
University of Rhode Island University of Rhode Island

DigitalCommons@URI DigitalCommons@URI

Open Access Master's Theses

2013

Improving Performance of Data-Parallel Applications on CPU-GPU Improving Performance of Data-Parallel Applications on CPU-GPU

Heterogeneous Systems Heterogeneous Systems

Ronald Duarte
University of Rhode Island, rduarte26@gmail.com

Follow this and additional works at: https://digitalcommons.uri.edu/theses

Terms of Use
All rights reserved under copyright.

Recommended Citation Recommended Citation
Duarte, Ronald, "Improving Performance of Data-Parallel Applications on CPU-GPU Heterogeneous
Systems" (2013). Open Access Master's Theses. Paper 48.
https://digitalcommons.uri.edu/theses/48

This Thesis is brought to you by the University of Rhode Island. It has been accepted for inclusion in Open Access
Master's Theses by an authorized administrator of DigitalCommons@URI. For more information, please contact
digitalcommons-group@uri.edu. For permission to reuse copyrighted content, contact the author directly.

https://digitalcommons.uri.edu/
https://digitalcommons.uri.edu/theses
https://digitalcommons.uri.edu/theses?utm_source=digitalcommons.uri.edu%2Ftheses%2F48&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.uri.edu/theses/48?utm_source=digitalcommons.uri.edu%2Ftheses%2F48&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons-group@uri.edu

IMPROVING PERFORMANCE OF DATA-PARALLEL

APPLICATIONS ON CPU-GPU HETEROGENEOUS SYSTEMS

BY

RONALD DUARTE

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

IN

ELECTRICAL ENGINEERING

UNIVERSITY OF RHODE ISLAND

2013

MASTER OF SCIENCE THESIS

OF

RONALD DUARTE

APPROVED:

Thesis Committee:

Major Professor Resit Sendag

 Frederick J. Vetter

 Gerard M. Baudet

 Nasser H. Zawia

 DEAN OF THE GRADUATE SCHOOL

UNIVERSITY OF RHODE ISLAND

2013

ABSTRACT

Using two full applications with different characteristics, this thesis explores the

performance and energy efficiency of CUDA-enabled GPUs and multi-core SIMD

CPUs. Our implementations efficiently exploit both SIMD and thread-level

parallelism on multi-core CPUs and the computational capabilities of CUDA-enabled

GPUs. We discuss general optimization techniques and cost comparison for our CPU-

only and CPU-GPU platforms. Finally, we present an evaluation of the

implementation effort required to efficiently utilize multi-core SIMD CPUs and

CUDA-enabled GPUs. One of the applications, seam carving, has been widely used

for content-aware resizing of images and videos with little to no perceptible distortion.

The gradient kernel was improved and achieves over 102x speedup on the GPU; this

fraction (gradient kernel) of the seam carving operation has largest execution time.

The overall resizing operation achieves 32x speedup on multi-core SIMD CPU. The

time to resize one minute of a 1920x1080 video with seam carving was reduced from

6 hours to 17 minutes on a heterogeneous CPU-GPU system. The second application,

numerical simulations of cardiac action potential propagation (CAPPS), is a valuable

tool for understanding the mechanisms that promote arrhythmias that may degenerate

into spiral wave propagation. Our implementation of CAPPS reduces the simulation

time from 10 days (single-core implementation) to approximately 4 hours and 8

minutes. This is 54% faster than the execution time of CAPPS on a 60-core CPU-only

cluster using MPI. Moreover, our implementation is 18.4x more energy-efficient than

the 60-core cluster implementation.

iii

ACKNOWLEDGMENTS

This research project would not have been possible without the support of many

people. First and foremost, I would like to thank my Lord and Savior Jesus Christ for

His everlasting love, enormous help, and perfect guidance. I wish to express my

gratitude to my supervisor, Professor Resit Sendag who was abundantly helpful and

offered invaluable assistance, support, and guidance. My deepest gratitude are also

due to the members of the supervisory committee, Professor Frederick Vetter and

Professor Gerard Baudet for their assistance in the success of this thesis work. I would

also like to express my gratitude to Professor Jean-yves Hervé for his assistance and

support.

I would like to express my gratitude to Deborah Carroll for her assistance and for

helping me believe in myself. I would like to convey thanks to Professor Harry

Knickle and the University of Rhode Island for providing financial assistance. Finally,

I wish to express my love and gratitude to my beloved families; for their

understanding & endless love, through the duration of my studies.

iv

DEDICATION

I would like to lovingly dedicate my thesis work to my family and friends. I

specially dedicate this thesis and express a special feeling of gratitude to my loving

mother Beatriz Sosa, who worked endlessly through multiple jobs, to ensure her

children, Thomas, Harold, Fabery, and I were provided for. It is her example that

continuously inspires me to strive for greatness. I hope to be a good example for my

brothers, and I pray that they may find Jesus and pursuit degrees of their own.

I dedicate this thesis to my wonderful and brilliant wife Karina Luna for her

patience throughout the entire master program process, thank you for being one of my

strongest supporters.

I would like to express my deepest gratitude to my wonderful grandmother, Mirta

Adon Gonzalez, for her love and effort to ensure that my family and I had a better

future. I also would like to thank my aunts and uncle, Clara, Michel, Amy, and Robert.

Thank you for planting a seed, loving me as one of your children, and for all your

support.

I dedicate this thesis to the memory of my father, Juan Pablo Duarte. Although he

is no longer with us, I thank him for always believing in me.

I would like to thank my friends and church family who offered their guidance

and encouragements from the beginning. I will always appreciate your love and

prayers.

v

TABLE OF CONTENTS

ABSTRACT .. ii

ACKNOWLEDGMENTS .. iii

DEDICATION ... iv

TABLE OF CONTENTS ... v

LIST OF TABLES ... vii

LIST OF FIGURES .. viii

CHAPTER 1 ... 1

INTRODUCTION .. 1

CHAPTER 2 ... 4

THE WORKLOADS .. 4

2.1 Parboil Benchmarks .. 5

2.2 Seam Carving ... 5

2.3 Numerical Simulations of Cardiac Action Potential Propagation 9

CHAPTER 3 ... 12

HARDWARE RESOURCES ... 12

3.1 High-performance Desktop Computer (HPDC) 12

3.2 CPU-only Cluster ... 12

3.3 Energy Measurements ... 13

CHAPTER 4 ... 14

IMPLEMENTATION .. 14

4.1 Optimized Single-Threaded Implementations 14

4.2 Multi-threaded Implementations ... 17

vi

4.3 SIMD Implementations ... 18

4.4 Using Short Operands: A Case for SIMD Performance 20

4.5 GPU Implementations ... 23

4.6 Seam Carving Specific Optimization: The Energy Update 25

4.7 Memory Optimization Techniques... 26

4.8 SPD, SVS, and SSI Optimization Techniques 28

CHAPTER 5 ... 33

PERFORMANCE AND ENERGY EVALUATION ... 33

5.1 Performance and Energy Efficiency Evaluation of the Parboil

Benchmarks ... 33

5.2 Performance and Energy Efficiency Evaluation of Seam Carving 37

5.3 Performance and Energy Efficiency Evaluation of CAPPS 42

5.4 Energy Efficiency and Dynamic Voltage-Frequency Scaling 45

5.5 Suggested Modification to improve GPU Architectures 45

CHAPTER 6 ... 47

AN ANALYSIS OF PROGRAMMING EFFORT .. 47

6.1 Learning Curve for Intel SSE/AVX and CUDA 47

6.2 Performance per Effort Hours (PGPEH) Metric 48

6.3 Evaluation of Programming Effort .. 49

CHAPTER 7 ... 51

CONCLUSION AND RELATED WORK .. 51

REFERENCES ... 54

BIBLIOGRAPHY .. 59

vii

LIST OF TABLES

TABLE PAGE

Table 1. Characteristic and applications of the studied kernels. 4

Table 2. Description of optimization techniques .. 15

Table 3. Optimizations applied for CPU and GPU implementations 15

Table 4. Energy and REDP for the overall execution of the Parboil kernels.............. 35

Table 5. Quantification of the programming effort ... 50

viii

LIST OF FIGURES

FIGURE PAGE

Figure 1. The steps of horizontally resizing an image with seam carving. 7

Figure 2. Dependability among pixels in the seam computation. 9

Figure 3. Division of work for Multi-core CPU ... 17

Figure 4. A histogram of the CES for a 1200x900 image ... 21

Figure 5. A histogram of the CES for a 3648x2736 image ... 22

Figure 6. Proposed Update Algorithm for recomputing the energy............................ 25

Figure 7. Efficient data casting using SIMD shift and insert. 31

Figure 8. The computation-only speedup of the Parboil kernels 34

Figure 9. The overall speedup of the Parboil kernels ... 34

Figure 10. Energy consumption of parboil kernels for the computation only 34

Figure 11. Performance evaluation of Seam Carving kernels..................................... 38

Figure 12. Performance of full Seam Carving application ... 39

Figure 13. Performance of best platforms full SC resizing operation......................... 40

Figure 14. Performance of Seam Carving to resize a 1 minute of video. 41

Figure 15. Energy evaluation of Seam Carving to resize 1 minute of video 42

Figure 16. Performance evaluation of DEsolver kernels. ... 43

Figure 17. Performance evaluation Laplacian kernels. ... 43

Figure 18. Performance evaluation of CAPPS .. 44

Figure 19. Energy evaluation of CAPPS, includes relative EDP 45

1

CHAPTER 1

INTRODUCTION

Modern CUDA-enabled GPUs consist of devices with several streaming

multiprocessors (SMs) each containing multiple cores (streaming processors). With

their high memory bandwidth (compared to low latency as in CPUs), GPUs are ideal

for parallel applications with high-levels of fine-grain data parallelism. To hide

memory latency, the CUDA architecture supports hundreds of thread contexts to be

active simultaneously [1]. CPUs, on the other hand, contain powerful cores that can

outperform the GPU’s lightweight cores for many applications with poor data

parallelism. Today’s CPUs not only exploit instruction-level parallelism (ILP) within

each core, but also data-level parallelism (DLP) via single instruction multiple data

(SIMD) units and thread-level parallelism (TLP) via multiple processors or multi-

cores, and simultaneous multithreading (SMT) [2, 3].

The evolution in parallel hardware has let many researchers to explore TLP on

multi-core CPUs and DLP on the GPU. Several researchers have also explored DLP

on CPUs by utilizing the SIMD units, although much less research has been done.

Another approach is to use a combination of GPUs and multi-core SIMD CPUs to

explore the true potential of CPU-GPU heterogeneous systems. In this thesis, we

evaluate the performance of multi-core SIMD CPUs and CUDA-enabled GPUs using

a set of kernels with various characteristics and two full applications that utilize

several of these kernels.

2

Most prior general-purpose GPU (GPGPU) work focus on mapping kernels onto

GPUs to evaluate their performance. Although robust mapping of kernels onto tested

platforms gives valuable insights into the capabilities and the limitations of the

platforms, kernels are often only part of full applications. For fair evaluation, full

applications must also be considered to uncover the true potential of the platforms

under test. Evaluating the individual kernel performances may be misleading when

comparing computing platforms because of the way these kernels may interact with

the rest of the full application.

GPGPU research has predominantly focused on accelerating applications. There

has been little research in evaluating the energy consumption and energy efficiency of

CPU-GPU systems for general-purpose processing. Some recent work [4, 5] evaluate

energy efficiency, however, they fall short in terms of a fair comparison between

systems because they either only use data-parallel kernels or they do not utilize all the

hardware features; in particular, CPU SIMD lanes are often neglected in GPGPU

studies. This was addressed in the debunking the 100x GPU vs. CPU myth paper [1].

Although performance was compared by applying optimizations appropriate for both

GPU and CPU, in [1], energy efficiency was not evaluated. In this work, the kernels

and applications are carefully fine-tuned to explore the best utilization of each

platform in terms of performance and energy-efficiency.

