + γ2), then
λ2 ∈ (0, 1).

Proof. By Theorem 4.1, E1 is a locally asymptotically stable.
Now, we prove that E2 is nonhyperbolic.
The Jacobian matrix (4.3) at the equilibrium point E2 = E3 = (B1(γ2 − A2) + β1/2B1,

B1(A2 − γ2) + β1/2) is

JT (E2) =

⎛

⎜⎜⎜
⎝

y

β1
− x

β1

− y

A2 + x

γ2
A2 + x

⎞

⎟⎟⎟
⎠

. (4.44)

The eigenvalues of (4.44) satisfy

(
B1
(
A2 − γ2

)
+ β1

2β1
− λ

)(
2B1γ2

2B1A2 + B1
(
γ2 −A2

)
+ β1

− λ

)

− B1
(
γ2 −A2

)
+ β1

2β1B1

B1
(
B1
(
A2 − γ2

)
+ β1
)

2B1A2 + B1
(
γ2 −A2

)
+ β1

= 0,

(4.45)

and are given as

λ1 = 1, λ2 =
A2

2B
2
1 − β21 + 2B1β1γ2 − B2

1γ
2
2

2β1
(
A2B1 + β1 + B1γ2

) . (4.46)

Hence, E2 is nonhyperbolic.
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Notice that |λ2| < 1. Now, we show that λ2 can be in (−1, 0) or (0, 1).
We have

λ2 =
A2

2B
2
1 − β21 + 2B1β1γ2 − B2

1γ
2
2

2β1
(
A2B1 + β1 + B1γ2

) =

(
B1
(
A2 + γ2

) − β1
)(
B1
(
A2 − γ2

)
+ β1
)

2β1
(
A2B1 + β1 + B1γ2

) , (4.47)

which is negative if β1 > B1(A2 + γ2), and positive if β1 < B1(A2 + γ2).

Theorem 4.4. Assume that

A2 > γ2, β1 >
α2

A2 − γ2
. (4.48)

Then, E1 and E3 exist and

(i) the equilibrium point E1 is a saddle point,

(ii) the equilibrium point E3 is locally asymptotically stable.

Proof. By Theorem 4.1, (i) holds. Observe that the assumption of Theorem 4.4 implies that the
x coordinate of the equilibrium point E2 is less than zero.

The proof that the equilibrium point E3 is locally asymptotically stable is similar to the
corresponding proof of Theorem 4.2.

Theorem 4.5. The following statements are true.

(a) Assume

A2 < γ2,
(
B1
(
γ2 −A2

) − β1
)2 − 4B1α2 > 0, β1 > B1

(
γ2 −A2

)
. (4.49)

Then E2 and E3 exist and

(i) the equilibrium point E2 is a saddle. If β1 > B1(γ2 − A2), then the larger eigenvalue is in
(1,+∞), the smaller eigenvalue is in (−1, 0). If B1(γ2 −A2) < β1 < B1(γ2 +A2), then the
smaller eigenvalue is in (0, 1). That is, |λ1| < 1 is given by

λ1 =
β1γ2 + (A2 + x2)y2 −

√(
β1γ2 + (A2 + x2)y2

)2 + 4β1(A2 + x2)
(
x2 − γ2

)
y2

2β1(A2 + x2)
, (4.50)

and the corresponding eigenvector is

v1 =
(
β1γ2 − (A2 + x2)y2

+
√(

β1γ2 + (A2 + x2)y2

)2 + 4β1(A2 + x2)
(
x2 − γ2

)
y2, 2β1y2

)
.

(4.51)
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Eigenvalue λ2, where |λ2| > 1, is given by

λ2 =
β1γ2 + (A2 + x2)y2 +

√(
β1γ2 + (A2 + x2)y2

)2 + 4β1(A2 + x2)
(
x2 − γ2

)
y2

2β1(A2 + x2)
. (4.52)

(ii) The equilibrium point E3 is locally asymptotically stable.

(b) Assume that A2 < γ2, (B1(γ2 −A2) − β1)
2 − 4B1α2 = 0, β1 > B1(γ2 − A2).Then there

exists a unique positive equilibrium E2 = E3 = (B1(γ2 − A2) + β1/2B1, B1(A2 − γ2) +
β1/2) which is nonhyperbolic. The eigenvalues are λ1 = 1 and λ2 = A2

2B
2
1 − β21 + 2B1β1γ2 −

B2
1γ

2
2/2β1(A2B1 + β1 + B1γ2), and the corresponding eigenvectors, respectively, are

(
− 1
B1

, 1
)
,

((−A2B1 + β1 + B1γ2
)(
A2B1 + β1 + B1γ2

)

2B1β1
(
A2B1 + β1 − B1γ2

) , 1

)

. (4.53)

If β1 > B1(A2 + γ2), then λ2 ∈ (−1, 0). If B1(γ2 −A2) < β1 < B1(γ2 +A2) then λ2 ∈ (0, 1).

