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Abstract

We investigate global dynamics of the following systems of difference equations⎧⎪⎨
⎪⎩
xn+1 =

α1 + β1xn
A1 + yn

yn+1 =
γ2yn

A2 + B2xn + yn

, n = 0, 1, 2, . . .

where the parameters a1, b1, A1, g2, A2, B2 are positive numbers, and the initial
conditions x0 and y0 are arbitrary nonnegative numbers. We show that this system
has rich dynamics which depends on the region of parametric space. We show that
the basins of attractions of different locally asymptotically stable equilibrium points
or non-hyperbolic equilibrium points are separated by the global stable manifolds of
either saddle points or non-hyperbolic equilibrium points. We give examples of a
globally attractive non-hyperbolic equilibrium point and a semi-stable non-hyperbolic
equilibrium point. We also give an example of two local attractors with precisely
determined basins of attraction. Finally, in some regions of parameters, we give an
explicit formula for the global stable manifold.
Mathematics Subject Classification (2000)
Primary: 39A10, 39A11 Secondary: 37E99, 37D10

Keywords: Basin of attraction, Competitive map, Global stable manifold, Monotoni-
city, Period-two solution

1 Introduction
In this paper, we study the global dynamics of the following rational system of differ-

ence equations⎧⎪⎨
⎪⎩
xn+1 =

α1 + β1xn
A1 + yn

yn+1 =
γ2yn

A2 + B2xn + yn

, n = 0, 1, 2, . . . (1)

where the parameters a1, b1, A1, g2, A2, B2 are positive numbers and initial condi-

tions x0 and y0 are arbitrary nonnegative numbers.

System (1) was mentioned in [1] as one of three systems of Open Problem 3, which

asked for a description of the global dynamics of some rational systems of difference

equations. In notation used to label systems of linear fractional difference equations
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used in [1], System (1) is referred to as (29, 38). This system is dual to the system

where the roles of xn and yn are interchanged, which is labeled as (29, 38) in [1], and

so all results proven here extend to the latter system. In this paper, we provide a pre-

cise description of the global dynamics of the System (1). We show that System (1)

may have between zero and three equilibrium points, which may have different local

character. If System (1) has one equilibrium point, then this point is either locally

asymptotically stable or saddle point or non-hyperbolic equilibrium point. If System (1)

has two equilibrium points, then they are either locally asymptotically stable and non-

hyperbolic, or locally asymptotically stable and saddle point. If System (1) has three

equilibrium points, then two of equilibrium points are locally asymptotically stable and

the third point, which is between these two points in southeast ordering defined

below, is a saddle point. The major problem for global dynamics of the System (1) is

determining the basins of attraction of different equilibrium points. The difficulty in

analyzing the behavior of all solutions of the System (1) lies in the fact that there are

many regions of parameters where this system possesses different equilibrium points

with different local character and that in several cases, the equilibrium point is non-

hyperbolic. However, all these cases can be handled by using recent results from [2].

System (1) is a competitive system, and our results are based on recent results about

competitive systems in the plane, see [2,3]. System (1) can be used as a mathematical

model for competition in population dynamics. In fact, second equation in (1) is of

Leslie-Gower type, and first equation can be considered to be of Leslie-Gower type

with stocking which is represented with the term a1, see [4-6].

In the next section, we present some general results about competitive systems in the

plane. Section 3 contains some basic facts such as the non-existence of period-two

solution of System (1). Section 4 analyzes local stability which is fairly complicated for

this system. Finally, Section 5 gives global dynamics for all values of parameters.

2 Preliminaries
A first-order system of difference equations{

xn+1 = f (xn, yn)
yn+1 = g(xn, yn)

, n = 0, 1, 2, . . . (2)

where S ⊂ ℝ2, (f, g): S ® S, f, g are continuous functions is competitive if f(x, y) is

non-decreasing in x and non-increasing in y, and g(x, y) is non-increasing in x and

non-decreasing in y. If both f and g are non-decreasing in x and y, the System (2) is

cooperative. Competitive and cooperative maps are defined similarly. Strongly competi-

tive systems of difference equations or strongly competitive maps are those for which

the functions f and g are coordinate-wise strictly monotone.

Competitive and cooperative systems have been investigated by many authors, see

[2,3,5-19]. Special attention to discrete competitive and cooperative systems in the

plane was given in [2,3,5-7,10,12,17,20]. One of the reasons for paying special attention

to two-dimensional discrete competitive and cooperative systems is their applicability

and the fact that many examples of mathematical models in biology and economy

which involve competition or cooperation are models which involve two species.

Another reason is that the theory of two-dimensional discrete competitive and coop-

erative systems is very well developed, unlike such theory for three and higher
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dimensional systems. Part of the reason for this situation is de Mottoni and Schiaffino

theorem given below, which provides relatively simple scenarios for possible behavior

of many two-dimensional discrete competitive and cooperative systems. However, this

does not mean that one cannot encounter chaos in such systems as has been shown

by Smith, see [17].

If v = (u, v) Î ℝ2, we denote with Ql (v), ℓ Î {1, 2, 3, 4}, the four quadrants in ℝ2

relative to v, i.e.,Q1 (v) = {(x, y) ℝ2: x ≥ u, y ≥ v},Q2 (v) = {(x, y) Î ℝ2: x ≤ u, y ≥ v},

and so on. Define the South-East partial order ≼se on ℝ2 by (x, y) ≼se (s, t) if and only

if x ≤ s and y ≥ t. Similarly, we define the North-East partial order ≼ne on ℝ2 by (x, y)

≼ne (s, t) if and only if x ≤ s and y ≤ t. For A ⊂ ℝ2 and x Î ℝ2, define the distance

from x to A as dist(x, A) = inf{||x-y||: y Î A}. By int A, we denote the interior of a set

A.

It is easy to show that a map F is competitive if it is non-decreasing with respect to

the South-East partial order, that is, if the following holds:(
x1

y1

)
�se

(
x2

y2

)
⇒ F

(
x1

y1

)
�seF

(
x2

y2

)
. (3)

For standard definitions of attracting fixed point, saddle point, stable manifold, and

related notions see [11].

We now state three results for competitive maps in the plane. The following defini-

tion is from [17].

Definition 1 Let S be a nonempty subset of ℝ2. A competitive map T : S ® Sis said
to satisfy condition (O+) if for every x, y in S, T(x) ≼ne T (y) implies x ≼ne y, and T is

said to satisfy condition (O-) if for every x, y in S, T(x) ≼ne T (y) implies y ≼ne x.
The following theorem was proved by de Mottoni and Schiaffino [20] for the Poin-

caré map of a periodic competitive Lotka-Volterra system of differential equations.

Smith [14,15] generalized the proof to competitive and cooperative maps.

Theorem 1 Let S be a nonempty subset of ℝ2. If T is a competitive map for which (O

+) holds then for all x Î S, {Tn(x)} is eventually componentwise monotone. If the orbit

of x has compact closure, then it converges to a fixed point of T. If instead (O-) holds,

then for all x Î S, {T2n(x)} is eventually componentwise monotone. If the orbit of x has

compact closure in S, then its omega limit set is either a period-two orbit or a fixed

point.

The following result is from [17], with the domain of the map specialized to be the

cartesian product of intervals of real numbers. It gives a sufficient condition for condi-

tions (O+) and (O-).

Theorem 2 Let ℛ ⊂ ℝ2 be the cartesian product of two intervals in ℝ. Let T: ℛ ®
ℛ be a C1 competitive map. If T is injective and det JT (x) >0 for all x Î ℛ then T

satisfies (O+). If T is injective and det JT (x) <0 for all x Î ℛ then T satisfies (O-).

The following result is a direct consequence of the Trichotomy Theorem of Dancer

and Hess, see [3] and [21] and is helpful for determining the basins of attraction of the

equilibrium points.

Corollary 1 If the nonnegative cone of ≼ is a generalized quadrant in ℝn, and if T

has no fixed points in 〚u1, u2〛 other than u1 and u2, then the interior of 〚u1, u2〛

is either a subset of the basin of attraction of u1 or a subset of the basin of attraction of

u2.
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Next result is well-known global attractivity result that holds in partially ordered

Banach spaces as well, see [21].

Theorem 3 Let T be a monotone map on a closed and bounded rectangular region ℛ

⊂ ℝ2. Suppose that T has a unique fixed point ē in ℛ. Then ē is a global attractor of T

on ℛ.

The following theorems were proved by Kulenović and Merino [2] for competitive

systems in the plane, when one of the eigenvalues of the linearized system at an equili-

brium (hyperbolic or non-hyperbolic) is by absolute value smaller than 1 while the

other has an arbitrary value. These results are useful for determining basins of attrac-

tion of fixed points of competitive maps.

Theorem 4 Let T be a competitive map on a rectangular region ℛ ⊂ ℝ2. Let x ∈ R
be a fixed point of T such that Δ: = ℛ ∩ int (Q1(x) ∪ Q3(x))is nonempty (i.e., x is not

the NW or SE vertex of ℛ), and T is strongly competitive on Δ. Suppose that the follow-

ing statements are true.

a. The map T has a C1 extension to a neighborhood of x.

b. The Jacobian JT(x)of T at x has real eigenvalues l, μ such that 0 <|l| <μ, where
|l| <1, and the eigenspace El associated with l is not a coordinate axis.

Then there exists a curve C⊂ ℛ through x that is invariant and a subset of the basin

of attraction of x, such that C is tangential to the eigenspace El at x, and C is the graph

of a strictly increasing continuous function of the first coordinate on an interval. Any

endpoints of C in the interior of ℛ are either fixed points or minimal period-two points.

In the latter case, the set of endpoints of C is a minimal period-two orbit of T.

The situation where the endpoints of C are boundary points of ℛ is of interest. The

following result gives a sufficient condition for this case.

Theorem 5 For the curve C of Theorem 4 to have endpoints in ∂ℛ, it is sufficient

that at least one of the following conditions is satisfied.

i. The map T has no fixed points nor periodic points of minimal period-two in Δ.

ii. The map T has no fixed points in Δ, det JT(x) > 0, and T(x) = xhas no solutions

x Î Δ.

iii. The map T has no points of minimal period-two in Δ, det JT(x) < 0, and

T(x) = xhas no solutions x Î Δ.

The next result is useful for determining basins of attraction of fixed points of com-

petitive maps.

Theorem 6 (A) Assume the hypotheses of Theorem 4, and let C be the curve whose

existence is guaranteed by Theorem 4. If the endpoints of C belong to ∂ℛ, then C sepa-

rates ℛ into two connected components, namely

W− := {x ∈ R\C : ∃y ∈ C with x�sey} and W+ := {x ∈ R\C : ∃y ∈ C with y �sex}, (4)

such that the following statements are true.