Finally, what has never been discussed or evaluated in prior work is the

implementation effort. It takes significant effort and time to implement fairly good-

performing SIMD, multi-threaded and GPU versions of an application. One might ask

the following question, is it worth the implementation effort to map a

3

sequential/parallel algorithm or application onto GPUs or utilize multi-threading and

SIMD? Many of us depend on our prior experiences to answer this question. It is,

however, important to share experiences, which collectively help other researchers

make informed decisions. In this thesis, we attempt to fairly quantify the

implementation effort and share our experiences.

Overall, this thesis makes the following contributions: 1) We evaluate and

characterize eight kernels and two full applications on CUDA-enabled GPUs and

multi-core SIMD CPUs and discuss platform-specific software optimizations and

limitations. 2) We demonstrate that GPUs facilitate low-cost and energy-efficient

computing for computationally intensive applications, such as numerical simulations

of cardiac action potential propagation (CAPPS); but also show that applications,

such as seam carving, achieve best performance and energy efficiency by efficiently

utilizing the true heterogeneity of a CPU-GPU system. 3) We show that evaluating the

performance and the energy-efficiency of computing platforms by using only kernel

programs may lead to incorrect conclusions. 4) We demonstrate that reducing the data

width has a profound effect on the performance of SIMD implementations. 5) Finally,

we quantify the implementation effort in writing the SIMD, multithreaded, and CUDA

versions of the applications and define a new metric to compare them.

4

CHAPTER 2

THE WORKLOADS

In this thesis, we studied eight kernels as listed in Table 1. We used the data-

parallel kernels, mri-q, stencil and histogram from the Parboil [6] benchmarks, and

two full applications, seam carving [7] and CAPPS (numerical simulations of cardiac

action potential propagation) [8] utilizing three and two kernels, respectively, as

shown in Table 1. Overall, these benchmarks cover the application domains of image

processing, scientific computing and physics simulation, and demonstrate the benefits

of SIMD vectorization, multithreading, and general purpose processing on GPUs, as

well as their limitations. As we discuss in the following sections, while some of these

kernels are relatively easy to parallelize for the underlying platforms, others are either

challenging requiring algorithmic changes and careful data layout reorganizations, or

not parallelizable due to hardware limitations.

Table 1: Shows the characteristic and applications of the studied kernels: Three kernels from the

Parboil [6] benchmarks. Three kernels from seam carving [7] and two kernels from CAPPS [8].

 Kernel Applications Characteristics

Parboil [6]

benchmarks

mri-q medical imaging Compute bound

dtencil scientific computation, image

processing

Compute bound/ Bandwidth

bound

histogram image analysis, statistics Reduction/

synchronization bound

Seam

carving [7]

gradient image analysis, physics

simulation

Compute bound/

bandwidth bound

dynamic

programming

many from image processing

to bioinformatics

Synchronization bound

matrix resizing signal processing Bandwidth bound

CAPPS [8]

DEsolver dense linear algebra, scientific

computation

Compute bound

Laplacian image processing, physics

simulation

Compute bound/

bandwidth bound

5

2.1 Parboil Benchmarks

The Parboil benchmarks are a set of throughput computing kernels useful for

throughput computing architecture and compilers research. The benchmarks

incorporate diverse memory access and communication patterns. In this work, we

characterize and evaluate the performance of the mri-q, stencil, and histogram kernels.

The mri-q Kernel [9] computes a matrix Q, representing the scanner configuration for

calibration, used in a 3-D magnetic resonance image reconstruction algorithm in non-

Cartesian space. The stencil kernel is an iterative Jacobi stencil operation on a regular

3-D grid. Finally, the histogram kernel computes a moderately large, 2-D saturating

histogram with a maximum bin count of 255. Input datasets represent a silicon wafer

validation in which the input points are distributed in a roughly 2-D Gaussian pattern.

For a more detailed description about the Parboil benchmarks, refer to [6].

2.2 Seam Carving

One of the most popular uses of diverse mobile devices today is for browsing

images and playing videos. However, different devices have different resolution

capabilities, so it is necessary to resize images and videos efficiently and effectively to

fit them into diverse displays (such as cell phones, tablets, desktop displays, etc),

preferably without distortion. Traditional image resizing techniques are oblivious to

the content of the image when changing its width or height. Cropping [10-14] has been

one of the most popular approaches to resize images. However, cropping may lose an

unacceptable amount of visual information when important structures lie at all edges

of an image. In addition, it can only remove information, but it cannot add information

6

to expand the image. Scaling methods, with or without interpolation, tend to produce

distorted images, especially when an image is scaled in one dimension.

Avidan and Shamir [7] developed a new approach to image and video resizing,

called seam carving. Seam carving functions by establishing a number of seams (paths

of least importance) in a digital media and automatically removes or inserts seams to

resize the media. This popular content-aware resizing method has been shown to

effectively resize images and videos with little to no perceptible distortion [7]. Seam

carving has been widely adapted by popular graphics editing applications, which

include Adobe Photoshop, where it is called Content Aware Scaling (CAS) [15], or

Liquid Scaling in GIMP [16], digiKam [17], and ImageMagick [18]. The importance

of content-aware image resizing has made seam carving a popular application for

research [19-22].

Seam carving has three phases: The energy function, the seam computation, and

the removal or duplication of low-energy seams. First, the energy of each pixel is

computed using the magnitude of the gradient (gradient kernel). Then, low energy

paths, called seams, are marked using dynamic programming (dynamic programming

kernel). Finally, low-energy seams are duplicated or removed from the image/video to

perform the resizing (matrix resizing kernel). Figure 1 shows the steps of horizontally

resizing an example image.

The three kernels in the seam carving algorithm make it an excellent application

for evaluating the performance and energy-efficiency of CUDA-enabled GPUs and

multi-core SIMD CPUs because of their very different characteristics. A brief

description of these kernels follows.

7

 (a) (b)

 (c) (d)
Figure 1: The steps of horizontally resizing an image. (a) The original image. (b) The gradient (energy

function) of the image. (c) The low-energy removable seams and the gradient image. (d) The output

image, horizontally resized by one half of the original width using seam carving.

Image Gradient

 Seam carving is able to utilize several energy functions [7]. In this thesis, we use

the magnitude of the gradient [23] for the computation of the energy function because

the gradient is a highly used kernel; therefore, the characterization and any

improvements of the gradient operation will benefit a large range of applications in

image processing [24-26]. The gradient is the directional change in the color or

intensity in an image. The magnitude of the gradient can be computed using Equation

2. The components of the gradient vector (Equations 3 and 4) themselves are linear

operators, but the magnitude of the gradient is not because of the squaring and square

root operations. The implementation of Equation 2 is very computationally intensive.

8

Therefore, a common practice is to approximate the magnitude of the gradient by

using absolute values instead of squares and square roots [23], as in Equation 1. The

gradient is preserved only for multiples of 90° when approximated. These results are

independent of whether Equation 1 or 2 is used, so nothing of significance is lost in

using the simpler of the two equations [23].

To reduce the gradient computation of RGB images, the pixels are averaged

before computing the gradient. Computing the gradient of each RGB channel

separately, and then averaging the results, requires two additional gradient operations.

The first norm of the gradient (1) is quite effective and has vast data parallelism,

which allows the computation to be perfectly separable. We use Equations 3 and 4 to

compute the gradient vectors, which are the x and y derivatives.

Dynamic Programming

In the second phase of seam carving, we use dynamic programming to compute

the cumulative energy sum of every pixel. The last row of the seam matrix contains

the total energy of the seams. The seam matrix denotes the result of seam computation

9

Figure 2: Seam map example. Illustrates the dependability among pixels.

and contains the computed seams that are generated using Equation 5. The first row of

the seam matrix is directly obtained from the first row of the gradient. This dynamic

programming approach produces the optimal seam [7]. However, the computation for

each element is entirely dependent on the result of the three above 8-connected

elements, as shown in Figure 2. This introduces a higher degree of difficulty for the

parallelization of the dynamic programming kernel.

Matrix Resizing

The last phase of seam carving is the removal or duplication of low-energy seams

and thereby resizing the image. Matrix resizing is widely used in signal processing.

Matlab [27] has resizing functions based on removing columns and rows of a matrix.

Accelerating and characterizing matrix resizing will benefit many applications. For a

detailed description about seam carving, refer to [7].

2.3 Numerical Simulations of Cardiac Action Potential Propagation (CAPPS)

Numerical simulations of electrical activity in the heart (specifically propagation

of cardiac action potential) are valuable tools for understanding the mechanisms that

promote arrhythmias that may degenerate into spiral wave propagation. In [8], the

author characterized the convergence properties and numerical stability of a recent

10

model of the rat ventricular action potential. A model of rat cardiac myocyte action

potential [28] with changes from [29] was used in Equation 6. In Equation 6, Vm is the

transmembrane voltage, Cm is the membrane capacitance, D is the conductivity of

myocardium, Iion is the transmembrane current, and Istim is the stimulus current applied

to the cell. The action potential model is used to solve for Iion, and Vm by numerically

integrating Equation 6.

In [8], the authors analyzed the numerical convergence of a 1D model on a 1500

μm fiber over a range of uniform spatial steps. The model was then extended to two

dimensions for simulating reentrant spiral waves on a plane consisting of 300x300

nodes (9x9 mm
2
 surface). The equations were numerically integrated using the explicit

Euler technique. The time step was adaptively changed from 100 to 1 ns to insure

stability of the integration. The main steps are to compute the transmembrane currents

and voltages for all 90,000 nodes. A detailed description about the transmembrane

current [28] is beyond the scope of this thesis. It is important, however, to mention

that CAPPS utilizes the DEsolver kernel to solve the action potential model for the

transmembrane current, which includes massive amount of computations for solving

25 differential equations (47 exp, 320 mul/div, 253 add/sub, 7 power, 2 log = 629

floating-point operations per node). The Laplacian is implemented using Equation 7

and the results are used to compute the transmembrane voltage, as in Equation 8.

11

12

CHAPTER 3

HARDWARE RESOURCES

3.1 High-performance Desktop Computer (HPDC)

The HPDC is a heterogeneous CPU-GPU computer composed of a single Intel

Core i7-2600k CPU [3] and an NVIDIA GTX580 GPU [30]. The GTX580 has 512

cores organized into 16 SMs with dual warp schedulers. A warp consists of 32 parallel

threads executing in lockstep [31]. Ubuntu Linux 10.04 is the operating system

installed. The system has 4GB of DDR3 memory and the GTX580 has 1.5GB of

GDDR5 memory. The CPU threading model is POSIX threads (pthread). The Intel

SSE4.2 and AVX (floating-point only) intrinsic instructions are used to write the CPU

SIMD code. All implementations on this system were compiled with full optimization

using the gcc 4.7 and/or nvcc included in the CUDA SDK 4.2.

3.2 CPU-only Cluster

A 60-core cluster computer was utilized for the numerical simulation. The cluster

contains a total of 176 GB of memory. The cluster consists of 18 Intel Xeon 5160

dual-core, 2 Intel Xeon X5355 quad-core, and 4 Intel Xeon X5460 quad-core CPUs.

The cluster is organized into 12 individual shared memory systems (9 with 4 cores and

3 with 8 cores). A network connects the 12 systems to form a larger distributed-

memory system. The Ubuntu Linux 11.04 operating system is installed on all 12

machines. The interprocess communication was managed by the message-passing

13

interface (MPI). The numerical simulation for this system was compiled with full

optimization using the gcc 4.5.

3.3 Energy Measurements

Energy and power measurements are taken by a digital power meter, which is

connected to the wall outlet, and feeds the computing platform being tested. Power

data is recorded periodically as kernels are running and then used to compute the

energy consumption. We have not subtracted energy consumption of the idle system,

so the energy values include the idle system energy. We compare the energy

efficiency of tested platforms using energy-delay product (EDP) as a metric.

14

CHAPTER 4

IMPLEMENTATION

The platform-specific software optimizations presented in this section are critical

to fully utilize the compute/bandwidth resources on CPUs and GPUs. Multithreading,

reorganization of memory access patterns, and SIMD optimizations are the key for

best performance in the CPU. For GPUs, global inter-thread synchronization is very

costly and must be minimized. For best performance, user-managed and texture caches

must be used efficiently and uncoalesce memory accesses must be minimized. Table 2

and 3 list platform-specific software optimization techniques and the kernels and

applications using them, respectively. All optimizations are applied to the baseline

single-threaded implementations. The performance numbers of the baseline

implementations are on par or better than best reported numbers for each particular

kernel or application.