Proof. The proof of statements (a) is similar to the proof of the statements (ii) and (iii) of the
Theorem 4.2.

Now, we prove statement (b).
The characteristic equation of the system (1.1) at the equilibrium point E2 = E3 has the

form

(
B1
(
A2 − γ2

)
+ β1

2β1
− λ

)(
2B1γ2

2B1A2 + B1
(
γ2 −A2

)
+ β1

− λ

)

− B1
(
γ2 −A2

)
+ β1

2β1B1

B1
(
B1
(
A2 − γ2

)
+ β1
)

2B1A2 + B1
(
γ2 −A2

)
+ β1

= 0

(4.54)

in which solutions are eigenvalues of JT (E2)

λ1 = 1, λ2 =
A2

2B
2
1 − β21 + 2B1β1γ2 − B2

1γ
2
2

2β1
(
A2B1 + β1 + B1γ2

) . (4.55)

Hence, E2 = E3 is nonhyperbolic. Notice that |λ2| < 1.
Now, we determine that the sign of λ2

λ2 =
A2

2B
2
1 − β21 + 2B1β1γ2 − B2

1γ
2
2

2β1
(
A2B1 + β1 + B1γ2

) =

(
B1
(
A2 + γ2

) − β1
)(
B1
(
A2 − γ2

)
+ β1
)

2β1
(
A2B1 + β1 + B1γ2

) (4.56)

is negative if β1 > B1(A2 + γ2), and positive if B1(γ2 −A2) < β1 < B1(γ2 +A2).
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Now, we consider the special case of the system (1.1) when A2 = γ2.
In this case, the system (1.1) becomes

xn+1 =
β1xn

B1xn + yn
,

yn+1 =
α2 +A2yn

A2 + xn
,

n = 0, 1, 2, . . . . (4.57)

If the following condition holds

β21 − 4B1α2 ≥ 0, (4.58)

then the system (4.57) has two positive equilibrium points

e1 =

⎛

⎜
⎝

β1 +
√
β21 − 4B1α2

2B1
,
β1 −

√
β21 − 4B1α2

2

⎞

⎟
⎠,

e2 =

⎛

⎜
⎝

β1 −
√
β21 − 4B1α2

2B1
,
β1 +

√
β21 − 4B1α2

2

⎞

⎟
⎠.

(4.59)

We prove the following.

Theorem 4.6. Assume that

A2 = γ2. (4.60)

Then the following statements hold.

(i) If β21 − 4B1α2 = 0, then the system (4.57) has the unique equilibrium point e =
(β1/2B1, β1/2) which is nonhyperbolic. The following holds:

(a) If α2 < B1A
2
2, then λ1 = 1, and λ2 = 2A2B1 − β1/2(2A2B1 + β1) ∈ (0, 1), and the

corresponding eigenvectors, respectively, are

(
− 1
B1

, 1
)
,

((−2A2B1 − β1
)

2B1β1
, 1

)

. (4.61)

(b) If α2 > B1A
2
2, then λ1 = 1 and λ2 = 2A2B1 − β1/2(2A2B1 + β1) ∈ (−1, 0), and the

corresponding eigenvectors, respectively, are

(
− 1
B1

, 1
)
,

((−2A2B1 − β1
)

2B1β1
, 1

)

. (4.62)
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(c) If α2 = B1A
2
2, then λ1 = 1 and λ2 = 0, and the corresponding eigenvectors,

respectively, are

(
− 1
B1

, 1
)
,

(
1
B1

, 1
)
. (4.63)

(ii) If β21 − 4B1α2 > 0, then the system (4.57) has two positive equilibrium points: e1 is locally
asymptotically stable and e2 is a saddle point. The following holds.

(d) If 2A2B1 > β1 or 2A2B1 ≤ β1 and B1A
2
2 + α2 < A2β1, then λ2 ∈ (1,+∞) and

λ1 ∈ (0, 1).
(e) If 2A2B1 < β1 and B1A

2
2 + α2 > A2β1, then λ2 ∈ (1,+∞) and λ1 ∈ (−1, 0), where

λ1 =
2α2B1 + 3A2β1B1 +A2B1

√
β21 − 4B1α2 −

√
F

2β1
(
2A2B1 + β1 −

√
β21 − 4B1α2

) , (4.64)

where

F =
(
2α2B1 + 3A2β1B1 +A2

√
β21 − 4B1α2B1

)2

− 8B1β1

(
B1β1A

2
2 − α2β1 +

(
B1A

2
2 + α2

)√
β21 − 4B1α2

)
,

(4.65)

and |λ1| < 1.