(i) W- is invariant, and dist (Tn(x), Q2(x̄)) → 0 as n → ∞ for every x ∈ W .

(ii) W+ is invariant, and dist (Tn(x), Q4(x)) → 0 as n → ∞ for every x ∈ W+.
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(B) If, in addition to the hypotheses of part (A), x is an interior point of ℛ and T is

C2 and strongly competitive in a neighborhood of x, then T has no periodic points in

the boundary of (Q1(x) ∪ Q3(x)) except for x, and the following statements are true.

(iii) For every x Î W- there exists n0 Î N such that Tn(x) Î intQ2(x)for n ≥ n0.

(iv) For every x Î W+ there exists n0 Î N such that Tn(x) Î intQ4(x)for n ≥ n0.

If T is a map on a set ℛ and if x is a fixed point of T, the stable set W s(x) of x is the

set {x ∈ R : Tn (x) → x} and unstable set Wu(x) of x is the set

{ x ∈ R : there exists {xn}0n=−∞ ⊂ R s.t. T(xn) = xn+1, x0 = x, and lim
n→−∞ xn = x }

When T is non-invertible, the set W s(x) may not be connected and made up of infi-

nitely many curves, or Wu(x) may not be a manifold. The following result gives a

description of the stable and unstable sets of a saddle point of a competitive map. If

the map is a diffeomorphism on ℛ, the sets W s(x) and Wu(x) are the stable and

unstable manifolds of x.

Theorem 7 In addition to the hypotheses of part (B) of Theorem 6, suppose that μ >1

and that the eigenspace Eμ associated with μ is not a coordinate axis. If the curve C of

Theorem 4 has endpoints in ∂ℛ, then C is the stable set W s(x) of x, and the unstable

set Wu(x) of x̄ is a curve in ℛ that is tangential to Eμ at x and such that it is the

graph of a strictly decreasing function of the first coordinate on an interval. Any end-

points of Wu(x) in ℛ are fixed points of T.

The following result gives information on local dynamics near a fixed point of a map

when there exists a characteristic vector whose coordinates have negative product and

such that the associated eigenvalue is hyperbolic. This is a well-known result, valid in

much more general setting that we include it here for completeness. A point (x, y) is a

subsolution if T(x, y) ≼se (x, y), and (x, y) is a supersolution if (x, y) ≼se T(x, y). An

order interval 〚(a, b), (c, d)〛 is the cartesian product of the two compact intervals

[a, c] and [b, d].

Theorem 8 Let T be a competitive map on a rectangular set ℛ ⊂ ℝ2 with an iso-

lated fixed point x ∈ R such that R ∩ int (Q2(x̄) ∪ Q4(x̄)) 
= ∅. Suppose T has a C1

extension to a neighborhood of x. Let v = (v(1), v(2)) Î ℝ2 be an eigenvector of the Jaco-

bian of T at x, with associated eigenvalue μ Î ℝ. If v(1)v(2) < 0, then there exists an

order interval ℐ which is also a relative neighborhood of x such that for every relative

neighborhood U ⊂ ℐ of x the following statements are true.

i. If μ > 1, then U ∩ int Q2(x)contains a subsolution and U ∩ int Q4(x)contains a

supersolution. In this case for every x ∈ I ∩ int (Q2(x) ∪ Q4(x))there exists N such

that Tn(x) ∉ ℐ for n ≥ N.

ii. If μ < 1, then U ∩ int Q2(x)contains a supersolution and U ∩ int Q4(x) contains

a subsolution. In this case Tn(x) → xfor every x Î ℐ.

3 Some basic facts
In this section, we give some basic facts about the nonexistence of period-two solu-

tions, local injectivity of the map T at the equilibrium point, and boundedness of solu-

tions. See [22] for similar analysis.
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3.1 Equilibrium points

The equilibrium points (x, ȳ) of System (1) satisfy

x̄ =
α1 + β1x̄

A1 + ȳ
, ȳ =

γ2ȳ

A2 + B2x̄ + ȳ
. (5)

Solutions of System (5) are:

(i) ȳ = 0, x̄ =
α1

A1 − β1
, A1 >b1, i.e. E1 =

(
α1

A1 − β1
, 0

)
. Thus, the equilibrium point

E1 =
(

α1
A1−β1

, 0
)
exists if A1 >b1.

(ii) If ȳ 
= 0, then using System (5), we obtain

ȳ = γ2 − A2 − B2x̄, x̄2B2 − x̄(γ2 + A1 − A2 − β1) + α1 = 0. (6)

Solutions of System (6) are:

x̄3,2 =
γ2 + A1 − A2 − β1 ± √

D0

2B2
, ȳ2,3 =

γ2 − A2 − A1 + β1 ± √
D0

2
, (7)

where D0 = (g2 - A2 + A1 - b1)2 - 4B2a1 which gives a pair of the equilibrium points

E2 = (x̄2, ȳ2) and E3 = (x̄3, ȳ3).

The criteria for the existence of the three equilibrium points are summarized in

Table 1.

3.2 Injectivity

Lemma 1 Assume that (x̄, ȳ)is an equilibrium of the map T. Then the following holds:

1) If

B2 >
A2β1

α1
, A1(B2α1 − A2β1)γ2−(B2α1 + (A1−A2)β1)(A1A2−β1A2 + B2α1) = 0, (8)

then T
(
x, A1A2β1+xA1B2β1

B2α1−A2β1

)
= (x̄, ȳ)for all x ≥ 0, where

(x̄, ȳ) =
(
x̄,

A1A2β1 + x̄A1B2β1

B2α1 − A2β1

)
=

(
B2α1 + A2β1

A1B2
,
−A2β

2
1 + A1A2β1 + B2α1β1

B2α1 − A2β1

)
.

That is the line

I =
{(

x,
A1A2β1 + xA1B2β1

B2α1 − A2β1

)
: x ≥ 0

}

is invariant, equilibrium (x̄, ȳ) ∈ Iand for (x, y) Î ℐ the following holds

T(x, y) = (x̄, ȳ), that is every point of this line is mapped to the equilibrium point (x̄, ȳ).

1.i) If (B2α1 − A2β1)2 − A2
1B2α1 > 0then (x̄, ȳ) = E3.

1.ii) If (B2α1 − A2β1)2 − A2
1B2α1 < 0then (x̄, ȳ) = E2.

1.iii) If (B2α1 − A2β1)2 − A2
1B2α1 = 0then (x̄, ȳ) = E3 = E2.

2) If
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B2 ≤ A2β1

α1
or A1 (B2α1 − A2β1) γ2−(B2α1 + (A1 − A2) β1) (A1A2 − β1A2 + B2α1) 
= 0,

then the following holds.

T(x, y) = (x̄, ȳ) ⇒ (x, y) = (x̄, ȳ).

Proof T(x, y) = (x̄, ȳ) is equivalent to(
α1 + β1x
A1 + y

,
γ2y

A2 + B2x + y

)
= (x̄, ȳ). (9)

Since (x̄, ȳ) is the equilibrium point of the map T then System (9) is equivalent to(
α1 + β1x
A1 + y

,
γ2y

A2 + B2x + y

)
=

(
α1 + β1x̄
A1 + ȳ

,
γ2ȳ

A2 + B2x̄ + ȳ

)
. (10)

System (10) is equivalent to

−yα1 + ȳα1 − yx̄β1 + xȳβ1 + xA1β1 − x̄A1β1 = 0 (11)

yA2γ2 − ȳA2γ2 + yx̄B2γ2 − xȳB2γ2 = 0. (12)

Table 1 The equilibrium points of System (1)

E1 A1 > β1, A2 < γ2 < A1 + A2 − β1,
(A1−β1)(γ2−A2)

B2
< α1 ≤ (A1−A2−β1+γ2)

2

4B2
or

A1 > β1, A2 > γ2,α1 ≤ (A1−A2−β1+γ2)
2

4B2
, A1 + γ2 
= A2 + β1 or

A1 > β1, A2 = γ2, α1 ≤ (A1−A2−β1+γ2)
2

4B2
or

A1 > β1, α1 >
(A1−A2−β1+γ2)

2

4B2

E1 ≡ E2 ≡ E3 A1 > β1, A1 + A2 = β1 + γ2, α1 = (A1−β1)(γ2−A2)

B2

E1 ≡ E3, E2 A1 > β1, A1 + A2 < β1 + γ2, A2 < γ2, α1 = (A1−β1)(γ2−A2)

B2

E1, E2, E3 A1 > β1, A1 + A2 < β1 + γ2,
(A1−β1)(γ2−A2)

B2
< α1 <

(A1−A2−β1+γ2)
2

4B2

E1, E2 A1 > β1, A2 < γ2, α1 <
(A1−β1)(γ2−A2)

B2

E1 ≡ E2 A1 > β1, A2 < γ2 < A1 + A2 − β1, α1 = (A1−β1)(γ2−A2)

B2

E1, E2 ≡ E3 A1 > β1, A1 + A2 < β1 + γ2, α1 = (A1−A2−β1+γ2)
2

4B2

E2, E3 A1 < β1, A1 + γ2 > A2 + β1, α1 <
(A1−A2−β1+γ2)

2

4B2
or

A1 = β1, A1 + A2 < β1 + γ2, α1 <
(A1−A2−β1+γ2)

2

4B2

E2 = E3 A1 < β1 A1 + γ2 > A2 + β1, α1 = (A1−A2−β1+γ2)
2

4B2
or

A1 = β1, A1 + A2 < β1 + γ2, α1 = (A1−A2−β1+γ2)
2

4B2

No equilibrium A1 < β1, A2 < γ2 < −A1 + A2 + β1, α1 ≤ (A1−A2−β1+γ2)
2

4B2
or

A1 < β1, A2 ≥ γ2, α1 ≤ (A1−A2−β1+γ2)
2

4B2
or

A1 ≤ β1, α1 >
(A1−A2−β1+γ2)

2

4B2
or

A1 = β1, A1 + A2 > γ2 + β1, α1 ≤ (A1−A2−β1+γ2)
2

4B2
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Equation 11 implies

y =
ȳα1 + xȳβ1 + xA1β1 − x̄A1β1

α1 + x̄β1
.

and Equation 12 is equivalent to

(x − x̄)
(−ȳB2α1 + ȳA2β1 + A1A2β1 + x̄A1B2β1

)
γ2 = 0. (13)

We conclude the following: If
(−ȳB2α1 + ȳA2β1 + A1A2β1 + x̄A1B2β1

) 
= 0, then x = x̄

and y = ȳ.

On the other hand, if
(−ȳB2α1 + ȳA2β1 + A1A2β1 + x̄A1B2β1

)
= 0, since (x̄, ȳ) is the

equilibrium of the map T, then

B2 >
A2β1

α1
, ȳ = −A1 (A2 + x̄B2) β1

A2β1 − B2α1

and

(x̄, ȳ) =
(

α1 + β1x̄
A1 + ȳ

,
γ2ȳ

A2 + B2x̄ + ȳ

)
.