4.1 Optimized Single-Threaded Implementations (ST)

The gradient kernel computes the image energy function using the magnitude of

the gradient. The baseline implementation is similar to the implementation described

in [19]. We improve the baseline by applying several hand optimizations as listed in

Table 3, including Smart Pointer Dereferencing, Arithmetic Optimizations, Loop

Fusion, Smart Value Scaling, and Branch Elimination.

15

Table 2: Description of different optimization techniques used in the implementations of kernels. The

optimizations marked by (*) have a extended description (most likely towards the end of the chapter).

OPTIMIZATION DESCRIPTION

Smart Pointer

Dereferencing (SPD)*

Reduces the number of memory accesses by dereferencing pointers

outside of loops. This technique is most useful when kernels access data

elements that are encapsulated in a SoA or stored in a multi-level arrays.

Arithmetic

Optimizations (AO)

Simplifies math to eliminate unnecessary arithmetic. Reduces the number

of index transformation when using linear array to store 2-D/3-D dataset.

Loop Fusion (LF)
Improves locality and cache performance by fusing loops to perform

computation with a single loop pass.

Smart Value Scaling

(SVS)*

Scales values by a smart fraction to replace division operation by logical

shift (only used when the kernel tolerates the errors).

Loop Interchange (LI)
Exchanges the order of nested loops to improving locality of access and

take advantage of cache.

Data Structure

Transformation (DST)

Transforms data structure to improve memory performance. For example,

transforming an Array of Structure (AoS) to a Structure of Array (SoA).

Branch Elimination

(BE)

Eliminates unnecessary branches by executing the boundaries conditions

outside of the loops (improves ILP).

Reduced-width

Operands (RWO)*

Reduces the data width to improve cache performance and SIMD

parallelization.

Fast Math (FM)
Optimized math functions [31, 32] to improve arithmetic performance

(reduces accuracy, not noticeable in some kernels).

Ping-Pong Buffering

(PPB)

Improves performance by eliminating redundant memory copy and

branches.

Array Padding (AP)
Improves performance by guaranteeing that every matrix row starts on an

aligned memory location or new cache line.

Shared Memory

Caching (SMC)

Improves performance by reducing the number of same-data memory

access.

Texture Cache (TC)
Hardware managed, optimized for 2D spatial locality (benefits kernels

with irregular access patters or low locality).

Lookup Table (LT)
Eliminates multiple computations of functions with the same input. Pre-

computes the outputs for all inputs and stores the output in memory.

SIMD Shift and Insert

(SSI)*

When data is loaded into SIMD register, eliminates extract loads of

nearby data by using register-shift and data-insertion.

Table 3: Optimizations (which are listed in Table 2) applied to the single- and multi-threaded CPU, and

GPU implementations. COT states for all non-SIMD CPU optimization techniques.

Kernel /

Application

Optimization

CPU SIMD GPU

S
P

D

A
O

L
F

B
E

R
W

O

S
V

S

L
I

F
M

L
T

C
O

T

D
S

T

S
S

I

D
S

T

P
P

B

A
P

S
M

C

T
C

F
M

L
T

mri-q x

 x

 x x

stencil x x x x

histogram x x x x

gradient x x x x x x x x x x x

dynamic

programming
x x x x x x x x

matrix resizing x x x x x

Laplacian x x x x x x

DEsolver x x x x x

SC x x x x x x x x x x x x x x x

CAPPS x x x x x x x x

16

The dynamic programming kernel computes the cumulative minimum energy for

the seam carving application. In the baseline implementation, we use the C++ min

function to find the minimum value of the above 8-connected pixels, and add the result

to the pixel’s energy to obtain the new cumulative minimum energy value. We locate

the lowest-energy seam by searching the last row of the seam matrix. The baseline

implementation inherits many optimizations techniques used for the gradient. The

Branch Elimination optimization, in particular, shows a considerable improvement

over the baseline.

The matrix resizing baseline implementation loops through the rows and

columns of the image and move each pixel to the left in their respective rows; starting

one pixel after the removable pixel. We use another technique that utilizes the C/C++

memmove and memcopy functions to resize each row, which performs slightly better

than the baseline implementation. Although employing linked-list data structures

would have allowed data resizing to be very efficient, because this kernel is part of the

seam carving application where non-resizing operations account for a much larger

fraction of the execution time, as in many applications, the overall seam carving

performance would have been negatively affected. Thus, we are forced to implement

the resizing using array data structures.

As we discussed in Chapter 2, CAPPS utilizes two kernels: the DEsolver and the

Laplacian. We implemented these kernels using the equations given in [8]. We used

the optimization techniques discussed for gradient for achieving optimal performance.

Finally, instead of computing exponential operations, a lookup table (LT) is employed

for better performance without significant reduction in accuracy.

17

The baseline implementations for the three kernels, mri-q, stencil and histogram,

are taken from the Parboil benchmark suite [6]. We improved the baseline

implementation for the mri-q kernel (by about 86%) by applying Fast Math

optimizations. We apply the Loop Interchange optimization to the stencil kernel,

which greatly improved locality and resulted in 7x performance gain over the baseline.

4.2 Multi-threaded Implementations (MT)

For the multi-threaded implementation of the gradient kernel, we partition the

input image into tiles consisting of consecutive rows (see Figure 3); a column-based

division reduces locality. The number of rows in a tile depends on the number of

threads and the height of the image. Unlike the gradient, the cumulative minimum

energy computation uses a dynamic programming approach that is not parallelization

friendly. This approach serializes the execution of rows. We therefore perform a row-

by-row computation of the seam matrix (dynamic programming kernel) by dividing

each row into fixed-width tiles and compute these tiles in parallel. We synchronize all

threads after the execution of each row.

 Figure 3: Division of work for multi-core CPU.

18

For the matrix resizing, mri-q, stencil, histogram, DEsolver and Laplacian

kernels, the multi-threaded implementation is similar to that of the gradient kernel (see

Figure 3). Given that there are no data dependencies in the computation of these

kernels, we are able to divide the computation among threads as described above for

the gradient. The multi-threaded implementation of the histogram kernel uses the

reduction technique, where each thread first updates a thread-private (local) histogram

and then “reduces” (adds) its local histogram to the global histogram only once at the

end of the computation. Updates to these local histograms can execute in parallel but

additions to the global histogram still require atomic operations. Finally, we also used

message-passing interface (MPI) to parallelize CAPPS in order to take advantage of

our in-lab cluster as described in Chapter 3.

4.3 SIMD Implementations (SIMD)

The gcc 4.7 compiler is capable of auto-vectorizing programs to explore the

potential of the SIMD units on the CPU. However, for successful compiler auto-

vectorization, often, the programmer needs to write the code in a certain way. Besides

the Laplacian kernel, no other baseline implementations for the kernels in this thesis

were successfully auto-vectorized. Optimizations such as, Data Structure

Transformation, Loop Interchange, Smart Value Scaling, and Branch Elimination

have helped generating auto-vectorized code with some success for four of the eight

optimized kernels: These are the gradient, dynamic programming, stencil, and

Laplacian kernels. However, the SIMD units achieved much higher performance when

the code was carefully vectorized by hand.

19

For the gradient kernel, after using the Smart Value Scaling optimizations, gcc 4.7

was able to auto-vectorize the code (with 3.67x performance gain). By further using

the Data Structure Transformation and SIMD Shift and Insert (SSI in Table 2)

optimizations, we achieve a 33x performance gain over the baseline with a hand-tuned

SIMD implementation. The hand-tuned SIMD implementation of the gradient uses

Equations 9 and 10 [23] as an alternative method to compute the derivatives. By

incorporating these changes, we eliminated three loads (one for each RGB channel),

three register-insert operations, and eight logical and arithmetic operations per pixel.

By moving the cumulative minimum energy computation of the first and the last

column outside of the loop, we reduce the boundary check instructions (Branch

Elimination) for the dynamic programming kernel. This optimization helps the

compiler vectorize dynamic programming (4.89x performance gain over baseline). By

implementing the SIMD Shift and Insert mechanisms, our hand-tuned SIMD

implementation achieves 2.25x over the compiler auto-vectorized code. Auto-

vectorization did not work for the matrix resizing kernel. However, with some hand-

tuning, we were able to use the SIMD lanes to move 16 bytes simultaneously by

loading each RGB channel into three separate registers and relocating 5.33

simultaneous pixels on average.

The stencil kernel was auto-vectorized after we have modified the baseline (from

Parboil suite [6]) with the Loop Interchange transformation. The hand-tuned and

20

compiler auto-vectorized versions provided the same speedup of 3.34x over optimized

single-threaded implementation. gcc 4.7 was not able to auto-vectorize the mri-q

kernel because it uses sine and cosine functions that are not part of the SSE/AVX

instruction extension. We were able to hand-vectorize this kernel by implementing

sine and cosine with AVX instructions with very good accuracy using [35]. The hand-

tuned SIMD was 3.27x better than the optimized single-threaded version.

The full CAPPS application and the DEsolver kernel were unable to utilize the

SIMD units on the CPU due to the current SEE/AVX limitations; no support for

special functions such as exponential exists. Unlike, the mri-q kernel, CAPPS requires

very high floating-point precision. Therefore, we were not able to use [35] to vectorize

the DESolver kernel. As a result, we do not have a SIMD CAPPS implementation. We

could have used SIMD after incorporating the Lookup Table optimization, but SIMD

CPUs do not have gather/scatter SIMD operations yet, which also affected the

vectorization of the histogram kernel. We were able to utilize SIMD for the reduction

phase of the multi-threaded histogram kernel. Each thread-private histograms is copied

to separate global histogram (multithreaded reduction), which are then added into one

global histogram using the SIMD lanes.

4.4 Using Short Operands: A Case for SIMD Performance

The width of an operand has important implications on SIMD performance: the

shorter the operand is the more parallelism there is. Therefore, it is important to

carefully decide on operand widths. It is wasteful to use 32-bit operands when 8- or

16-bit operands suffice.

21

Occasionally, although not directly applicable, scaling down values, when it does

not hurt accuracy of the overall results, allows the use of shorter operands and thereby

improves SIMD performance significantly. We observed an example to this in the

dynamic programming kernel, which is used to compute the cumulative minimum

energy (seam matrix) in the seam carving algorithm. In theory, the values of the seam

matrix could grow beyond 64K (unsigned short). Therefore, the baseline

implementation uses 32-bits (unsigned integer) to store the values of the seam matrix.

However, Figure 4 shows a histogram of the seam matrix values, which reveal that the

values do not exceed 7,500. We analyzed many images with different sizes and

characteristics, and found that even in very large images (with high energy) the largest

value was below 19,500 (Figure 5). This allows us to use 16-bit instead of 32-bit

operands. This simple optimization doubled the performance of the SIMD

implementation for the dynamic programming kernel. Short operands also improved

the non-SIMD implementation by 24%, due to cache performance.

Figure 4: A histogram of the CES for a 1200x900 image.

6
1

3
0

9
1

7
6

0
1

5

6
8

7
0

8

6
9

9
0

5

6
1

4
0

1

4
0

3
8

2

3
3

3
7

1

3
0

7
7

2

3
1

0
6

8

2
0

5
1

7

1
4

4
1

5

1
1

2
8

1

7
6

0
7

1
4

5
2

1
5

0

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

To
ta

l N
u

m
b

e
r

o
f

P
ix

e
ls

Values of Cumulative Minimum Energy

22

Figure 5: A histogram of the CES for a 3648x2736 image.