The corresponding eigenvector for both cases (c) and (d) is v1 = (v(1)
1 , v

(1)
2 ), where

v
(1)
1 =

(
2A2B1 + β1 −

√
β21 − 4B1α2

)(
−2α2B1 +A2β1B1 −A2B1

√
β21 − 4B1α2 +

√
D
)
,

v
(1)
2 = 4A2β

2
1B

2
1 + 8α2β1B

2
1 + 4A2β1B

2
1

√
β21 − 4B1α2,

(4.66)

where

D = 2B1

(
− 2A2

2α2B
2
1 + 2α2

2B1 +A2
2β

2
1B1 + 6A2α2β1B1 + 4α2β

2
1

+
(
−B1β1A

2
2 + 2B1α2A2 − 4α2β1

)√
β21 − 4B1α2

)
.

(4.67)

Proof. Assume that β21 − 4B1α2 = 0. Then we have that

e1 = e2 = e =
(

β1
2B1

,
β1
2

)
. (4.68)
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The characteristic equation associated to the system (4.57) at the equilibrium point e is given
by

λ2 − λ

(
1
2
− 2B1A2

2B1A2 + β1

)
+

B1A2

2B1A2 + β1
− β1

2
(
2B1A2 + β1

) = 0. (4.69)

Solutions of (4.69) are

λ1 = 1, λ2 =
2A2B1 − β1

2
(
2A2B1 + β1

) . (4.70)

It is easy to see that |λ2| < 1.
Now, assume that α2 < B1A

2
2. Since β1 > 0, from β21 − 4B1α2 = 0, we have β1 = 2

√
B1α2.

The numerator of λ2 is 2A2B1−2
√
B1α2 > 0. Assume the opposite, that is, 2A2B1−2

√
B1α2 < 0.

Then, we have

A2
2B

2
1 < B1α2 =⇒ α2 > B1A

2
2 (4.71)

which is a contradiction. So, we confirmed (a).
Assume that α2 > B1A

2
2. Then the numerator of λ2 < 0. If 2A2B1 − 2

√
B1α2 > 0, then we

have

A2
2B

2
1 > B1α2 =⇒ α2 < B1A

2
2 (4.72)

which is a contradiction. So, (b) holds.
Assume that β21 − 4B1α2 > 0. Then there are two positive equilibrium points

e1 =

⎛

⎜
⎝

β1 +
√
β21 − 4B1α2

2B1
,
β1 −

√
β21 − 4B1α2

2

⎞

⎟
⎠,

e2 =

⎛

⎜
⎝

β1 −
√
β21 − 4B1α2

2B1
,
β1 +

√
β21 − 4B1α2

2

⎞

⎟
⎠.

(4.73)

Now, we prove that e1 is a locally asymptotically stable equilibrium point.
We check the conditions for locally asymptotically stable equilibrium point. We have

y

β1
+

A2

A2 + x
< 1 +

yA2

β1(A2 + x)
− x y

β1(A2 + x)
. (4.74)

This implies that

y(A2 + x) + β1A2 < β1(A2 + x) + yA2 − x y, (4.75)
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which is equivalent to x(2y − β1) < 0 and

2y − β1 = β1 −
√
β21 − 4B1α2 − β1 = −

√
β21 − 4B1α2 < 0, (4.76)

which is true.
Now, we check condition 1 + det JT (x, y) < 2. We have that

yA2

β1(A2 + x)
− x y

β1(A2 + x)
< 1. (4.77)

This implies that yA2 − x y < β1A2 + β1x which is true, since

−
A2

√
B2
1 − 4B1α2

2
− α2 <

β1A2

2
+
β21 + β1

√
β21 − 4B1α2

2B1
. (4.78)

Hence, e1 is a locally asymptotically stable equilibrium point.
Now, we prove that e2 is a saddle. We check the condition (4.17).
Condition |Tr JT (x, y)| > |1 + det JT (x, y)| is equivalent to x(2y − β1) > 0. This is true,

since

2y − β1 = β1 +
√
β21 − 4B1α2 − β1 =

√
β21 − 4B1α2 > 0. (4.79)

Condition

Tr2JT
(
x, y
) − 4det JT

(
x, y
)
> 0 (4.80)

is equivalent to

(
y

β1
− A2

A2 + x

)2

+
x y

β1(A2 + x)
> 0. (4.81)

Hence, e2 is a saddle.
Now, we prove the statements (c) and (d).
The characteristic equation associated to the system (4.57) at the equilibrium point has

the following form

λ2 − λ

(
y

B1x + y
+

A2

A2 + x

)
+

y(A2 − x)
(A2 + x)

(
B1x + y

) = 0. (4.82)

Now, we have that

λ1 + λ2 =
y

B1x + y
+

A2

A2 + x
> 0, λ1λ2 =

y(A2 − x)
(A2 + x)

(
B1x + y

) . (4.83)
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Consider A2 − x. We have that

A2 − x =
2B1A2 − β1 +

√
β21 − 4B1α2

2B1
,

β21 − 4B1α2 −
(
β1 − 2B1A2

)2 = −4B1

(
B1A

2
2 − β1A2 + α2

)
(4.84)

which implies statements (c) and (d).

