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ABSTRACT 

Using two full applications with different characteristics, this thesis explores the 

performance and energy efficiency of CUDA-enabled GPUs and multi-core SIMD 

CPUs. Our implementations efficiently exploit both SIMD and thread-level 

parallelism on multi-core CPUs and the computational capabilities of CUDA-enabled 

GPUs. We discuss general optimization techniques and cost comparison for our CPU-

only and CPU-GPU platforms. Finally, we present an evaluation of the 

implementation effort required to efficiently utilize multi-core SIMD CPUs and 

CUDA-enabled GPUs. One of the applications, seam carving, has been widely used 

for content-aware resizing of images and videos with little to no perceptible distortion. 

The gradient kernel was improved and achieves over 102x speedup on the GPU; this 

fraction (gradient kernel) of the seam carving operation has largest execution time. 

The overall resizing operation achieves 32x speedup on multi-core SIMD CPU. The 

time to resize one minute of a 1920x1080 video with seam carving was reduced from 

6 hours to 17 minutes on a heterogeneous CPU-GPU system. The second application, 

numerical simulations of cardiac action potential propagation (CAPPS), is a valuable 

tool for understanding the mechanisms that promote arrhythmias that may degenerate 

into spiral wave propagation. Our implementation of CAPPS reduces the simulation 

time from 10 days (single-core implementation) to approximately 4 hours and 8 

minutes. This is 54% faster than the execution time of CAPPS on a 60-core CPU-only 

cluster using MPI. Moreover, our implementation is 18.4x more energy-efficient than 

the 60-core cluster implementation.  
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CHAPTER 1 

 

INTRODUCTION 

 

Modern CUDA-enabled GPUs consist of devices with several streaming 

multiprocessors (SMs) each containing multiple cores (streaming processors). With 

their high memory bandwidth (compared to low latency as in CPUs), GPUs are ideal 

for parallel applications with high-levels of fine-grain data parallelism. To hide 

memory latency, the CUDA architecture supports hundreds of thread contexts to be 

active simultaneously [1]. CPUs, on the other hand, contain powerful cores that can 

outperform the GPU’s lightweight cores for many applications with poor data 

parallelism. Today’s CPUs not only exploit instruction-level parallelism (ILP) within 

each core, but also data-level parallelism (DLP) via single instruction multiple data 

(SIMD) units and thread-level parallelism (TLP) via multiple processors or multi-

cores, and simultaneous multithreading (SMT) [2, 3].  

The evolution in parallel hardware has let many researchers to explore TLP on 

multi-core CPUs and DLP on the GPU. Several researchers have also explored DLP 

on CPUs by utilizing the SIMD units, although much less research has been done. 

Another approach is to use a combination of GPUs and multi-core SIMD CPUs to 

explore the true potential of CPU-GPU heterogeneous systems. In this thesis, we 

evaluate the performance of multi-core SIMD CPUs and CUDA-enabled GPUs using 

a set of kernels with various characteristics and two full applications that utilize 

several of these kernels.  
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Most prior general-purpose GPU (GPGPU) work focus on mapping kernels onto 

GPUs to evaluate their performance. Although robust mapping of kernels onto tested 

platforms gives valuable insights into the capabilities and the limitations of the 

platforms, kernels are often only part of full applications. For fair evaluation, full 

applications must also be considered to uncover the true potential of the platforms 

under test. Evaluating the individual kernel performances may be misleading when 

comparing computing platforms because of the way these kernels may interact with 

the rest of the full application.  

GPGPU research has predominantly focused on accelerating applications. There 

has been little research in evaluating the energy consumption and energy efficiency of 

CPU-GPU systems for general-purpose processing. Some recent work [4, 5] evaluate 

energy efficiency, however, they fall short in terms of a fair comparison between 

systems because they either only use data-parallel kernels or they do not utilize all the 

hardware features; in particular, CPU SIMD lanes are often neglected in GPGPU 

studies. This was addressed in the debunking the 100x GPU vs. CPU myth paper [1]. 

Although performance was compared by applying optimizations appropriate for both 

GPU and CPU, in [1], energy efficiency was not evaluated. In this work, the kernels 

and applications are carefully fine-tuned to explore the best utilization of each 

platform in terms of performance and energy-efficiency. 

Finally, what has never been discussed or evaluated in prior work is the 

implementation effort. It takes significant effort and time to implement fairly good-

performing SIMD, multi-threaded and GPU versions of an application. One might ask 

the following question, is it worth the implementation effort to map a 
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sequential/parallel algorithm or application onto GPUs or utilize multi-threading and 

SIMD? Many of us depend on our prior experiences to answer this question. It is, 

however, important to share experiences, which collectively help other researchers 

make informed decisions. In this thesis, we attempt to fairly quantify the 

implementation effort and share our experiences.  

Overall, this thesis makes the following contributions: 1) We evaluate and 

characterize eight kernels and two full applications on CUDA-enabled GPUs and 

multi-core SIMD CPUs and discuss platform-specific software optimizations and 

limitations. 2) We demonstrate that GPUs facilitate low-cost and energy-efficient 

computing for computationally intensive applications, such as numerical simulations 

of cardiac action potential propagation (CAPPS); but also show that applications, 

such as seam carving, achieve best performance and energy efficiency by efficiently 

utilizing the true heterogeneity of a CPU-GPU system. 3) We show that evaluating the 

performance and the energy-efficiency of computing platforms by using only kernel 

programs may lead to incorrect conclusions. 4) We demonstrate that reducing the data 

width has a profound effect on the performance of SIMD implementations. 5) Finally, 

we quantify the implementation effort in writing the SIMD, multithreaded, and CUDA 

versions of the applications and define a new metric to compare them. 



4 

 

CHAPTER 2 

 

THE WORKLOADS  

 

In this thesis, we studied eight kernels as listed in Table 1. We used the data-

parallel kernels, mri-q, stencil and histogram from the Parboil [6] benchmarks, and 

two full applications, seam carving [7] and CAPPS (numerical simulations of cardiac 

action potential propagation) [8] utilizing three and two kernels, respectively, as 

shown in Table 1. Overall, these benchmarks cover the application domains of image 

processing, scientific computing and physics simulation, and demonstrate the benefits 

of SIMD vectorization, multithreading, and general purpose processing on GPUs, as 

well as their limitations. As we discuss in the following sections, while some of these 

kernels are relatively easy to parallelize for the underlying platforms, others are either 

challenging requiring algorithmic changes and careful data layout reorganizations, or 

not parallelizable due to hardware limitations. 

Table 1: Shows the characteristic and applications of the studied kernels: Three kernels from the 

Parboil [6] benchmarks. Three kernels from seam carving [7] and two kernels from CAPPS [8]. 

 Kernel Applications Characteristics 

 

 

Parboil [6] 

benchmarks 

mri-q medical imaging Compute bound 

dtencil scientific computation, image 

processing 

Compute bound/ Bandwidth 

bound 

histogram image analysis, statistics Reduction/ 

synchronization bound 

Seam 

carving [7] 

gradient image analysis, physics 

simulation 

Compute bound/ 

bandwidth bound 

dynamic 

programming 

many from image processing 

to bioinformatics 

Synchronization bound 

matrix resizing signal processing Bandwidth bound 

 

CAPPS [8] 

DEsolver dense linear algebra, scientific 

computation 

Compute bound 

Laplacian image processing, physics 

simulation 

Compute bound/ 

bandwidth bound 
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2.1 Parboil Benchmarks  

The Parboil benchmarks are a set of throughput computing kernels useful for 

throughput computing architecture and compilers research. The benchmarks 

incorporate diverse memory access and communication patterns. In this work, we 

characterize and evaluate the performance of the mri-q, stencil, and histogram kernels. 

The mri-q Kernel [9] computes a matrix Q, representing the scanner configuration for 

calibration, used in a 3-D magnetic resonance image reconstruction algorithm in non-

Cartesian space. The stencil kernel is an iterative Jacobi stencil operation on a regular 

3-D grid. Finally, the histogram kernel computes a moderately large, 2-D saturating 

histogram with a maximum bin count of 255. Input datasets represent a silicon wafer 

validation in which the input points are distributed in a roughly 2-D Gaussian pattern. 

For a more detailed description about the Parboil benchmarks, refer to [6]. 

2.2 Seam Carving 

One of the most popular uses of diverse mobile devices today is for browsing 

images and playing videos. However, different devices have different resolution 

capabilities, so it is necessary to resize images and videos efficiently and effectively to 

fit them into diverse displays (such as cell phones, tablets, desktop displays, etc), 

preferably without distortion. Traditional image resizing techniques are oblivious to 

the content of the image when changing its width or height. Cropping [10-14] has been 

one of the most popular approaches to resize images. However, cropping may lose an 

unacceptable amount of visual information when important structures lie at all edges 

of an image. In addition, it can only remove information, but it cannot add information 
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to expand the image. Scaling methods, with or without interpolation, tend to produce 

distorted images, especially when an image is scaled in one dimension.  

