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Many-body perturbation theory applied to molecules: 
Analysis and correlation energy calculation for Li2, N2, 

and H3* 
David L. Freemen t and Martin Karplus 

Department of Chemistry. Harvard University. Cambridge. Massachusetts 02138 
(Received II July 1975) 

The correlation problem is analyzed in terms of Goldstone diagrammatic perturbation theory. A hole-line 
expansion for the correlation energy is defined and used with matrix partitioning techniques to determine 
the diagrams contributing to various forms of pair theory and to configuration interaction treatments of the 
usual type. The presence of certain terms in the double excitation configuration interaction formulation that 
cancel in higher order is demonstrated. The nature of various approximations to the correlation correction 
is determined. To illustrate the analysis. certain of the approximations are used in correlation energy 
calculations with multicenter Slater basis sets on Li,. N,. and H 3. Comparison with complete configuration 
interaction calculations are made for Li, and H 3; the diagrammatic calculation. which is much simpler than 
a full CI treatment. is found to be a good approximation to the latter. 

I. INTRODUCTION 

The most commonly used method for ab initio cal­
culations on the properties of many-electron atomic and 
molecular systems is based on the Hartree-Fock equa­
tions. 1 The popularity of the Hartree-Fock method is 
due to the possibility of solving the equations for a large 
variety of systems, and the success achieved in cal­
culating various of their properties, including moments 
of the charge distributions and total energies. Un­
fort~nately the Hartree- Fock method is not sufficiently 
accurate for other important properties, such as 
molecular binding energies and atomic or molecular 
electron affinities. Techniques for introducing electron 
correlation effects are therefore needed. Recently, a 
number of ways have been developed and implemented 
for determining the correlation correction in atoms 
and simple molecules. Among the approximations that 
have been used are the configuration interaction meth­
od,2 the atomic Bethe-Goldstone equations, 3 the many­
electron theory of Sinanoglu, 4 Goldstone diagrammatic 
perturbation theory, 5 coupled pair many-electron 
theory,6 and the many-body Green's functionapproach.7,8 
Of the various techniques, the configuration interac­
tion method is conceptually the most simple and the 
most widely employed. However, the success achieved 
by some of the many-body methods in the rapid and ac­
curate calculation of atomic correlation effects makes 
desirable their extension to molecular problems. 

Most of the available molecular calculations have 
been performed for systems that can be treated with 
a one-center expansion. These include the studies of 
H2 by Kelly, 9,10 the work on diatomic hydrides by Das 
and coworkers, 11,12 and a number of investigations of 
polyatomic hydrides. 13-15 Although these calculations 
have given useful results, the more general applica­
tion of many-body methods to molecules necessitates a 
search for other than one-center basis sets. Some prog­
ress has been made in this area. Dutta, Dutta, and 
Das16 used Hz solutions as basis functions for H2 and 
more recently, diatomic hydrides have been studied 
with multicenter Slater basis sets. 17-21 
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In addition to the need for more flexible basis func­
tions, the greater complexity of the molecular problem 
requires that simplifications be introduced into the 
many-body treatment. To obtain a better understand­
ing of the important diagrammatic contributions to the 
correlation correction in molecules, we present in this 
paper an analysis of Goldstone many-body perturbation 
theory and apply it with extended Slater-type-orbital 
basis sets to Liz, N2, and H3 . 

The connections between the various many-body 
methods have been discussed by Freed22-24 and by 
Kelly et al. 25 ,26 In what follows we examine the rela­
tionships by a somewhat different approach. We start 
with Nesbet's variation-perturbation formulation, 3 
which utilizes a configurational expansion. By means 
of matrix partitioning techniques, 27 we analyze the 
relation between Nesbet's treatment and Goldstone 
diagrammatic perturbation theory. 28 We are able then 
to determine the connection with the more usual CI 
expansion and some of the other many-body methods. 

To establish notation, we state the correlation prob­
lem in terms of Goldstone diagrams in Sec. II. In Sec. 
III we introduce an expansion for the correlation energy 
in terms of the hole lines of the Goldstone diagrams. 
We use this hole-line expansion to develop the connec­
tion between Goldstone perturbation theory and the 
"Bethe-Goldstone equations" of Nesbet. We then 
show which diagrams are included in the CI expan­
sion. The discussion given in Sec. III is limited to 
the ground states of closed-shell systems. In Sec. IV 
we briefly consider the extension to open-shell systems, 
and test the many-body apprOximations to the correla­
tion energy by calculation on Liz, N2, and H3 . 

II. THE DIAGRAMMATIC FORMULATION OF THE 
CORRELATION CORRECTION 

To introduce the necessary notation, we outline the 
many-body perturbation theory for the correlation cor­
rection to the energy and wavefunction. We partition 
the full Hamiltonian, H, for an N-electron atomic or 
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molecular system as 

H=Ho+H'. (1) 

In Eq. (1), Ho is the Hartree-Fock Hamiltonian defined 
by 

N N 

Ho = L h(i) = L [t(i) +VHF(i)] , (2) 
i=l 1=1 

where 

(3) 

and 
N 

VHF (i)'P k(i) = L [('PBW I V(i, j) I 'Ph»'Pk(i) 
a=l 

- ('PaW I v(i, j) I 'Pk(j» 'Pa(i)] , (4) 

where {<PI}, and {E i } are the eigenfunctions and eigen­
values of the Hartree-Fock Hamiltonian h(i), Z", is the 
charge on nucleus 0' located at R"" i and r i represent 
the coordinates of electron i, v(i, j) is the electron­
electron interaction, and VHF(i) is the one-particle 
Hartree-Fock potential. From Eqs. (1) and (2), H' is 
given by 

H' = ~ L v(i, j) - VHF' 
I. j 

(5) 

where 
N 

VHF = L VHF(i) • (6) 
;=1 

~ define I <P 0) as the Hartree-Fock ground state and 
let Iw) be the exact ground-state, which is an eigen­
function of the full Hamiltonian. The function I <po) is a 
single Slater determinant constructed from the N lowest 
occupied Hartree-Fock spin orbitals. We write Iw) in 
the form 

and use intermediate normalization 

(<po I <po) = 1, ( <Po Iw) = 1 

with 

( <Po I X) = 0 • 

If E is the exact ground-state eigenvalue of the full 
Hamiltonian, H, and Eo is the Hartree-Fock energy, 
defined by 

(7) 

(8) 

(9) 

Eo =( <Po IHI <po) , (10) 

we have 

(11) 

where 

~E = ( <Po I H ' I X) (12) 

The energy shift, ~, is called the correlation energy 
and I X) the correlation part of the wavefunction. 

To solve the correlation problem perturbatively, we 
take the Hartree-Fock Hamiltonian, Ho, as the zeroth­
order Hamiltonian and treat H' as a perturbation. If 
we sum the Rayleigh-Schrodinger perturbation series 

to a given order, we obtain the correlation energy or 
the correlation part of the wavefunction to that order. 
For example, the energy through second order is 

I (<P~'B IH
o
' I d-.o) 12 , E2 = Eo + ~E2 =E8 + (<po I H'I <po) + L -'-'-:::7or.:.~-..:...'¥~..:... 

aB.. Eo - E",B ••• 

where 
(13) 

N 

Eg = (<po IHo I <po) = L E", (14) 
",=1 

(15) 

and I <P:~) represents a determinant with occupied spin 
orbitals 0', {3 excited into virtual spin orbitals r, s. We 
use Greek letters 0', {3, Y, B to represent spin orbitals 
occupied in the Hartree-Fock ground state (hole states) 
and latin letters r, s, t, u to represent the virtual spin 
orbitals (particle states); the letters i, j, k, l represent 
either occupied or virtual orbitals. The wavefunction 
through first order is given by 

Iw) = I <po) + I <P
1

) = I <po) + L (<Po If' I !~B) I <P~'B) • (16) 
",B.s Eo - E ",B. r' 

Evaluating the matrix elements of Eq. (13) and (16), we 
obtain 

N 

E2 =Eo +~2 = L E", - L (0'{31 v I d/3) 
",=1 ",B 

+ L (rslvl~)(O'{3lvlrs) 
",Br. (E", + Ea - E. - E.) 