Using these equations, we have

x̄ =
B2α1 − A2β1

A1B2
, ȳ =

β1 (−A1A2 + β1A2 − B2α1)

A2β1 − B2α1

and

A1 (B2α1 − A2β1) γ2 − (B2α1 + (A1 − A2) β1) (A1A2 − β1A2 + B2α1) = 0, (14)

which completes the proof of lemma.

3.3 Period-two solutions

In this section, we prove that System (1) has no minimal period-two solutions which

will be essential for application of Theorem 4 and Corollary 6.

Lemma 2 System (1) has no minimal period-two solution.

Proof Period-two solution satisfies T2(x, y) = (x, y), that is

T2(x, y) =

⎛
⎝α1 +

β1(α1+xβ1)

y+A1

A1 +
yγ2

y+A2+xB2

,
yγ 2

2
(y+A2+xB2)((y+A1)A2+B2(α1+xβ1))

y+A1
+ yγ2

⎞
⎠ = (x, y).

This is equivalent to

−(y + A2 + xB2)(−xβ2
1 − α1β1 + (y + A1)(xA1 − α1)) + xy(y + A1)γ2

(y + A1)(A1(y + A2 + xB2) + yγ2)
= 0

and

y
((
y + A1

)
γ 2
2 − y

(
y + A1

)
γ2 +

(−y − A2 − xB2
) ((

y + A1
)
A2 + B2 (α1 + xβ1)

))
(
y + A2 + xB2

) ((
y + A1

)
A2 + B2 (α1 + xβ1)

)
+ y

(
y + A1

)
γ2

= 0,

which is equivalent to(
y + A2 + xB2

) (−xβ2
1 − α1β1 +

(
y + A1

)
(xA1 − α1)

)
+ xy

(
y + A1

)
γ2 = 0 (15)
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y
((
y + A1

)
γ 2
2 − y

(
y + A1

)
γ2 +

(−y − A2 − xB2
) ((

y + A1
)
A2 + B2 (α1 + xβ1)

))
= 0 (16)

If y = 0, we substitute in (15) to obtain the first fixed point, that is x = α1
A1−β1

i

x = −A2
B2
. Assume(
y + A1

)
γ 2
2 − y

(
y + A1

)
γ2 +

(−y − A2 − xB2
) ((

y + A1
)
A2 + B2 (α1 + xβ1)

)
= 0.(17)

From (17) we calculate x2. We have

x2 = −
(
y + A1

)
A2
2 +

(
y2 + A1

(
y + xB2

)
+ B2

(
α1 + x

(
y + β1

)))
A2

B2
2β1

−xB2
2α1 + yB2 (α1 + xβ1) +

(
y + A1

) (
y − γ2

)
γ2

B2
2β1

.

(18)

Put (18) into (15), we have that (15) is equivalent to

y + A1 = 0 (19)

or (
A1

(
y + A1

) − β2
1

)
γ 2
2 + y

(
β2
1 + xB2β1 − A1

(
y + A1

))
γ2

+
(−y − A2 − xB2

) (−A2β
2
1 + B2α1β1 + A1

((
y + A1

)
A2 + B2α.1

))
= 0

(20)

If (19) holds, then we obtain a negative solution. Now, assume that (20) holds. We

have

x =

(
A1

(
y + A1

) − β2
1

)
γ 2
2 − y

(
A1

(
y + A1

) − β2
1

)
γ2

B2
(
A2A2

1 +
(
yA2 + B2α1

)
A1 − β1

(−B2α1 + A2β1 + yγ2
))

+

(−y − A2
) (−A2β

2
1 + B2α1β1 + A1

((
y + A1

)
A2 + B2α1

))
B2

(
A2A2

1 +
(
yA2 + B2α1

)
A1 − β1

(−B2α1 + A2β1 + yγ2
)) .

(21)

Put (21) into (18), we obtain that (18) is equivalent to

−y2 + (−A1 − A2 + β1 + γ2) y − B2α1 + β1 (A2 − γ2) + A1 (γ2 − A2) = 0 (22)

or

− (A2 + γ2)
(
A2
1 + (β1 − A2)A1 + β1γ2

)
y2 − (A1 + β1) (A1 − A2 + β1 − γ2)

× (B2α1 + A1 (A2 + γ2) − β1 (A2 + γ2)) y + (A1 + β1)
2γ2 (B2α1 + A1 (A2 + γ2) − β1 (A2 + γ2)) = 0.

(23)

If (22) holds, we obtain the fixed points. So, we assume that (23) holds. Set

� : = (A1 + β1)
2 (B2α1 + (A1 − β1) (A2 + γ2))

× (
(B2α1 + (A1 − β1) (A2 + γ2)) (A1 − A2 + β1 − γ2)

2 + 4γ2 (A2 + γ2) (A1 (A1 − A2 + β1) + β1γ2)
)
.

(24)

If Δ ≥ 0 and A1(A1 - A2 + b1) + b1g2 ≠ 0 hold, we obtain the real solution of the

form

y1 = − (�1 − √
�)

2 (A2 + γ2) (A1 (A1 − A2 + β1) + β1γ2)

y2 = − (�1 +
√

�)
2 (A2 + γ2) (A1 (A1 − A2 + β1) + β1γ2)
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where

�1 := (A1 + β1) (A1 − A2 + β1 − γ2) (B2α1 + (A1 − β1) (A2 + γ2)) .

Substituting this into (21), we have that the corresponding solutions are

x1 =
(�2 − √

�)
2B2 (A1 + β1) (A1 (A1 − A2 + β1) + β1γ2)

x2 =
(�2 +

√
�)

2B2 (A1 + β1) (A1 (A1 − A2 + β1) + β1γ2)

where

�2 := (A1 + β1)
(− (A1 + β1) γ 2

2 − (
(A1 + β1)

2 + B2α1
)
γ2 + (−A1 + A2 − β1) (A2 (A1 + β1) − B2α1)

)
. (25)

□
Claim 1 Assume Δ ≥ 0. Then we have:

a) If x1 ≥ 0 then y1 < 0.

b) If x2 ≥ 0 then y2 < 0.

Proof. Since T : [0, ∞)2 ® [0, ∞)2, T(x1, y1) = (x2, y2) and T(x2, y2) = (x1, y1), it is

obvious that if (xi, yi) Î [0, ∞)2 holds then T(xi, yi) Î [0, ∞)2 for i = 1, 2. It is enough

to show that the assumptions (x1, y1), (x2, y2) Î [0, ∞)2 and T(x1, y1) = (x2, y2) ≠ (x1,

y1) lead to a contradiction.

Indeed, if A1(A1 - A2 + b1) + b1g2 > 0 then (x1, y1) ≺se (x2, y2). Since T is strongly

competitive map then (x2, y2) = T(x1, y1) <<se T(x2, y2) = (x1, y1) which is impossible

since (x1, y1) ≺se (x2, y2).
If A1(A1 - A2 + b1) + b1g2 < 0 then (x2, y2) ≺se (x1, y1) Similarly, we have the same

conclusion if A1(A1 - A2 + b1) + b1g2 = 0. □

3.4 Boundedness of solutions

Lemma 3 Assume that y0 = 0, x0 Î ℝ+. Then the following statements are true.

(i) If A1 >b1 then yn = 0 xn → α1
A1−β1

, n ® ∞.

(ii) If A1 <b1 then yn = 0, xn ® ∞, n ® ∞.

(iii) If A1 = b1, then xn = x0 + α1
A1
nand yn = 0, xn ® ∞.

Assume that y0 ≠ 0 and (x0, y0) ∈ R+
2. Then the following statements are true.

(iv) xn+1 ≤ α1
A1

+ β1
A1
xnfor all n = 0, 1, 2,...

(v) yn ≤ g2, n ≥ N, yn+1 ≤ C
(

γ2
A2

)n
and

(a) xn → α1
A1−β1

, A1 >b1.

(b) xn ≤ α1
A1−β1

+ ε, ε > 0, A1 >b1.
(c) If g2 <A2 then yn ® 0, n ® ∞

Proof. Take y0 = 0 and x0 Î ℝ+. Then, we have yn = 0, for all n Î N, and
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xn+1 =
α1

A1
+

β1

A1
xn. (26)

Solution of Equation 26 is

xn = c
(

β1

A1

)n

+
α1

A1 − β1
(27)

From yn+1 = γ2yn
A2+B2xn+yn it follows that yn+1 ≤ γ2

A2
yn, yn+1 ≤ g2, n ≥ 0. The proof of

Lemma 3 follows from (27). □

4 Linearized stability analysis
The map T associated to System (1) is given by

T(x, y) =
(

α1 + β1x
A1 + y

,
γ2y

A2 + B2x + y

)
.

The Jacobian matrix of the map T has the form:

JT =

(
β1

A1+y
− α1+β1x

(A1+y)
2

− B2γ2y
(A2+B2x+y)

2
γ2A2+γ2B2x
(A2+B2x+y)

2

)
. (28)

The value of the Jacobian matrix of T at the equilibrium point E = (x̄, ȳ) is

JT(x̄, ȳ) =

(
β1

A1+ȳ
− x̄

A1+ȳ

− B2 ȳ
A2+B2 x̄+ȳ

γ2A2+γ2B2 x̄
(A2+B2 x̄+ȳ)

2

)
. (29)

The determinant of (29) is given by

det JT(x̄, ȳ) =
β1

A1 + ȳ
γ2A2 + γ2B2x̄

(A2 + B2x̄ + ȳ)2
− x̄

A1 + ȳ
B2ȳ

A2 + B2x̄ + ȳ
.

The trace of (29) is

Tr JT(x̄, ȳ) =
β1

A1 + ȳ
+

γ2A2 + γ2B2x̄

(A2 + B2x̄ + ȳ)2
.

The characteristic equation has the form

λ2−λ

(
β1

A1 + ȳ
+

γ2A2 + γ2B2x̄
(A2 + B2x̄ + ȳ)

)
+

β1(γ2A2 + γ2B2x̄)
(A1 + ȳ)(A2 + B1x̄ + ȳ)2

− B1x̄ȳ
(A1 + ȳ)(A2 + B2x̄ + ȳ)

= 0.

Theorem 9 Assume that A1 >b1. Then there exists the equilibrium point E1 and:

(i) E1 is locally asymptotically stable if γ2 − A2 < B2α1
A1−β1

.

(ii) E1 is a saddle point if γ2 − A2 > B2α1
A1−β1

. The eigenvalues are

λ1 =
β1

A1
, λ2 =

(A1 − β1)γ2
B2α1 + A2(A2 − β1)

.
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The corresponding eigenvectors, respectively, are

v1 = (1, 0), v2 =

⎛
⎝ α1

A1(A1 − β1)
(

β1
α1

− (A1−β1)
A1A2+B2α1−A2β1

) , 1
⎞
⎠ .