Avidan and Shamir [7] developed a new approach to image and video resizing, 

called seam carving. Seam carving functions by establishing a number of seams (paths 

of least importance) in a digital media and automatically removes or inserts seams to 

resize the media. This popular content-aware resizing method has been shown to 

effectively resize images and videos with little to no perceptible distortion [7]. Seam 

carving has been widely adapted by popular graphics editing applications, which 

include Adobe Photoshop, where it is called Content Aware Scaling (CAS) [15], or 

Liquid Scaling in GIMP [16], digiKam [17], and ImageMagick [18]. The importance 

of content-aware image resizing has made seam carving a popular application for 

research [19-22].  

Seam carving has three phases: The energy function, the seam computation, and 

the removal or duplication of low-energy seams. First, the energy of each pixel is 

computed using the magnitude of the gradient (gradient kernel). Then, low energy 

paths, called seams, are marked using dynamic programming (dynamic programming 

kernel). Finally, low-energy seams are duplicated or removed from the image/video to 

perform the resizing (matrix resizing kernel). Figure 1 shows the steps of horizontally 

resizing an example image.  

The three kernels in the seam carving algorithm make it an excellent application 

for evaluating the performance and energy-efficiency of CUDA-enabled GPUs and 

multi-core SIMD CPUs because of their very different characteristics. A brief 

description of these kernels follows. 
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                               (a)                                                                     (b) 

                      
                                (c)                                                                  (d)              
Figure 1: The steps of horizontally resizing an image. (a) The original image.  (b) The gradient (energy 

function) of the image. (c) The low-energy removable seams and the gradient image. (d) The output 

image, horizontally resized by one half of the original width using seam carving. 

Image Gradient 

 Seam carving is able to utilize several energy functions [7]. In this thesis, we use 

the magnitude of the gradient [23] for the computation of the energy function because 

the gradient is a highly used kernel; therefore, the characterization and any 

improvements of the gradient operation will benefit a large range of applications in 

image processing [24-26]. The gradient is the directional change in the color or 

intensity in an image. The magnitude of the gradient can be computed using Equation 

2. The components of the gradient vector (Equations 3 and 4) themselves are linear 

operators, but the magnitude of the gradient is not because of the squaring and square 

root operations. The implementation of Equation 2 is very computationally intensive. 
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Therefore, a common practice is to approximate the magnitude of the gradient by 

using absolute values instead of squares and square roots [23], as in Equation 1. The 

gradient is preserved only for multiples of 90° when approximated. These results are 

independent of whether Equation 1 or 2 is used, so nothing of significance is lost in 

using the simpler of the two equations [23].  

           
 
  

   

  
   

   

  
                                                     

            
   

  
 
 

  
   

  
 
 

                                                     

To reduce the gradient computation of RGB images, the pixels are averaged 

before computing the gradient. Computing the gradient of each RGB channel 

separately, and then averaging the results, requires two additional gradient operations. 

The first norm of the gradient (1) is quite effective and has vast data parallelism, 

which allows the computation to be perfectly separable. We use Equations 3 and 4 to 

compute the gradient vectors, which are the x and y derivatives. 

        

  
                                                                     

        

  
                                                                     

Dynamic Programming 

In the second phase of seam carving, we use dynamic programming to compute 

the cumulative energy sum of every pixel. The last row of the seam matrix contains 

the total energy of the seams. The seam matrix denotes the result of seam computation 
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Figure 2: Seam map example. Illustrates the dependability among pixels. 

and contains the computed seams that are generated using Equation 5. The first row of 

the seam matrix is directly obtained from the first row of the gradient. This dynamic 

programming approach produces the optimal seam [7]. However, the computation for 

each element is entirely dependent on the result of the three above 8-connected 

elements, as shown in Figure 2. This introduces a higher degree of difficulty for the 

parallelization of the dynamic programming kernel. 

      
        

                                       
                           

Matrix Resizing 

The last phase of seam carving is the removal or duplication of low-energy seams 

and thereby resizing the image. Matrix resizing is widely used in signal processing. 

Matlab [27] has resizing functions based on removing columns and rows of a matrix. 

Accelerating and characterizing matrix resizing will benefit many applications. For a 

detailed description about seam carving, refer to [7]. 

2.3 Numerical Simulations of Cardiac Action Potential Propagation (CAPPS) 

Numerical simulations of electrical activity in the heart (specifically propagation 

of cardiac action potential) are valuable tools for understanding the mechanisms that 

promote arrhythmias that may degenerate into spiral wave propagation. In [8], the 

author characterized the convergence properties and numerical stability of a recent 
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model of the rat ventricular action potential. A model of rat cardiac myocyte action 

potential [28] with changes from [29] was used in Equation 6. In Equation 6, Vm is the 

transmembrane voltage, Cm is the membrane capacitance, D is the conductivity of 

myocardium, Iion is the transmembrane current, and Istim is the stimulus current applied 

to the cell. The action potential model is used to solve for Iion, and Vm by numerically 

integrating Equation 6. 

  

    
  

  
     
   

                                                           

In [8], the authors analyzed the numerical convergence of a 1D model on a 1500 

μm fiber over a range of uniform spatial steps. The model was then extended to two 

dimensions for simulating reentrant spiral waves on a plane consisting of 300x300 

nodes (9x9 mm
2
 surface). The equations were numerically integrated using the explicit 

Euler technique. The time step was adaptively changed from 100 to 1 ns to insure 

stability of the integration. The main steps are to compute the transmembrane currents 

and voltages for all 90,000 nodes. A detailed description about the transmembrane 

current [28] is beyond the scope of this thesis. It is important, however, to mention 

that CAPPS utilizes the DEsolver kernel to solve the action potential model for the 

transmembrane current, which includes massive amount of computations for solving 

25 differential equations (47 exp, 320 mul/div, 253 add/sub, 7 power, 2 log = 629 

floating-point operations per node). The Laplacian is implemented using Equation 7 

and the results are used to compute the transmembrane voltage, as in Equation 8. 
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CHAPTER 3 

 

HARDWARE RESOURCES 

 

3.1 High-performance Desktop Computer (HPDC) 

The HPDC is a heterogeneous CPU-GPU computer composed of a single Intel 

Core i7-2600k CPU [3] and an NVIDIA GTX580 GPU [30]. The GTX580 has 512 

cores organized into 16 SMs with dual warp schedulers. A warp consists of 32 parallel 

threads executing in lockstep [31]. Ubuntu Linux 10.04 is the operating system 

installed. The system has 4GB of DDR3 memory and the GTX580 has 1.5GB of 

GDDR5 memory. The CPU threading model is POSIX threads (pthread). The Intel 

SSE4.2 and AVX (floating-point only) intrinsic instructions are used to write the CPU 

SIMD code. All implementations on this system were compiled with full optimization 

using the gcc 4.7 and/or nvcc included in the CUDA SDK 4.2. 

3.2 CPU-only Cluster 

A 60-core cluster computer was utilized for the numerical simulation. The cluster 

contains a total of 176 GB of memory. The cluster consists of 18 Intel Xeon 5160 

dual-core, 2 Intel Xeon X5355 quad-core, and 4 Intel Xeon X5460 quad-core CPUs. 

The cluster is organized into 12 individual shared memory systems (9 with 4 cores and 

3 with 8 cores). A network connects the 12 systems to form a larger distributed-

memory system. The Ubuntu Linux 11.04 operating system is installed on all 12 

machines. The interprocess communication was managed by the message-passing 
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interface (MPI). The numerical simulation for this system was compiled with full 

optimization using the gcc 4.5. 

3.3 Energy Measurements 

Energy and power measurements are taken by a digital power meter, which is 

connected to the wall outlet, and feeds the computing platform being tested. Power 

data is recorded periodically as kernels are running and then used to compute the 

energy consumption. We have not subtracted energy consumption of the idle system, 

so the energy values include the idle system energy. We compare the energy 

efficiency of tested platforms using energy-delay product (EDP) as a metric. 
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CHAPTER 4 

 

IMPLEMENTATION 

 

The platform-specific software optimizations presented in this section are critical 

to fully utilize the compute/bandwidth resources on CPUs and GPUs. Multithreading, 

reorganization of memory access patterns, and SIMD optimizations are the key for 

best performance in the CPU. For GPUs, global inter-thread synchronization is very 

costly and must be minimized. For best performance, user-managed and texture caches 

must be used efficiently and uncoalesce memory accesses must be minimized. Table 2 

and 3 list platform-specific software optimization techniques and the kernels and 

applications using them, respectively. All optimizations are applied to the baseline 

single-threaded implementations. The performance numbers of the baseline 

implementations are on par or better than best reported numbers for each particular 

kernel or application. 