(17) 

and 

(18) 

where 

( rs I v I O'(3) = ( rs I v I 0'(3) - (rs I v I (30') • (19) 

In Eqs. (17) and (18) we sum over distinct terms 
only. (This eliminates a factor of i that appears in the 
corresponding equations with the sums going over all 
values in the indices.) For example, Eq. (17) includes 
only one of the terms 

and 

(rs Iv I am (O!{3lv Irs) 
(E", + EB - E. - Es) 

(sr I v I (:le,) ({3 O! I v I sr) 
(E", + EB - Er - E.) 

but not both. Throughout this paper we assume that 
any sum performed over spin-orbital labels is restricted 
to sums over distinct confi&urations. 

We see from the definition of the correlation en­
ergy [Eqs. (11)-(13)] that the first-order correction 
«<Po IH' I <Po» is included in the Hartree-Fock energy, 
and the correlation energy, tl.E, has as its lowest order 
term the second-order correction. 

In second-quantized form the Hamiltonian corre­
sponding to Eq. (1) is 

Ho=LEiCIc; (20) 
; 
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H'= L (ijlvlkl)crcjc,ck- L(ilvHFIj)cjc j , (21) 
i, J,k, Z i I j 

where c i , cj are spin-orbital annihilation and creation 
operators, respectively, and the indices i, j, k, l go 
over both occupied and unoccupied spin orbitals. Fol­
lowing the standard rules given by Goldstone28 and in 
various textbooks,29 the perturbation operator H I given 
in Eq. (21) can be used to set up the linked cluster 
expansion for the correlation energy, AE, and the cor­
relation part of the wavefunction, I x). Figures 1 and 
2 show all the diagrams contributing to AE through 
third order for the present case in which the unper­
turbed function, I <1>0)' is the single-determinant Har­
tree-Fock solution for the system. 

III. THE CONNECTION BETWEEN THE CI EXPANSION 
AND THE GOLDSTONE DIAGRAMS 

In this section, we first introduce a cluster expansion 
for the correlation energy and then analyze the various 
contributions. 

A. A cluster (hole-line) expansion for the correlation 
energy 

Although it is possible to determine the contributions 
to the Rayleigh-Schrodinger perturbation series in an 
order-by-order fashion, as illustrated in Figs. 1 and 
2, one can make better use of diagrammatic theory by 
employing alternative expansions which may be more 
rapidly convergent. We introduce a cluster expansion 
for the energy whose first correction term is the so­
called "pair theory" contribution. The cluster expan­
sion we define is different from the Urseil expansion 
used by Cizek, 6 but is equivalemt to Nesbet's "Hierarchy 
of Bethe-Goldstone Equations."3 Unlike Nesbet, we ex­
press this expansion in terms of Goldstone diagrams. 
The use of diagrams enables us to see directly the con­
nection between Nesbet's formulation of the correlation 
problem and the perturbation terms summed by Kelly. 5 

The pair terms we consider are equivalent to the "ex­
act pairs" of Sinanoglu, 30,31 and to the decoupled con­
tributions to the coupled pair theory of Cizek, Paldus, 
and Shavitt. 6,32 However, the higher order terms of 
each of these approaches are different, and it is an 
advantage of the diagrammatic formulation of the cor­
relation problem that we can express them in a common 
language. 

The cluster expansion is defined by 
N 

AE=L E h , (22) 
h=1 

where the h-body contribution to the correlation energy, 
E h' is the sum of all diagrams with h independent hole 
lines. A diagram is said to have h independent hole 

(0) ( b) 

FIG. 1. The second-order energy diagrams. 

(0) (b) (c) 

0--0 ~-------5 /3 Q 5 
r a -- r --- t /3 

_____ !Dr !. _____ _ 
(d) (e) (1) 

·00 00----- 00-----u __ sat 
Q t r /3 5 r 

r ------ ------
(9) (h) (i) 

(j) (k) (I) 

FIG. 2. The third-order energy diagrams. 

lines if it has h and only h distinct hole labels on its 
hole lines. For example, in Fig. 3 the labeled dia­
grams (a), (b), and (c) have two independent hole lines, 
diagrams (d) and (e) have three independent hole lines, 
and diagram (f) has four independent hole lines. We 
note that the number of independent hole lines has noth­
ing to do with the order of the diagram in perturbation 
theory; e. g., in Fig. 3 diagrams (b) and (f) are both 
third-order diagrams, but diagram (b) has two inde­
pendent hole lines and diagram (f) has four independent 
hole lines. Equation (22) consists of a finite number of 
terms, since for any given system there are no dia­
grams with more independent hole lines than the num­
ber of electrons in the system. However, each Eh con­
tribution represents a sum of an infinite set of dia­
grams. To avoid later confusion we define orders in 

(0) (b) 

O------Q 0----0 5 /3 t /3 

r __ ~ ______ -_-~O/3 r __ ~ _____ ~-_~_Or 
(c) (d) 

(e) (fl 
FIG. 3. Examples of diagrams contributing to the hole-line 
expansion [Eq. (22), see text). 
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(0) (b) 

rO=--------O-----0 s f3 
, a 

(c) 

rO-~{)--~~~Dw rC8-a----~~-,~Df3 
a -----

S 5 ---- -----------
(d) (e) 

FIG. 4. Cancellation of hole-line diagrams (see text). 

perturbation theory as "pert-orders" and orders in Eq. 
(22) as "hole-orders" or "h-orders. " 

Before examining the terms in Eq. (22) in detail, 
we introduce an important pOint that simplifies the dia­
grammatic analysis. Many of the diagrams cancel 
among themselves and we need compute only a small 
subclass of the total number of Goldstone diagrams. 
For example, the pair diagram in Fig. 4(a) and its ex­
change in Fig. 4(b) sum to zero; they differ only in 
sign, all of the matrix elements and energy denomina­
tors being the same, because the exchange involves 
lines with the same hole label, 0'. By contrast there is 
no exchange diagram that cancels with that given in Fig. 
4(c). We must include the contribution from the dia­
gram in Fig. 4(c), but it would simplify matters con­
siderably if we could avoid the computation of diagrams 
such as Figs. 4(a) and 4(b) which sum to zero. Another 
example is given by the diagrams of Figs. 4(d) and its 
exchange in Fig. 4(e) which add to zero, for the same 
reasons as 4(a) and 4(b). Thus, we need a scheme 
whereby we can tell which diagrams to sum and which 
not to sum. One possibility would be to inspect all the 
diagrams and formally sum them to determine the can­
cellations. Such a procedure, which requires a com­
plicated but illuminating analysis, has been described 
for the two-electron problem. 33 In this study which is 
concerned primarily with a comparison between dia­
grammatic and other many-body formulations, we shall 
take an indirect approach that is considerably simpler 
to apply. In each h-order approximation we derive the 
correlation contribution by the use of the configuration 
interaction formulation, and then show which diagrams 
sum to give the same result. Since different formula­
tion for the correlation energy in a given approximation 
must be equal, all diagrams that do not appear in the 
final formula can be assumed to add to zero. We shall 
find, for example, when solving for the correlation 
energy in the pair approximation that the diagrams of 
Figs. 4(a), (b), (d), and (e) do not occur. ~ can 

therefore assume that they sum to zero without examin­
ing them individually. 

B. The pair approximation, E2 

The second h-order term, Ea, 

Ea = L I:1E(a8) (23) 
a,8 

is the sum over all pairs of hole states, (a, /3) where 
I:1E"a8) is the pair energy for the pair (0', {3). For a 
two-electron system, the total correlation energy rel­
ative to the Hartree-Fock energy is equal to 

(24) 

since Brillouin's Theorem implies there are no E1 con­
tributions, and there are no higher h-order terms. 

The solution to the pair problem is equivalent to solv­
ing for the energy of each pair of electrons in the pres­
ence of the other electrons in the system. For each 
pair of electrons, (0', 8), in the many-electron system 
we write the configuration interaction wavefunction, 
l>!ta8), as3 

(25) 

In Eq. (25) we have neglected single excitations; they 
are included later. It is convenient for the analysis 
to introduce the matrix equation corresponding to the 
Schrodinger equation 

(26) 

where H is the Hamiltonian matrix, f is the vector of 
the CI coefficients, and 

Ea8 =Eo +A.E fa8 ) • (27) 

We now partition f and H according to the equations 

f=(I, £a)=(I, {C:~}) . (28) 

and 

(29) 

where B is the row vector of matrix elements between 
the ground state and double excited states, B+ is its ad­
joint, and D' is the matrix of Hamiltonian matrix ele­
ments between the double excited states. Subtracting 
Eo(lf), where I is the unit matrix, from both sides of 
Eq. (26) we have 

(30) 

where 

D=D'-Eol (31) 

Solving Eq. (30) for f2 and A.E(a8) we obtain 

fa = [A.E f o<8)1- D]-lB+ (32) 

and 

(33) 
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(al (bl (el 

(dl (el (f) 

s~r 
~s Ooso-f3 

r __ :_ '{:3 

(gl (hI (il 

Gfg
------

-------- r P 
a s a S 

r -- f3 - Q ~ :-----" 
f;3~----~------~---- a 

a f3 
---------

(jl (kl (II 

FIG. 5. The direct third pert-order diagrams that contribute 
to Epstein-Nesbet perturbation theory in second pert-order. 
Diagrams (a)-(t) are the Coulomb terms and (g)-(I) ar,e the ex­
change contributions. 