Pitfalls of Short-width Operands on SIMD Units

When performing SIMD arithmetic, especially on short-width operands, it is the

programmer's responsibility to ensure that no overflow occurs. This is because unlike

non-SIMD execution units, where the results of short-width operands (e.g. 8-bit) are

store in a 32- and 64-bit register, the Intel SSE and AVX extensions partitions the

SIMD registers into the various supported length, as specified by the programmer. In

the case of 8-bit arithmetic, the resulting values are placed in an 8-bit location of an

SSE 128-bit register, which will cause overflow if the results are beyond 255

(unsigned) or 127 (signed). Therefore, it is the programmer's responsibility to be

cautions when taking advantage of the performance gain of short-width operands on

the SIMD units. We recommend a well understanding of the operation before

exploring short-width operands on SIMD CPUs. A proper methodology is to conduct

similar analysis as we have done in the previous subsection.

4
0

6
0

0
2

3

3
3

3
8

6

2
6

5
4

1
5

1

9
2

8
6

5

1
6

3
6

1
5

2

1
1

5
3

3

1
8

7
1

4
8

 3
1

1
6

6
3

4

2
2

5
7

7

3
8

0
0

5
0

3

3
8

7
3

1

4
2

4
1

2
1

4

2
0

8
5

2

3
9

6
3

6
8

 5
4

2
7

5
2

5

8
4

6
3

9

5
1

4
4

7
8

4
6

8
1

8
1

3

3
6

8
2

2

2
3

3
7

8
7

1

9
1

0
7

2

2
1

5
5

7
3

1

9
0

4
7

1

1
5

5
8

9
1

1

3
2

4
7

3

1
2

0
5

9
6

1

1
3

2
2

1

1
0

0
9

7
2

8

9
4

8
9

8

7
8

7
2

7

8
2

5
9

7

3
5

8
2

7

0
2

7
1

5

7
6

4
7

4

2
8

7
1

2

2
0

8
6

4

9
9

9

5
9

0

0

200000

400000

600000

800000

To
ta

l n
u

m
b

e
r

o
f

p
ix

e
ls

Values of cumulative energy sum

1099835

23

4.5 GPU Implementations (GPU)

The need for accessing neighboring pixels to compute the gradient strongly

influences the way we access memory on the GPU. In [19], the authors present an

incremental approach towards improving the performance of the energy function

computation, which we incorporate into our GPU implementation of the gradient

kernel. We also use Equations 9 and 10 to benefit from similar improvement as in the

SIMD implementation. With a 32x9-block configuration (warp 9 only assist in

caching), each thread loads a single pixel; achieving full coalesce accesses for the

computational pixels and the bottom-neighboring pixel. Our caching method works

well, but the best performance is achieved by careful optimizations including the use

of Texture Cache and Fast Math optimizations.

The GPU implementation of dynamic programming partitions the rows into

horizontal tiles. Since there is no synchronization among different thread blocks, the

kernel is invoked once per row and we synchronize in between calls.

For the matrix resizing kernel on the GPU, we launch one thread per data element

(pixel in the case of seam carving) in order to achieve one data-element relocation per

thread. None of our previous resizing methods achieved such high parallelization; we

are able to move hundreds of pixels simultaneously. To prevent neighboring threads

from overwriting the pixels before they can be read, we used the Ping-Pong Buffering

optimization technique, as described in Table 2.

The GPU Implementation of CAPPS exploits the fact that the computation of the

transmembrane current is 100% separable; we can compute the transmembrane

current, which includes 629 floating-point operations, for every node in parallel

24

without any data dependencies. The memory access patterns and computation for the

Laplacian, used for the computation of the transmembrane voltage, are very similar to

that of the gradient. This implies that we can benefit from the GPU optimizations

employed in the gradient kernel. For CAPPS, we implemented two GPU kernels: a

kernel to compute the transmembrane current (DEsolver kernel), which includes the

computation of the differential equations, and a kernel to compute the transmembrane

voltage, which includes the Laplacian and one differential equation. We placed all

constants in the constant memory using the guidelines in [36]. Furthermore, we place

most of the data on the GPU to minimize the host-to-device and device-to-host

memory transfers. The only device-to-host memory transfer occurs when the CPU

needs to write the transmembrane voltage to the output file, which occurs every

10,000 iterations. One iteration simulates one time step, and it involves the

computation of the transmembrane voltages and currents for all 90,000 nodes. The

optimized GPU version of CAPPS required us to apply many optimizations, including,

Data Structure Transformation, Ping-Pong Buffering, Arithmetic Optimizations, and

Lookup Table, as described in Table 2. We also used Page-locked Memory to avoid

the host-to-device memory copy of the stimulus current, which is updated by the CPU

for every node on every iteration. Results show that accessing the CPU memory

directly from the GPU incurs less overhead than that of the stimulus current host-to-

device memory copy, for the implementation of CAPPS. Finally, we have evaluated

the GPU implementations of the mri-q, stencil and histogram kernels from the Parboil

benchmarks [6].

25

4.6 Seam Carving Specific Optimization: The Energy Update (EU)

In seam carving, when removing seams, the frequency at which the energy

function (gradient kernel) is recomputed has a significant impact on the quality of the

resized image. The best quality is obtained when the energy is recomputed after the

removal of a single seam [7]. To reduce the computation, it is possible to recompute

the energy function after a predetermined number of seams have been removed [37].

In this thesis, we implemented a new method to improve the performance of

recomputing the energy function and preserve the best resizing quality. When a single

seam is removed and the energy function is recomputed, the majority of the energy

values remain unchanged. The only pixels affected by the removed seam (the dark

gray pixels in Figure 6a) are the left and right neighboring pixels illustrated in white in

Figures 6a and 6b. Thus, we only recompute the energy of the pixels that undergo an

energy change, to reduce the computation. This method produces the same results as

recomputing the entire energy function using much less computation, which improves

the performance significantly (see Chapter 5).

 (a) (b) (c)

Figure 6: Proposed Update Algorithm for recomputing the energy. (a) The dark (removable) pixels

only affect the white pixels. (b) Only recompute the energy for the affected pixels. (c) After update.

26

4.7 Memory Optimization Techniques

GPUs have a wide memory bus for simultaneously loading large amounts of data

in order to supply the high demand imposed by the many executing threads. Unlike the

CPUs that hide the memory latency by utilizing large caches and complex logic such

as pre-fetching, the GPU memory exhibits high bandwidth and high latency. The GPU

high memory latency could be hidden by accessing memory in the most favorable

pattern that takes advantage of the GPU memory organization.

Implicit and Explicit Caching

Modern CPUs contain different levels of caches, which are managed implicitly by

the hardware to store the most frequently used data. The programmer, however, is able

to use techniques such as Loop Fusion and Loop Interchange to take advantage of the

cache and improve the memory performance. GPUs implement user-managed caches

(Shared Memory) and give explicit control to the programmer. When necessary, it is

very important to utilize the GPUs’ shared memory to take advantage of locality or the

Texture Cache to benefit from 2-D spatial locality. When utilizing Shared Memory on

the GPU, special attention must be given to bank conflicts to prevent serialization of

threads within a warp.

Array of Structure (AoS) vs. Structure of Arrays (SoA)

Using the CPU SIMD unit places restrictions on the layout of the data. For

example, operands must be loaded and the results of SIMD operations are stored into

128-bit (SSE) or 256-bits (AVX) registers. To achieve the best performance, data

should be placed into an address-aligned data structure. For example, for 8-wide single

27

precision floating-point SIMD, the best performance will be when the data is 32-byte

aligned. For vector addition, the vectors' data must be loaded into two 256-bit

registers. To achieve the best performance, eight vector components from each vector

must be loaded simultaneously. This can only be achieved if data is stored sequentially

in an address-aligned location.

Let us look at a different example. Suppose that we need to find the minimum

value between the RGB channels for every pixel in an image. Array of Structure and

linear arrays (with alternating channels e.g. {R, G, B, R, G, B…}) are two common

data structures used to store the image data. However, depending on the application

and the memory access patters, an AoS or a linear array might not be the best solution.

These data structure place the individual RGB channels at least three bytes apart. Such

data structure makes it impossible to perform a single load of sixteen simultaneous red

elements with SSE; currently, there is no AVX support for integer arithmetic. Instead,

we are forced to insert each element one-by-one, which diminishes the performance by

a significant amount. A better solution is to store the data in a Structure of Arrays,

which allows registers to be loaded with 16 bytes on a single load. Implementing the

correct data structure, an Array of Structure or a Structure of Arrays in particular,

could reduce the number of loads and stores by up to a factor of 16. In the case of the

gradient kernel, the Data Structure Transformation permitted us hand to vectorize the

code, and achieve a speedup of 13.78x over the Optimized Single-Threaded

Implementations (ST).

It is important to mention that Structure of Arrays with large number of structure

members could incur memory access penalties due to the limited number of pages that

28

can be maintained by the system [33], but GPUs are not affected by this phenomenon.

We recommend analyzing the applications’ memory access patterns and the memory

organization of the system to select the appropriate data structure, see [33].

Final Comments Memory Optimization Techniques

Memory Coalescing on the GPU utilizes 100% of the available memory

bandwidth. Non-aligned memory and inappropriate data structure causes uncoalesced

accesses and wastes significant device memory bandwidth. Much research has been

conducted to find methods of automatically transforming data structure, changing

access patterns, and identifying suitable memory spaces [34]. Techniques such as 1-D

to 2-D array mapping, array padding and data caching, see [19], are valuable in

boosting performance. Finally, we advise caching data in registers when the same

thread only reuses the data. This method was used in the DEsolver kernel and in

CAPPS.

4.8 SPD, SVS, and SSI Optimization Techniques

Smart Pointer Dereferencing

The Smart Pointer Dereferencing (SPD) optimization technique uses a smart

method to access the data fields of C-Struct and to access multi-dimensional arrays.

For instance, for the seam carving operation, we encapsulate all of the data in a C-

struct. This is a common practice for the organization and reusability of the code.

When computing the gradient for the seam carving operation, instead of dereferencing

the image width and height, and the image data and gradient arrays inside the loops,

we dereference these fields and store them in a local (automatic) variable before

29

entering the loops, which most likely will be place in a register by the compiler. For

the computation of the gradient of a 1200x900 image, this optimization reduces the

amount of pointer dereferences from over 17 million (16 pointers dereference per

pixel) to four dereferences for the entire computation of the gradient. In addition, the

Smart Pointer Dereferencing optimization technique is completely independent of the

size of the image, which is not the case when the dereferencing occurs inside the loop.

For multi-dimensional arrays that are access inside of nested-loops, a similar

optimization could be applied. Let us assume that we need to access a 2-D array (A)

inside a 2-level nested-loop. We could simply write A[i][j] inside the second loop

body. However, unless optimized by the compiler, such implementation will incur

unnecessary memory loads for the memory reference indicated by A[i]. For instance,

suppose that we need to access all elements in a 1000x1000 array, this will cause a

significant amount of unnecessary memory loads (999,000). Since "i" is constant for

the access of an entire row, as an alternative, we can assign A[i] to a local pointer,

call it Arow, outside of the second loop body. Arow is then use to access all of the

elements for the current row as follows: Arow[j]. This will reduce the number of

loads per row of A[i] from 1000 to 1. In this case, 999 unnecessary loads are

removed per row. Thus, we are able to reduce the number of loads of A[i]from

1,000,000 to 1,000. This is a significant improvement when 2-D arrays are required.

Unnecessary pointer dereferencing is constantly use by software developers. In

this work, we show the performance benefit, and suggest adding this technique to the

compiler optimization phase to improve performance.

30

Smart Value Scaling

Some applications may be tolerant to the scaling of value. Scaling values by a

carefully selected fraction could improve performance because it allows us to replace

divisions with logical shifts. In the case of the gradient, we normally convert RGB

images to grayscale before computing the gradient as previously stated in this chapter.

A simple technique is to average the RGB channels: (

). In this case, scaling

down by

 permits us to simplify the mathematics to (

), (the 3s cancel out), and

convert the division by 3 to a 2-bit right logical shift. This technique should only be

used when the relative value suffices and the exact value is not needed. We omitted

this optimization technique from our best implementation of the gradient kernel. Since

this is an application specific optimization, we decided to show the performance of the

gradient kernel that produces the exact values. However, this technique was necessary

for the auto-vectorization of the gradient kernels, since currently, SSE does not

support integer division. This technique does not affect the seam carving operation;

the resizing quality is the same when the values of the gradient are scaled down by

three over four.