(iii) E1 is non-hyperbolic if γ2 − A2 = B2α1
A1−β1

.The eigenvalues are λ1 = β1
A1
, l2 = 1. The

corresponding eigenvectors are
(
− α1

(A1−β1)
2 , 1

)
and (1, 0).

Proof. Evaluating Jacobian (29) at the equilibrium point E1(a1/(A1 - b1), 0),

JT(E1) =

(
β1
A1

− α1
A1(A1−β1)

0 (A1−β1)γ2
A2(A1−β1)+B2α1

)
. (30)

The determinant of (30) is given by

det JT(x̄, ȳ) =
β1γ2(A1 − β1)

A1[A2(A1 − β1) + B2α1]
.

The trace of (30) is

Tr JT(x̄, ȳ) =
β1

A1
+

(A1 − β1)γ2
A2(A1 − β1) + B2α1

.

The characteristic equation associated to System (1) at E1 has the form(
β1

A1
− λ

)(
(A1 − β1)γ2

A2(A1 − β1) + B2α1
− λ

)
= 0. (31)

From Equation 31 we have

λ1 =
β1

A1
, λ2 =

(A1 − β1)γ2
A2(A1 − β1) + B2α1

.

(i) If A1 >b1 and γ2 − A2 < B2α1
A1−β1

then l1 < 1 and l2 < 1. Hence, E1 is a sink.

(ii) If A1 >b1 and γ2 − A2 > B2α1
A1−β1

. Then l1 < 1, and l2 < 1. Hence, E1 is a saddle.

(iii) If A1 >b1 and γ2 − A2 = B2α1
A1−β1

. Then, using Equation 31, we have that l1 < 1

and l2 < 1.

From (30) we obtain the eigenvectors that correspond to these eigenvalues. □

We now perform a similar analysis for the other cases in table.

Theorem 10 Assume

A1 > β1, A1 + A2 < β1 + γ2,
(A1 − β1) (γ2 − A2)

B2
< α1 <

(A1 − A2 − β1 + γ2)
2

4B2
.

Then E1, E2, E3 exist and:

(i) Equilibrium E1 is locally asymptotically stable.
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(ii) Equilibrium E3 is a saddle point. The eigenvalues are

λ1 =
−ȳ3

(
A1 + ȳ3

)
+ γ2

(
A1 + β1 + ȳ3

) − √D
2γ2

(
A1 + ȳ3

)
and

λ2 =
−ȳ3

(
A1 + ȳ3

)
+ γ2

(
A1 + β1 + ȳ3

)
+

√D
2γ2(A1 + ȳ3)

,

and |l1| < 1, |l2| > 1, where

D = ȳ23
(
A1 + ȳ3

)2 − 2γ2ȳ3
(
A1 − β1 − 2B2x̄3 + ȳ3

) (
A1 + ȳ3

)
+ γ 2

2

(
A1 − β1 + ȳ3

)2.
The corresponding eigenvectors, respectively, are

v1 =
(
−ȳ3

(
A1 + ȳ3

)
+ γ2

(
A1 − β1 + ȳ3

)
+

√
D, 2B2ȳ3

(
A1 + ȳ3

))
v2 =

(
−ȳ3

(
A1 + ȳ3

)
+ γ2

(
A1 − β1 + ȳ3

) −
√
D, 2B2ȳ3

(
A1 + ȳ3

))
.

(iii) Equilibrium E2 is locally asymptotically stable.

Proof. By Theorem 9 (i) holds.

Equilibrium E3 is a saddle if and only if the following conditions are satisfied

|TrJT(x̄, ȳ)| > |1 + det JT(x̄, ȳ)| and Tr2JT(x̄, ȳ) − 4det JT(x̄, ȳ) > 0.

The first condition is equivalent to

β1

A1 + ȳ
+

γ2A2 + γ2B2x̄

(A2 + B2x̄ + ȳ)2
>

∣∣∣∣1 +
β1

(A1 + ȳ)
γ2A2 + γ2B2x̄

(A2 + B2x̄ + ȳ)2
− B2x̄ȳ

(A1 + ȳ)(A2 + B2x̄ + ȳ)

∣∣∣∣
which is equivalent to

β1(A2 + B2x̄ + ȳ)2 + (A1 + ȳ)(γ2A2 + γ2B2x̄)

> (A1 + ȳ)(A2 + B2x̄ + ȳ)2 + β1γ2(A2 + B2x̄) − B2x̄ȳ(A2 + B2x̄ + ȳ).

This is equivalent to

(A2 + B2x̄ + ȳ)2(β1 − A1 − ȳ) + γ2(A2 + B2x̄)(A1 + ȳ − β1) > −B2x̄ȳ(A2 + B2x̄ + ȳ)

γ 2
2 (β1 − A1 − ȳ) + γ2(A2 + B2x̄)(A1 + ȳ − β1) > −B2γ2x̄ȳ

(A1 − β1 + ȳ)(A2 + B2x̄ − γ2) > −B2x̄ȳ

(β1 − A1 − ȳ)(A2 + B2x̄ − γ2) < B2x̄ȳ.

We have to prove that (β1 − A1 − ȳ3)(A2 + B2x̄3 − γ2) < B2x̄3ȳ3. Notice that

β1 − A1 − ȳ3 = −B2x̄2 and A2 + B2x̄3 − γ2 = −ȳ3.

Now,

(β1 − A1 − ȳ3)(A2 + B2x̄3 − γ2) < B2x̄3ȳ3

is equivalent to B2x̄2ȳ3 < B2x̄3ȳ3. This implies x̄2 < x̄3 which is true. Condition

Tr2JT(x̄, ȳ) − 4det JT(x̄, ȳ) > 0
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is equivalent to(
β1

A1 + ȳ
− γ2A2 + γ2B2x̄

(A2 + B2x̄ + ȳ)2

)2

+
4B2x̄ȳ

(A1 + ȳ)(A2 + B2x̄ + ȳ)
> 0

which is clearly satisfied. Hence, E3 is a saddle.

Now, we prove that E2 is locally asymptotically stable. Notice that

|TrJT(x̄, ȳ)| < 1 + det JT(x̄, ȳ) < 2

implies x̄3 > x̄2 which is true.

The second condition is equivalent to

β1

(A1 + ȳ)
γ2A2 + γ2B2x̄

(A2 + B2x̄ + ȳ)2
− B2x̄ȳ

(A1 + ȳ)(A2 + B2x̄ + ȳ)
< 1.

This implies the following

β1γ2(A2 + B2x̄) − B2x̄ȳ(A2 + B2x̄ + ȳ) < (A1 + ȳ)(A2 + B2x̄ + ȳ)2.

Now, using Equation 5, we obtain

β1γ2(γ2 − ȳ) − B2x̄ȳγ2 < (A1 + ȳ)γ 2
2

−(β1ȳ + B2x̄ȳ) < (A1 − β1 + ȳ)γ2

which is true, since the left side is always negative, while the right side is always

positive.

Theorem 11 Assume

A1 > β1, A1 + A2 < β1 + γ2, α1 =
(A1 − A2 − β1 + γ2)

2

4B2
.

Then E1(a1/(A1 - b1), 0) and E2 = E3 =
(

γ2−A2+A1−β1
2B2

, γ2−A2−A1+β1
2

)
exist and

(i) Equilibrium E1 is locally asymptotically stable.

(ii) Equilibrium E2 is non-hyperbolic. The eigenvalues are

λ1 = 1, λ2 =
A2
1 − A2

2 + 2A2β1 − β2
1 + 2A2γ2 + 2β1γ2 − γ 2

2

2γ2(A1 − A2 + β1 + γ2)
.

The corresponding eigenvectors are

(−1/B2, 1),
(

2γ2(A1 − A2 − β1 + γ2)
B2(−A1 − A2 + β1 + γ2)(A1 − A2 + β1 + γ2)

, 1
)
.

Proof. By Theorem 9, E1 is locally asymptotically stable.

Now, we prove that E2 is non-hyperbolic.

Evaluating Jacobian (29) at the equilibrium point E2 =
(

γ2−A2+A1−β1
2B2

, γ2−A2−A1+β1
2

)
,

JT(E2) =

(
β1

A1+ȳ
− x̄

A1+ȳ

−B2 ȳ
γ2

A2+B2 x̄
γ2

)
=

(
2β1

A1+γ2−A2+β1

−γ2+A2−A1+β1
B2(A1+γ2−A2+β1)−B2(γ2−A2−A1+β1)

2γ2

A2+γ2+A−1−β1
2γ2

)
. (32)
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The eigenvalues of (32) are

λ1 = 1, and λ2 =
A2
1 − A2

2 + 2A2β1 − β2
1 + 2A2γ2 + 2β1γ2 − γ 2

2

2γ2(A1 − A1 + β1 + γ2)
.

Notice that |l2| < 1. Hence, E2 is non-hyperbolic.

Theorem 12 Assume

A1 > β1, A2 < γ2 < A1 + A2 − β1,
(A1−β1)(γ2−A2)

B2
< α1 ≤ (A1−A2−β1+γ2)

2

4B2

A1 > β1, A2 > γ2, α1 ≤ (A1−A2−β1+γ2)
2

4B2
, A1 + γ2 
= A2 + β1

A1 > β1, A2 = γ2, α1 ≤ (A1−A2−β1+γ2)
2

4B2

A1 > β1, α1 >
(A1−A2−β1+γ2)

2

4B2

Then there exists a unique equilibrium E1 (a1/(A1 - b),0) which is locally asymptoti-

cally stable.

Proof. Observe that the assumption of Theorem 12 implies that the y coordinates of

the equilibrium E2 and E3 are less then zero. By Theorem 9 E1 is locally asymptotically

stable.

Theorem 13 Assume

A1 > β1, A2 < γ2, α1 <
(A1 − β1) (γ2 − A2)

B2
.

Then then there exist two equilibrium points E1 and E2. E1 is a saddle point. The

eigenvalues are

λ1 =
β1

A1
, λ2 =

(A1 − β1)γ2
B2α1 + A2(A2 − β1)

.

The corresponding eigenvectors, respectively, are

v1 = (1, 0), v2 =

⎛
⎝ α1

A1(A1 − β1)
(

β1
α1

− (A1−β1)
A1A2+B2α1−A2β1

) , 1
⎞
⎠ .

The equilibrium E2 is locally asymptotically stable.

Proof. By Theorem 9 (ii), E1 is a saddle point.