4.1 Optimized Single-Threaded Implementations (ST) 

The gradient kernel computes the image energy function using the magnitude of 

the gradient. The baseline implementation is similar to the implementation described 

in [19]. We improve the baseline by applying several hand optimizations as listed in 

Table 3, including Smart Pointer Dereferencing, Arithmetic Optimizations, Loop 

Fusion, Smart Value Scaling, and Branch Elimination. 
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Table 2: Description of different optimization techniques used in the implementations of kernels. The 

optimizations marked by (*) have a extended description (most likely towards the end of the chapter).  

OPTIMIZATION DESCRIPTION 

Smart Pointer 

Dereferencing (SPD)* 

Reduces the number of memory accesses by dereferencing pointers 

outside of loops. This technique is most useful when kernels access data 

elements that are encapsulated in a SoA or stored in a multi-level arrays.  

Arithmetic 

Optimizations (AO) 

Simplifies math to eliminate unnecessary arithmetic. Reduces the number 

of index transformation when using linear array to store 2-D/3-D dataset.  

Loop Fusion (LF) 
Improves locality and cache performance by fusing loops to perform 

computation with a single loop pass. 

Smart Value Scaling 

(SVS)* 

Scales values by a smart fraction to replace division operation by logical 

shift (only used when the kernel tolerates the errors).  

Loop Interchange (LI) 
Exchanges the order of nested loops to improving locality of access and 

take advantage of cache.  

Data Structure 

Transformation (DST) 

Transforms data structure to improve memory performance. For example, 

transforming an Array of Structure (AoS) to a Structure of Array (SoA). 

Branch Elimination  

(BE) 

Eliminates unnecessary branches by executing the boundaries conditions 

outside of the loops (improves ILP). 

Reduced-width 

Operands (RWO)* 

Reduces the data width to improve cache performance and SIMD 

parallelization. 

Fast Math (FM) 
Optimized math functions [31, 32] to improve arithmetic performance 

(reduces accuracy, not noticeable in some kernels).   

Ping-Pong Buffering 

(PPB) 

Improves performance by eliminating redundant memory copy and 

branches. 

Array Padding (AP) 
Improves performance by guaranteeing that every matrix row starts on an 

aligned memory location or new cache line.   

Shared Memory 

Caching (SMC) 

Improves performance by reducing the number of same-data memory 

access.  

Texture Cache (TC) 
Hardware managed, optimized for 2D spatial locality (benefits kernels 

with irregular access patters or low locality).  

Lookup Table (LT) 
Eliminates multiple computations of functions with the same input. Pre-

computes the outputs for all inputs and stores the output in memory.  

SIMD Shift and Insert 

(SSI)* 

When data is loaded into SIMD register, eliminates extract loads of 

nearby data by using register-shift and data-insertion.   
 

 

Table 3: Optimizations (which are listed in Table 2) applied to the single- and multi-threaded CPU, and 

GPU implementations. COT states for all non-SIMD CPU optimization techniques. 

Kernel / 

Application 

Optimization 

CPU  SIMD  GPU 

S
P

D
 

A
O

 

L
F

 

B
E

 

R
W

O
 

S
V

S
 

L
I 

F
M

 

L
T

 

 

C
O

T
 

D
S

T
 

S
S

I  

D
S

T
 

P
P

B
 

A
P

 

S
M

C
 

T
C

 

F
M

 

L
T

 

mri-q  x 
 

    x 
 

 x      x     

stencil       x    x      x x 
 

  

histogram x x         x       x    

gradient x x x x       x x x    x x x x  

dynamic 

programming 
x x  x x      x  x    x x  

 
 

matrix resizing x          x  x  x x      

Laplacian x            x  x x x x    

DEsolver x x       x      x      x 

SC x x x x x x     x x x  x x x x x x  

CAPPS x x       x    x  x x x    x 
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The dynamic programming kernel computes the cumulative minimum energy for 

the seam carving application. In the baseline implementation, we use the C++ min 

function to find the minimum value of the above 8-connected pixels, and add the result 

to the pixel’s energy to obtain the new cumulative minimum energy value. We locate 

the lowest-energy seam by searching the last row of the seam matrix. The baseline 

implementation inherits many optimizations techniques used for the gradient. The 

Branch Elimination optimization, in particular, shows a considerable improvement 

over the baseline. 

The matrix resizing baseline implementation loops through the rows and 

columns of the image and move each pixel to the left in their respective rows; starting 

one pixel after the removable pixel. We use another technique that utilizes the C/C++ 

memmove and memcopy functions to resize each row, which performs slightly better 

than the baseline implementation. Although employing linked-list data structures 

would have allowed data resizing to be very efficient, because this kernel is part of the 

seam carving application where non-resizing operations account for a much larger 

fraction of the execution time, as in many applications, the overall seam carving 

performance would have been negatively affected. Thus, we are forced to implement 

the resizing using array data structures. 

As we discussed in Chapter 2, CAPPS utilizes two kernels: the DEsolver and the 

Laplacian. We implemented these kernels using the equations given in [8]. We used 

the optimization techniques discussed for gradient for achieving optimal performance. 

Finally, instead of computing exponential operations, a lookup table (LT) is employed 

for better performance without significant reduction in accuracy. 
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The baseline implementations for the three kernels, mri-q, stencil and histogram, 

are taken from the Parboil benchmark suite [6]. We improved the baseline 

implementation for the mri-q kernel (by about 86%) by applying Fast Math 

optimizations. We apply the Loop Interchange optimization to the stencil kernel, 

which greatly improved locality and resulted in 7x performance gain over the baseline. 

4.2 Multi-threaded Implementations (MT) 

For the multi-threaded implementation of the gradient kernel, we partition the 

input image into tiles consisting of consecutive rows (see Figure 3); a column-based 

division reduces locality. The number of rows in a tile depends on the number of 

threads and the height of the image. Unlike the gradient, the cumulative minimum 

energy computation uses a dynamic programming approach that is not parallelization 

friendly. This approach serializes the execution of rows. We therefore perform a row-

by-row computation of the seam matrix (dynamic programming kernel) by dividing 

each row into fixed-width tiles and compute these tiles in parallel. We synchronize all 

threads after the execution of each row.  

 
                                           Figure 3: Division of work for multi-core CPU. 
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For the matrix resizing, mri-q, stencil, histogram, DEsolver and Laplacian 

kernels, the multi-threaded implementation is similar to that of the gradient kernel (see 

Figure 3). Given that there are no data dependencies in the computation of these 

kernels, we are able to divide the computation among threads as described above for 

the gradient. The multi-threaded implementation of the histogram kernel uses the 

reduction technique, where each thread first updates a thread-private (local) histogram 

and then “reduces” (adds) its local histogram to the global histogram only once at the 

end of the computation. Updates to these local histograms can execute in parallel but 

additions to the global histogram still require atomic operations. Finally, we also used 

message-passing interface (MPI) to parallelize CAPPS in order to take advantage of 

our in-lab cluster as described in Chapter 3. 

4.3 SIMD Implementations (SIMD) 

The gcc 4.7 compiler is capable of auto-vectorizing programs to explore the 

potential of the SIMD units on the CPU. However, for successful compiler auto-

vectorization, often, the programmer needs to write the code in a certain way. Besides 

the Laplacian kernel, no other baseline implementations for the kernels in this thesis 

were successfully auto-vectorized. Optimizations such as, Data Structure 

Transformation, Loop Interchange, Smart Value Scaling, and Branch Elimination 

have helped generating auto-vectorized code with some success for four of the eight 

optimized kernels: These are the gradient, dynamic programming, stencil, and 

Laplacian kernels. However, the SIMD units achieved much higher performance when 

the code was carefully vectorized by hand.  
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For the gradient kernel, after using the Smart Value Scaling optimizations, gcc 4.7 

was able to auto-vectorize the code (with 3.67x performance gain). By further using 

the Data Structure Transformation and SIMD Shift and Insert (SSI in Table 2) 

optimizations, we achieve a 33x performance gain over the baseline with a hand-tuned 

SIMD implementation. The hand-tuned SIMD implementation of the gradient uses 

Equations 9 and 10 [23] as an alternative method to compute the derivatives. By 

incorporating these changes, we eliminated three loads (one for each RGB channel), 

three register-insert operations, and eight logical and arithmetic operations per pixel.  