SIMD Shift and Insert

Many times, applications have a variety of operands with different data-width.

For example, in seam carving, the energy values require 8-bits while the seam matrix

values are either 32 or 16 bits. In either case, the 8-bit value must be cast to either 32

or 16 bits before we could perform any arithmetic on the two. Figure 7 illustrates an

efficient method of performing the cast from 8 to 32 bits. Instead of looping through

the array, using strides of 4 and performing unaligned loads, we loop through the array

31

using strides of 16. On every stride, we load 16 8-bit values into a 128-bit register. We

cast the values in the register, which takes the lower four bytes and places them in

another register (Figure 7a). Instead of reloading the next four bytes, which will result

in an unaligned load, we perform a logical right shift of 4 bytes. We repeat the byte-to-

integer conversion (Figure 7b) three more times to cast the 16 8-bit values to integers.

Be aware that the values in the second register in Figure 7a must be utilized or store

elsewhere before the operation in Figure 7b takes place. Otherwise, the previous data

(A3-A0) will be replace by (A7-A4).

Another advantage of the SIMD Shift and Insert optimization technique is to

minimize the number of unaligned loads caused by the left and right neighboring

elements in an array. This technique was applied to the gradient, Laplacian, and stencil

kernels to eliminate unaligned loads. These kernels need to access their left and right

neighboring elements, which are part of their convolution operation. The rest of the

elements are aligned, which forces the left and right elements to be unaligned. To

 A3 A2 A1 A0

B15

B15

B15

 A15 A14 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0

B15

B15

B15

 A7 A6 A5 A4

B15

B15

B15

 0 0 0 0 A15 A14 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4

(A)

Figure 7: Efficient data casting using SIMD shift and insert.

(B)

32

compensate and improve performance, we load 16 elements into an SSE register

(gradient) or 8 elements into an AVX register (Laplacian and stencil). We then shift

the register one element to the left or right, and insert the missing element. The three

register will contain the same data as if performing one aligned and two unaligned

loads. However, we accomplish this with one aligned load, and two logical-shift and

register-inset operations. Using this technique, we were able to improve the SIMD

performance of the gradient, Laplacian, and stencil kernels.

33

CHAPTER 5

PERFORMANCE AND ENERGY EVALUATION

In this chapter, we present the performance and energy-efficiency evaluation

for the mri-q, stencil, and histogram kernels (Parboil benchmarks). We then evaluate

seam carving, starting with the gradient, dynamic programming, and matrix resizing

kernels, and then the full application. Following seam carving, the Laplacian and

DEsolver kernels, and the full CAPPS application are evaluated. For the kernels that

are part of seam carving and CAPPS, we do not evaluate energy-efficiency separately.

The reason is that we get better insights by evaluating the energy-efficiency of the

entire seam carving and CAPPS applications.

5.1 Performance and Energy Efficiency Evaluation of the Parboil Benchmarks

Figure 8 shows the performance results for the Parboil kernels on the CPU and

GPU platforms. The performance improvement is measured for the kernel-only

computation and the overall execution time. The total execution time includes the

overhead, such as data transfer between the CPU and GPU. Figure 8 shows the kernel-

only performance gain, in which the GPU performs best, with substantial speedups

over the baseline; 214x, 773x and 39x for the mri-q, stencil and histogram, kernels

respectively. However, the impact of the overhead may offset the benefits from the

GPU. For example, for histogram, the GPU overall execution time is actually 9x worse

34

Figure 8: The computation-only speedup of the Parboil kernels. For histogram, MT_SIMD is the same

as MT, but uses SEE for reduction. ST_SIMD is worse than ST; thus, we do not have an MT version.

Figure 9: The overall speedup of the Parboil kernels. For histogram, MT_SIMD is the same as MT, but

uses SSE for reduction. ST_SIMD is worse than ST; thus, we do not have an MT version. The values in

red or () means that the performance worsen by the indicated amount.

Figure 10: Energy consumption of parboil kernels for the computation only. The energy values for the

histogram are in millijoules for displaying purpose.

1
.0

8

(1
.2

8
)

1
.6

2

214.36 773.57 38.97

0

5

10

15

20

25

30

35

mri-q stencil histogram

P
e

rf
o

rm
an

ce

BASE

ST

MT

ST_SIMD

MT_SIMD

GPU

1
.0

5

(1
.1

4
)

1
.2

4

117.83 172.73

(9
.0

9
)

0

5

10

15

20

25

30

mri-q stencil histogram

P
e

rf
o

rm
an

ce

BASE

ST_CPU

MT_CPU

ST_SIMD

MT_SIMD

GPU

1801 9628 1362

20 36 19
0

200

400

600

800

1000

1200

mri-q stencil histogram (mj)

En
e

rg
y

(J
)

Parboil Kernels

BASE

ST

MT

ST_SIMD

MT_SIMD

GPU

35

 Table 4: Energy consumption and Relative Energy-Delay Product (REDP) for the overall kernels.

 Kernels

Implementations Energy/RDEP mri-q Stencil histogram

Base Energy 1807 9756 0.65

RDEP 1 1 1

ST Energy 969 1396 0.65

RDEP 0.044 0.021 1

MT Energy 352 635 0.804

RDEP 0.029 0.003 1.28

ST_SIMD Energy 305 448 0.74

RDEP 0.0278 0.0021 1.29

MT_SIMD Energy 158 419 0.681

RDEP 0.006 0.001 0.92

GPU Energy 37 165 12.8

RDEP 0.00017 0.0001 173.31

than the baseline, as illustrated by Figure 9. We also observed a significant

performance drop compared to the kernel-only times for mri-q and stencil. The stencil

kernel undergoes a 4.7x reduction in performance, in comparison to the kernel-only

speedup, due to the overhead. The CPU implementations do not incur such overhead,

and the overall execution time remains similar to their kernel-only computational time.

This favors the CPU for applications that use kernels like the histogram, where the

computation to memory operation ratio is not high enough to fully utilize the

capabilities of the GPU.

Overall, the histogram does not scale on data parallel hardware. Figure 9 shows

that the multi-threaded implementation (MT) provides a 5% speedup over the

baseline. Most of the performance gain is lost during reduction phase of the histogram

where the thread-private histograms are reduced to a global histogram. Without the

reduction, the multi-threaded implementation achieves a 2.77x gain over the baseline

(not shown in figure). We further utilize SIMD lanes for the multi-threaded reduction,

which results in 24% speedup (MT_SIMD). Both the mri-q and the stencil are well

suited for the GPU, achieving beyond 117x and 172x over the baseline

36

implementation, respectively. It is important, however, to do a fair comparison

between the CPU and GPU. By applying the Loop Interchange optimization, we

improve the performance of the base implementation of stencil (taken from the Parboil

benchmarks) by 7x. By utilizing the SIMD unit on the CPU, a 21.9x performance

boost is achieved using a single CPU core (ST_SIMD). Although the SIMD

implementation of stencil does not scale linearly on multi-core CPU, we are able to

improve the overall performance by 29.9x, with all four cores on a quad-core CPU. By

properly utilizing the CPU, the performance achievement of the GPU over the CPU is

5.7x – a much smaller number than 773x! This shows the danger in comparing the

platforms unfairly.

For completeness, Figure 10 shows the computation-only energy evaluation for

the Parboil kernels. Table 4 present the energy consumption and energy-efficiency of

the overall execution of the Parboil kernels. We measure the energy-efficiency with

the EDP metric. For the data-parallel mri-q and stencil kernels, the GPU is the clear

winner in both energy-consumption and energy-efficiency. The multi-threaded SIMD

implementation provides the second best energy-consumption and efficiency. For the

histogram kernel, the GPU has the worst energy-consumption and dramatically worse

EDP. However, if kernel only energy consumption and energy-efficiency were

evaluated (figure not shown, relative EDP=0.0015), GPU would have been the best by

far for the histogram, which is not true and might be misleading.

37

5.2 Performance and Energy Efficiency Evaluation of Seam Carving

Evaluation of Seam Carving Kernels

We now discuss the performance evaluation of the seam carving kernels and the

performance and energy-efficiency of the full seam carving application. We have not

evaluated the energy-efficiency for individual kernels separately for reasons described

in Chapter 2. We conduct the kernel evaluations using a 1200x900 RGB image. Figure

11 shows the performance gain after applying the single-threaded optimizations (ST)

to the gradient baseline, a 2.43x speedup. ST scales well on multi-core CPUs (MT),

and achieves a 3.07 scalability, which translates to a 7.47x speedup. By employing the

Smart Value Scaling optimization technique, auto-vectorization becomes possible. The

auto-vectorized code achieves a 10.7x speedup over the baseline (figure not shown).

Our hand-vectorized implementation (ST_SIMD) gains a 33.5x performance boost

over the baseline. This implementation does not scale on multi-core CPUs

(MT_SIMD).

The best implementation of the gradient on the GPU uses the Texture Cache

instead of Shared Memory. The reason is that the overhead introduced by caching the

apron pixels (see [19]) was much greater than the performance gain from limited

locality (each pixel is only accessed by three different threads). Overall, by using the

GPU, we improved the gradient 102.6x over the baseline, which translates to a 3.06x

speedup over best CPU implementation. This is a fair comparison that could have

been misleading if the CPU version was not fully optimized and did not use the SIMD

units.

38

Figure 11 also illustrates the performance for the various implementations of the

dynamic programming kernel. By utilizing similar optimization techniques as in the

gradient, and with the addition of Branch Elimination and Reduced-width Operands

optimizations, we managed to improve the single-thread performance by 71%. The

GPU implementation undergoes a significant kernel launch overhead, and only

achieves a 61% speedup over the baseline. Because of the synchronization problem

incurred by dynamic programming, both non-SIMD and SIMD implementations

exhibit very poor scalability on multi-core. The single-threaded SIMD CPU

(ST_SIMD) implementation of dynamic programming yields the best performance, an

11x and 6.84x performance boost over the baseline and GPU, respectively. The

Reduced-width Operands optimization only helps slightly with cache performance for

the non-SIMD implementations. For the SIMD implementations, however, it is a

critical optimization step as it doubles the amount of data-elements that can

simultaneously execute on the SIMD units. Hence, by reducing the data width from

32- to 16-bits, we were able to double the performance of ST_SIMD (5.16x with 32-

bit).

Figure 11: Performance evaluation of Seam Carving kernels.

3
3

.4
9

11.01 2
5

.7
8

1
0

2
.6

0

2

4

6

8

Image Gradient Dynamic Programming Matrix Resizing

P
e

rf
o

rm
an

ce

BASE

ST

MT

ST_SIMD

MT_SIMD

GPU

39

In Chapter 4, we presented different CPU methods for the matrix resizing kernel.

This kernel does not scale on multi-core. The SIMD CPU implementation, which is

capable of moving an average of 5.33 pixels per operation, accounts for the best CPU

performance with a 3.31x speedup. Even so, our best method for resizing is on the

GPU by assigning one thread per pixel relocation. This implementation achieves a

performance boost of 6.87x over the baseline and 2x over the best CPU

implementation, which uses the SIMD units (Figure 11).

Evaluation of Seam Carving Application for the Resizing of Images

 To evaluate the performance of the full implementation of the seam carving

operation, we use the same 1200x900 RGB image and reduce the width of the image

by one-third of its original width. Figure 12 shows that the multi-core SIMD CPU,

with/without energy update (MT_SIMD, MT_SIMD_EU), performs the best for the

SC resizing operation, 29.16x and 32x overall speedup, respectively. Given that the

GPU achieved the best overall performance for the gradient and matrix resizing

kernels, it would be expected that the GPU would also achieve very good performance

on the resizing operation.

Figure 12: Performance of full Seam Carving application.

19.52 25.28 29.16 32.01 19.63 21.87

0

1

2

3

4

5

B
A

SE

ST

M
T

ST
_S

IM
D

ST
_S

IM
D

_E
U

M
T_

SI
M

D

M
T_

SI
M

D
_E

U

G
P

U

G
P

U
_E

U

H
ET

H
ET

_E
U

P
e

rf
o

rm
an

ce

40

Figure 13: Performance of best platforms full SC resizing operation.