Equation (33) is in a convenient form for comparison 
with perturbation theory. To obtain the lowest-order 
result, we make the apprOximations 

t:;.E (<>Il) ~ 0, D ~ d (34) 

where d is the diagonal part of D with elements 

rOO----- 5 r a~-----G{)----:- ~---- f;3 
----- ----- sa r 5 -----0 

r __ a_~_ 5 r __ I!.__ _ ________ s_ fJ 

(0) (b) (e) 

oo
---~- 5 rB;0----- oo-s-~--__ --- a fJ 

r 5 ----- ----

~ __ ~__ 5 r ~ ____ ~ a ______ fJ 

(d) (e) (f) 

rr:?)s 
~ 

(g) (h) (il 

~
---------s-Oa r~--~ 0-;-0 

r ---- s r _a s 
a {3 0----- {3 
_____ s r _~ ______ ~_ __~ __ 

(j) (k) 

FIG. 6. The third pert-order exchange diagrams that contrib­
ute to second pert-order Epstein-N esbet perturbation theory. 

FIG. 7. The particle;>article ladder geometric series. 

d:: =[(~:'IIIHI ~~u~ -EO]6rt 6.u 

and we write Eq. (33) in the form 

AE taB) ~ AE~'all) = B(l/ - d)B+. 

Writing out the summations of Eq. (36) we have 

If _ IW;:IIIH'I~Q)12 
t:;.E(all) - L E _ (~ro IHI~r.) 

r,' 0 all all 

(35) 

(36) 

(37) 

As Claverie, Diner, and Malrieu34 have pOinted out very 
clearly, Eq. (37) can be obtained as the second pert-order 
energy for the (0', j3) pair by choosing a partitioning of 
the Hamiltonian different from Eq. (20) and Eq. (21) and 
applying Rayleigh-SchrBdinger perturbation theory to it. 
This form of perturbation theory is often referred to as 
"Epstein-Nesbet perturbation theory, " and has been 
shown to converge more rapidly in certain applications. 
An alternative procedure for obtaining Eq. (37) is to 
begin with the second pert-order result given in Eq. 
(17) applied to a single pair (second hole-order) and 
sum certain classes of Goldstone diagrams to infinite 
pert-order. To do this we use the geometric summa­
tion technique first applied to atoms by Kelly. 5 We 
start with the second pert-order Coulomb and exchange 
diagrams in Figs. 1 and add to them interaction lines 
in such a way that the labels on a hole or particle line 
intersected by the added interaction lines are diagonal 
(i. e., have the same spin-orbital label). For a given 
pair (0', f3) this generates the twelve diagrams shown in 
Figs. 5 (a)-(l); six of these (a)-(f), arise from the 
Coulomb integral and six, (g)-(l), from the exchange 
integral. In addition to these diagram there are twelve 
other third pert-order diagrams that contribute; these 
are shown in Figs. 6(a)-(I) and arise from exchanges 
of appropriate particle or hole lines of the correspond­
ing diagram in Fig. 5. 

If we consider the second pert-order Coulomb dia­
gram alone [Fig. l(a)] and form the infinite series start­
ing with the diagrams in Fig. 7, we obtain 

L I (rs I v 1 O'm 12 
r,' (Ea + Ell - E. - E.) 

{
1 (rslvlrs) [(rslvlrs) 12 } 

X +(E",+EII-Er-E)+ (E",+EII-Er-E.)J + ••• 

I (rs I v I 0'{3) 12 
(38) 

(Ea + EB - Er - E. - (rs Iv Irs» 

Thus, we have geometrically summed this class of dia­
grams, called particle ladders, to infinite pert-order. 
In this series the particle states have been kept diagonal 
each time a particle line is cut by an interaction line. 
We refer to this restriction as the diagonal approxima­
tion. From Eq. (38) we see that this infinite summa­
tion in the diagonal apprOximation is equivalent to a 
shift of the energy denominator by the direct matrix 
element between particle states r and s. If we intro­
duce into the series of Eq. (38) the additional diagrams 
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corresponding to hole ladders to obtain the series of 
diagrams shown in Fig. 8, we obtain 

"" I (rs I v I a{3) 12 (39) 
ft (E", H 8 - Er - E& - (rs Iv Irs) - (a{3lv laj3) • 

In Eq. (39) we have summed both the particle and hole 
ladder diagonal particle pair diagrams to infinite pert­
order including all cross terms between them (i. e. , 
diagrams including all possible mixtures of particle­
particle and hole-hole interactions). This leads to a 
shift in the energy denominator by the integrals 
(rs Iv Irs) and (a{3lv la{3), which are the diagonal parti­
cle-particle and hole-hole matrix elements that first 
appear in the third pert-order diagrams. 

If we now generalize this procedure to begin with the 
Coulomb and exchange diagrams of Fig. 2 and sum both 
the diagonal particle and diagonal hole ladders to infi­
nite pert-order including all diagrams of Figs. 5 and 6, 
all corresponding higher pert-order diagrams and all 
cross terms (i. e., diagrams including all possible mix­
tures of interactions), we obtain the energy expression 
in the diagonal approximation, 

(40) 

where ~ is 

~ ~ - (a{31 v I a(3) - (rs I v Irs) + (ral v Ira) + (r{31 v I r[3) 

+(salvlsa)+(s{3lvIS{3) • (41) 

I 

FIG. 8. The particle-par­
ticle ladder plus hole-hole 
ladder geometric series. 

Comparing Eqs. (40) and (41) with the expanded version 
of Eq. (37), we see that the two are identical. Thus, 
the solution to Eq. (33) under the approximations of Eq. 
(34) is equivalent to the second pert-order diagrams 
plus the geometric sums to infinite pert-order that arise 
from all the third pert-order diagrams in the diagonal­
particle diagonal-hole approximation. 

All the diagrams included in Eq. (40) are character­
ized by having two and only two independent hole lines 
between each adjacent pair of interaction lines. There 
cannot be more than two independent hole lines, since 
we are examining only the second h-order diagrams. 
If there were only one independent hole line between ad­
jacent interaction lines there would be a cancelling ex­
change diagram [see Figs. 4(a) and (b)]. Such diagrams 
do not arise in the configuration interaction expansion 
because they violate the exclusion principle. Kelly has 
called the diagrams we summed to obtain Eq. (40) "ex­
clusion principle violating (EPV)" diagrams5 because 
they appear to represent simultaneous occupation of a 
spin-orbital by more than one electron. The term EPV 
is somewhat misleading in that ~E t",8) is derivable from 
a completely antisymmetric wavefunction. 