        

  
                                                                   

        

  
                                                                   

By moving the cumulative minimum energy computation of the first and the last 

column outside of the loop, we reduce the boundary check instructions (Branch 

Elimination) for the dynamic programming kernel. This optimization helps the 

compiler vectorize dynamic programming (4.89x performance gain over baseline). By 

implementing the SIMD Shift and Insert mechanisms, our hand-tuned SIMD 

implementation achieves 2.25x over the compiler auto-vectorized code. Auto-

vectorization did not work for the matrix resizing kernel. However, with some hand-

tuning, we were able to use the SIMD lanes to move 16 bytes simultaneously by 

loading each RGB channel into three separate registers and relocating 5.33 

simultaneous pixels on average.  

The stencil kernel was auto-vectorized after we have modified the baseline (from 

Parboil suite [6]) with the Loop Interchange transformation. The hand-tuned and 
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compiler auto-vectorized versions provided the same speedup of 3.34x over optimized 

single-threaded implementation. gcc 4.7 was not able to auto-vectorize the mri-q 

kernel because it uses sine and cosine functions that are not part of the SSE/AVX 

instruction extension.  We were able to hand-vectorize this kernel by implementing 

sine and cosine with AVX instructions with very good accuracy using [35]. The hand-

tuned SIMD was 3.27x better than the optimized single-threaded version. 

The full CAPPS application and the DEsolver kernel were unable to utilize the 

SIMD units on the CPU due to the current SEE/AVX limitations; no support for 

special functions such as exponential exists. Unlike, the mri-q kernel, CAPPS requires 

very high floating-point precision. Therefore, we were not able to use [35] to vectorize 

the DESolver kernel. As a result, we do not have a SIMD CAPPS implementation. We 

could have used SIMD after incorporating the Lookup Table optimization, but SIMD 

CPUs do not have gather/scatter SIMD operations yet, which also affected the 

vectorization of the histogram kernel.  We were able to utilize SIMD for the reduction 

phase of the multi-threaded histogram kernel. Each thread-private histograms is copied 

to separate global histogram (multithreaded reduction), which are then added into one 

global histogram using the SIMD lanes.  

4.4 Using Short Operands: A Case for SIMD Performance 

The width of an operand has important implications on SIMD performance: the 

shorter the operand is the more parallelism there is. Therefore, it is important to 

carefully decide on operand widths. It is wasteful to use 32-bit operands when 8- or 

16-bit operands suffice.  
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Occasionally, although not directly applicable, scaling down values, when it does 

not hurt accuracy of the overall results, allows the use of shorter operands and thereby 

improves SIMD performance significantly. We observed an example to this in the 

dynamic programming kernel, which is used to compute the cumulative minimum 

energy (seam matrix) in the seam carving algorithm. In theory, the values of the seam 

matrix could grow beyond 64K (unsigned short). Therefore, the baseline 

implementation uses 32-bits (unsigned integer) to store the values of the seam matrix. 

However, Figure 4 shows a histogram of the seam matrix values, which reveal that the 

values do not exceed 7,500.  We analyzed many images with different sizes and 

characteristics, and found that even in very large images (with high energy) the largest 

value was below 19,500 (Figure 5).  This allows us to use 16-bit instead of 32-bit 

operands. This simple optimization doubled the performance of the SIMD 

implementation for the dynamic programming kernel. Short operands also improved 

the non-SIMD implementation by 24%, due to cache performance. 

 
Figure 4: A histogram of the CES for a 1200x900 image. 
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Figure 5: A histogram of the CES for a 3648x2736 image. 

Pitfalls of Short-width Operands on SIMD Units 

When performing SIMD arithmetic, especially on short-width operands, it is the 

programmer's responsibility to ensure that no overflow occurs. This is because unlike 

non-SIMD execution units, where the results of short-width operands (e.g. 8-bit) are 

store in a 32- and 64-bit register, the Intel SSE and AVX extensions partitions the 

SIMD registers into the various supported length, as specified by the programmer.  In 

the case of 8-bit arithmetic, the resulting values are placed in an 8-bit location of an 

SSE 128-bit register, which will cause overflow if the results are beyond 255 

(unsigned) or 127 (signed). Therefore, it is the programmer's responsibility to be 

cautions when taking advantage of the performance gain of short-width operands on 

the SIMD units. We recommend a well understanding of the operation before 

exploring short-width operands on SIMD CPUs.  A proper methodology is to conduct 

similar analysis as we have done in the previous subsection.      
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4.5 GPU Implementations (GPU) 

The need for accessing neighboring pixels to compute the gradient strongly 

influences the way we access memory on the GPU. In [19], the authors present an 

incremental approach towards improving the performance of the energy function 

computation, which we incorporate into our GPU implementation of the gradient 

kernel. We also use Equations 9 and 10 to benefit from similar improvement as in the 

SIMD implementation. With a 32x9-block configuration (warp 9 only assist in 

caching), each thread loads a single pixel; achieving full coalesce accesses for the 

computational pixels and the bottom-neighboring pixel. Our caching method works 

well, but the best performance is achieved by careful optimizations including the use 

of Texture Cache and Fast Math optimizations.  

The GPU implementation of dynamic programming partitions the rows into 

horizontal tiles. Since there is no synchronization among different thread blocks, the 

kernel is invoked once per row and we synchronize in between calls. 

For the matrix resizing kernel on the GPU, we launch one thread per data element 

(pixel in the case of seam carving) in order to achieve one data-element relocation per 

thread. None of our previous resizing methods achieved such high parallelization; we 

are able to move hundreds of pixels simultaneously. To prevent neighboring threads 

from overwriting the pixels before they can be read, we used the Ping-Pong Buffering 

optimization technique, as described in Table 2.  

The GPU Implementation of CAPPS exploits the fact that the computation of the 

transmembrane current is 100% separable; we can compute the transmembrane 

current, which includes 629 floating-point operations, for every node in parallel 
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without any data dependencies. The memory access patterns and computation for the 

Laplacian, used for the computation of the transmembrane voltage, are very similar to 

that of the gradient. This implies that we can benefit from the GPU optimizations 

employed in the gradient kernel. For CAPPS, we implemented two GPU kernels: a 

kernel to compute the transmembrane current (DEsolver kernel), which includes the 

computation of the differential equations, and a kernel to compute the transmembrane 

voltage, which includes the Laplacian and one differential equation. We placed all 

constants in the constant memory using the guidelines in [36]. Furthermore, we place 

most of the data on the GPU to minimize the host-to-device and device-to-host 

memory transfers. The only device-to-host memory transfer occurs when the CPU 

needs to write the transmembrane voltage to the output file, which occurs every 

10,000 iterations. One iteration simulates one time step, and it involves the 

computation of the transmembrane voltages and currents for all 90,000 nodes. The 

optimized GPU version of CAPPS required us to apply many optimizations, including, 

Data Structure Transformation, Ping-Pong Buffering, Arithmetic Optimizations, and 

Lookup Table, as described in Table 2. We also used Page-locked Memory to avoid 

the host-to-device memory copy of the stimulus current, which is updated by the CPU 

for every node on every iteration. Results show that accessing the CPU memory 

directly from the GPU incurs less overhead than that of the stimulus current host-to-

device memory copy, for the implementation of CAPPS. Finally, we have evaluated 

the GPU implementations of the mri-q, stencil and histogram kernels from the Parboil 

benchmarks [6]. 
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4.6 Seam Carving Specific Optimization: The Energy Update (EU) 

In seam carving, when removing seams, the frequency at which the energy 

function (gradient kernel) is recomputed has a significant impact on the quality of the 

resized image. The best quality is obtained when the energy is recomputed after the 

removal of a single seam [7]. To reduce the computation, it is possible to recompute 

the energy function after a predetermined number of seams have been removed [37].  

In this thesis, we implemented a new method to improve the performance of 

recomputing the energy function and preserve the best resizing quality. When a single 

seam is removed and the energy function is recomputed, the majority of the energy 

values remain unchanged. The only pixels affected by the removed seam (the dark 

gray pixels in Figure 6a) are the left and right neighboring pixels illustrated in white in 

Figures 6a and 6b. Thus, we only recompute the energy of the pixels that undergo an 

energy change, to reduce the computation. This method produces the same results as 

recomputing the entire energy function using much less computation, which improves 

the performance significantly (see Chapter 5).  