5. Global Behavior

In this section, we present the results on global behavior of the system (1.1).

Theorem 5.1. Table 2 describes the global behavior of the system (1.1)

Proof. Throughout the proof of theorem � will denote �se.

(R1,R2) In view of Lemma 3.2, the map T which corresponds to the system (1.1) has an
attractive and invariant box B = [0, β1/B1] × [Ly,Uy], where Ly = B1α2/B1(A2 −
γ2)+β1,Uy = α2/(A2 − γ2), which contains a unique fixed point E1. By Theorem 2.1,
every solution of the system (1.1) converges to E1. Clearly, the basin of attraction of
the equilibrium point E1 is given by [0,+∞)2 \ {(0, 0)}.

(R3) By Lemma 3.2 x0 = 0 implies that xn = 0, for all n ∈ N, and yn → α2/(A2 −
γ2), n → ∞, which shows that y-axes is a subset of the basin of attraction B(E1).
Furthermore, every solution of (1.1) enters and stays in the box B, and so we can
restrict our attention to solutions that starts in B. Clearly the set Q4(E3) ∩ B is an
invariant set with a single equilibrium point E3, and so every solution that starts
there is attracted to E3. In view of Corollary 2.2, the interior of rectangle �E1, E3� is
attracted to either E1 or E3, and because E3 is the local attractor, it is attracted to E3.
If (x, y) ∈ B \ (�E1, E3� ∪ (Q4(E3) ∩ B) ∪ {(0, y) : y ≥ 0}), then there exist the points
(xl, yl) ∈ �E1, E3� and (xu, yu) ∈ Q4(E3) ∩ B such that (xl, yl) �se(x, y) �se(xu, yu).
Consequently, Tn((xl, yl)) �seT

n((x, y)) �seT
n((xu, yu)) for all n = 1, 2, . . . and so

Tn((x, y)) → E3 as n → ∞, which completes the proof.

(R4) The first part of this Theorem is proven in Theorem 4.4.

Now, we prove a global result

JT (E1) =

⎛

⎜⎜
⎝

y

β1
0

− y

A2

γ2
A2

⎞

⎟⎟
⎠. (5.1)

The eigenvalues of JT (E1) are given by λ1 = β1/y and λ2 = γ2/A2 and so

β1 >
α2

A2 − γ2
=⇒ λ1 > 1, A2 > γ2 =⇒ λ2 < 1. (5.2)

The eigenvector of T at E1 that corresponds to the eigenvalue λ2 < 1 is (0, y).
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Table 2: Global behavior of system (1.1). GAS stands for globally asymptotically stable.

Region Global behavior

R1
A2 > γ2, α2 >

(β1 − B1(A2 − γ2))
2

4B1
,

or
There exists a unique equilibrium
E1(0, α2/(A2 − γ2)), and it is G.A.S..
The basin of attraction of E1 is
[0,+∞)2 \ {(0, 0)}

R2

A2 > γ2, α2 ≤
(β1 − B1(A2 − γ2))

2

4B1
,

β1 <
α2

A2 − γ2
, B1 >

β1
A2 − γ2

R3

A2 > γ2, β1 =
α2

(A2 − γ2)
,

B1 <
α2

(A2 − γ2)
2

There exist two equilibrium points E = E1 = E2 =
(0, α2/(A2 − γ2 )) = (0, β1) which is nonhyperbolic,
and E3, which is locally asymptotically stable. Fur-
thermore, the positive part of the y-axes is the basin
of attraction B(E1) of E1. The equilibrium point E3
is globally asymptotically stable with the basin of
attraction B(E3) = (0,∞) × [0,∞)

R4

A2 > γ2, β1 =
α2

A2 − γ2
,

B1 <
α2

(A2 − γ2)
2

There exist two equilibrium points E1 which are a
saddle, and E3, which is a locally asymptotically stable
equilibrium point. Furthermore, the positive part of
y-axes is the global stable manifold of Ws(E1). The
equilibrium point E3 is G.A.S. with the basin of
attraction B(E3) = (0,∞) × [0,∞)

R5

γ2 < A2,
B1(γ2 −A2) +

√
4B1α2 < β1 <

α2

A2 − γ2
,

B1 <
α2

(A2 − γ2)
2

There exist three equilibrium points E1 and E3 which
are locally asymptotically stable and E2 which is a
saddle. The global stable manifold Ws(E2) separates
the positive quadrant so that all orbits which start
below this manifold are attracted to the point E3,
and all orbits which start above this manifold are
attracted to the equilibrium point E1. All orbits that
start onWs(E2) are attracted to E2. The global unstable
manifold Wu(E2) is the graph of a continuous strictly
decreasing function, andWu(E2) has endpoints Ea and
E3