We now examine which additional diagrams appear when 
~E('a8) is not set equal to zero in the denominator of Eq. 
(33). To find the type of terms that contribute, we ex­
pand Eq. (33) subject to the approximation that D ~ d and 
obtain (we use the symbol ~E~"'8) for this approximation 
to the pair energy) 

The form of Eq. (42), in which the energy ~~"'8) appears on both sides of the equation, makes clear that an itera­
tive solution is required. The lowest pert-order contribution, beyond that of Eq. (37), is seen to be 

_ "" l(cI>r."8 IHl cI>o)12 r "'_ "" l(cI>~8IHlcI>o)12 {_ "" l(cI>~"SIHlcI>O)12} 
~ « .... ra IHr .... ra)-E )2 ~t"'8)- ~ «cI>rs IHI .... ra)-E )2 ~ «cI>tu IHlcI>tU)-E) 
r.& .... "'8 '¥a8 0 r.. ",8 '¥a8 0 t.u a8 a8 0 

(43) 

(44) 

where we have taken the lowest pert-order contribution to ~E(a8) and then expanded the denominators to include 
only orbital energy differences. The two fourth pert-order diagrams that yield the direct contribution to Eq. (43) 
are shown in Fig. 9. When we add them together, they give 
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I (rs I v I am 121 (ut I v I a(3) 12 -L: 
ratu (E",+ E8 - E, - Ea)(Ea + Es - Et - Eu)(2Ea +2ES - E, - E. - Et - Eu) 

in agreement with Eq. (44). All of the fourth pert-or­
der diagrams that contribute to Eq. (44) are shown in 
Fig. 10. They are referred to as pair rearrangement 
diagrams. 26 ,35 If we form a geometric series out of the 
pair rearrangement diagrams, we shift the denominator 
of the second pert-order terms by the second pert-or­
der energy. From the direct terms in Fig. 9 and the 
corresponding higher pert-order terms like Fig. l1(a), 
we have 

'" I (rs I v I am 12 
~ (Ea+ES-E,-Ea+qaS) (46) 

where 

qaS='" l(utlvlam I
2

) (47) 
f; (E", + Es - Et - Eu 

In Eq. (46) we have shifted the denominator by the value 
of the second pert-order diagram. If we now shift the 
denominator of Eq. (47) by q",s and iterate, we obtain 
an equation of the form 

_ ~ l(rs Iv I a(3) 12 (48) 
Q(,,,,S) - L.J ( Q ). 

,a Ea + Es - Er - Ea + (aB) 

An example of the additional diagrams included due to 
the iteration is shown in Fig. l1(b). The same proce­
dure can be carried out for all the diagrams in Fig. 
10 and their higher-order counterparts. Furthermore, 
it is again possible to perform all the diagonal particle­
particle, hole-hole, and hole-particle ladder summa­
tions on each piece of the rearrangement diagrams. 
The resulting expression is identical to Eq. (42); that is, 

E r = ~ I(rs Iv I &'m(a{3lv Irs) 
a (as) L.J E (J.ra IH1J.rs) Ar;o' 

r,8 0 - """,8 ""as +Q.CtaS) 
(49) 

We call AE~",S) the "diagonal" pair correlation energy 
for the pair (a{3); from the development it is clear that 
it includes rearrangement contributions. 

To relax the approximation (0 = d) made in Eq. (34), 
we write 

O=d+P. (50) 

If we retain the approximation AE (",8) = 0 from Eq. (34) 
to simplify the development, we can write the correla­
tion energy for the pair (a/3), aEfaS)' as 

(51) 

Expanding the denominator of Eq. (51), we obtain 

- 1 11 Ill. 
AE taS) = - B d B+ + B d P d B+ - B d PdP d B + ... 

(52) 
The first term on the right-hand side of Eq. (52) is the 
Epstein-Nesbet result aE~"'/i) of Eq. (37), and the cor­
rection terms in Eq. (52) involve the matrix, P. As is 
evident from its definition, P contains the nondiagonal 
particle corrections of the form 

=- L l(rsIVla{3) 12I ttlvla{3)1
2 

(45) 
ratu (Ea + Es - E, - E.) (Ea + ES - Et - Eu) 

(53) 

This matrix element appears in lowest pert-order in 
the diagrams shown in Fig. 12 and yields the non­
diagonal particle-particle ladder contributions to the 
second term on the right hand side of Eq. (52). They 
are exactly the particle ladder diagrams summed in 
Epstein-Nesbet perturbation theory except that the 
diagonal particle apprOximation has been relaxed. 
Thus, to solve for the pair energy making only the ap­
prOximation, aE('aS) ~ 0 of Eq. (34), we sum exactly 
the same type of diagrams that appear in Epstein­
Nesbet perturbation theory except that both the diagonal 
and nondiagonal particle contributions are included. If 
in addition we introduce the rearrangement diagrams 
with the nondiagonal particle ladders summed, we ob­
tain the pair energy given in Eq. (33). The sum of 
these pair terms for every pair of electrons in the sys­
tem gives the twO-bOdy contribution to the correlation 
energy. This is the complete second h-order energy, 
Ez • except for the single excitations. 

C. The contribution of single excitations to the pair 
energies 

We now consider the pair contributions made by the 
Single excitation diagrams. Brillouin's theorem shows 
that there is no direct coupling between the ground state 
and the single excitations for a Hartree-Fock wave­
function. In the pair approximation, the single excita­
tions will affect the energy only by coupling with the 
double excitations. To analyze the nature of these 
terms, we use the appropriate matrix form of the 
SchrOdinger equation, 

(54) 

where aE~a8) is the pair energy including single excita­
tions, S contains the matrix elements of the Hamiltonian 
over the single excitations from one of the orbitals a 
or {3, e" contains the matrix elements that couple the 
single and the double excitations, f1 is the vector that 
contains the single-excitation pair CI coeffiCients, f2 
contains the double-excitation pair CI coefficients; B 
'and D are the same matrices as in Eq. (30). 

(0) (b) 

FIG. 9. Two fourth pert-order pair rearrangement diagrams 
[see Eq. (45) I. 
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(0) (b) 

(c) (d) 

(e) (f) 

~
----- ---

a a 

r 5 f3 
----- 'f3 

a 

(g) 

(i) (j) 

~
a--------13-

----
r 5 

a _IL - f3 
----------

( k) 

FIG. 10. The lowest (fourth) pert-order pair rearrangement 
diagrams. 

Solving Eq. 

aE(aa) = B [aE(aa)l- D - Cd 

which yields upon expansion 

s - 1 B+ B 1 
aEraa)-B AE' I-D + aDS I-D 

U (aa) n(aa) 

(b) 

(56) 

FIG. 11. Pair rearrangement diagrams that contribute to (a) 
geometric series [Eq. (46) J and (b) the iterated geometric 
series [Eq. (46)). 

(a) (b) 

FIG. 12. Lowest pert-order nondiagonal particle pair ladder 
diagrams. 

The effect of the single excitations appears in ilE'(aa) 
of the first term and in the second and subsequent terms 
on the right hand side of Eq. (56). We consider first 
the result obtained with the approximations that ilE'(aa) 
3; 0 and D and S are diagonal. In the diagonal approxi­
mation' the matrix elements of S are given by 

Eo - (<I>: I HI <I>:) = E" - Er +(ra I v I YO') • 

The matrix elements of Ca have the form 

(<I>: IH I <I>:"a) = (r{31 v I is) - ({30' I v I sO') • 

(57) 

(58) 

The second term on the right hand side of Eq. (56) con­
sists of products of two B matrix elements times two 
Cd matrix elements divided by two double excitation 
energy denominators and one single excitation energy 
denominator. Because of the form of this term, the 
four matrix elements in the numerator and three energy 
denominators, the lowest pert-order singles-doubles 
coupling diagrams appear in fourth pert-order. This 
suggests that the single excitation contributions are 
small and partially justifies their neglect relative to 
double excitations in calculations of the energy for 
closed-shell systems. A more extensive discussion of 
the terms in the CI expansion and the lowest pert-or­
ders in which they occur can be found in Reference 34. 
The direct contributions are of the form shown in 
Fig. 13, where the non-diagonal form of the diagrams 
is given. In analogy with the double excitation case, the 
full solution to Eq. (55) is obtained by starting with 
these low pert-order diagrams and performing infinite 
ladder and rearrangement summations with the re­
striction to no more than two independent hole lines in 
all of the diagrams. We note that for open-shell sys­
tems in the restricted Hartree-Fock approximation, 
the Single excitations can couple directly to the ground 
state and are expected to be more important than in the 
closed-shell case (see Sec. IV, H3). 

(0) 

FIG. 13. The lowest pert-order direct single excitation pair 
diagrams. 
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D. Pair coupling terms; relation to double excitation 
configuration interaction 

In the two previous subsections we expressed the cor­
relation energy in terms of the cluster expansion of 
Eq. (22) and determined which terms to sum to obtain 
the two-body effects. In this section we wish to briefly 
examine the higher h-order corrections and then use 
the present formulation for an analysis of double excita­
tion configuration interaction treatments. 

Equation (22) implies that we should next sum all dia­
grams with three independent hole lines. The diagrams 
with three independent hole lines are of three distinct 
types; 

(1) third and higher pert-order diagrams that have 
no more than two hole lines occurring between any two 
adjacent interaction lines; 

(2) rearrangement diagrams with three independent 
hole lines; and 

(3) higher pert-order diagrams that have more than 
two hole lines between a pair of adjacent interaction 
lines. 