Now, we check the sign of coordinates of the equilibrium point E2. We have that

x̄2 > 0, since all parameters are positive. Consider ȳ2. Since

(A1 − A2 − β1 + γ2)
2

4B2
− (A1 − β1) (γ2 − A2)

B2
=

(A1 + A2 − β1 − γ2)
2

4B2
> 0,

we have that (g2 - A2 + A1 - b1)2 - 4a1B2 > 0.

ȳ1 > 0 ⇔ γ2 − A2 + β1 − A1 +
√
(γ2 − A2 + A1 − β1)

2 − 4α1B2 > 0.

This implies√
(γ2 − A2 + A1 − β1)

2 − 4α1B2 > (A1 − β1) − (γ2 − A2). (33)
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From Equation 33, we see that inequality is always true if A1 - b1 <g2 - A2. If A1 - b1
>g2 - A2, then

(γ2 − A2)2 + 2(γ2 − A2)(A1 − β1) + (A1 − β1)2 − 4α1B1 > (A1 − β1)2 − 2(A1 − β1)(γ2 − A2)

(γ2 − A2)(A1 − β1) > α1B2

which is true, since A1 − β1 > B2α1
γ2−A2

. So, in both cases x̄2 > 0 and ȳ2 > 0.

Notice, that x̄3 > 0. Now, we check the sign of ȳ3. Assume that ȳ3 > 0. Then, we

have

ȳ2 > 0 ⇔ (γ2 − A2) − (A1 − β1) >

√
(γ2 − A2 + A1 − β1)

2 − 4α1B2.

⇔ (γ2 − A2)(A − 1 − β1) < α1B2.

This is a contradiction with the assumption of theorem and so E3 is not in consid-

ered domain.

By Theorem 10, E2 is a locally asymptotically stable.

Theorem 14 Assume

A1 > β1, A1 + A2 < β1 + γ2, α1 =
(A1 − β1) (γ2 − A2)

B2
.

Then there exist two equilibrium points E1 ≡ E3 =
(

α1
A1−β1

, 0
)

and

E2 =
(

α1
γ2−A2

, γ2−A2−A1+β1
2

)
, and E1 ≡ E3 is non-hyperbolic. The eigenvalues are λ1 = β1

A1
,

l2 = 1. The corresponding eigenvectors are
(
− α1

(A1−β1)
2 , 1

)
and (1. 0) The equilibrium

point E2 is locally asymptotically stable.

Proof. By Theorem 10, E2 is locally asymptotically stable. By Theorem 9 (iii), E1 is

non-hyperbolic.

Now, we consider the special case of System (1) when A1 = b1.
In this case, System (1) becomes{

xn+1 = α1+A1xn
A1+yn

yn+1 = γ2yn
A2+B2xn+yn

, n = 0, 1, 2, . . . (34)

The map T associated to System (34) is given by

T(x, y) =
(

α1 + A1x
A1 + y

,
γ2y

A2 + B2x + y

)
.

The Jacobian matrix of the map T has the form:

JT =

( A1
A1+y

− α1+A1x
(A1+y)

2

− β2γ2y
(A2+B2x+y)

2
γ2A2+γ2B2x
(A2+B2x+y)

2

)
. (35)

The value of the Jacobian matrix of T at the equilibrium point E = (x̄, ȳ) is

JT(x̄, ȳ) =

(
A1
A1+ȳ

− x̄
A1+ȳ

− B2 ȳ
A2+B2 x̄+ȳ

γ2A2+γ2B2 x̄
(A2+B2 x̄+ȳ)

2

)
=

(
A1
A1+ȳ

− x̄
A1+ȳ

−B2 ȳ
γ2

A2+B2 x̄
γ2

)
. (36)
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The characteristic equation of T at (x̄, ȳ) has the form

λ2 − λ

(
A1

A1 + ȳ
+
A2 + B2x̄

γ2

)
+

A1

A1 + ȳ
A2 + B2x̄

γ2
− B2x̄ȳ

(A1 + ȳ)γ2
= 0.

Equilibrium points satisfy the following System

x̄ = α1+A1 x̄
A1+ȳ

ȳ = γ2 ȳ
A2+B2 x̄+ȳ

n = 0, 1, . . .
(37)

Notice, if ȳ = 0, then using the first equation of System (37 we obtain a1 = 0 which is

impossible. If ȳ 
= 0 then, using System (37), we obtain

ȳ = γ2 − A2 − B2x̄

0 = B2x̄
2 − x̄(γ2 − A2) + α1.

and the equilibrium points are:

E3 =

⎛
⎜⎝γ2 − A2 +

√
(γ2 − A2)

2 − 4B2α1

2B2
,
γ2 − A2 −

√
(γ2 − A2)

2 − 4B2α1

2

⎞
⎟⎠ ,

E2 =

⎛
⎜⎝γ2 − A2 −

√
(γ2 − A2)

2 − 4B2α1

2B2
,
γ2 − A2 +

√
(γ2 − A2)

2 − 4B2α1

2

⎞
⎟⎠ .

We prove the following.

Theorem 15 Assume

A1 = β1.

Then the following statements hold.

(i) If g2 >A2, (g2 - A2)
2 - 4B2a1 > 0 then System (34) has two positive equilibrium

points

E3 =

⎛
⎜⎝γ2 − A2 +

√
(γ2 − A2)

2 − 4B2α1

2B2
,
γ2 − A2 −

√
(γ2 − A2)

2 − 4B2α1

2

⎞
⎟⎠

and

E2 =

⎛
⎜⎝γ2 − A2 −

√
(γ2 − A2)

2 − 4B2α1

2B2
,
γ2 − A2 +

√
(γ2 − A2)

2 − 4B2α1

2

⎞
⎟⎠ .

E3 is a saddle point. The eigenvalues are

λ1 =
−ȳ3(A1 + ȳ3) + γ2(2A1 + ȳ3) − √

F
2γ2(A1 + ȳ3)

, |λ1| < 1

λ2 =
−ȳ3(A1 + ȳ3) + γ2(2A1 + ȳ3) +

√
F

2γ2(A1 + ȳ3)
, λ2 > 1,
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where

F = ȳ23(A1 + ȳ3)2 − 2γ2ȳ3(ȳ3 − 2B2x̄3)(A1 + ȳ3) + γ 2
2 ȳ

2
3.

The corresponding eigenvectors are

v1 = (−ȳ3(A1 + ȳ3) + γ2ȳ3 +
√
F, 2B2ȳ3(A1 + ȳ3)),

v2 = (−ȳ3(A1 + ȳ3) + γ2ȳ3 −
√
F, 2B2ȳ3(A1 + ȳ3)).

The equilibrium E2 is locally asymptotically stable.

(ii) If g2 >A2, (g2 - A2)
2 - 4B2a1 > 0 then System (34) has a unique equilibrium point

E =
(

γ2−A2
2B2

, γ2−A2
2

)
which is non-hyperbolic. The eigenvalues are l1 = 1 and

λ2 = 2A1A2−A2
2+2A1γ2+2A2γ2−γ 2

2
2γ2(2A1−A2+γ2)

. The corresponding eigenvectors are: (-1/B2, 1) and(
2γ2

B2(2A1−A2+γ2)
, 1

)
.

(iii) If g2 <A2 and (g2 - A2)
2 - 4B2a1 ≥ 0 or (g2 - A2)

2 - 4B2a1 > 0 then System (34)

has no equilibrium points.

Proof. (i) First, notice that under these assumptions, E3 and E2 are positive. Now, we

prove that E3 is a saddle point.

The equilibrium point E3 is a saddle if and only if the following conditions are

satisfied|Tr JT(x̄, ȳ)| > |1 + det JT(x̄, ȳ)| and Tr2JT(x̄, ȳ) − 4det JT(x̄, ȳ) > 0.

The first condition is equivalent to

A1

A1 + ȳ
+
A2 + B2x̄

γ2
>

∣∣∣∣1 +
A1(A2 + B2x̄)
γ2(A1 + ȳ)

− B2x̄ȳ
γ2(A1 + ȳ)

∣∣∣∣ ,
which is equivalent to

A1γ2 + (A1 + ȳ)(A2 + B2x̄) > γ2(A1 + ȳ) + A1(A1 + B2x̄) − B2x̄ ȳ,

and this is equivalent to

γ2 − A2 < 2B2x̄.

In the case of equilibrium E3, this condition becomes

γ2−A2 < 2B2x̄3 ⇔ γ2−A2 < γ2−A2+
√
(γ2 − A2)

2 − 4B2α1 ⇔
√
(γ2 − A2)

2 − 4B2α1 > 0,

which is true.

The second condition becomes

(
A1

A1 + ȳ
+
A2 + B2x̄

γ2

)2

−4
A1(A2 + B − 2x̄)

γ2(A1 + ȳ)
+4

B2x̄ȳ
γ2(A1 + ȳ)

=
(

A1

A1 + ȳ
− A2 + B2x̄

γ2

)2

+4
B2x̄ȳ

γ2(A1 + ȳ)

which is greater then zero. Hence, E3 is a saddle.

Now, we prove that E2 is locally asymptotically stable. The equilibrium point E2 is

locally asymptotically stable if the following is satisfied

|Tr JT(x̄, ȳ)| < 1 + det JT(x̄, ȳ) < 2.
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The first condition is equivalent to

A1

A1 + ȳ
+
A2 + B2x̄

γ2
< 1 +

A1(A2 + B2x̄)
γ2(A1 + ȳ)

− B2x̄ȳ

γ2(A1 + ȳ)
.

This implies

A1γ2 + (A1 + ȳ)(A2 + B2x̄) < γ2(A1 + ȳ) + A1(A2 + B2x̄) − B2x̄ȳ

which is equivalent to γ2 − A2 > 2B2x̄. In the case of the equilibrium point E2, we

have

γ2 − A2 > γ2 − A2 −
√
(γ2 − A2)

2 − 4B2α1 ⇔ −
√
(γ2 − A2)

2 − 4B2α1 < 0

which is true.

The second condition is equivalent to

A1(A2 + B2x̄)
γ2(A1 + ȳ)

− B2x̄ȳ

γ2(A1 + ȳ)
< 1.

This implies

A1(A2 + B2x̄) − B2x̄ȳ < γ2(A1 + ȳ) ⇔ A1(A2 − γ2 + B2x̄) < ȳ(γ2 + B2x̄).

Notice that

A2−γ2+B2x̄2 =
A2 − γ2 −

√
(γ2 − A2)

2 − 4B2α1

2
= −

γ2 − A2 +
√
(γ2 − A2)

2 − 4B2α1

2
= −ȳ2.

Now, condition A1(A2 − γ2 + B2x̄) < ȳ(γ2 + B − 2x̄) becomes

−A1ȳ2 < ȳ2(γ2 + B2x̄2) ⇔ −A1 < γ2 + B2x̄2 which is true. Hence, E2 is locally asympto-

tically stable.