However, the GPU only gains a 61% improvement in the dynamic programming

kernel, while the SIMD CPU achieved 11x. The dynamic programming kernel takes

the second larger fraction of the execution time for the seam carving removal

operation (behind the gradient). Other sequential components, such as backtracking to

construct the minimum energy seam, can also be limiting factors, and reduce the

overall performance. This shows the importance in considering full applications for

performance evaluation. It is important to fully evaluate the performance and

characteristics of multi- and many-core architectures. Kernels, however, are not able

to expose all of the hardware constrains as good as full applications.

Figure 13 shows that as the image size increases, the CPU-GPU heterogeneous

implementation (HET/HET_EU) performs much better than the other

implementations. It does not achieve the best performance on the small and midsize

images, but it is almost 2x faster than the best CPU implementation for the high-

resolution images. Therefore, for large data set, a better approach is to utilize a true

heterogeneous implementation to explore the best of both platforms. SIMD units offer

2
7

.1
2

2
5

.2
8

1
1

.4
3

1
2

.6
3

3
3

.0
5

3
2

.0
1

1
1

.8
6

1
3

.1
8

1
.8

2

3
.4

5

5
.4

8

5
.5

2

1
7

.8
1

2
1

.8
7

2
3

.6
9

2
4

.0
8

0

10

20

640x480 1200x900 1920x1080 1920x1200

P
e

rf
o

rm
an

ce

Images

SIMD_CPU_ST_BEST SIMD_CPU_MT_BEST GPU_BEST HET_BEST

41

implicit synchronization, which is ideal for dynamic programming. GPUs offer high-

bandwidth and 1000s of active threads, which makes it ideal for the gradient and

matrix resizing.

Evaluation of Seam Carving Application for the Resizing of Videos

Figure 14 shows the execution time and performance improvement for the

resizing of a HD video (1920x1080). This verifies that our CPU-GPU heterogeneous

implementations (HET and HET_EU) are the best approach for resizing large images

and video. Seam carving is a computationally-intensive operation, which makes video

resizing very time consuming. It takes over six hours to resize a one minute of video

(by one-third). By using the hardware efficiently, we are able to decrease the resizing

time from 6 hours to 17 minutes. Figure 15 shows the energy consumption and relative

EDP of the video resizing operation. We see that the HET_EU is not only the fastest

implementation, but also the most energy efficient. The SIMD implementations

provide the second best performance and energy-efficiency followed by the GPU.

Figure 14: Performance of Seam Carving to resize a 1 minute of video.

18.86 21.39

21,863

10,580

0

5000

10000

15000

20000

25000

0

2

4

6

8

10

12

14

B
A

SE

ST

M
T

ST
_S

IM
D

ST
_S

IM
D

_E
U

M
T_

SI
M

D

M
T_

SI
M

D
_E

U

G
P

U

G
P

U
_E

U

H
ET

H
ET

_E
U

Ex
e

cu
ti

o
n

 T
im

e
 (

s)

P
e

rf
o

rm
an

ce

Speedup Execution Time

42

Figure 15: Energy evaluation of Seam Carving to resize 1 minute of video.

5.3 Performance and Energy Efficiency Evaluation of CAPPS

The single-core implementation of CAPPS takes approximately 10 days to carry

out a single simulation. Driven by the need to reduce the execution time, we first

implemented a parallel version of CAPPS using MPI and ran it on a cluster with 60

cores. Figure 16 and 17 show the performance of the DEsolver and Laplacian kernels,

respectively. The DEsolver kernel has good scalability and achieves a 36.2x over the

baseline running on a 60-core cluster. The Laplacian kernel does not scale well on

multi-core and we do not show results beyond four threads. The GPU implementation

achieves an impressive 61.4x speedup.

Figure 18 shows the results for CAPPS. When executing the simulation on

multiple cores, the large dataset is partitioned into smaller subsets, which benefits the

cache performance. This is one explanation for achieving super-linear speedup with 2,

4, and 8 cores; a 2.07x, 4.25x, and 8.23x speedup, respectively. For 16 cores, two

shared-memory systems are used to form a distributed-memory system. The network

2907 1407 1146 1001 945
1

0.00

0.05

0.10

0.15

0.20

0.25

0

100

200

300

400

B
A

SE

ST

M
T

ST
_S

IM
D

ST
_S

IM
D

_E
U

M
T_

SI
M

D

M
T_

SI
M

D
_E

U

G
P

U

G
P

U
_E

U

H
ET

H
ET

_E
U

R
e

la
ti

ve
 E

D
P

En
e

rg
y

(K
J)

Energy Consumption Relative EDP

43

Figure 16: Performance evaluation of the DEsolver kernel.

 Figure 17: Performance evaluation of the Laplacian kernel.

overhead is small with two systems, and the performance improvement of the cache

helps hide the network latency. This implementation achieves 16x speedup resulting in

14 hours and 57 minutes to complete a single simulation. Beyond 16 cores, the

speedups are no longer linear due to the network overhead. The best performance on

the CPU cluster is achieved with 60 cores. This configuration does not exhibit the best

scalability, but it performs the simulation in 6 hours and 22 minutes, a 37.8x speedup.

In Figure 19, we show the energy consumption of running one CAPPS simulation

on the CPU cluster. Although the 60-core cluster performs the simulation in 6 hours

and 22 minutes, it is very energy-inefficient; it consumes 92.55 MJ for a single

CAPPS simulation. The configuration that consumes the least amount of energy

(37.94 MJ) on the CPU is the 8-core implementation. With 16 cores, the energy

36.2 61.4

0

5

10

15

20

25

1 2 4 8 16 32 60 GPU

P
e

rf
o

rm
an

ce

Number of Cores and GPU

15.7

0

1

2

BASE MT ST_SIMD MT_SIMD GPU

P
e

rf
o

rm
an

ce

Implementantions

44

consumption is slightly larger (<1MJ) and the performance is approximately 2x faster

than the 8-core implementation. An extra mega joule could be a reasonable tradeoff in

order to double the performance, see Figures 18 and 19. However, an extra 53.66 MJ

is required to reduce the execution time from approximately 15 hours to 6 hours and

22 minutes. In summary, Figures 18 and 19 illustrates that by adding more machines

to the cluster, we are able to reduce the execution time. However, the increase in

performance comes at a cost. The energy consumption increases rapidly as we

increase the number of network-interconnected machines.

Figure 18 and 19 also show the results of our GPU implementation of CAPPS.

This implementation achieves an impressive performance of 58.1x, 54% better than

the 60-core cluster ($60,000 value) on a desktop system equipped with a GPU (a

$1,250 value) as described in Chapter 3. Using a CPU-GPU heterogeneous system, we

are able to perform a CAPPS simulation in 4 hours and 8 minutes. Most importantly,

as Figure 19 shows, our GPU implementation is 18.4x more energy-efficient than the

MPI on a 60-cores cluster. Our results show that GPU is the clear winner in terms of

performance, energy-efficiency and hardware cost for an application like CAPPS.

Figure 18: Performance evaluation of CAPPS.

32.73 37.78 58.03

0

5

10

15

20

25

0

50

100

150

200

250

1 2 4 8 16 32 48 60 GPU

Sp
e

e
d

u
p

Ex
e

cu
ti

o
n

 T
im

e
 (

h
r)

Number of Cores and GPU

Speedup Execution Time (hr)

45

Figure 19: Energy evaluation of CAPPS, includes relative EDP.

 5.4 Energy Efficiency and Dynamic Voltage-Frequency Scaling (DVFS)

 In this thesis, we have not evaluated the impact of dynamic voltage-frequency

scaling on energy-efficiency. We observe, however, that for our compute-intensive

benchmarks, energy cannot be saved by lowering the core clock, because when the

clock is down-scaled, then the execution time is highly increased, which results in an

increase on cumulative energy consumption. To the best of our knowledge, the system

software does not employ DVFS for GPUs. GPUs may not be energy-efficient when

FLOPs/J drops under a threshold. DVFS algorithms are worth pursuing for GPU

systems. Memory clock scaling may be effective for compute-intensive workloads

because scaling down the memory clock would not significantly affect their execution

time.

5.5 Suggested Modification to improve GPU Architectures

This thesis suggests algorithmic changes and careful choice of data structures

based on the architecture. Our experiments with the seam carving kernels and full

239.59 120.88

79.66

92.55
1

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0

10

20

30

40

50

60

70

80

90

1 2 4 8 16 32 48 60 GPU

R
e

la
ti

ve
 E

D
P

En
e

rg
y

(M
J)

Number of Cores and GPU

Energy

Relative EDP

46

application also suggest that some hardware changes can significantly improve the

performance. For most image/video processing applications and other applications that

perform many operations on short and byte data types, GPUs could offer better

performance if their execution units were also vectirized to increase the parallelism of

short-width operands, see Chapter 4.

47

CHAPTER 6

AN ANALYSIS OF PROGRAMMING EFFORT

While many papers evaluate GPU/SIMD implementations of varying

applications, we are not aware of any that discuss the undertaken programming effort.

In this chapter, we attempt to quantify our implementation effort for various versions

of the kernels and applications that we studied in this thesis; this includes the

optimized single-threaded, SIMD, multi-core, and the GPU versions. We believe that

sharing such experiences, give valuable insights to researchers and engineers for

deciding whether the SIMD or GPU implementation effort is worth the anticipated

performance gain. Table 5 summarizes our approximated programming efforts in

terms of one graduate student hour. We do not quantify the effort for the baseline

implementations because it depends on the algorithms and does not provide any useful

insights for this study.

6.1 Learning Curve for Intel SSE/AVX and CUDA

The programming effort in Table 5 is based on a programmer with SIMD and

CUDA programming experience. It is however also important to comment on the

learning curve. For CUDA, the learning curve is similar to threaded C programming;

however, large performance gains require mapping the programs to specific

underlying architecture, which worsens the learning curve. This learning curve has, in

many cases, alienated many potential CUDA programmers. To help increase CUDA

48

usage, NVIDIA provides webinars and online lectures through university partnerships

and offers the necessary tools and most of the CUDA libraries for free. The available

resources have softened the learning curve.

SSE and AVX also have a steep learning curve; but unlike CUDA, good

documentation on the subject is scarce. Most of the documentation consist of reference

manuals [2, 3] listing available instructions and short tutorials. Intel’s optimization

reference manual [38] provides a better discussion on SSE/AVX and general SIMD

design concerns. However, it is very low level in nature. The Intel Intrinsics Guide

[39] provides a list of high-level intrinsics functions with short descriptions, which is

very helpful for programming, but do not provide detailed information about

SSE/AVX. Finally, good tools and libraries such as the Intel C++ compiler, which

supports the vector math library (VML), are not available for free.

Perhaps the easiest way to exploit SSE/AVX is through compiler auto-

vectorization. This, however, must not be taken for granted because it requires careful

choice of algorithms and data structures as discussed in Chapter 4.

6.2 Performance per Effort Hours (PGPEH) Metric

In order to compare efficiency of the implementation effort across different

implementations and different benchmarks, we define a new metric called

Performance Gain Per Effort Hours or PGPEH that quantifies the efficiency in effort.

The PGPEH metric provides a good insight into the performance gained for every

hour spent on the various implementations of the kernels and applications. PGPEH is

not a constant that we can use to estimate the overall performance that could be

49

achieved if we continue to work on improving the kernels. Instead, PGPEH illustrates

the efficiency of the effort and provides us with a way to make comparisons between

different platform implementations. A higher PGPEH does not imply an overall higher

performance improvement; it tells us that we achieved a higher speedup per effort

hour invested in a particular implementation.