R6
γ2 < A2, (A2 − γ2)B1 < β1,

(B1(A2 − γ2) + β1)
2 − 4α2B1 = 0

There exist two equilibrium points E1, which is locally
asymptotically stable, and E2 ≡ E3, which is non-
hyperbolic. Furthermore, there exists an unbounded
increasing invariant curve WE2 which is a part of
the basin of attraction of E2. Every solution that
starts above this curve is attracted to the equilibrium
point E1; every solution that starts below this curve
converges to E2

R7

γ2 < A2, β1 =
α2

A2 − γ2
,

B1 ≥ α2

(A2 − γ2)
2

There exists a unique equilibrium point E1 = E2 = E3
which is nonhyperbolic. All orbits are attracted to the
equilibrium point E1

R8

A2 < γ2,
(B1(γ2 −A2) − β1)

2 − 4B1α2 > 0,
β1 > B1(γ2 −A2)

There exist two equilibrium points E2, which is a
saddle, and E3, which is a locally asymptotically stable
equilibrium point. Furthermore, there exists the global
stable manifold W2(E2) that separates the positive
quadrant so that all orbits below this manifold are
attracted to the equilibrium point E3, and all orbits
above this manifold are asymptotic to (0,∞). All orbits
that start on Ws(E2) are attracted to E2. The global
unstable manifoldWu(E2) is the graph of a continuous
strictly decreasing function, andWu(E2) has endpoints
E2 and E3
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Table 2: Continued.

Region Global behavior

R9

A2 < γ2,
(B1(γ2 −A2) − β1)

2 − 4B1α2 > 0,
β1 > B1(γ2 −A2)

There exists a unique equilibrium point E = E2 = E3
which is nonhyperbolic. Furthermore, there exists an
unbounded increasing invariant curve WE which is a
part of the basin of attraction of E. Every solution that
stars below this curve is attracted to E; every solution
that starts above this curve is asymptotic to (0,∞)

R10 A2 = γ2, β21 − 4B1α2 = 0,

There exists a unique equilibrium e = (β1/2B1, β1/2)
which is nonhyperbolic. Furthermore, there exists an
unbounded increasing invariant curve WE, which is a
part of the basin of attraction of E. Every solution that
starts below this curve is attracted to the equilibrium
point: every solution that starts above this curve is
asymptotic to (0,∞)

R11 A2 = γ2, β21 − 4B1α2 > 0

There exist two equilibrium points e1, which is locally
asymptotically stable, and e2, which is a saddle equilib-
rium point. Furthermore, there exists the global stable
manifold Ws(e2) that separates the positive quadrant
so that all orbits below this manifold are attracted
to the equilibrium point e1, and allorbits above this
manifold are asymptotic to (0,∞). All orbits that starts
on Ws(e2) are attracted to e2. The global unstable
manifold Wu(e2) is the graph of a continuous strictly
decreasing function, andWu(e2) has an endpoint at e1

R12

γ2 ≥ A2 and either

α2 ≤
(β1 + B1(A2 − γ2))

2

4B1
,

β1 < B1(γ2 −A2)
or

The system (1.1) does not possess an equilibrium
point. Its global behavior is described as follows

R13 α2 >
(β1 + B1(A2 − γ2))

2

4B1
xn → 0 yn → ∞, n → ∞

The rest of the proof is similar to the proof of part (R3) and uses some continuity
arguments.

(R5) The first part of this Theorem is proven in Theorem 4.2. Lemma 3.3 states that the
system (1.1) has no minimal period-two solution. Take that R = R

2
+ \ {(0, 0)}. T

is strongly monotone in R and differentiable in int R = R◦ (interior of R). E2 is a
saddle point and E2 ∈ R◦. Then, all hypothesis (a)–(d) of Theorem 2.6 are satisfied.
In light of Theorems 2.6 and 2.7, there exist the global stable manifold Ws(E2)
and the global unstable manifold Wu(E2) which are the graphs of a continuous
strictly monotonic functions. The global stable manifold Ws(E2) separates the first
quadrant into two invariant regionsW− (below the stable)manifold andW+ (above
the stablemanifold)which are connected. Each orbit starting aboveWs(E2) remains
above and is asymptotic to E1. Each orbit starting belowWs(E2) remains below and
is asymptotic to E3. This implies that E1 and E3 are global attractors. Theorem 4.2
implies that they are globally asymptotically stable.