Figure 14(a) shows an example of type 1, 14(b) an ex­
ample of type 2, and 14(c) shows an example of type 3. 
The diagrams of types 1 and 2 arise from the double­
excited determinants in the configuration interaction ex­
pansion, and the terms of type 3 involve triple and 
higher excitations. Terms, other than the pair terms 
already discussed, that appear in the doubly excited 
part of the configuration interaction expansion are re-. 
ferred to as "pair coupling" terms. They occur in all 
h-orders and all pert-orders. Diagrammatically, the 
pair coupling terms are of three types: 

(1) higher h-order (h?:. 3) diagrams with no more than 
two independent hole lines occurring between any ad­
jacent pair of interaction lines [diagrams 14(a) and 
14(d)1; 

(2) pair coupling rearrangement diagrams (with h?:. 3) 
[diagrams 14(b) and 14(e)]; and 

(c) 

(e) 

rOIJ-:T"v\~~OY 
---\J#l--

(b) 

8 u ---Q--Y"QI 
--- P IJ -! ______ ~D 

(d) 

(f) 

FIG. 14. Higher hole-order diagrams (see text). 

(3) unlinked pair coupling diagrams [diagram 14(f)]. 

To determine in what way the three types of pair 
coupling diagrams appear in a CI calculation consisting 
of all double excitations, we proceed as we did in our 
analysis of the pair contributions, all of which are in­
cluded. We ignore single excitations for simplicity, 
their inclusion requiring a simple extension ofthe argu­
ments for the pair single excitation diagrams. We 
focus first on the coupling terms between two particular 
distinct pairs; the coupling terms between all the other 
distinct pairs in the system can be treated in the same 
way. Then, we consider the diagrams that appear if 
the pairs are not distinct; i. e., if any of the hole or 
particle states involved in the two pairs are the same. 

The configuration interaction matrix for two pairs, 
1 (al'l) and 2(yli), neglecting single excitations, is 

in an obvious extension of the notation used in Eq. (30); 
the pair coupling matrix is C12 • In pair theory we ap­
proximate the lowest eigenvalue of this matrix by the 
sum of the lowest eigenvalues of the matrices 

The pair coupling terms arise both from diagonalizing 
the full matrix (in the absence of coupling terms; 
C12 =0) 

o 

and from the coupling matr'ix Cl2 • 

To analyze the pair coupling terms we first consider 
the matrix in the apprOximation that C12 =0. The low­
est eigenvalue of this matrix, /lE CR, is obtained by 
solving the secular equation 

(59) 

o 

The resulting value of /lE CR is 

AEcR =Bl 1 Bi +Bz 1 Bi . 
AEcRI- Dl AEcRI- D2 

(60) 

This is to be compared with the pair expression for this 
case [see Eq. (33)], 

/lE taS) + AE ('ra) = Bl AE}- Dl Bi + B:! /lE2~ _ D2 Bi, 

(61) 
where /lEl is the pair energy of pair 1 and /lE2 is that 
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of pair 2. For this case of distinct pairs, the additional 
diagrams summed in Eq. (60) but not included in Eq. 
(61) are unlinked diagrams. To demonstrate this, we 
simplify the expressions by making the diagonal ap­
proximation [Eq. (49)] in Eq. (60). Writing t:..ECR in 
this approximation as t:..~R' we have 

4 _ "" (rs I v I a,B)(a,B I v Irs) 
t:..E CR -~ E _ (cpT' I H I cpT' ) + t:..Ed 

r. 0 ",B ",8 CR 

I: (tu Iv Iyo)(yo Iv Itu) 

+ to Eo-(cp;~IHlcp;~) +t:..E~R (62) 

where the sums on r, sand t, u <l:re restricted so that 
we include only excitations out of the two distinct pairs 
(a, (:3) and (y, 0) (a *,B * Y * 0) into the distinct particle 
states (r, s) and (t, u) (r*s *t*u). Approximating the 
differences in determinantal energies by the differences 
in orbital energies, we obtain 

-. _"" (rslvla-,B)(a,Blvlrs) 
t:..ECR - ~ ( E ) 

T' E:", + E:a - E: r - E:s + t:.. CR 

+ I: (tulvly6)(yolvltu) 
tu (E:y+E:o-E:t-Eu+t:..EcR) 

(63) 

Expanding t:..ECR on the right hand side of Eq. (63), we 
find 

+ ••• J . 
(64) 

The first terms on the right hand side of Eq. (64) which 
contain a t:..ECR contribution have the lowest pert-order 
contributions to Eq. (63) that are unlinked; e. g., the 
expression 

A=_I:(rslvla,B)(O:{3lvlrs) [ --z;;ECR ] (65) 
T' (E:",+E:s-E:r-E:.) (E:",+E:B-E:r-E:.) 

contains unlinked terms. To see this, we approximate 
t:..ECR by its lowest-order contribution 

- ~ "" (rs I v I a(3)(a{31 v Irs) "" (tu I v I y1i)(yo I v I tu) 
t:..ECR = ~ ( ) + ~ ( ) • T. E:",+E:a-E:r-E:s lu E:y+E:o-E:t-E:u 

(66) 
The first sum of Eq. (66) gives the pair rearrange-
ment contribution considered in Eqs. (42)-{49). The 
second sum, when introduced into Eq. (65), leads to a 
product of the form 

I: (rslvla,B)(a{3lvl~s) L (tulvl y1i)(YOlvltu). (67) 
TS (E:", + E:8 - E: r - E:.) lu (Ey + E:o - E: t - E:u) 

Equation (67) corresponds to the sum of the unlinked 
diagrams shown in Figs. 15(a) and 15(b), which repre­
sent the lowest pert-order contributions to the energy 
denominator shift in Eq. (63). To obtain the full de­
nominator shift, t:..ECR , an iterative equation must be 
solved. The formal structure of this equation is ex­
actly the same as Eq. (42). In analogy with the pair 
rearrangement diagram case, the coupling correction 
[Eq. (63)] is obtained by summing geometrically the un­
linked diagrams of the type shown in Figs. 15(a), (b), 
and (c), and iteratively summing the diagrams of the 
type shown in Fig. 15(d). To obtain the complete 

(0) (b) 

'QD~:g~£: 
(c) (d) 

FIG. 15. Unlinked pair-coupling diagrams (see text). 

diagonal energy t:..E~R [Eq. (62)], we must for each un­
linked part of all the diagrams summed in Eq. (63) sum 
all the diagonal particle-particle, diagonal particle­
hole, and diagonal hole-hole diagrams that were summed 
in deriving the Epstein-Nesbet perturbation formula. 
Similarly, for Eq. (60) we sum the same diagrams as 
those summed in Eq. (62) without the diagonal approxi­
mation. 

In determining the diagrams included in Eq. (63) [and 
Eq. (60) and Eq. (62)], we have assumed that pair 1 and 
2 are distinct; i. e., pair 1 and pair 2 do not have any 
orbital (particle or hole) in common. We now examine 
the coupling terms arising from the interaction between 
pairs where one occupied orbital in each pair is the 
same; in the CI expansion, this corresponds to excita­
tions involving determinants of the form I CP:sB) and 
Iq,~~). If we make the same approximation to Eq. (60) 
as was made to obtain Eq. (63), we find 

-E - "" (rs I v I a,B) (Q'{31 v Irs) 
t:.. CR-~ ) rs (E:",+E:B-Er-E:s+XEcR 

+ I: (tu Iv lay) (Q'Y Iv I~u) 
tu (E:",+E:y-E:t-E:u+t:..ECR) 

(68) 

lMlen we expand t:..ECR in the denominator of Eq. (68) 
and keep only the lowest order terms we have contri­
butions of the form 

A~- I: (rslvla71)(Il',Blvlrs) I: (tulvlaY)(Il'Ylvltu) . 
r. (E:",+E:B-E:r-E:.) tu (E:",+E:y-E:t-Eu) 

(69) 
Equation (69) is obtained by summing the diagrams like 
those in Figs. 16(a) and 16(b). Unlike the interaction 
between two pairs with no orbitals in common (Fig. 
15), the contributions in this case are linked. The 
diagrams in Figs. 16(a) and 16(b) are called coupling 
rearrangement diagrams and they are the coupling 
terms discussed by Kelly. 26 In analogy with the un­
linked situation, the denominator shift of Eq. (68) is 
found by summing coupling rearrangement diagrams 
like those of Figs. 16(a), (b), and (c) geometrically 
and iterating with diagrams like that of Fig. 16(d). 
Similarly, for Eq. (60) or Eq. (62), we must perform 
the appropriate ladder summations. Linked diagrams 
also arise when the excitations from both pairs involve 
the same particle state; i. e., 

t:..ECR = L:{I: (rslvl &,!3) (o,B Iv Irs) 
r • E:",+E:a-E:r-E:.+t:..E CR 
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+ L (rtlv lio)(y1) Iv Irt) } 
t Ey+Eo-E,.-Et+AECR 

(70) 

whose lowest-order coupled contribution is of the type 
shown in Fig. 16(e). 