           
                          (a)                                      (b)                                                 (c) 

Figure 6: Proposed Update Algorithm for recomputing the energy. (a) The dark (removable) pixels 

only affect the white pixels. (b) Only recompute the energy for the affected pixels. (c) After update. 
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4.7 Memory Optimization Techniques  

GPUs have a wide memory bus for simultaneously loading large amounts of data 

in order to supply the high demand imposed by the many executing threads. Unlike the 

CPUs that hide the memory latency by utilizing large caches and complex logic such 

as pre-fetching, the GPU memory exhibits high bandwidth and high latency. The GPU 

high memory latency could be hidden by accessing memory in the most favorable 

pattern that takes advantage of the GPU memory organization. 

Implicit and Explicit Caching   

Modern CPUs contain different levels of caches, which are managed implicitly by 

the hardware to store the most frequently used data. The programmer, however, is able 

to use techniques such as Loop Fusion and Loop Interchange to take advantage of the 

cache and improve the memory performance. GPUs implement user-managed caches 

(Shared Memory) and give explicit control to the programmer. When necessary, it is 

very important to utilize the GPUs’ shared memory to take advantage of locality or the 

Texture Cache to benefit from 2-D spatial locality. When utilizing Shared Memory on 

the GPU, special attention must be given to bank conflicts to prevent serialization of 

threads within a warp.  

Array of Structure (AoS) vs. Structure of Arrays (SoA) 

Using the CPU SIMD unit places restrictions on the layout of the data. For 

example, operands must be loaded and the results of SIMD operations are stored into 

128-bit (SSE) or 256-bits (AVX) registers. To achieve the best performance, data 

should be placed into an address-aligned data structure. For example, for 8-wide single 
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precision floating-point SIMD, the best performance will be when the data is 32-byte 

aligned. For vector addition, the vectors' data must be loaded into two 256-bit 

registers. To achieve the best performance, eight vector components from each vector 

must be loaded simultaneously. This can only be achieved if data is stored sequentially 

in an address-aligned location.  

Let us look at a different example. Suppose that we need to find the minimum 

value between the RGB channels for every pixel in an image. Array of Structure and 

linear arrays (with alternating channels e.g. {R, G, B, R, G, B…}) are two common 

data structures used to store the image data. However, depending on the application 

and the memory access patters, an AoS or a linear array might not be the best solution. 

These data structure place the individual RGB channels at least three bytes apart. Such 

data structure makes it impossible to perform a single load of sixteen simultaneous red 

elements with SSE; currently, there is no AVX support for integer arithmetic. Instead, 

we are forced to insert each element one-by-one, which diminishes the performance by 

a significant amount. A better solution is to store the data in a Structure of Arrays, 

which allows registers to be loaded with 16 bytes on a single load. Implementing the 

correct data structure, an Array of Structure or a Structure of Arrays in particular, 

could reduce the number of loads and stores by up to a factor of 16. In the case of the 

gradient kernel, the Data Structure Transformation permitted us hand to vectorize the 

code, and achieve a speedup of 13.78x over the Optimized Single-Threaded 

Implementations (ST).  

It is important to mention that Structure of Arrays with large number of structure 

members could incur memory access penalties due to the limited number of pages that 
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can be maintained by the system [33], but GPUs are not affected by this phenomenon. 

We recommend analyzing the applications’ memory access patterns and the memory 

organization of the system to select the appropriate data structure, see [33].  

Final Comments Memory Optimization Techniques  

Memory Coalescing on the GPU utilizes 100% of the available memory 

bandwidth. Non-aligned memory and inappropriate data structure causes uncoalesced 

accesses and wastes significant device memory bandwidth. Much research has been 

conducted to find methods of automatically transforming data structure, changing 

access patterns, and identifying suitable memory spaces [34].  Techniques such as 1-D 

to 2-D array mapping, array padding and data caching, see [19], are valuable in 

boosting performance. Finally, we advise caching data in registers when the same 

thread only reuses the data. This method was used in the DEsolver kernel and in 

CAPPS. 

4.8 SPD, SVS, and SSI Optimization Techniques 

Smart Pointer Dereferencing 

The Smart Pointer Dereferencing (SPD) optimization technique uses a smart 

method to access the data fields of C-Struct and to access multi-dimensional arrays. 

For instance, for the seam carving operation, we encapsulate all of the data in a C-

struct. This is a common practice for the organization and reusability of the code. 

When computing the gradient for the seam carving operation, instead of dereferencing 

the image width and height, and the image data and gradient arrays inside the loops, 

we dereference these fields and store them in a local (automatic) variable before 
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entering the loops, which most likely will be place in a register by the compiler. For 

the computation of the gradient of a 1200x900 image, this optimization reduces the 

amount of pointer dereferences from over 17 million (16 pointers dereference per 

pixel) to four dereferences for the entire computation of the gradient. In addition, the 

Smart Pointer Dereferencing optimization technique is completely independent of the 

size of the image, which is not the case when the dereferencing occurs inside the loop.  

For multi-dimensional arrays that are access inside of nested-loops, a similar 

optimization could be applied. Let us assume that we need to access a 2-D array (A) 

inside a 2-level nested-loop. We could simply write A[i][j] inside the second loop 

body. However, unless optimized by the compiler, such implementation will incur 

unnecessary memory loads for the memory reference indicated by A[i]. For instance, 

suppose that we need to access all elements in a 1000x1000 array, this will cause a 

significant amount of unnecessary memory loads (999,000). Since "i" is constant for 

the access of an entire row, as an alternative, we can assign A[i] to a local pointer, 

call it Arow, outside of the second loop body. Arow is then use to access all of the 

elements for the current row as follows: Arow[j]. This will reduce the number of 

loads per row of A[i] from 1000 to 1. In this case, 999 unnecessary loads are 

removed per row. Thus, we are able to reduce the number of loads of A[i]from 

1,000,000 to 1,000. This is a significant improvement when 2-D arrays are required.  

Unnecessary pointer dereferencing is constantly use by software developers. In 

this work, we show the performance benefit, and suggest adding this technique to the 

compiler optimization phase to improve performance.   
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Smart Value Scaling 

Some applications may be tolerant to the scaling of value. Scaling values by a 

carefully selected fraction could improve performance because it allows us to replace 

divisions with logical shifts. In the case of the gradient, we normally convert RGB 

images to grayscale before computing the gradient as previously stated in this chapter. 

A simple technique is to average the RGB channels: ( 
     

 
). In this case, scaling 

down by 
 

 
 permits us to simplify the mathematics to ( 

     

 
), (the 3s cancel out), and 

convert the division by 3 to a 2-bit right logical shift. This technique should only be 

used when the relative value suffices and the exact value is not needed. We omitted 

this optimization technique from our best implementation of the gradient kernel. Since 

this is an application specific optimization, we decided to show the performance of the 

gradient kernel that produces the exact values. However, this technique was necessary 

for the auto-vectorization of the gradient kernels, since currently, SSE does not 

support integer division. This technique does not affect the seam carving operation; 

the resizing quality is the same when the values of the gradient are scaled down by 

three over four. 

SIMD Shift and Insert 

Many times, applications have a variety of operands with different data-width. 

For example, in seam carving, the energy values require 8-bits while the seam matrix 

values are either 32 or 16 bits. In either case, the 8-bit value must be cast to either 32 

or 16 bits before we could perform any arithmetic on the two. Figure 7 illustrates an 

efficient method of performing the cast from 8 to 32 bits. Instead of looping through 

the array, using strides of 4 and performing unaligned loads, we loop through the array 
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using strides of 16. On every stride, we load 16 8-bit values into a 128-bit register. We 

cast the values in the register, which takes the lower four bytes and places them in 

another register (Figure 7a). Instead of reloading the next four bytes, which will result 

in an unaligned load, we perform a logical right shift of 4 bytes. We repeat the byte-to-

integer conversion (Figure 7b) three more times to cast the 16 8-bit values to integers. 

Be aware that the values in the second register in Figure 7a must be utilized or store 

elsewhere before the operation in Figure 7b takes place. Otherwise, the previous data 

(A3-A0) will be replace by (A7-A4).  

 

 

 

 

 

 

 

 

 

Another advantage of the SIMD Shift and Insert optimization technique is to 

minimize the number of unaligned loads caused by the left and right neighboring 

elements in an array. This technique was applied to the gradient, Laplacian, and stencil 

kernels to eliminate unaligned loads. These kernels need to access their left and right 

neighboring elements, which are part of their convolution operation. The rest of the 

elements are aligned, which forces the left and right elements to be unaligned. To 
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Figure 7: Efficient data casting using SIMD shift and insert. 
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compensate and improve performance, we load 16 elements into an SSE register 

(gradient) or 8 elements into an AVX register (Laplacian and stencil). We then shift 

the register one element to the left or right, and insert the missing element. The three 

register will contain the same data as if performing one aligned and two unaligned 

loads. However, we accomplish this with one aligned load, and two logical-shift and 

register-inset operations.  Using this technique, we were able to improve the SIMD 

performance of the gradient, Laplacian, and stencil kernels. 
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CHAPTER 5 

 

PERFORMANCE AND ENERGY EVALUATION 

 

In this chapter, we present the performance and energy-efficiency evaluation 

for the mri-q, stencil, and histogram kernels (Parboil benchmarks). We then evaluate 

seam carving, starting with the gradient, dynamic programming, and matrix resizing 

kernels, and then the full application. Following seam carving, the Laplacian and 

DEsolver kernels, and the full CAPPS application are evaluated. For the kernels that 

are part of seam carving and CAPPS, we do not evaluate energy-efficiency separately. 