(ii) The characteristic equation associated to System (37) at E has the form

λ2 − λ

(
2A1

2A1 + γ2 − A2
+
A2 + γ2

2γ2

)
+
A1

γ2
− (γ2 − A2)

2

2γ2(2A1 + γ2 − A2)
= 0. (38)

Solutions of Equation (38) are l1 = 1 and λ2 = 2A1A2−A2
2+2A1γ2+2A2γ2−γ 2

2
2γ2(2A1−A2+γ2)

.

The corresponding eigenvectors are (-1/B2, 1) and
(

2γ2
B2(2A1−A2+γ2)

, 1
)
.

If g2 <A2 and (g2 - A2)
2 - 4B2a1 ≥ 0 then x̄2 < 0 and x̄3 < 0.

Theorem 16 Assume

A1 < β1, γ2 > A2, γ2 − A2 > β1 − A1 and (γ2 − A2 + A1 − β1)2 − 4B2α1 > 0.

Then there exist two positive equilibrium points

E2 =

⎛
⎜⎝γ2 − A2 + A1 − β1 −

√
(γ2 − A2 + A1 − β1)

2 − 4B2α1

2B2
,
γ2 − A2 − A1 + β1 +

√
(γ2 − A2 + A1 − β1)

2 − 4B2α1

2

⎞
⎟⎠

and

E3 =

⎛
⎜⎝γ2 − A2 + A1 − β1 +

√
(γ2 − A2 + A1 − β1)

2 − 4B2α1

2B2
,
γ2 − A2 + β1 − A1 −

√
(γ2 − A2 + A1 − β1)

2 − 4B2α1

2

⎞
⎟⎠ .
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E2 is locally asymptotically stable and E3 is a saddle. The eigenvalues of characteristic

equation at E3 are

λ1 =
−ȳ3

(
A1 + ȳ3

)
+ γ2

(
A1 + β1 + ȳ3

) ∓ √D
2γ2

(
A1 + ȳ3

) ,

where

D = ȳ23
(
A1 + ȳ3

)2 − 2γ2ȳ3
(
A1 − β1 − 2B2x̄3 + ȳ3

) (
A1 + ȳ3

)
+ γ 2

2

(
A1 − β1 + ȳ3

)2.
The corresponding eigenvectors are

v1,2 =
(
−ȳ3

(
A1 + ȳ3

)
+ γ2

(
A1 − β1 + ȳ3

) ±
√
D, 2B2ȳ3

(
A1 + ȳ3

))
.

Proof. Now, we prove that E2 is a sink. We check the condition

|TrJT(x̄, ȳ)| < 1 + det JT(x̄, ȳ) < 2. The first condition is equivalent to

β1

A1 + ȳ
+
A2 + B2x̄

γ2
< 1 +

β1(A2 + B2x̄)
γ2(A1 + ȳ)

− B2x̄ȳ

γ2(A1 + ȳ)
.

This implies

β1γ2 + (A1 + ȳ)(A2 + B2x̄) < γ2(A1 + ȳ) + β1(A2 + B2x̄) − B2x̄ȳ

γ2(β1 − A1 − ȳ) + (A2 + B2x̄)(A1 + ȳ − β1) < −B2x̄ȳ

(A1 − β1 + ȳ)(A2 + B2x̄ − γ2) < −B2x̄ȳ

ȳ(A1 − β1 + ȳ) > B2x̄ȳ

(A1 − β1 + ȳ) > B2x̄.

So, we have to prove

(A1 − β1 + ȳ2) > B2x̄2. (39)

Note that

A1 − β1 + ȳ2 = A1 − β1 +
γ2 − A2 + β1 − A1 +

√
(γ2 − A2 + A1 − β1)

2 − 4B2α1

2

=
A1 − β1 + γ2 − A2 +

√
(γ2 − A2 + A1 − β1)

2 − 4B2α1

2B2
B2

= B2x̄3.

Now, (39) becomes B2x̄3 > B2x̄2 ⇒ x̄3 > x̄2 which is true.

The second condition is equivalent to

β1(A2 + B2x̄)
γ2(A1 + ȳ)

− B2x̄ȳ

γ2(A1 + ȳ)
< 1.

This implies β1(γ2 − ȳ) − B2x̄ȳ < γ2(A1 + ȳ). Using equations of equilibrium points,

we obtain ȳ2(β1 + B2x̄2) > γ2(β1 − A1 − ȳ2) and
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β1 + B2x̄2 = β1 +
γ2 − A2 + A1 − β1 −

√
(γ2 − A2 + A1 − β1)

2 − 4B2α1

2

=
γ2 − A2 + A1 + β1 −

√
(γ2 − A2 + A1 − β1)

2 − 4B2α1

2
> 0.

On the other hand, we have

(β1 − A1 − ȳ2 = β1 − A1 −
γ2 − A2 + β1 − A1 +

√
(γ2 − A2 + A1 − β1)

2 − 4B2α1

2

=
β1 − A1 + A2 − γ2 −

√
(γ2 − A2 + A1 − β1)

2 − 4B2α1

2
< 0

since g2 - A2 >b1 - A1. Hence, E2 is locally asymptotically stable.

Now, we prove that E3 is a saddle.

The equilibrium point E3 is a saddle if and only if the following conditions are satis-

fied

|Tr JT(x̄, ȳ)| > |1 + det JT(x̄, ȳ)| and Tr 2JT(x̄, ȳ) − 4det JT(x̄, ȳ) > 0.

Note that the first condition is equivalent to B2x̄3 > B2x̄2 ⇒ x̄3 > x̄2 which is true.

The second condition becomes

(
β1

A1 + ȳ
+
A2 + B2x̄

γ2

)2

−4
β1(A2 + B2x̄)
(A1 + ȳ)γ2

+4
B2x̄ȳ

γ2(A1 + ȳ)
=

(
β1

A1 + ȳ
− A2 + B2x̄

γ2

)2

+4
B2x̄ȳ

γ2(A1 + ȳ)
> 0.

Hence, E3 is a saddle. □
Theorem 17 Assume

A1 < β1, γ2 > A2, γ2−A2 > β1−A1 and (γ2 + A1 − A2 − β1)2−4α1B2 = 0.

Then there exists a unique equilibrium point

E2 ≡ E3 = E =
(

γ2−A2+A1−β1
2B2

, γ2−A2+β1−A1
2

)
which is non-hyperbolic. The eigenvalues are:

λ1 = 1 and λ2 =
A2
1 − A2

2 + 2A2β1 − β2
1 + 2A2γ2 + 2β1γ2 − γ 2

2

2γ2(A1 − A2 + β1 + γ2)
.

The corresponding eigenvectors are:(
− 1
B2

, 1
)
, and

(
2γ2(A1 − A2 − β1 + γ2)

B2(−A1 − A2 + β1 + γ2)(A1 − A2 + β1 + γ2)
, 1

)
.

Proof. The value of the Jacobian matrix of T at the equilibrium point E = (x̄, ȳ) is

JT(x̄, ȳ) =

(
2β1

γ2−A2+β1+A1

γ2−A2+A1−β1
B2(A1+γ2−A2+β1)

−B2(γ2−A2+β1−A1)
2γ2

A2+γ2+A1−β1
2γ2

)
. (40)

The characteristic equation is given by

λ2 − λ

(
2β1

γ2 − A2 + β1 + A1
+
A2 + γ2 + A1 − β1

2γ2

)
+

β1(A2 + γ2 + A1 − β1)
γ2(γ2 − A2 + β1 + A1)

−(γ2 − A2 + β1 − A1)(γ2 − A2 + A1 − β1)
2γ2(A1 + γ2 − A2 + β1)

= 0.
(41)
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Solutions of Equation (41) are:

λ1 = 1 and λ2 =
A2
1 − A2

2 + 2A2β1 − β2
1 + 2A2γ2 + 2β1γ2 − γ 2

2

2γ2(A1 − A2 + β1 + γ2)
.

By using (40), we obtain the corresponding eigenvectors.

5 Global behavior
Theorem 18 Table 2 describes the global behavior of System (1).

Proof. Throughout the proof of theorem ≼ will denote ≼se.
(Ri, i = 1, 4) By Theorem 9, E1 is locally asymptotically stable. Consider M(t) = (0, t)

for t ≥ g2 - A2. Since M(t) − T(M(t)) =
(
− α1

t+A1
, t(t+A2−γ2)

t+A2

)
, we have M(t) ≼ T(M(t)) for

t ≥ g2 - A2. By induction, TnM(t) ≼ Tn+1(M(t))) ≼ E1 for all n = 0,1,2,... because M(t) ≼
E1 for all t ≥ 0. By monotonicity and boundedness, the sequence {Tn(M(t))} has to con-

verge to the unique equilibrium E1. Consider N(u) = (u, 0) for u ≥ 0. Lemma 3 implies

Tn (N(u)) ® E1 as n ® ∞. Take any point (x, y) Î [0, +∞)×[0, +∞). Then there exists

t*, u* ≥ 0, such that M(t*) ≼ (x, y) ≼ (x, y) ≼ N(u*). The monotonicity of the map T

implies Tn M(t*)) ≼ Tn ((x, y)) ≼ Tn (N(u*)). Since Tn M(t*)), Tn (N(u*)) ® E1 as n ®
∞, then Tn ((x, y)) ® E1. This completes the proof.

(ℛ5) The first part of this theorem is proven in Theorem 9. The rest of the proof is

similar to the proof of part ((Ri, i = 1, 4)).

(ℛ6) By Lemma 3 y0 = 0 implies yn = 0, ∀n Î N, and xn → α1
A1−β1

, n ® ∞, which

shows that x-axis is a subset of the basin of attraction of E1.

Furthermore, every solution of (1) enters and stays in the box B(E2) and so we can

restrict our attention to solutions that starts in B(E2). Clearly, the set Q2(E2) ∩ B(E2) is
an invariant set with a single equilibrium point E2 and by Theorem 3, every solution

that starts there is attracted to E2. In view of Corollary 1, the interior of rectangle

〚E2, E1〛 is attracted to either E1 or E2, and because E2 is the local attractor, it is

attracted to E2. If (x, y) ∈ A = B\([[E2,E1]] ∪ (Q2(E2) ∩ B) ∪ {(x, 0) : x ≥ 0}), then

there exist the points (xu, yu) Î A ∩ Q4(E2) and (xl, yl) Î Q2(E2) ∩ B such that (xl, yl)

≼se (x, y) ≼se (xu, yu). Consequently, Tn ((xl, yl)) ≼se Tn ((x, y)) ≼se Tn ((xu, yu)) for all n

= 1,2,... and so Tn ((x, y)) ® E2 as n ® ∞, which completes the proof.

(ℛ7) The first part of this Theorem is proven in Theorem 13.

Now, we prove a global result.