We have seen that the solution for the energy in Eq. 
(59) is given by the pair contributions, coupling rear­
rangement diagrams when any of the hole or particle 
label of a coupled pair are the same, and unlinked dia­
grams. As Goldstone has shown unlinked diagrams 
do not contribute to the correlation energy. 28 To re­
sol ve this apparent inconsistency between the Gold­
stone expansion and the CI expansion we show in the 
appendix that the unlinked terms in Eq. (63) are can­
celed when we include quadruple excitations in the CI 
expansion. 

To find the remaining diagrams included in the double 
I 

+B1 
1 1 

1 1 ~Ea I-D1 
1-

C12 AEa 1- D2 Ci2 
~Eal- D1 

+Sz 
1 1 

1 1 ~Ea 1- D2 
1- Ci2 C12 ~Eal-D2 ~Ea 1- D1 

Expanding the denominators, we have 

If we apprOximate AEI. by AECR ' the first two terms 
on the right-hand side of Eq. (75) give Eq. (60), and the 
subsequent terms in Eq. (75) contain the effect of the 
coupling matrix, C12 • 

To analyze the latter terms, we consider, as an ex­
ample, the third term on the right-hand side of Eq. 
(75), 

~ 1 C 1 n+. 
~E 4 1 - Dl 12 AE a 1 - D2 ""'2 

(76) 

To simplify the argument, we neglect the ~Ea terms 
in the denominators, replace the D matrices by the 
differences in orbital energies and focus on the coupling 
between the two determinants I <1>:8/1) and I <I>;g) where 
01 "* (3 "* y "* 1). The appropriate element of the matrix C12 
is given by 

(<I>:8/1IHI <1>;:) = (0I{31 v I yO) 

and the corresponding term in Eq. 

(rs Iv I OI~) (OI{3lv ly6)(yo Iv Irs) 

(Ea + Ell - E,. - E .. )(E,. + Eo - Er - E .. ) 

(77) 

(76) has the form 

(78) 

This type of term gives the lowest pert-order contri­
bution and couples the two determinants I <I>:'~ and 1<1>;:); 

excitation CI treatment, we now examine the effect of 
the pair coupling matrix elements in the block C12 ; 
that is, we consider the equation 

Ci2 

Solving Eq. (71) for f1 and f2' we have 

f 1 B+ 1 C f 1 = 1 + 12 2 
~Eal- Dl ~Ea 1- D1 

f2 = ~Ea~ - D2 B2 + AEa~ _ D2 Ci2 fl • 

Solving simultaneously for ~Ea, we obtain 

1 
C12 AEa 1- D2 Ba 

+ 1 
C12 AEa 1- D1 Bi· 

(71) 

(72) 

(73) 

(74) 

(75) 

the contribution of Eq. (78) is shown diagrammatically 
in Fig. 17., It is clear that this diagram has the same 
form as the hole ladder diagrams summed in pair 
theory except that nondiagonal hole labelings appear 
here. If we continue this analysis by considering other 
possible coupling terms in C12 we find all possible dia-

(0) 

a--Q€./3 ~~DY 
r s /3 --D 

____ ~jI- Y 

(e) 

(e) 

(b) 

rO::~':r'''"~!08 ---~--~ 
(d) 

FIG. 16. Linked pair-<loupling rearrangement diagrams. 
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0;-;0 
r -- 5 

a fJ ~
--------

y r 5 8 
----- -----

a fJ 
---------

(0) (b) 

FIG. 17. Hole-hole ladder pair coupling diagrams (see text). 

grams of pair structure with the diagonal hole restric­
tion removed. It is important to remember that even 
when the direct coupling between two pair terms of the 
type considered here vanishes, there are indirect pair 
coupling contributions of the type considered in Eq. 
(60); e. g., for the determinants I cI>:."8) and I cI>~~>; the 
element of C12 , 

(cI>:s8IHIcI>~~)=0 (79) 

but they are indirectly coupled by the rearrangement 
diagrams. 

E. Comparison with other formulations 

We have analyzed the electron correlation problem 
and determined the pair and pair coupling contributions. 
The tools for this analysiS are Goldstone diagrams and 
matrix partitioning techniques, starting with the cluster 
expansion defined in terms of hole lines by Eq. (22). 
This cluster expansion is equivalent to Nesbet's 
"Heirarchyof Bethe-Goldstone Equations." The first 
term is the pair theory term, for which we have de­
termined the contributing Goldstone diagrams. Sinanoglu 
includes the same pair terms, except for single excita­
tion effects, in the decoupled form of his many-electron 
theory. 30,31 Kelly evaluated the pair terms by approxi­
mating them perturbatively; i. e., he summed the terms 
in Eq. (49), which is the diagonal approximation to pair 
theory. Like Sinanoglu, Kelly did not consider the 
single excitation effects summed in Eq. (55). Of all 
the higher hole-order contributions, the pair coupling 
terms arise in lowest pert-order and in lowest order in 
the configuration interaction expansion. As a conse­
quence, the pair coupling terms are expected to be the 
next most important terms after pair theory. In 
Nesbet's formulation, it is necessary to sum all h-or­
ders to obtain the complete pair-coupling contribution. 
Other formulations of the correlation problem are able 
to include these terms in a more systematic way. For 
example, Kelly, using diagrammatic perturbation 
theory, evaluates the pair coupling terms by summing 
the third pert-order three-body diagrams and the 
coupling rearrangement diagrams. 36 Cizek, Paldus, 
and Shavitt sum all the pair coupling terms (excluding 
the unlinked contributions) in "coupled pair many-elec­
tron theory" . 6, 32 

TABLE L Small baSis set for Li2• a 

Orbital 

Is" 
2s" 
2p" 
EMF = -14. 8421 a. u. 

Exponent 

2.6894 
0.6335 
0.7609 

"The internuclear distance is 5.25 a. u. 

TABLE II. Correlation energy of Li2 
in the small basis set. a 

E2 -0.00573 

E3 -0,00267 

E2 +E3 -0.00840 

LlEfcx8) (Eq. (40») - 0.001299 

0 M «l8) (Eq. (49») - 0.01229 
OIl! 

0M(OIS) (Eq. 
OIl! 

(33)J -0.01096 

CI doubles only -0.01100 

CI Singles and doubles -0.01154 

Full CI -0.01156 

aEnergies in atomic units; the internu­
clear distance is 5.25 a. u. 

A logical extension of the present development would 
be to include higher excitations and determine the con­
tributing diagrams. This has been done for quadruple 
excitations in order to analyze the terms inCluded by 
Cizek and Paldus in coupled pair many-electron theory. 37 

The arguments and techniques for the higher excitations 
are the same as used in the present paper and it does 
not appear worthwhile to present the details. 