The reason is that we get better insights by evaluating the energy-efficiency of the 

entire seam carving and CAPPS applications.  

5.1      Performance and Energy Efficiency Evaluation of the Parboil Benchmarks 

Figure 8 shows the performance results for the Parboil kernels on the CPU and 

GPU platforms. The performance improvement is measured for the kernel-only 

computation and the overall execution time. The total execution time includes the 

overhead, such as data transfer between the CPU and GPU. Figure 8 shows the kernel-

only performance gain, in which the GPU performs best, with substantial speedups 

over the baseline; 214x, 773x and 39x for the mri-q, stencil and histogram, kernels 

respectively. However, the impact of the overhead may offset the benefits from the 

GPU. For example, for histogram, the GPU overall execution time is actually 9x worse  
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Figure 8: The computation-only speedup of the Parboil kernels. For histogram, MT_SIMD is the same 

as MT, but uses SEE for reduction. ST_SIMD is worse than ST; thus, we do not have an MT version.   

 
Figure 9: The overall speedup of the Parboil kernels. For histogram, MT_SIMD is the same as MT, but 

uses SSE for reduction. ST_SIMD is worse than ST; thus, we do not have an MT version. The values in 

red or () means that the performance worsen by the indicated amount.   

 

Figure 10: Energy consumption of parboil kernels for the computation only. The energy values for the 

histogram are in millijoules for displaying purpose. 
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  Table 4: Energy consumption and Relative Energy-Delay Product (REDP) for the overall kernels. 

 Kernels 

Implementations Energy/RDEP mri-q Stencil histogram 

Base Energy 1807 9756 0.65 

RDEP 1 1 1 

ST Energy 969 1396 0.65 

RDEP 0.044 0.021 1 

MT Energy 352 635 0.804 

RDEP 0.029 0.003 1.28 

ST_SIMD Energy 305 448 0.74 

RDEP 0.0278 0.0021 1.29 

MT_SIMD Energy 158 419 0.681 

RDEP 0.006 0.001 0.92 

GPU Energy 37 165 12.8 

RDEP 0.00017 0.0001 173.31 

 

than the baseline, as illustrated by Figure 9. We also observed a significant 

performance drop compared to the kernel-only times for mri-q and stencil. The stencil 

kernel undergoes a 4.7x reduction in performance, in comparison to the kernel-only 

speedup, due to the overhead. The CPU implementations do not incur such overhead, 

and the overall execution time remains similar to their kernel-only computational time. 

This favors the CPU for applications that use kernels like the histogram, where the 

computation to memory operation ratio is not high enough to fully utilize the 

capabilities of the GPU.  

Overall, the histogram does not scale on data parallel hardware. Figure 9 shows 

that the multi-threaded implementation (MT) provides a 5% speedup over the 

baseline. Most of the performance gain is lost during reduction phase of the histogram 

where the thread-private histograms are reduced to a global histogram. Without the 

reduction, the multi-threaded implementation achieves a 2.77x gain over the baseline 

(not shown in figure). We further utilize SIMD lanes for the multi-threaded reduction, 

which results in 24% speedup (MT_SIMD).  Both the mri-q and the stencil are well 

suited for the GPU, achieving beyond 117x and 172x over the baseline 
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implementation, respectively. It is important, however, to do a fair comparison 

between the CPU and GPU. By applying the Loop Interchange optimization, we 

improve the performance of the base implementation of stencil (taken from the Parboil 

benchmarks) by 7x. By utilizing the SIMD unit on the CPU, a 21.9x performance 

boost is achieved using a single CPU core (ST_SIMD). Although the SIMD 

implementation of stencil does not scale linearly on multi-core CPU, we are able to 

improve the overall performance by 29.9x, with all four cores on a quad-core CPU. By 

properly utilizing the CPU, the performance achievement of the GPU over the CPU is 

5.7x – a much smaller number than 773x! This shows the danger in comparing the 

platforms unfairly.  

For completeness, Figure 10 shows the computation-only energy evaluation for 

the Parboil kernels. Table 4 present the energy consumption and energy-efficiency of 

the overall execution of the Parboil kernels. We measure the energy-efficiency with 

the EDP metric. For the data-parallel mri-q and stencil kernels, the GPU is the clear 

winner in both energy-consumption and energy-efficiency. The multi-threaded SIMD 

implementation provides the second best energy-consumption and efficiency. For the 

histogram kernel, the GPU has the worst energy-consumption and dramatically worse 

EDP. However, if kernel only energy consumption and energy-efficiency were 

evaluated (figure not shown, relative EDP=0.0015), GPU would have been the best by 

far for the histogram, which is not true and might be misleading. 
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5.2 Performance and Energy Efficiency Evaluation of Seam Carving 

Evaluation of Seam Carving Kernels  

We now discuss the performance evaluation of the seam carving kernels and the 

performance and energy-efficiency of the full seam carving application. We have not 

evaluated the energy-efficiency for individual kernels separately for reasons described 

in Chapter 2. We conduct the kernel evaluations using a 1200x900 RGB image. Figure 

11 shows the performance gain after applying the single-threaded optimizations (ST) 

to the gradient baseline, a 2.43x speedup. ST scales well on multi-core CPUs (MT), 

and achieves a 3.07 scalability, which translates to a 7.47x speedup. By employing the 

Smart Value Scaling optimization technique, auto-vectorization becomes possible. The 

auto-vectorized code achieves a 10.7x speedup over the baseline (figure not shown). 

Our hand-vectorized implementation (ST_SIMD) gains a 33.5x performance boost 

over the baseline. This implementation does not scale on multi-core CPUs 

(MT_SIMD). 

The best implementation of the gradient on the GPU uses the Texture Cache 

instead of Shared Memory. The reason is that the overhead introduced by caching the 

apron pixels (see [19]) was much greater than the performance gain from limited 

locality (each pixel is only accessed by three different threads). Overall, by using the 

GPU, we improved the gradient 102.6x over the baseline, which translates to a 3.06x 

speedup over best CPU implementation. This is a fair comparison that could have 

been misleading if the CPU version was not fully optimized and did not use the SIMD 

units.   
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Figure 11 also illustrates the performance for the various implementations of the 

dynamic programming kernel. By utilizing similar optimization techniques as in the 

gradient, and with the addition of Branch Elimination and Reduced-width Operands 

optimizations, we managed to improve the single-thread performance by 71%. The 

GPU implementation undergoes a significant kernel launch overhead, and only 

achieves a 61% speedup over the baseline. Because of the synchronization problem 

incurred by dynamic programming, both non-SIMD and SIMD implementations 

exhibit very poor scalability on multi-core. The single-threaded SIMD CPU 

(ST_SIMD) implementation of dynamic programming yields the best performance, an 

11x and 6.84x performance boost over the baseline and GPU, respectively. The 

Reduced-width Operands optimization only helps slightly with cache performance for 

the non-SIMD implementations. For the SIMD implementations, however, it is a 

critical optimization step as it doubles the amount of data-elements that can 

simultaneously execute on the SIMD units. Hence, by reducing the data width from 

32- to 16-bits, we were able to double the performance of ST_SIMD (5.16x with 32-

bit).  

 
Figure 11: Performance evaluation of Seam Carving kernels. 

3
3

.4
9

 

11.01 2
5

.7
8

 

1
0

2
.6

 

0 

2 

4 

6 

8 

Image Gradient Dynamic Programming Matrix Resizing 

P
e

rf
o

rm
an

ce
 

BASE 

ST 

MT 

ST_SIMD 

MT_SIMD 

GPU 



39 

 

In Chapter 4, we presented different CPU methods for the matrix resizing kernel. 

This kernel does not scale on multi-core. The SIMD CPU implementation, which is 

capable of moving an average of 5.33 pixels per operation, accounts for the best CPU 

performance with a 3.31x speedup. Even so, our best method for resizing is on the 

GPU by assigning one thread per pixel relocation. This implementation achieves a 

performance boost of 6.87x over the baseline and 2x over the best CPU 

implementation, which uses the SIMD units (Figure 11). 