JT(E1) =

(
β1
A1

− α1
A1(A1−β1)

0 (A1−β1)γ2
A1A2−β1A2+B2α1

)
(42)

The eigenvalues of JT(E1) are given by λ1 = β1
A1

and λ2 = (A1−β1)γ2
A1A2−β1A2+B2α1

and so

A2 < γ2, α1 <
(A1 − β1) (γ2 − A2)

B2
⇒ λ2 > 1, A1 > β1 ⇒ λ1 < 1.

The eigenvector of T at E1 that corresponds to the eigenvalue l1 < 1 is (1, 0).

The rest of the proof is similar to the proof of part (ℛ6).

(ℛ8, ℛ9) The first part of theorem follows from Theorems 15 and 16. If parameters

a1 b1, A1, g2, A2 and B2 do not satisfy the condition (8) of Lemma 1, then the map T

defined on the set R = R2
+, satisfies all conditions of Theorems 4, 6-8. This implies that
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Table 2 Global behavior of System (1)

Region Global behavior

R1A1 > β1,A2 < γ2 < A1 + A2 − β1,

(A1 − β1)(γ2 − A2)
B2

< α1 ≤ (A1 − A2 − β1 + γ2)
2

4B2
or

R2A1 > β1,A2 > γ2,α1 ≤ (A1 − A2 − β1 + γ2)
2

4B2
,

A1 + γ2 
= A2 + β1,
or
R3 A1 > β1, A2 = γ2, α1 ≤ (A1 − A2 − β1 + γ2)

2

4B2
or
R4 A1 > β1,α1 >

(A1 − A2 − β1 + γ2)
2

4B2

There exists a unique
equilibrium E1, and it is globally
asymptotically stable (G.A.S.).
The basin of attraction of E1 is
given by B1(E1) = [0, ∞)2

R5 A1 > β1, γ2 + β1 ≤ A1 + A2, α1 =
(A1 − β1)(γ2 − A2)

B2
There exists a unique
equilibrium E1 = E2 which is
non-hyperbolic. Furthermore,
this equilibrium is the global
attractor. Its basin of attraction is
given by B(E1) = [0, +∞)2. This
is an example of globally
attractive non-hyperbolic
equilibrium point

R6 A1 > β1, A1 + A2 < β1 + γ2, α1 =
(A1 − β1)(γ2 − A2)

B2
There exist two equilibrium
points E = E1 = E3 which is non-
hyperbolic, and E2, which is
locally asymptotically stable.
Furthermore, the x-axis is the
basin of attraction of E1. The
equilibrium point E2 is globally
asymptotically stable with the
basin of attraction B(E2) = [0,
+∞) × [0, +∞)

R7 A2 > β1, A2 < γ2, α1 <
(A1 − β1)(γ2 − A2)

B2
There exist two equilibrium
points E1, which is a saddle, and
E2, which is a locally
asymptotically stable equilibrium
point. Furthermore, the x-axis is
the global stable manifold of
Ws(E1). The equilibrium point E2
is globally asymptotically stable
with the basin of attraction
B(E2) = [0, +∞) × [0, +∞)

R8 A1 < β1,A1 + γ2 > A2 + β1, α1 <
(A1 − A2 − β1 + γ2)

2

4B2

There exist two equilibrium
points E3, which is a saddle, and
E2, which is locally
asymptotically stable.
Furthermore, there exists the
global stable manifold Bs(E3)
that separates the positive
quadrant so that all orbits
below this manifold are
asymptotic to (+∞, 0), and all
orbits above this manifold are
asymptotic to the equilibrium
point E2. All orbits that starts
on Bs(E3) are attracted to E3
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Table 2 Global behavior of System (1) (Continued)

or

R9A1 = β1,A1 + A2 < β1 + γ2,

α1 <
(A1 − A2 − β1 + γ2)

2

4B2R10A1 > β1,A1 + A2 < β1 + γ2,

(A1 − β1)(γ2 − A2)
B2

< α1 <
(A1 − A2 − β1 + γ2)

2

4B2
,

There exist three equilibrium
points E1, E2, and E3, where E1
and E2 are locally asymptotically
stable and E3 is a saddle. There
exists the global stable manifold
Ws(E3) that separates the
positive quadrant so that all
orbits below this manifold are
attracted to the equilibrium
point E1, and all orbits above
this manifold are attracted to
the equilibrium point E2. All
orbits that starts on Ws(E3) are
attracted to E3. The global
unstable manifold Ws(E3) is the
graph of a continuous strictly
decreasing function, and Wu(E3)
has endpoints E2 and E1

R11 A1 > β1,A1 + A2 < β1 + γ2,α1 =
(A1 − A2 − β1 + γ2)

2

4B2

There exist two equilibrium
points E = E2 = E3 and E1. E1 is
locally asymptotically stable and
E is non-hyperbolic. There exists
a continuous increasing curve
WE which is a subset of the
basin of attraction of E. All orbits
that start below this curve are
attracted to E1. All orbits that
start above this curve are
attracted to E

R12 A1 < β1,A1 + γ2 > A2 + β1,α1 =
(A1 − A2 − β1 + γ2)

2

4B2

There exists a unique
equilibrium point E = E2 = E3
which is non-hyperbolic. There
exists a continuous increasing
curve WE which is a subset of
basin of attraction of E. All orbits
that start below this curve are
attracted to (+∞, 0). All orbits
that start above this curve are
attracted to E. This is an
example of semi-stable non-
hyperbolic equilibrium point

or
R13A1 = β1,A1 + A2 < β1 + γ2,

α1 =
(A1 − A2 − β1 + γ2)

2

4B2R14A1 < β1,A2 < γ2 < −A1 + A2 + β1,

α1 ≤ (A1 − A2 − β1 + γ2)
2

4B2

System (1) does not posses an
equilibrium point. Its behavior is
as follows xn ® ∞, yn ® ∞, n
® ∞

or
R15A1 < β1, A2 ≥ γ2,

α1 ≤ (A1 − A2 − β1 + γ2)
2

4B2or
R16 A1 ≤ β1,α1 >

(A1 − A2 − β1 + γ2)
2

4B2

or
R17A1 = β1,A1 + A2 > γ2 + β1,

α1 ≤ (A1 − A2 − β1 + γ2)
2

4B2
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there exists the global stable manifold Ws(E3) that separates the first quadrant into two

invariant regions W-(E3) (above the stable manifold) and W+(E3) (below the stable

manifold) which are connected. Now, we show that each orbit starting in the region

W+(E3) is asymptotic to (∞,0). Indeed, set T1(x, y) =
α1+β1x
A1+y

, T2(x, y) =
γ2y

A2+B2x+y. Take x =

(x0, y0) Î W+(E3) ∩ ℛ (+, -), where ℛ(+, -) = {(x, y) Î ℛ: T1(x, y) >x, T2(x, y) <y}. As

is known, see [12], the set ℛ(+, -) is invariant. We have

T1(x0, y0) =
α1 + β1x0
A1 + y0

> x0, T2(x0, y0) =
γ2y0

A2 + B2x0 + y0
< y0,

which implies the following

(x0, y0)�se(T1(x0, y0),T2(x0, y0)) ⇔ (x0, y0)�seT(x0, y0).

By monotonicity, T(x0, y0) ≼ se T
2 (x0, y0) and by induction, Tn(x0, y0) ≼ se T

n+1 (x0,

y0). This implies that sequence {xn} is non-decreasing and {yn} is non-increasing. Since,

{yn} is bounded from above, hence it must converges. Now limn® ∞ yn = 0 since other-

wise (xn, yn) will converge to another limit which is strictly south-east of E3, which is

impossible. By Lemma 3, xn ® ∞. By Theorems 6-8 for all (x, y) Î W+(E3), there exists

n0 > 0 such that Tn((x, y)) Î int(Q4(E3) ∩ ℛ), n >n0. We see that for all (x, y) Î int(Q4

(E3)) ∩ ℛ), there exists (xl, yl) Î W+(E3) ∩ ℛ(+, -) such that (xl, yl) ≼ (x, y). By mono-

tonicity Tn ((xl, yl)) ≼ Tn ((x, y)) ≼ (∞, 0). This implies Tn ((x, y)) ® (∞, 0) as n ® ∞.

Now, we show that each orbit starting in the region W-(E3) converges to E2. By The-

orem 6, for all (x, y) Î W-(E3), there exists n0 > 0 such that, Tn((x, y)) Î int(Q2(E3) ∩
ℛ), n >n0. Set M(t) = (0, t) By part ((Ri, i = 1, 4)), for t ≥ g2 - A2, we have

M(t) � T(M(t)) � E2.. By using monotonicity, Tn(M(t)) ® E2 as n ® ∞. By Corollary

1, the interior of rectangle 〚E2, E3〛 is attracted to either E2 or E3, and because E2 is

local attractor, it is attracted to E2. If (x, y) Î int(Q2(E3) ∩ ℛ), then there exist the

points (xr, yr) Î 〚E2, E3〛 and t* ≥ g2 - A2, such that M(t*) ≼se (x, y) ≼se (xr, yr). Con-
sequently, Tn(M(t*)) ≼se Tn((x, y)) ≼se Tn((xr, yr)) for all n = 1, 2,... and so Tn((x, y)) ®
E2 as n ® ∞.

Now, assume that parameters a1, b1, A1, g2, A2, and B2 satisfy the condition (8) and

inequality 1.i) of Lemma 1. Then the set

I =
{(

x,
A1A2β1 + xA1B2β1

B2α1 − A2β1

)
: x ≥ 0

}

is invariant and contains the equilibrium point E3, and T(x, y) = E3 for (x, y) Î ℐ. In

view of the uniqueness of global stable manifold, we conclude that Ws(E3) = ℐ. Take

any point (x, y) Î W+(E3). Then there exists the point (xl, yl) Î ℐ such that (xl, yl)

<<se (x, y). Since, the map T is strongly competitive, then E3 = T(xl, yl) <<se T(x, y).

This implies T(x, y) Î int(Q4(E3) ∩ ℛ). Similarly, if (x, y) Î W-(E3), then T(x, y) Î int

(Q2(E3) ∩ ℛ). The rest of the proof is similar to the proof of the first case. This com-

pletes the proof.

(ℛ10) The first part of the theorem follows from Theorem 10. If parameters a1, b1,
A1, g2, A2, and B2 do not satisfy the condition (8) of Lemma 1, then the map T, defined

on the set R = R2
+,, satisfies all conditions of Theorems 4, 6-8. This implies that there

exists the global stable manifold Ws(E3) that separates the first quadrant into two
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invariant regions W+(E3) (below the stable manifold) and W-(E3) (above the stable

manifold) which are connected.