6.3 Evaluation of Programming Effort

Table 5 shows that multithreading the kernels with pthreads requires

approximately one effort hour, plus the effort to optimize and/or vectorize the kernels

(shown as ST/SIMD+MT). The MPI and full application implementations are more

complex and require 5 to 10 hours. The process to produce a fine-tuned single-

threaded implementation is well illustrated by our PGPEH metric, which shows that a

47% speedup was achieved for every hour spent optimizing the gradient. The stencil

kernel gains a 7x speedup for one effort hour for the single-threaded implementation

(ST). The best efficiency is obtained with the GPU implementation of the DEsolver

and stencil kernels, with a PGPEH of 20.46 (6x better PGPEH than best CPU’s) and

30.65 (1.4x better PGPEH than base SIMD), respectively. The stencil kernel’s PGPEH

drops to 17.27 (because of the 10 extra hours) for optimized GPU implementation

suggesting that it is not worth spending the extra hours if the 61.3x speedup suffice.

For seam carving, the energy-update (EU) algorithm adds an extra 3 hours (table

not shown). We combined the energy-update with the SIMD and GPU versions for the

resizing of a 1920x1080 video. The resulting effort for the SIMD_EU and GPU_EU is

29 and 43 hours, with PGPEH of 43% and 12%, respectively (table not shown). Thus,

50

using SIMD CPUs to resizing an HD video with SC is not only faster (12.49x over

base) than the GPU (5.25x over base), but requires less effort and the gained for every

effort hour is much higher. Better results are found in our CPU-GPU heterogeneous

version, which requires 40 hours that result in 21.39x speedup – a PGPEH of 53%.

Table 5: A quantification of the programming effort. *: includes the analysis effort to evaluate the

kernel for use of shorter operands. C: compiler auto-vectorized, only accounts for ST Opt. effort. **:

Multi-core effort only. NPI: No performance improvement; we do not calculate the PGPEH since there

was no improvement. The ST_AV column shows if the single-threaded optimization is required for

auto-vectorization. N/A: no room for optimization; or could not implement in the platform; or we used

the optimized kernels for full applications. SAV: ST Needed for Auto Vectorization.

Kernel /

Application

Programming Effort

ST Opt.
SAV

Base SIMD Opt. SIMD Multi-core

hr PGPEH hr PGPEH hr PGPEH hr PGPEH

mri-q 2 0.91 N/A N/A N/A 5 1.22 5+1 2.52

stencil 1 7.02 yes 1 C 23.33 4 5.87 1+1 16.66

histogram N/A N/A N/A 2 NPI N/A N/A 3** NPI

gradient 5 0.47 yes 5 C 0.73 14 2.39 5+1 1.11

dynamic

programming
2* 0.855 yes 2 C 2.45 8 1.38 2** NPI

matrix

resizing
1 2.02 N/A 3 1.1 N/A N/A 1** NPI

seam carving 8 0.29 yes: N/A N/A 26 0.75
26+

5
0.94

Laplacian N/A N/A N/A 2 1.04 N/A N/A 1** NPI

DEsolver 5 0.36 N/A N/A N/A N/A N/A 5+5 3.61

CAPPS 5 0.36 N/A N/A N/A N/A N/A
5+1

0
2.52

Kernel /

Application

Programming Effort

Best CPU Base GPU Opt. GPU

hr PGPEH hr PGPEH hr PGPEH

mri-q 6 2.52 N/A N/A 12 9.81

stencil 2 16.66 2 30.65 10 17.27

histogram N/A N/A N/A N/A 16 NPI

gradient 14 2.39 7 5.84 24 4.275

dynamic

programming
8 1.38 6 0.27 N/A N/A

matrix resizing 3 1.1 3 2.29 N/A N/A

seam carving 31 0.94 N/A N/A 40 0.085

Laplacian 2 1.04 5 3.14 N/A N/A

DEsolver 10 3.61 3 20.46 N/A N/A

CAPPS 15 2.52 N/A N/A 13 4.46

51

CHAPTER 7

CONCLUSION AND RELATED WORK

General-purpose computation on GPUs (GPGPUs) has been an active research

topic. Extensive work has been published on GPGPU computation; this is well

summarized in [5]. A number of studies [1, 6, 37, 40, 41] discuss similar kernels and

applications as in this thesis. Many of them focus on mapping the kernel/application

onto GPU efficiently. Their GPU-optimized implementations are often compared only

with single-threaded CPU baseline. Sometimes multi-threading is also evaluated,

however, SIMD is often neglected. An exception is [1], where, as in this work, authors

present a fair performance evaluation by utilizing all available hardware resources.

However, in [1], energy-efficiency has not been studied. A few recent papers [4, 5]

evaluate energy-efficiency. Different from previous work, we have shown that kernel-

only evaluation is not sufficient to draw conclusions for performance and energy-

efficiency. Furthermore, to the best of our knowledge, this work is the first to combine

a detailed characterization and performance evaluation of kernels and full applications

with a quantification of the programming effort for various platform-specific

implementations.

In this thesis, aside from kernels, we studied two full applications that utilize

several of these kernels. We evaluate kernel-only and full-application performances

and energy-efficiencies separately, which we have not seen done in previous work.

Several papers [19, 37, 40, 41] explore GPU implementation of the seam carving

52

application. In [40], a different algorithm is proposed to help parallelization. In [37], a

heuristics is used to eliminate the dynamic programming in the seam matrix

computation of seam carving. Changing the algorithm entirely may help

parallelization but it may also reduce the quality of the resized image/video. [41]

focused on optimizing and parallelizing the original seam carving algorithm [7].

However, they evaluate the removal of one seam, which is only part of the resizing

operation. They also have not evaluated kernels and the full-application separately.

[40] and [41] compare their seam carving implementation against the single-threaded

CPU baseline only. In addition, none of the prior seam carving work evaluates energy-

efficiency. In this thesis, we show that true heterogeneous implementation utilizes the

best hardware resources for the seam carving operation to provide best performance

and energy efficiency.

CAPPS is implemented using MPI in [8], which explores the performance of a

CPU-only cluster with 16 cores. In this thesis, we utilize a 60-core cluster and a CPU-

GPU heterogeneous system, and evaluate the performance and energy consumption of

the systems.

In this thesis, we exploit the highly-parallel computational capabilities of CUDA-

capable GPUs and multi-core SIMD CPUs to evaluate the performance and energy-

efficiency of eight kernels and two full applications. For all of these applications, we

fairly utilize the hardware capabilities of both CPUs and GPUs. The compute-

intensive parts of the applications have been parallelized using a combination of

SIMD, pthreads, MPI, and CUDA.

53

We have evaluated 15 optimization techniques to utilize hardware resources in

both CPUs and GPUs. Our results show that only when all appropriate optimizations

have been applied, a fair comparison between CPUs and GPUs can be made. We have

also found that kernel-only performance and energy-efficiency evaluation may be

misleading because of the way a kernel might be used in an application and therefore

true results must be obtained using full applications. The best-performing platform for

each of our kernels and applications vary. The GPU is best for data-parallel scientific

application and kernels such as, CAPPS, mri-q, stencil, gradient and matrix resizing.

The CPU is best for the histogram and dynamic programming kernels. Finally, a

heterogeneous CPU-GPU implementation is best for applications with diverse kernels

such as seam carving.

We have observed that data width has a profound effect on the performance of

SIMD implementations and therefore we have drawn attention into choice of operand

width and value scaling in applications. Finally, we discuss the programming effort for

various implementations of the studied kernels and applications. In order to compare

efficiency of effort across different benchmarks and platforms, we have defined a new

metric called Performance gain Per Effort Hours or PGPEH.

54

REFERENCES

[1] Lee, V. W., Kim, C., Chhugani, J., Deisher, M., Kim, D., Nguyen, A. D., Satish,

N., Smelyanskiy, M., Chennupaty, S., Hammarlund, P., Singhal, R., and Dubey,

P., “Debunking the 100X GPU vs. CPU Myth: An Evaluation of Throughput

Computing on CPU and GPU,” in Proceedings ACM International Symposium

on Computer Architecture, June 2010, pp. 451-460.

[2] Intel, “SSE4 Programming Reference”, Available at: http://software.intel. com/

sites/default/files/m/9/4/2/d/5/17971-intel_20sse4_20programming_20 reference.

pdf, April 2007.

[3] Intel, "2nd Generation Intel Core Processor Family Desktop," Available at:

http://www.intel.com/ content/www/us/en/processors/core/2nd-gen-core-

desktop-vol-1-datasheet.html, 2012.

[4] Huang S., Xiao, S., Feng, W., “On the Energy Efficiency of Graphics Processing

Units for Scientific Computing,” in Proceedings of IEEE International Parallel

& Distributed Processing Symposium, 2009.

[5] Cebrian, J., Guerrero, G., and Garcia, J., “Energy efficiency analysis of GPUs,”

in Proceedings of IEEE International Parallel & Distributed Processing

Symposium, 2012.

[6] Stratton, J., Rodrigues, R., Sung, I., Obeid, N., Chang, L., Anssari, N., Liu, G.,

Hwu, W., “Parboil: A Revised Benchmark Suite for Scientific and Commercial

Throughput Computing,” IMPACT Technical Report, IMPACT-12-01,

University of Illinois at Urbana-Champaign, 2012.

55

[7] Avidan, S. and Shamir, A., "Seam Carving for Content-Aware Image Resizing,"

in Proceedings ACM SIGGRAPH, 26, July 2007.

[8] Amani, M., Vetter, F. J., “Unstable spiral waves in a 2D numerical model of

myocardium,” in Proceedings of the 35th Annual Northeast Bioengineering

Conference, April 2009, pp. 66-67.

[9] Stone, S., Haldar, J., Tsao, S., Hwu, W., Liang, Z., Sutton, B., "Accelerating

Advanced MRI Reconstructions on GPUs," in Proceedings of conference on

Computing frontiers, 2008, pp.261-272.

[10] Itti, L., Koch, C., Niebur, E., "A model of saliency-based visual attention for

rapid scene analysis," in IEEE Transactions on Pattern Analysis and Machine

Intelligence, Nov. 1998, pp. 1254–1259.

[11] Suh, B., Ling, H., Bederson, B., Jacobs, D., "Automatic thumbnail cropping and

its effectiveness," in Proceedings of User Interface Software and Technology,

2003, pp. 95–104.

[12] Chen, L., Xie, X., Fan, X., "A visual attention model for adapting images on

small displays," Multimedia Systems, 9, 2003, pp. 353–364.

[13] Ciocca, G., Cusano, C., Gasparini, F., Schettini, R., “Self-adaptive image

cropping for small displays,” in IEEE International Conference on Consumer

Electronics, 2007.

[14] Santella, A., Agrawala, M., DeCarlo, D., Salesin, D., Cohen, M., "Gaze-based

interaction for semi-automatic photo cropping," in Proceedings of the SIGCHI

Conference on Human Factors in Computing Systems, 2006, pp. 771–780.

56

[15] Adobe, “Photoshop Support”, Available at: http://www.photoshopsupport.com/

photoshop-cs4/what-is- new-in-photoshop-cs4.html, 2012.

[16] Wikidots Liquid Rescale, "Content-aware resizing for the GIMP" Available:

http:// liquidrescale.wikidot.com, 2010.

[17] Digikam, “Liquid Rescale tool” Available at: http://www.digikam.org/node/439,

2012.

[18] ImageMagick, “Resize or Scaling (General Techniques)”. Available at:

http://www.imagemagick. org/Usage/resize, 2012.

[19] Duarte, R. and Sendag, R., "Accelerating and Characterizing Seam Carving

Using a Heterogeneous CPU-GPU System," in Proceedings of the 18th Annual

International Conference on Parallel and Distributed Processing Techniques

and Application, July 2012, pp. 658-663.

[20] Thilagam, K., Karthikeyan, S., "Optimized Image Resizing using Piecewise

Seam Carving," in International Journal of Computer Applications, 2012, pp.

24-30.

[21] Conge, D., Kumar, M., Miller, R., Luo, J., Radha, H., "Improved seam carving

for image resizing," In IEEE Workshop on Signal Processing Systems, Oct.

2010, pp. 345-349.

[22] Achanta, R., and Süsstrunk, S., "Saliency detection for content-aware image

resizing," 16th IEEE Inernationalt Conference on Image Processing, Nov. 2009.