Evaluation of Seam Carving Application for the Resizing of Images 

 To evaluate the performance of the full implementation of the seam carving 

operation, we use the same 1200x900 RGB image and reduce the width of the image 

by one-third of its original width. Figure 12 shows that the multi-core SIMD CPU, 

with/without energy update (MT_SIMD, MT_SIMD_EU), performs the best for the 

SC resizing operation, 29.16x and 32x overall speedup, respectively. Given that the 

GPU achieved the best overall performance for the gradient and matrix resizing 

kernels, it would be expected that the GPU would also achieve very good performance 

on the resizing operation.  

 
Figure 12: Performance of full Seam Carving application. 
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Figure 13: Performance of best platforms full SC resizing operation. 

However, the GPU only gains a 61% improvement in the dynamic programming 

kernel, while the SIMD CPU achieved 11x. The dynamic programming kernel takes 

the second larger fraction of the execution time for the seam carving removal 

operation (behind the gradient). Other sequential components, such as backtracking to 

construct the minimum energy seam, can also be limiting factors, and reduce the 

overall performance. This shows the importance in considering full applications for 

performance evaluation. It is important to fully evaluate the performance and 

characteristics of multi- and many-core architectures. Kernels, however, are not able 

to expose all of the hardware constrains as good as full applications. 

Figure 13 shows that as the image size increases, the CPU-GPU heterogeneous 

implementation (HET/HET_EU) performs much better than the other 

implementations. It does not achieve the best performance on the small and midsize 

images, but it is almost 2x faster than the best CPU implementation for the high-

resolution images. Therefore, for large data set, a better approach is to utilize a true 

heterogeneous implementation to explore the best of both platforms. SIMD units offer 
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implicit synchronization, which is ideal for dynamic programming. GPUs offer high-

bandwidth and 1000s of active threads, which makes it ideal for the gradient and 

matrix resizing. 

Evaluation of Seam Carving Application for the Resizing of Videos 

Figure 14 shows the execution time and performance improvement for the 

resizing of a HD video (1920x1080). This verifies that our CPU-GPU heterogeneous 

implementations (HET and HET_EU) are the best approach for resizing large images 

and video. Seam carving is a computationally-intensive operation, which makes video 

resizing very time consuming. It takes over six hours to resize a one minute of video 

(by one-third). By using the hardware efficiently, we are able to decrease the resizing 

time from 6 hours to 17 minutes. Figure 15 shows the energy consumption and relative 

EDP of the video resizing operation. We see that the HET_EU is not only the fastest 

implementation, but also the most energy efficient. The SIMD implementations 

provide the second best performance and energy-efficiency followed by the GPU. 

 
Figure 14: Performance of Seam Carving to resize a 1 minute of video. 
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Figure 15: Energy evaluation of Seam Carving to resize 1 minute of video. 

5.3 Performance and Energy Efficiency Evaluation of CAPPS 

The single-core implementation of CAPPS takes approximately 10 days to carry 

out a single simulation. Driven by the need to reduce the execution time, we first 

implemented a parallel version of CAPPS using MPI and ran it on a cluster with 60 

cores. Figure 16 and 17 show the performance of the DEsolver and Laplacian kernels, 

respectively. The DEsolver kernel has good scalability and achieves a 36.2x over the 

baseline running on a 60-core cluster. The Laplacian kernel does not scale well on 

multi-core and we do not show results beyond four threads. The GPU implementation 

achieves an impressive 61.4x speedup.  

Figure 18 shows the results for CAPPS. When executing the simulation on 

multiple cores, the large dataset is partitioned into smaller subsets, which benefits the 

cache performance. This is one explanation for achieving super-linear speedup with 2, 

4, and 8 cores; a 2.07x, 4.25x, and 8.23x speedup, respectively. For 16 cores, two 

shared-memory systems are used to form a distributed-memory system. The network 
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Figure 16: Performance evaluation of the DEsolver kernel. 

 

 
        Figure 17: Performance evaluation of the Laplacian kernel. 

overhead is small with two systems, and the performance improvement of the cache 

helps hide the network latency. This implementation achieves 16x speedup resulting in 

14 hours and 57 minutes to complete a single simulation. Beyond 16 cores, the 

speedups are no longer linear due to the network overhead. The best performance on 

the CPU cluster is achieved with 60 cores. This configuration does not exhibit the best 

scalability, but it performs the simulation in 6 hours and 22 minutes, a 37.8x speedup.  

In Figure 19, we show the energy consumption of running one CAPPS simulation 

on the CPU cluster. Although the 60-core cluster performs the simulation in 6 hours 

and 22 minutes, it is very energy-inefficient; it consumes 92.55 MJ for a single 
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(37.94 MJ) on the CPU is the 8-core implementation. With 16 cores, the energy 
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consumption is slightly larger (<1MJ) and the performance is approximately 2x faster 

than the 8-core implementation. An extra mega joule could be a reasonable tradeoff in 

order to double the performance, see Figures 18 and 19. However, an extra 53.66 MJ 

is required to reduce the execution time from approximately 15 hours to 6 hours and 

22 minutes. In summary, Figures 18 and 19 illustrates that by adding more machines 

to the cluster, we are able to reduce the execution time. However, the increase in 

performance comes at a cost. The energy consumption increases rapidly as we 

increase the number of network-interconnected machines.  

Figure 18 and 19 also show the results of our GPU implementation of CAPPS. 

This implementation achieves an impressive performance of 58.1x, 54% better than 

the 60-core cluster ($60,000 value) on a desktop system equipped with a GPU (a 

$1,250 value) as described in Chapter 3. Using a CPU-GPU heterogeneous system, we 

are able to perform a CAPPS simulation in 4 hours and 8 minutes. Most importantly, 

as Figure 19 shows, our GPU implementation is 18.4x more energy-efficient than the 

MPI on a 60-cores cluster. Our results show that GPU is the clear winner in terms of 

performance, energy-efficiency and hardware cost for an application like CAPPS. 

 
Figure 18: Performance evaluation of CAPPS. 
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Figure 19: Energy evaluation of CAPPS, includes relative EDP. 
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application also suggest that some hardware changes can significantly improve the 

performance. For most image/video processing applications and other applications that 

perform many operations on short and byte data types, GPUs could offer better 

performance if their execution units were also vectirized to increase the parallelism of 

short-width operands, see Chapter 4.  
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CHAPTER 6 

 

AN ANALYSIS OF PROGRAMMING EFFORT 

 

While many papers evaluate GPU/SIMD implementations of varying 

applications, we are not aware of any that discuss the undertaken programming effort. 

In this chapter, we attempt to quantify our implementation effort for various versions 

of the kernels and applications that we studied in this thesis; this includes the 

optimized single-threaded, SIMD, multi-core, and the GPU versions. We believe that 

sharing such experiences, give valuable insights to researchers and engineers for 

deciding whether the SIMD or GPU implementation effort is worth the anticipated 

performance gain. Table 5 summarizes our approximated programming efforts in 

terms of one graduate student hour. We do not quantify the effort for the baseline 

implementations because it depends on the algorithms and does not provide any useful 

insights for this study. 

6.1 Learning Curve for Intel SSE/AVX and CUDA 

The programming effort in Table 5 is based on a programmer with SIMD and 

CUDA programming experience. It is however also important to comment on the 

learning curve. For CUDA, the learning curve is similar to threaded C programming; 

however, large performance gains require mapping the programs to specific 

underlying architecture, which worsens the learning curve. This learning curve has, in 

many cases, alienated many potential CUDA programmers. To help increase CUDA 
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usage, NVIDIA provides webinars and online lectures through university partnerships 

and offers the necessary tools and most of the CUDA libraries for free. The available 

resources have softened the learning curve.  

SSE and AVX also have a steep learning curve; but unlike CUDA, good 

documentation on the subject is scarce. Most of the documentation consist of reference 

manuals [2, 3] listing available instructions and short tutorials. Intel’s optimization 

reference manual [38] provides a better discussion on SSE/AVX and general SIMD 

design concerns. However, it is very low level in nature. The Intel Intrinsics Guide 

[39] provides a list of high-level intrinsics functions with short descriptions, which is 

very helpful for programming, but do not provide detailed information about 

SSE/AVX. Finally, good tools and libraries such as the Intel C++ compiler, which 

supports the vector math library (VML), are not available for free.  

Perhaps the easiest way to exploit SSE/AVX is through compiler auto-

vectorization. This, however, must not be taken for granted because it requires careful 

choice of algorithms and data structures as discussed in Chapter 4. 