Using Theorems 6, 7, and 8, we have that for all (x, y) Î W+(E3), there exists n0 >0

such that for n > n0, T
n((x, y)) Î int(Q4(E3) ∩ ℛ), and for all (x, y) Î W-(E3), there

exists n1 >0 such that for all n > n1, T
n((x, y)) Î int(Q2(E3) ∩ ℛ). Now, we show that

each orbit starting in the region int(Q4(E3)) converges to E1, and each orbit starting in

the region int(Q2(E3)) converges to E2.

Take 0 ≤ t ≤ (g2 - A2)/B2, U(t) = (t,-A2 - tB2 + g2). It is easy to see that the following

holds

U(x̄) = E = E2 = E3 � E1 where x̄ = x2 = x3 and

U(t) − T(U(t)) =
(

− (−A1 + A2 + 2tB2 + β1 − γ2)
2

4B2 (A1 − A2 − tB2 + γ2)
, 0

)
.

Since x2 and x3 are solutions of the equation B2t
2 + (-A1 + A2 + b1 - g2) t + a1 = 0

and the following inequality holds A2 + tB2 - g2 <0, we have that U(t) ≼se T(U(t)) for 0
≤ t ≤ x2 and x3 ≤ t ≤ (g 2 - A2)/B2 and T(U(t))) ≼se U(t) for x2 ≤ t ≤ x3.

By using monotonicity of T, we have that for 0 ≤ t < x2, T
n(U(t)) ≼ Tn+1(U(t)) ≼ E2,

and for x2 ≤ t < x3, E2 ≼ Tn+1(U(t)) ≼ Tn(U(t)) ≼ E3. This implies Tn(U(t)) ® E2 as n

® ∞. Similarly, for x3 ≤ t ≤ (g2 - A2)/B2, we have E3 ≼ Tn(U(t)) ≼ Tn+1(U(t)) ≼ E1. This

implies Tn(U(t)) ® E1 as n ® ∞. By using the property of points U(t) and N(u), we

have that for each point (x, y) Î int(Q4(E3) ∩ ℛ), there exits x3 < t* <(g 2 - A2)/B2 and

u* >0 such that U(t*) ≼ (x, y) ≼ N(u*). By using monotonicity of T, we have Tn(U(t*))

≼ Tn((x, y)) ≼ Tn(N(u*))). This implies Tn((x, y)) ® E1 as n ® ∞. Furthermore, for

each point (x, y) Î int(Q2(E3) ∩ ℛ), there exist t1 >0 and t2, x2 < t2 < x3 such that M

(t1) ≼ (x, y) ≼ U(t2). By using monotonicity of T, we have Tn(M(t1)) ≼ Tn ((x, y)) ≼ Tn

(U(t2)). This implies Tn((x, y)) ® E2 as n ® ∞.

Now, assume that parameters a1, A1, g2, A2, and B2 satisfy the condition (8) and

inequality 1.i) of Lemma 1. Then the set

I =
{(

x,
A1A2β1 + xA1B2β1

B2α1 − A2β1

)
: x ≥ 0

}

is invariant and contains the equilibrium point E3 and T(x, y) = E3 for (x, y) Î I. In

view of the uniqueness of global stable manifold, we conclude that Ws(E3) = ℐ. Take

any point (x, y) Î W+(E3), then there exists the point (xl, yl) Î ℐ such that (xl, yl) <<se
(x, y). Since, the map T is strongly competitive, then E3 = T(xl, yl) <<se T(x, y). This

implies T(x, y) Î int(Q4(E3) ∩ ℛ). Similarly, if (x, y) Î W-(E3), then T(x, y) Î int(Q2

(E3) ∩ ℛ). The rest of the proof is similar to the proof of the first case. This completes

the proof.

(ℛ11) The first part of theorem follows from Theorems 15 and 16. If parameters a1,

b1, A1,g2, A2, and B2 do not satisfy the condition (8) of Lemma 1, then the map T,

defined on the set R = R2
+,, satisfies all conditions of Theorems 4, 6, and 8. This

implies that there exists an invariant curve C, which is a subset of the basin of attrac-

tion of the equilibrium point E, which separates the first quadrant into two invariant

regions, W+(E) (below the stable manifold) and W-(E) (above the stable manifold)

which are connected.
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By Theorems 6 and 7 and 8 for all (x, y) Î W+(E), there exists n0 > 0 such that Tn

((x, y)) Î int(Q4(E) ∩ ℛ) for n >n0. For all (x, y) Î W-(E), there exists n1 > 0 such that

for all n >n1, T
n((x, y)) Î int(Q2(E) ∩ ℛ). Now, we show that each orbit starting in the

region int(Q4 (E)) converges to E1, and each orbit starting in the region int(Q2(E)) con-

verges E.

Now, for 0 ≤ t ≤ (g2 - A2)/B2, take U(t) = (t,-A2 - tB2 + g2) Since a1 = (A1 - A2 - b1 +
g2)2/(4B2), it is easy to see that the following holds

U(x̄) = E = E2 = E3 � E1 where x̄ = x2 = x3 and

U(t) − T(U(t)) =
(

− (−A1 + A2 + 2tB2 + β1 − γ2)
2

4B2 (A1 − A2 − tB2 + γ2)
, 0

)
.

Since A2 + tB2 - g2 < 0, we have U(t)�seT(U(t)) � for 0 ≤ t ≤ (g2 - A2)/B2.

By using monotonicity of T, we have that Tn(U(t)) � Tn+1(U(t)) � E for 0 ≤ t < x̄.

This implies Tn(U(t)) ® E as n ® ∞. Similarly, for x̄ ≤ t < (γ2 − A2)/B2,

E � Tn(U(t)) � Tn+1(U(t)) � E1. This implies Tn(U(t)) ® E1 as n ® ∞. By using the

property of the points U(t) and N(u), we have that for each point (x, y) Î int(Q4(E) ∩
ℛ), there exist x̄ < t∗ < (γ2 − A2)/B2 and u* > 0 such that U(t∗) � (x, y) � N(u∗). By
using monotonicity of T, we have that Tn(U(t∗)) � Tn((x, y)) � Tn(N(u∗))). This
implies Tn ((x, y)) ® E1 as n ® ∞. Furthermore, for each point (x, y) Î int(Q2(E) ∩ ℛ)

there exists t1 > 0 such that M(t1) � (x, y) � E. By using monotonicity of T, we have

Tn(M(t1)) � Tn((x, y)) � E. This implies Tn ((x, y)) ® E as n ® ∞.

Now, assume that parameters a1, b1, A1, g2, A2, and B2 satisfy the condition (8) and

inequality 1.i) of Lemma 1. The proof of Theorem is similar to the proof of Theorem

in the regions (ℛ9) and (ℛ10).

(ℛ12, ℛ13) The first part of theorem follows from Theorems 15 and 17. If para-

meters a1, b1, A1 g2, A2, and B2 do not satisfy (8) of Lemma 1, then the map T, defined

on the set R = R2
+, satisfies all conditions of Theorems 4,6, and 8. This implies that

there exists an invariant curve C, which is a subset of the basin of attraction of the

equilibrium point E, and which separates the first quadrant into two invariant regions,

W+(E) (below the stable manifold) and W-(E) (above the stable manifold) which are

connected.

By Theorems 6 and 8 for all (x, y) Î W+(E), there exists n0 > 0 such that Tn((x, y)) Î
int(Q4(E) ∩ ℛ) for n >n0, and for all (x, y) Î C-(E), there exists n1 > 0 such that Tn((x,

y)) Î int(Q2(E) ∩ ℛ) for all n >n1. Now, we show that each orbit starting in the region

int(Q4(E)) is asymptotic to (∞, 0) and each orbit starting in the region int(Q2(E)) con-

verges to E.

Since a1 = (A1 - A2 b1 + g2)2/(4B2), for 0 ≤ t ≤ (g2 - A2)/B2, we have U(t) = (t, -A2 -

tB2 + g2). It is easy to see

U(x̄) = E = E2 = E3 where x̄ = x2 = x3 and

U(t) − T(U(t)) =
(

− (−A1 + A2 + 2tB2 + β1 − γ2)
2

4B2 (A1 − A2 − tB2 + γ2)
, 0

)
.

Since A2 + tB2 - g2 < 0, for 0 ≤ t ≤ (g2 - A2)/B2, we have U(t)�seT(U(t)).

By using monotonicity of T, we have E � Tn(U(t)) � Tn+1(U(t)) � E10 ≤ t < x̄. This

implies Tn(U(t)) ® E as n ® ∞. Similarly, E � Tn(U(t)) � Tn+1(U(t)) � (∞, 0) for

x̄ < t∗ < (γ2 − A2)/B2. This implies Tn(U(t)) ® (∞, 0) as n ® ∞. For each point (x, y)
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Î int(Q4(E3) ∩ ℛ), there exists x̄ < t∗ < (γ2 − A2)/B2 such that

0 ≤ t < x̄. 0 ≤ t < x̄. By monotonicity of T, we have Tn(U(t∗)) � Tn((x, y)) � (∞, 0).

This implies Tn((x, y)) ® (∞, 0) as n ® ∞. Furthermore, for each point (x, y) Î int(Q2

(E3) ∩ ℛ), there exists t1 > 0 such that U(t∗) � (x, y) � N(u∗). By monotonicity of T,

we have Tn(M(t1)) � Tn((x, y)) � E. This implies Tn((x, y)) ® E as n ® ∞.

If parameters a1, b1, A1, g2, A2, and B2 satisfy the condition (8) and inequality 1.i) of

Lemma 1, then the proof of Theorem is similar to the proof of parts (ℛ9) and (ℛ10).

This completes the proof of Theorem in the regions ℛ12, ℛ13. This is an example of

semistable non-hyperbolic equilibrium point.(Ri, i = 14, 17
)
Assumptions of this theorem imply that equilibrium does not exist.

Set M (t) = (0, t) for t ≥ g2 - A2. Since M(t) − T(M(t)) =
(

− α1

t + A1
,
t (t + A2 − γ2)

t + A2

)
,

we have M(t) ≼ T(M(t)) for t ≥ g2 - A2. By using monotonicity Tn(M(t)) ≼ Tn+1(M(t))),

for all n = 0, 1, 2,... Set (x∗
n, y

∗
n) = Tn(M(t)). This implies that {y∗n} is non-increasing and

bounded, hence it has to converge. Set limn→∞ y∗n = y∗. Since {x∗
n} is unbounded and

non-decreasing, we have that x∗
n → ∞. By using the second equation of the System (1),

we see that y∗ = 0. Take any point (x, y) Î [0, ∞)2. Then there exists t*, such that M

(t*) ≼ (x, y) ≼ (∞, 0). By using monotonicity, Tn(M(t*)) ≼ (Tn((x, y)) ≼ (∞, 0) as Since

Tn(M(t*)) ® (∞, 0) as n ® ∞, we obtain Tn((x, y)) ® (∞, 0) as n ® ∞, as which com-

pletes the proof of theorem.
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