(R6) Notice that in this case the eigenvector which corresponds to nonhyperbolic
eigenvalue λ1 = 1 at E2 is v2 = (−1/B1, 1), see Theorem 4.3. Thus, the hypotheses of
Theorems 2.4 and 2.7 are satisfied at the equilibrium point E2, and the conclusions
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of Theorems 2.4, 2.5, and 2.7 follow. Let C, W− and W+ be the sets given in the
conclusion of Theorems 2.4 and 2.7. Let S := {(x, y) : 0 ≤ x ≤ β1/B1, 0 ≤ y}.
Since β1x/B1x + y ≤ β1/B1 for x ≥ 0, y ≥ 0, x + y > 0, the map T satisfies
T([0,∞)2 \ (0, 0)) ⊂ S. Thus, T(C∪W+) ⊂ (C∪W+)∩S, which implies that T(C∪W+)
is bounded. In view of Theorem 2.7, every solution which starts in W+ eventually
enters Q4(E2), and so is in rectangle S∩Q4(E2), which by Theorem 2.1, implies that
all such solutions converge to the equilibrium point E2.

If (x, y) is in W−, by Theorem 2.7, the orbit of (x, y) eventually enters Q2(E2).
Assume (without loss of generality) that (x, y) ∈ int Q2(E2).

In view of Corollary 2.2 and the fact that E1 is a local attractor �E1, E2� is a subset of
the basin of attraction of E1. Let (x0, y0) be any point in W+. Then there exists ỹ0 ≥
max{y0, α2/A2 − γ2} such that (0, ỹ0) �se (x0, y0). Now (0, ỹ0) �se (0, ỹ0) = (0, α2 +
γ2ỹ0/A2), which implies that {Tn(0, ỹ0)} = {(0, ỹn)} is an increasing sequence, and
so {ỹn} is a decreasing sequence and thus is convergent to α2/A2 − γ2. In view of
(0, ỹ0) �se (x0, y0), we conclude that Tn((0, ỹ0)) �seT

n((x0, y0)) and so Tn((x0, y0))
eventually enters �E1, E2�, and so it converges to E1.

(R7) Let (x0, y0) be any point in [0,∞)2 \ {(0, 0)}. Then there exist points (x̃0, 0)
and (0, ỹ0), x̃0 ≥ max{x0, β1/B1}, ỹ0 ≥ max{y0, α2/(A2 − γ2)} such that
(0, ỹ0) �se (x0, y0) � (x̃0, 0). This gives Tn((0, ỹ0)) �seT

n((x0, y0)) � Tn((x̃0, 0)) for
all n ≥ 1. Clearly, T(x̃0, 0) = (β1/B1, α2/(A2 + x̃0)) � (x̃0, 0), which implies that
{Tn(x̃0, 0)} = {(x̃n, ỹn)} is a decreasing sequence bounded below by E1 and so is
convergent to E1. Proof that {Tn(0, ỹ0)} is convergent to E1 is carried in a same
way as in the proof of (R6). In view of Tn((0, ỹ0))�seT

n((x0, y0)) � Tn((x̃0, 0)) we
conclude that {Tn((x0, y0))} converges to E1.

(R8) Put T1(x, y) = β1x/(B1x + y), T2(x, y) = (α2 + γ2y)/(A2 + x). Take x = (x0, y0) ∈
W+(E2) ∩ R(−,+), where R(−,+) = {(x, y) ∈ R : T1(x, y) < x, T2(x, y) > y}. It is
known that R(−,+) is an invariant set, see [11].

Then we have

T1
(
x0, y0

)
=

β1x0

B1x0 + y0
< x0, T2

(
x0, y0

)
=

α2 + γ2y0

A2 + x0
> y0. (5.3)

This implies

(
T1
(
x0, y0

)
, T2
(
x0, y0

)) �se
(
x0, y0

)⇐⇒ T
(
x0, y0

) �se
(
x0, y0

)
. (5.4)

By using monotonicity T2(x0, y0) �seT(x0, y0). By using induction Tn+1(x0, y0) �se

Tn(x0, y0). This implies that sequence {xn} is non-increasing and {yn} is non-
decreasing. By Lemma 3.2, {xn} is bounded, hence it must converges. By using
equation for xn+1 we see that the limit is zero. Since, {yn} is unbounded and
nondecreasing then yn → ∞, n → ∞.

By Theorems 2.4 and 2.7, all orbits below this manifold are attracted to the
equilibrium point E3.

(R9) Since the hypotheses of Theorems 2.4, and 2.7 are satisfied at the equilibrium point
E2, the conclusions of Theorems 2.4, 2.5, and 2.7 follow. Let C, W− and W+ be the
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sets given in the conclusion of Theorems 2.4 and 2.7. Let S := {(x, y) : 0 ≤ x ≤
β1/B1, 0 ≤ y}. Since β1x/B1x + y ≤ β1/B1 for x ≥ 0, y ≥ 0, x + y > 0, the map T
satisfies T([0,∞)2 \ (0, 0)) ⊂ S. Thus T(C ∪W+) ⊂ (C ∪W+) ∩ S, which implies that
T(C ∪ W+) is bounded. In view of Theorem 2.7 every solution which starts in W+

eventually enters Q4(E2) and so is in rectangle S ∩ Q4(E2), which by Theorem 2.1,
implies that all such solutions converge to the equilibrium point E2.