IV. THE CORRELATION ENERGY OF Li 2 , N2 , and H3 

In this section we present the results of correlation 
energy calculations on Liz, Nz , and H3 • Our primary 
aim in these calculations is to illustrate the analysis 
of the many-body methods given in the previous sec­
tion. With this in mind, we have performed several 
of these calculations with small basis sets so that a full 
CI energy could be determined for comparison. In the 
remaining calculations, we used larger basis sets for 
which a comparison with experiment would be meaning­
ful. We first examine Liz with a six orbital basis set 
and H3 with a fifteen orbital basis set; for both of these, 
comparison with a complete CI calculation is possible. 
We then present larger basis set results for Liz and 
N2 • 

A. Comparison with complete CI calculations 

Lil molecule 

The lithium molecule Calculations were performed at 
an internuclear separation of 5.25 a .. u., which is the 
Hartree-Fock minimum. The basis set consisted of 
a ls-orbital, a 2s-orbital, and a 2Pa-orbital on each 
center; the Slater orbital exponents for these orbitals 
were taken from Fraga and Ransil38 and are given in 
Table I with the Hartree-Fock energy. EMF, for the 
basis set. We present in Table II a comparison of the 
correlation contributions given by pert-order Rayleigh­
Schrodinger perturbation theory (~2' (3), Epstein­
Nesbet perturbation theory (~1011!»)' "diagonal" pair 
theory, total pair theory. and CI at various levels of 
excitation. It is clear that the Rayleigh-Schrodinger 
expansion (Ez , 103, E2 + (3) converges rather slowly; this 
appears to be a general result. By contrast, the A.E~OIS) 
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FIG. 18. Core polarization operator and diagrams for the 
open shell case (see text). 

value compares favorably with the CI correlation ener­
gy, as do the full pair energies and the diagonal ap­
proximation pair energies. Because of the small basis 
set, only the (20";, 20";) pair energy is important; both 
the inner-shell and intershell pair energies are negli­
gible. It is also evident from the table, that double 
excitation CI is a very good approximation and that 
single excitations make a small contribution for this 
case. The significance of these results has to be re­
garded with some degree of caution because the total 
correlation energy for the basis set is only about 10% 
of the "experimental" correlation energy (see Sec. 
IV B and Table VI). 

H3 system 

For the H3 system, we consider the saddle pOint 
geometry and use the extended Slater basis with op-

TABLE III. Basis set for linear symmetriC 

H3·
a 

Orbital Center Exponent 

Is 1,2 0.860 
Is' 1,2 1.210 
Is 3 0.967 
Is' 3 1.215 
2p 1,2 1.572 
2p 3 1. 640 
EHF = -1. 594248 a. u. 

acenters 1 and 2 are the end hydrogen atoms 
and center 3 is the central hydrogen atom; 
the internuclear distance between (1,2) and 
(2,3) is 1. 765 a. u. 

timized exponents employed in the full CI calculation of 
Shavitt, Stevens, Minn, and Karplus39 (see Table III). 
This basis set yields an energy that is estimated to be 
within - 5 kcal of the true system energy. Since H3 is 
an open-shell system and a restricted Hartree-Fock 
function is being used as 1<1>0>' Brillouin's theorem does 
not hold; i. e., there are single excitations that couple 
directly with the ground state. This leads to additional 
diagrams37.4o involving the core polarization operator 
shown in Fig. 18(a); it is nonzero for open-shell sys­
tems where the core electrons are restricted to doubly 
occupy the core orbitals. The resulting diagrams, 
such as those given in Figs. 18(b)-18(c), are called 
core polarization diagrams, and we define AE", to be 
the sum of all such diagrams. The contribution to . .o.Ec, 

include the bare diagram shown in Fig. 18(b), its lad­
der corrections shown in Figs. 18(c) and 18(d), and its 
rearrangement corrections shown in Fig. 18(e). As 
with the pair energies, if we only include the diagonal 
contributions to diagrams 18(c) and 18(d), we obtain the 
diagonal approximation to the core polarization terms, 
which we denote by .o.E~. The nonzero value for the 
core polarization operator also leads to additional pair 
diagrams of the type shown in Figs. 18(f) and 18(g). 
These are third pert-order contributions that can be . 
summed to infinite pert order. In Table IV we give the 
various approximations to the core polarization and the 
pair contributions obtained for the H3 system at the 
saddle point; also included are the results of a configu­
ration interaction calculation including only single and 
double excited configurations and including all con­
figurations. 39 The full core polarization correction, 
.o.Ec, was computed by diagonalizing the CI matrix 
truncated at single excitations, while .o.E~, was obtained 
by diagram summation. The core polarization terms 
contribute apprOximately 35% of the total correlation 
energy associated with the basis set; the diagonal con­
tribution is seen to yield about 95% of the total. In 
Table IV, we also compare two approximations [Eqs. 
(40) and (49)] to the pair energy [Eq. (33)]; in all cases 

a f3 

(a) 

5 

(b) 

FIG. 19. Quadruple excitation terms arising from overlapping 
double excitations. 
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TABLE IV. Correlation energy for linear symmetric H3. a,b 

Type of correction Sum 

M~ -0.01903 

McP -0.02013 

MfO<B) [Eq. (40)) 

Mfa/l) [Eq. (49) I 

M(o<Il) [Eq. (33)) 

M~R [Eq. (62) I 

~o<S)+M~ 

M(o<S)+Mcp 

M(O</l) +McP 

-0.02597 - 0.01534 - O. 04131 

-0.02565 -0.01523 -0.04088 

-0.02482 - 0.01444 - 0.03926 

CI including singles 
and doubles 

Full CI for basis set 

aEnergies in atomic units. 
~he near neighbor HH distance is 1. 765 a. u. 
cFor the method used to obtain M(o<S) , see text. 

-0.04051 

-0.05991 

-0.05939 

-0.05859c 

-0.05753 

-0.05803 

the single particle excitations are neglected. Both the 
diagonal approximation, AE1o<Sh and the diagonal ap­
proximation including rearrangements, aE,( .. s hare 
close to the full pair theory result; the first overesti­
mates it by 5% and the second by 4%. Both the (lu" 
lu,) and the (lu" lUll) pair contributions are seen to be 
important and they behave correspondingly in the ap­
proximate calculations. The total of the core polariza­
tion terms and the pair terms overestimate the CI cor­
relation energy by 2% for the full expression (aE cP 
+AE(o<s» and by 3% in the diagonal approximation, 
(AE~ +AE1o<s». Thus, an excellent apprOximation to 
the CI energy is obtained by use of the diagrammatic 
technique. The diagonal apprOximation to the coupled 
pair energy given by Eq. (62), which excludes the ex­
plicit coupling term, C12 , of Eq. (71), is seen to yield 
a value significantly smaller (0.00080 a.u.) than the 
corresponding diagonal approximation to the sum of the 
separate pair energies, aE1aS). Approximately the 

TABLE V. Extended basis set for Li2 
calculation. a 

Orbital Exponent 

1sa 2.3335 

1s~ 4.3950 

2sa 0.665 
3sa 1. 533 

3s~ 2.703 

2Pa 0.740 

2p~ 2.2844 
3da 1.1510 

4fa 1.252 

2p. 0.696 

2p. 1. 090 

3d. 0.500 

3d6 1. 000 

EHF = -14.87183 a. u. 

~he internuclear distance is 5.25 a. u. 

TABLE VI. Correlation energy of Li2 
with extended basis set. a,b 

E2 

E3 

E2 +E3 

Mio<ll) [Eq. (40)) 

M{aS) [Eq. (49)) 

M~R [Eq. (62)) 

Experimental correlation 
energy" 

-0.05440 

- O. 00641 

-0.06080 

-0.07968 

-0.07409 

-0.06976 

-0.1224 

aEnergies in atomic units. 
bInternuclear distance is 5.25 a. u. 
cTaken from the empirical curve of H. 
M. Hulbert and J. O. Hirschfelder, J. 
Chern. Phys. 9, 61 (1941); 35, 1901 
(1961). 

same correction for pair coupling should apply to 
aE ( .. Sl> since the two types of improvements (AE1 .. B) 

- aE(aS) and AE1 .. s)- aE~R) are essentially independent. 
The resulting value for the correlation energy (AE;aS) 
+ aEcP ), where aE;0<8) == aE(o<S) + (aE~R - aE~ .. s », is in 
very good agreement with the complete CI calculation. 
Finally, we list the correlation energy obtained from 
C I calculation including only single and double excita­
tions. It can be seen from this that the neglect of triple 
excitations yields an error of about 1 %. 

B. Extended basis set calculations 

Li2 molecule 

The extended basis set for the lithium molecule con­
sisted of nine U orbitals, three 1T orbitals, and one () 
orbital on each center. The orbital exponents, given 
in Table V, were chosen as a weighted average of the 
gerade and ungerade exponents given by Das and Wah141

; 

in addition one d. and one do orbital were included for 
extra angular correlation. The Hartree-Fock energy 
of the basis is also listed in Table V. Although this 
basis is fairly large, it is not large enough (i. e., not 
enough high exponent orbitals) to obtain an accurate in­
ner-shell contribution to the correlation energy (see 
below). 