6.2 Performance per Effort Hours (PGPEH) Metric 

In order to compare efficiency of the implementation effort across different 

implementations and different benchmarks, we define a new metric called 

Performance Gain Per Effort Hours or PGPEH that quantifies the efficiency in effort. 

The PGPEH metric provides a good insight into the performance gained for every 

hour spent on the various implementations of the kernels and applications. PGPEH is 

not a constant that we can use to estimate the overall performance that could be 
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achieved if we continue to work on improving the kernels. Instead, PGPEH illustrates 

the efficiency of the effort and provides us with a way to make comparisons between 

different platform implementations. A higher PGPEH does not imply an overall higher 

performance improvement; it tells us that we achieved a higher speedup per effort 

hour invested in a particular implementation. 

6.3 Evaluation of Programming Effort 

Table 5 shows that multithreading the kernels with pthreads requires 

approximately one effort hour, plus the effort to optimize and/or vectorize the kernels 

(shown as ST/SIMD+MT). The MPI and full application implementations are more 

complex and require 5 to 10 hours. The process to produce a fine-tuned single-

threaded implementation is well illustrated by our PGPEH metric, which shows that a 

47% speedup was achieved for every hour spent optimizing the gradient. The stencil 

kernel gains a 7x speedup for one effort hour for the single-threaded implementation 

(ST). The best efficiency is obtained with the GPU implementation of the DEsolver 

and stencil kernels, with a PGPEH of 20.46 (6x better PGPEH than best CPU’s) and 

30.65 (1.4x better PGPEH than base SIMD), respectively. The stencil kernel’s PGPEH 

drops to 17.27 (because of the 10 extra hours) for optimized GPU implementation 

suggesting that it is not worth spending the extra hours if the 61.3x speedup suffice. 

For seam carving, the energy-update (EU) algorithm adds an extra 3 hours (table 

not shown). We combined the energy-update with the SIMD and GPU versions for the 

resizing of a 1920x1080 video. The resulting effort for the SIMD_EU and GPU_EU is 

29 and 43 hours, with PGPEH of 43% and 12%, respectively (table not shown). Thus, 
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using SIMD CPUs to resizing an HD video with SC is not only faster (12.49x over 

base) than the GPU (5.25x over base), but requires less effort and the gained for every 

effort hour is much higher. Better results are found in our CPU-GPU heterogeneous 

version, which requires 40 hours that result in 21.39x speedup – a PGPEH of 53%. 

Table 5: A quantification of the programming effort. *: includes the analysis effort to evaluate the 

kernel for use of shorter operands. C: compiler auto-vectorized, only accounts for ST Opt. effort. **: 

Multi-core effort only. NPI: No performance improvement; we do not calculate the PGPEH since there 

was no improvement. The ST_AV column shows if the single-threaded optimization is required for 

auto-vectorization. N/A: no room for optimization; or could not implement in the platform; or we used 

the optimized kernels for full applications. SAV: ST Needed for Auto Vectorization. 

Kernel / 

Application 

Programming Effort 

ST Opt. 
SAV 

Base SIMD Opt. SIMD Multi-core 

hr PGPEH hr PGPEH hr PGPEH hr PGPEH 

mri-q 2 0.91 N/A N/A N/A 5 1.22 5+1 2.52 

stencil 1 7.02 yes 1 C 23.33 4 5.87 1+1 16.66 

histogram N/A N/A N/A 2 NPI N/A N/A 3** NPI 

gradient 5 0.47 yes 5 C 0.73 14 2.39 5+1 1.11 

dynamic 

programming 
2* 0.855 yes 2 C 2.45 8 1.38 2** NPI 

matrix 

resizing 
1 2.02 N/A 3 1.1 N/A N/A 1** NPI 

seam carving 8 0.29 yes: N/A N/A 26 0.75 
26+

5 
0.94 

Laplacian N/A N/A N/A 2 1.04 N/A N/A 1** NPI 

DEsolver 5 0.36 N/A N/A N/A N/A N/A 5+5 3.61 

CAPPS 5 0.36 N/A N/A N/A N/A N/A 
5+1

0 
2.52 

Kernel / 

Application 

Programming Effort 

Best CPU Base GPU Opt. GPU 

hr PGPEH hr PGPEH hr PGPEH 

mri-q 6 2.52 N/A N/A 12 9.81 

stencil 2 16.66 2 30.65 10 17.27 

histogram N/A N/A N/A N/A 16 NPI 

gradient 14 2.39 7 5.84 24 4.275 

dynamic 

programming 
8 1.38 6 0.27 N/A N/A 

matrix resizing 3 1.1 3 2.29 N/A N/A 

seam carving 31 0.94 N/A N/A 40 0.085 

Laplacian 2 1.04 5 3.14 N/A N/A 

DEsolver 10 3.61 3 20.46 N/A N/A 

CAPPS 15 2.52 N/A N/A 13 4.46 
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CHAPTER 7 

 

CONCLUSION AND RELATED WORK 

 

General-purpose computation on GPUs (GPGPUs) has been an active research 

topic. Extensive work has been published on GPGPU computation; this is well 

summarized in [5]. A number of studies [1, 6, 37, 40, 41] discuss similar kernels and 

applications as in this thesis. Many of them focus on mapping the kernel/application 

onto GPU efficiently. Their GPU-optimized implementations are often compared only 

with single-threaded CPU baseline. Sometimes multi-threading is also evaluated, 

however, SIMD is often neglected. An exception is [1], where, as in this work, authors 

present a fair performance evaluation by utilizing all available hardware resources. 

However, in [1], energy-efficiency has not been studied. A few recent papers [4, 5] 

evaluate energy-efficiency. Different from previous work, we have shown that kernel-

only evaluation is not sufficient to draw conclusions for performance and energy-

efficiency. Furthermore, to the best of our knowledge, this work is the first to combine 

a detailed characterization and performance evaluation of kernels and full applications 

with a quantification of the programming effort for various platform-specific 

implementations. 

In this thesis, aside from kernels, we studied two full applications that utilize 

several of these kernels. We evaluate kernel-only and full-application performances 

and energy-efficiencies separately, which we have not seen done in previous work.  

Several papers [19, 37, 40, 41] explore GPU implementation of the seam carving 
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application. In [40], a different algorithm is proposed to help parallelization. In [37], a 

heuristics is used to eliminate the dynamic programming in the seam matrix 

computation of seam carving. Changing the algorithm entirely may help 

parallelization but it may also reduce the quality of the resized image/video. [41] 

focused on optimizing and parallelizing the original seam carving algorithm [7]. 

However, they evaluate the removal of one seam, which is only part of the resizing 

operation. They also have not evaluated kernels and the full-application separately. 

[40] and [41] compare their seam carving implementation against the single-threaded 

CPU baseline only. In addition, none of the prior seam carving work evaluates energy-

efficiency. In this thesis, we show that true heterogeneous implementation utilizes the 

best hardware resources for the seam carving operation to provide best performance 

and energy efficiency.  

CAPPS is implemented using MPI in [8], which explores the performance of a 

CPU-only cluster with 16 cores. In this thesis, we utilize a 60-core cluster and a CPU-

GPU heterogeneous system, and evaluate the performance and energy consumption of 

the systems. 

In this thesis, we exploit the highly-parallel computational capabilities of CUDA-

capable GPUs and multi-core SIMD CPUs to evaluate the performance and energy-

efficiency of eight kernels and two full applications. For all of these applications, we 

fairly utilize the hardware capabilities of both CPUs and GPUs. The compute-

intensive parts of the applications have been parallelized using a combination of 

SIMD, pthreads, MPI, and CUDA.  



53 

 

We have evaluated 15 optimization techniques to utilize hardware resources in 

both CPUs and GPUs. Our results show that only when all appropriate optimizations 

have been applied, a fair comparison between CPUs and GPUs can be made. We have 

also found that kernel-only performance and energy-efficiency evaluation may be 

misleading because of the way a kernel might be used in an application and therefore 

true results must be obtained using full applications. The best-performing platform for 

each of our kernels and applications vary. The GPU is best for data-parallel scientific 

application and kernels such as, CAPPS, mri-q, stencil, gradient and matrix resizing. 

The CPU is best for the histogram and dynamic programming kernels. Finally, a 

heterogeneous CPU-GPU implementation is best for applications with diverse kernels 

such as seam carving. 

We have observed that data width has a profound effect on the performance of 

SIMD implementations and therefore we have drawn attention into choice of operand 

width and value scaling in applications. Finally, we discuss the programming effort for 

various implementations of the studied kernels and applications. In order to compare 

efficiency of effort across different benchmarks and platforms, we have defined a new 

metric called Performance gain Per Effort Hours or PGPEH. 
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