If (x, y) is in W−, by Theorem 2.7 the orbit of (x, y) eventually enters Q2(E2).
Assume (without loss of generality) that (x, y) ∈ int Q2(E2).

A calculation gives

T(E2 + tv2) =

(
β1 + B1

(
γ2 −A2

) − 2t
2B1

,
B1
(
2α2 + γ2

(
β1 + B1

(
A2 − γ2

)
+ 2t
)

β1 + B1
(
A2 + γ2

) − 2t

)

(5.5)

for all t and

d

dt
T(E2 + tv2) =

(

− 1
B1

,
2B1
(
β1 + 2α2 + B1

(
A2 + γ2

)
+ β1γ2 + B1γ2

(
A2 − γ2

))

(
β1 + B1

(
A2 + γ2

) − 2t
)2

)

,

1
2
d2

dt2
T(E2 + tv2)|t=0 =

(

0,
4B1
(
β1 + 2α2 + B1

(
A2 + γ2

)
+ β1γ2 + B1γ2

(
A2 − γ2

))

(
β1 + B1

(
A2 + γ2

) − 2t
)3

)

.

(5.6)

Since in expansion (2.5) we have (c2, d2) with d2 > 0 and T(E2 + tv2)
(1) is

affine in t, by Theorem 2.10 in any relative neighborhood of E2 there exists a
subsolution (w, z) ∈ Q2(E2), that is, T(w, z) �se (w, z). Choose one such (w, z) so
that (x, y) �se (w, z). Since T is competitive, Tn+1(w, z) � Tn(w, z) for n = 0, 1, 2, . . ..
The monotonically decreasing sequence {Tn(w, z)} in Q2(E) is unbounded below,
since if it were not it would converge to the unique fixed point in Q2(E), namely
E, which is not possible. Let (wn, zn) := Tn(w, z), n = 0, 1, . . .. Then (wn, zn) ∈ S
for n = 1, 2, . . ., hence {wn} is bounded. It follows that {zn} is monotone and
unbounded. From (1.1) it follows thatwn → 0. Since Tn(x, y)�se(wn, zn), it follows
that Tn(x, y) → (0,∞).

(R10) The eigenvalues of the map T are λ1 = 1 and λ2 = 2A2B1 − β1/2(2A2B1 + β1). The
corresponding eigenvectors are

(
− 1
B1

, 1
)
,

(
2A2B1 + β1

2B1β1
, 1
)
. (5.7)

The existence of the continuous curve WE follows as in the proof of (R9) as well as
convergence of all points which start inW+.

If (x, y) is in W−, by Theorem 2.7 the orbit of (x, y) eventually enters Q2(E2).
Assume (without loss of generality) that (x, y) ∈ int Q2(E2).
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A straightforward calculation gives

T(E2 + tv2) =

(
β1 − 2t
2B1

,
B1
(
2α2 +A2

(
β1 + 2t

))

β1 + 2B1A2 − 2t

)

(5.8)

for all t and

d

dt
T(E2 + tv2) =

(

− 1
B1

,

(
β1 + 2B1A2

)2

(
β1 + 2B1A2 − 2t

)2

)

,

1
2
d2

dt2
T(E2 + tv2)|t=0 =

(
0,

2
β1 + 2B1A2

)
.

(5.9)

Since in expansion (2.5) we have (c2, d2) with d2 > 0 and T(E2 + tv2)
(1) is affine

in t, by Theorem 2.10 in any relative neighborhood of E2 there exists a subsolution
(w, z) ∈ Q2(E2), that is, T(w, z) �se(w, z). The rest of the proof is same as the proof
of the case (R10).

(R11) The proof, which is similar to the proof of (R8), follows as an immediate application
of Lemmas 3.2 and 3.3, and Theorems 2.4, 2.7, and 4.6.

(R12) For every point (x0, y0) ∈ [0,∞)2 \ {(0, 0)}, there exists x̃0 ≥ β1/B1 such that
(x0, y0) � (x̃0, 0). Clearly, T(x̃0, 0) = (β1/B1, α2/(A2 + x̃0)) � (x̃0, 0), which
implies that {Tn(x̃0, 0)} = {(x̃n, ỹn)} is a decreasing sequence, and so ỹn is an
increasing sequence. If ỹn would be convergent, then {(x̃n, ỹn)} would converge
to an equilibrium of system (1.1) which is impossible. Thus, limn→∞ỹn = ∞,
which implies that limn→∞ ỹn = 0. In view of (x0, y0) � (x̃0, 0), we obtain that
Tn((x0, y0)) � Tn((x̃0, 0)) and so

xn −→ 0, yn −→ ∞, n −→ ∞ (5.10)

follows.