[23] Gonzalez, R. C., Woods, R. E., “Image Enhancement in the Spatial Domain,”

Digital Image Processing, 2002, pp.125-127.

http://www.photoshopsupport.com/
http://www.digikam.org/node/439

57

[24] Xu, L., Lu, C., Xu, Y., Jia, J., " Image smoothing via L0 gradient minimization,"

In Proceedings of ACM SIGGRAPH Asia, Dec. 2011, Vol. 30, No. 174.

[25] Sun, J., Sun, J., Xu, Z., Shum, H., "Image super-resolution using gradient profile

prior," IEEE Conference on Computer Vision and Pattern Recognition, 2008, pp.

1-8.

[26] Scharstein, D., "Matching images by comparing their gradient fields," in

Proceedings of the 12th IAPR International Conference on Computer Vision &

Image Processing, 1994.

[27] MathWorks, "Matlab" Available at: http://www.mathworks.com/products/

matlab/, 2013.

[28] Pandit, S. V., Clark, R. B., Giles, W. R., Demir, S. S., “A mathematical model

of action potential heterogeneity in adult rat left ventricular myocytes,”

Biophysical Journal, 81, Dec. 2001, pp. 3029-51.

[29] Fast V. G., “Effects of electrical shocks on Cai2+ and Vm in myocyte cultures,”

Circulation Research, 94, May 2004, pp. 1589-1597.

[30] NVIDIA, "NVIDIA GeForce GTX 580 GPU Datasheet," Available at:

http://www.geforce.com/ Active/en_US/en_US/pdf/GTX-580-Web-Datasheet-

Final.pdf, 2010.

[31] NVIDIA, "NVIDIA CUDA C Programming Guide 4.2," Available at :

http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUD

A_C_Programming_Guide.pdf, 2012.

[32] VDT Math, "The VDT Mathematical Library", Available at: https://svnweb.

cern.ch/trac/vdt, 2012.

http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Programming_Guide.pdf

58

[33] Abel, J., "Applications Tuning for Streaming SIMD Extensions," Intel

Technology Journal, Q2, 1999.

[34] Mistry, P., Schaa, D., Jang, B., Kaeli, D., Dvornik, A., Meglan, D., "Data

structures and transformations for physically based simulation on a GPU," in

Proceedings of the 9th International Conference on High Performance

Computing for Computational Science, 2010, pp. 162-171.

[35] ILCS, “AVX-optimized,” Available at: software-lisc.fbk.eu/avx_mathfun, 2012

[36] Jang, B., Schaa, D., Mistry, P., Kaeli, D., "Exploiting Memory Access Patterns

to Improve Memory Performance in Data Parallel Architectures", in IEEE

Transactions on Parallel and Distributed Systems, Jan. 2011, pp. 105-118.

[37] Hua, H., Fu, T., Rosin, P. L., Qi, C. "Real-time Content-aware Image Resizing,"

Science in China Series F: Information Sciences, 52, Feb. 2009 pp. 172-182.

[38] Intel, “Intel Architectures Optimization Reference Manual,” Available at:

http://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-

architectures-optimization-manual.html, 2012

[39] Intel, "Intel Intrinsics Guide" Available at: http://software.intel.com/en-us/

articles/intel-intrinsics-guide, 2013.

[40] Chiang, C., Wang, S., Chen, Y., Lai, S., " Fast AND-Based Video Carving with

GPU Acceleration for Real-Time Video Retargeting," in IEEE Transactions on

Circuits and Systems for Video Technology, 19, 2009, pp. 1588–1597.

[41] Češnovar, R., Bulić, P., Dobravec, T., "Optimization of a single seam removal

using a GPU" in Proceedings of the 17th Annual International Conference on

Parallel and Distributed Processing Techniques and Applications, 2011.

59

BIBLIOGRAPHY

Abel, J., "Applications Tuning for Streaming SIMD Extensions," Intel Technology

Journal, Q2, 1999.

Achanta, R., and Süsstrunk, S., "Saliency detection for content-aware image resizing,"

16th IEEE Inernationalt Conference on Image Processing, Nov. 2009.

Adobe, “Photoshop Support”, Available at: http://www.photoshopsupport.com/

photoshop-cs4/what-is- new-in-photoshop-cs4.html, 2012

Amani, M., Vetter, F. J., “Unstable spiral waves in a 2D numerical model of

myocardium,” in Proceedings of the 35th Annual Northeast Bioengineering

Conference, April 2009, pp. 66-67.

Avidan, S. and Shamir, A., "Seam Carving for Content-Aware Image Resizing," in

Proceedings ACM SIGGRAPH, 26, July 2007.

Cebrian, J., Guerrero, G., and Garcia, J., “Energy efficiency analysis of GPUs,” in

Proceedings of IEEE International Parallel & Distributed Processing

Symposium, 2012.

Češnovar, R., Bulić, P., Dobravec, T., "Optimization of a single seam removal using a

GPU" in Proceedings of the 17th Annual International Conference on Parallel

and Distributed Processing Techniques and Applications, 2011.

Chen, L., Xie, X., Fan, X., "A visual attention model for adapting images on small

displays," Multimedia Systems, 9, 2003, pp. 353–364.

http://www.photoshopsupport.com/

60

Chiang, C., Wang, S., Chen, Y., Lai, S., " Fast AND-Based Video Carving with GPU

Acceleration for Real-Time Video Retargeting," in IEEE Transactions on

Circuits and Systems for Video Technology, 19, 2009, pp. 1588–1597.

Ciocca, G., Cusano, C., Gasparini, F., Schettini, R., “Self-adaptive image cropping for

small displays,” in IEEE International Conference on Consumer Electronics,

2007.

Conge, D., Kumar, M., Miller, R., Luo, J., Radha, H., "Improved seam carving for

image resizing," In IEEE Workshop on Signal Processing Systems, Oct. 2010,

pp. 345-349.

Digikam, “Liquid Rescale tool” Available at: http://www.digikam.org/node/439, 2012

Duarte, R. and Sendag, R., "Accelerating and Characterizing Seam Carving Using a

Heterogeneous CPU-GPU System," in Proceedings of the 18th Annual

International Conference on Parallel and Distributed Processing Techniques

and Application, July 2012, pp. 658-663.

Fast V. G., “Effects of electrical shocks on Cai2+ and Vm in myocyte cultures,”

Circulation Research, 94, May 2004, pp. 1589-1597.

Gonzalez, R. C., Woods, R. E., “Image Enhancement in the Spatial Domain,” Digital

Image Processing, 2002, pp.125-127.

Hua, H., Fu, T., Rosin, P. L., Qi, C. "Real-time Content-aware Image Resizing,"

Science in China Series F: Information Sciences, 52, Feb. 2009 pp. 172-182.

Huang S., Xiao, S., Feng, W., “On the Energy Efficiency of Graphics Processing Units

for Scientific Computing,” in Proceedings of IEEE International Parallel &

Distributed Processing Symposium, 2009.

http://www.digikam.org/node/439

61

ILCS, “AVX-optimized,” Available at: software-lisc.fbk.eu/avx_mathfun, 2012

ImageMagick, “Resize or Scaling (General Techniques)”. Available at:

http://www.imagemagick. org/Usage/resize, 2012

Intel, “SSE4 Programming Reference”, Available at: http://software.intel.com/sites/d

efault/files/m/9/4/2/d/5/17971-intel_20sse4_20programming_20reference.pdf,

April 2007.

Intel, "2nd Generation Intel Core Processor Family Desktop," Available at:

http://www.intel.com/ content/www/us/en/processors/core/2nd-gen-core-

desktop-vol-1-datasheet.html, 2012.

Intel, “Intel Architectures Optimization Reference Manual,” Available at:

http://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-

32-architectures-optimization-manual.html, 2012.

Intel, "Intel Intrinsics Guide" Available at: http://software.intel.com/en-us/

articles/intel-intrinsics-guide, 2013.

Itti, L., Koch, C., Niebur, E., "A model of saliency-based visual attention for rapid

scene analysis," in IEEE Transactions on Pattern Analysis and Machine

Intelligence, Nov. 1998, pp. 1254–1259.

Jang, B., Schaa, D., Mistry, P., Kaeli, D., "Exploiting Memory Access Patterns to

Improve Memory Performance in Data Parallel Architectures", in IEEE

Transactions on Parallel and Distributed Systems, Jan. 2011, pp. 105-118.

Lee, V. W., Kim, C., Chhugani, J., Deisher, M., Kim, D., Nguyen, A. D., Satish, N.,

Smelyanskiy, M., Chennupaty, S., Hammarlund, P., Singhal, R., and Dubey,

P., “Debunking the 100X GPU vs. CPU Myth: An Evaluation of Throughput

http://software.intel.com/sites/

62

Computing on CPU and GPU,” in Proceedings ACM International Symposium

on Computer Architecture, June 2010, pp. 451-460.

MathWorks, "Matlab" Available at: http://www.mathworks.com/products/ matlab/,

2013.

Mistry, P., Schaa, D., Jang, B., Kaeli, D., Dvornik, A., Meglan, D., "Data structures

and transformations for physically based simulation on a GPU," in

Proceedings of the 9th International Conference on High Performance

Computing for Computational Science, 2010, pp. 162-171.

NVIDIA, "NVIDIA GeForce GTX 580 GPU Datasheet," Available at:

http://www.geforce.com/ Active/en_US/en_US/pdf/GTX-580-Web-Datasheet-

Final.pdf, 2010.

NVIDIA, "NVIDIA CUDA C Programming Guide 4.2," Available at :

http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CU

DA_C_Programming_Guide.pdf, 2012.

Pandit, S. V., Clark, R. B., Giles, W. R., Demir, S. S., “A mathematical model of

action potential heterogeneity in adult rat left ventricular myocytes,”

Biophysical Journal, 81, Dec. 2001, pp. 3029-51.

Santella, A., Agrawala, M., DeCarlo, D., Salesin, D., Cohen, M., "Gaze-based

interaction for semi-automatic photo cropping," in Proceedings of the SIGCHI

Conference on Human Factors in Computing Systems, 2006, pp. 771–780.

Scharstein, D., "Matching images by comparing their gradient fields," in Proceedings

of the 12th IAPR International Conference on Computer Vision & Image

Processing, 1994.

http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Programming_Guide.pdf

63

Stone, S., Haldar, J., Tsao, S., Hwu, W., Liang, Z., Sutton, B., "Accelerating

Advanced MRI Reconstructions on GPUs," in Proceedings of conference on

Computing frontiers, 2008, pp.261-272.

Stratton, J., Rodrigues, R., Sung, I., Obeid, N., Chang, L., Anssari, N., Liu, G., Hwu,

W., “Parboil: A Revised Benchmark Suite for Scientific and Commercial

Throughput Computing,” IMPACT Technical Report, IMPACT-12-01,

University of Illinois at Urbana-Champaign, 2012.

Suh, B., Ling, H., Bederson, B., Jacobs, D., "Automatic thumbnail cropping and its

effectiveness," in Proceedings of User Interface Software and Technology,

2003, pp. 95–104.

Sun, J., Sun, J., Xu, Z., Shum, H., "Image super-resolution using gradient profile

prior," IEEE Conference on Computer Vision and Pattern Recognition, 2008,

pp. 1-8

Thilagam, K., Karthikeyan, S., "Optimized Image Resizing using Piecewise Seam

Carving," in International Journal of Computer Applications, 2012, pp. 24-30.

VDT Math, "The VDT Mathematical Library", Available at: https://svnweb.

cern.ch/trac/vdt, 2012.

Wikidots Liquid Rescale, "Content-aware resizing for the GIMP" Available: http://

liquidrescale.wikidot.com, 2010.

Xu, L., Lu, C., Xu, Y., Jia, J., " Image smoothing via L0 gradient minimization," In

Proceedings of ACM SIGGRAPH Asia, Dec. 2011, Vol. 30, No. 174.

	Improving Performance of Data-Parallel Applications on CPU-GPU Heterogeneous Systems
	Terms of Use
	Recommended Citation

	FULL TITLE HERE IN ALL CAPS IN A FORMAT