Remark 5.2. We can see from Theorem 5.1 that system (1.1) exhibits variety of behaviors in
different ranges of parameters. These behaviors can be classified in a few categories that
verbally describe situation. Here, we use some terminology introduced in [19].

A coexistence attractor is one in which both species are present. An exclusion attractor
is one in which one species is absent and the other species is present. By multiple mixed-type
attractors, we mean a scenario that includes at least one coexistence attractor and at least
one exclusion attractor. Park in [20, 21] observed the coexistence case in an experimental
treatment that also included cases of competitive exclusion, that is, he observed a case
termed to be multiple mixed-type attractors. Competition theory is primarily an equilibrium
theory that is exemplified, by its limited number of asymptotic outcomes: a globally
attracting coexistence equilibrium; a globally attracting exclusion equilibrium; at least two
attracting exclusion equilibria; at least two attracting coexistence equilibria; a continuum of
nonhyperbolic equilibria. (In this context, globally attracting means within the positive cone
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of state space.) Four of these five asymptotic alternatives are illustrated by the LeslieGower
model (the discrete analog of the famous LotkaVolterra differential equation model), see
[2, 5, 17]

xn+1 =
b1xn

1 + xn + c1yn
, yn+1 =

b2yn

1 + c2xn + yn
, n = 0, 1, . . . (5.11)

and fifth alternative, precisely two attracting coexistence equilibria are illustrated by the
LeslieGower model with stockings, see [16]

xn+1 =
b1xn

1 + xn + c1yn
+ h1, yn+1 =

b2yn

1 + c2xn + yn
+ h2, n = 0, 1, . . . , (5.12)

where the parameters b1, b2, c1, c2, h1, and h2 are positive numbers, and the initial conditions
x0, y0 are arbitrary nonnegative numbers. Here, b1 and b2 are the inherent birth rates, c1 and c2
the density-dependent effects on newborn recruitment, and h1and h2 are constant stockings.
With this in mind, we introduce the following terminology. Let E1, E2 and E3 be three
equilibrium points of general competitive system (2.1) in south-east orderingE1 �se E2 �se E3

and assume that E1 and E3 are attractors, and E2 is a saddle point or nonhyperbolic
equilibrium having one characteristic values in (−1, 1). If E1 and E3 belong to y-axes and
x-axes and E2 is a saddle point (resp., nonhyperbolic equilibrium having one characteristic
values in (−1, 1)) then we say that system (2.1) exhibits saddle competitive exclusion (resp.,
nonhyperbolic competitive exclusion). If E1 and E3 belong to the interior of first quadrant and E2

is a saddle point (resp., nonhyperbolic equilibrium having one characteristic values in (−1, 1))
then we say that system (2.1) exhibits saddle competitive coexistence (resp., nonhyperbolic
competitive coexistence). If one of the equilibrium points E1 and E3 is on the axes and the other
is in the interior of first quadrant and E2 is a saddle point (resp., nonhyperbolic equilibrium
having one characteristic values in (−1, 1)), then we say that system (2.1) exhibits saddle
competitive exclusion to coexistence (resp., nonhyperbolic competitive exclusion-to-coexistence). If
there exists a single attractor in the interior of first quadrant which attracts all points where
it is defined except eventually the points on the axes, we say that system (2.1) exhibits global
competitive coexistence or global competitive exclusion depending on whether the attractor is on
the axes or in the interior of first quadrant. If any of the attractors one the axes is the point
(0,∞) or (∞, 0), such a situation will be named singular.

Using this terminology, we can describe the global behavior of system (1.1) in a concise
way as follows. System (1.1) exhibits global competitive exclusion if the parameters belong
to the regions (R1), (R2), or (R7) and global competitive coexistence if the parameters belong
to the region (R4).

System (1.1) exhibits saddle competitive exclusion to coexistence if the parameters
belong to the region (R5). System (1.1) exhibits nonhyperbolic competitive exclusion to
coexistence if the parameters belong to the region (R6). System (1.1) exhibits singular
saddle competitive exclusion to coexistence if the parameters belong to the regions (R8) or
(R9). System (1.1) exhibits singular nonhyperbolic competitive exclusion to coexistence if
the parameters belong to the region (R10) or (R11). Finally, System (1.1) exhibits singular
competitive exclusion when the parameters belong to the region (R12). With this terminology
the possible scenarios for this system are limited, and transition from one scenario to another
could be possible explained by using the bifurcation theory. In particular, transition from
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global competitive exclusion to global competitive coexistence was explained in [3], and
some related results can be found in [19], where an attempt has been made to explain the
transitions from one scenario to another by using evolutionary game theory.
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