In Table VI we present the second and third pert-or­
der energies, the second-order Epstein-Nesbet result 
(AE1 .. B»' the diagonal pair energy (aE'(o<B»' and the 
diagonal approximation to the CI matrix including only 
double excitations (AE~R)' The experimental estimate 
for the correlation energy is also given in the table. 
The Rayleigh-Schrodinger series does not converge 
rapidly, although the convergence appears better than 
in the small basis set calculation (see Table II). The 
Epstein-Nesbet and diagonal particle approximation to 
the pair energy give similar results, between 60% and 
65% of the experimental correlation energy. The value 
obtained from the diagonal apprOximation to the CI 
double excitation matrix is somewhat smaller. Since 
the only difference between AE'(o<Il) and aE~R is the 
inclusion of unlinked diagrams in the latter, it is 
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TABLE VII. Correlation energy contri­
butions for Li2 with extended basis set.a,b 

Term ~fali) ~la/l) 

(1<T,1<T) -0.03603 -0.03601 
(1<T,2<T,.) -0.00306 -0.00306 
(2<T,.,2<T,.) -0.04059 -0.03502 

aEnergies in atomic units. 
bInternuclear distance is 5.25 a. u. 

demonstrated here that these unlinked diagrams can 
be significant. Furthermore, because the unlinked 
diagrams are canceled in higher order, AE(aB) is ex­
pected to be more accurate than AE~R; this conclusion 
has been confirmed in calculations on polyenes. 42 

It is clear that the extended basis set used here is not 
sufficient to obtain the full correlation energy of the L~ 
molecule. To determine the origin of the basis set 
deficiency, we consider the diagonal pair energies 
given in Table VII; to simplify the table we have 
summed over the I cr,. and I cr" contributions as well as 
over the different spins. It is seen that the sum of the 
inner-shell terms (lcr, lcr) is about half of the value on 
the order of - O. 073 a. u. expected for two such doubly 
occupied Is-like orbitals. The absence of functions 
with large exponents in the basis set is probably the 
source of this difference between the calculated and 
expected correlation energy. If one takes account of 
this error in the inner-shell value, it appears that the 

TABLE vm. Extended basis set for N2• a 

Orbital Exponent Orbital Exponent 

lsu 10.62172 2p" 14.626 

ls~ 6.00887 2p~ 7.61151 

2su 2.54516 2p'; 3.26852 

2s~ 1. 58871 2p';' 1. 8951 

2 " Su 14.626 2p';" 1. 22223 

3su 7.31105 3d" 19.501 

3s~ 19.501 3d~ 1.68328 

2pu 14.626 3d'; 2.91681 

2p~ 7.61551 3d';' 5.51063 

2p:: 3.26852 4f" 24.377 

2p::' 1.8951 W~ 2.81173 

2p::" 1. 22223 3d6 19.501 

3du 19.501 3d6 1. 68328 

3d'u 1. 68328 3da' 2.91681 

3~' 2.91681 3da" 5.52063 

3d';' 5.52063 W6 24.377 

Wu 24.377 4f~ 2.81173 

W~ 2.81173 4f,p 24.377 

4f; 2.81173 

EHF = -108.99180 a. u. 

aInternuclear distance is 2.068 a. u. 

TABLE IX. Pair energies for the nitrogen molecule. a 

Pair(aB) b E(a/l) ~a/l) AE{aB) Grimaldi· 2 

1<T; 1<T~ -0.01871 -0.01913 -0.01913 -0.012511 

1<T,. 2<T,. -0.00328 -0.00341 -0.00341 -0.002124 

1<T,. 3<T,. -0.00329 -0.00344 - O. 00344 -0.002035 

l<Tg 1<T" -0.03741 -0.03825 -0.03824 -0.024972 

1<T,. 2<T" -0.00296 -0.00308 -0.00308 -0.002060 

1<T,. 111"" -0.00572 -0.00600 -0.00600 -0.002316 

2<T; 2<T; -0.01307 -0.01498 -0.01494 -0.010715 

2<T,. 3<T,. -0.01406 -0.01690 -0.01689 -0.011391 

2<Tg 1<T" -0.00332 -0.00346 -0.00346 -0.002123 

2<T,. 2<T" -0.00940 -0.01129 -0.01128 -0.008052 

2<Tg 111"" -0.06344 -0.07693 -0.07671 -0.036315 

3<T; 3<T; -0.01596 -0.02034 -0.02017 -0.014130 

3<T,. 1<T" -0.00335 -0.00351 -0.00351 -0.002086 

3<T, 2u" -0.02713 -0.03328 -0.03314 -0.024938 

3<T,. 111"" -0.06890 -0.09071 -0.09029 -0.047811 

1<T: 1<T~ -0.01877 -0.01919 -0.01918 -0.012553 

1<T" 2<T" -0.00300 -0.00313 -0.00313 -0.002091 

1<T" 111"" -0.00545 -0.00572 -0.00572 -0.002264 

2<T: 2<T~ -0.01587 -0.02121 -0.02098 -0.014605 

2<T" 111"" -0.05131 -0.06745 -0.06719 -0.029974 

111""1 111"U_1 -0.08326 -0.13472 -0.13048 -0.074410 

111""1 111""1 -0.05611 -0.08848 -0.08540 -0.034327 

aThe internuclear distance is 2.068 a. u. 
bplus and minus superscripts represent spin states. If there 
is no superscript, the sum of all spin states is assumed. 

"Reference 46. 

valence-shell (2cr,., 2cr,.) pair energy is well approxi­
mated by the present calculation. 

N2 molecule 

The basis set used for the nitrogen molecule calcula­
tions consisted of eighteen cr, eleven 1f, six 6, and two 
cp orbitals on each center. The exponents, given in 
Table VIII, were taken from the atomic exponents 
of Huzinaga, McWilliams, and Domsky, 43 a weighted 
average of p. and d. gerade and ungerade exponents 
given by Cade, Sales, and Wahl, 44 and large exponent 
p, d, and f functions chosen so that the radial maxima 
matched the orbitals used by Nesbet in his calculation 
of inner-shell correlation energy of the nitrogen atom.45 
The Hartree-Fock-Roothaan energy given in Table 
VIII is near that obtained by Cade, Sales, and Wahl, 44 

so that the basis set appears to be at the Hartree-Fock 
limit. 

In Table IX we give the pair energies calculated for 
the nitrogen molecule in various approximations; to 
save space, we have summed over the different spin 
orientations for each pair. In addition to the second 
pert-order, (E:4 aB », Epstein-Nesbet perturbation theory 
(dE1aB»' and diagonal pair energies (dE("aB», we give 
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TABLE X. Correlation energy of the 
nitrogen molecule. a 

"2 

M1a6) 

M(a61 

Mi'cR 
Experimental correlation 

energyb 

-0.52375 

-0.68459 

-0.67577 

-0.56029 

-0.554 

aInternuclear distance is 2.068 a. u. ; 
energy in atomic units. 
~eference 46. 

the second pert-order energies calculated by Grim­
aldi. 46 The difference between the second pert­
order energies obtained here and by Grimaldi arises 
from the fact that he used a smaller and less flexible 
basis set. Unlike the Liz calculation, the valence shells 
do not dominate the correlation energy in this system, 
which indicates the basis we have used is fairly com -
plete. From Table X, we see that the difference be­
tween .:lE1aB) and .:lE'iaB) due to the rearrangement terms 
is small. Both significantly overestimate the correla­
tion energy; e. g., the diagonal pair energy (.:lE(a6» 
overestimates the experimental correlation energy by 
22%. This is a consequence both of the independent 
pair approximation and the diagonal approximation. We 
list the results also for a correlation calculation (.:lE~R)' 
where we have made the diagonal approximation to the 
doubly excited CI matrix. In this approximation, we 
find 101 % of the experimental correlation energy. 
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APPENDIX: DEMONSTRATION OF THE 
CANCELLATION OF THE UNLINKED DIAGRAMS 
FROM THE DOUBLE AND QUADRUPLE EXCITATIONS 

In this appendix we show that the quadruple excitation 
contributions contain terms that cancel the unlinked 
terms from the double eXl;itation contributions. Al­
though this cancellation has been discussed by Kelly, 26 

it is useful to consider it in terms of the partitioned 
CI matrix. We use the configuration interaction matrix 

(Al) 

where B contains the coupling matrix elements between 
the ground state and the double excitations, D contains the 
matrix elements between the double excitations, C is 
the matrix that couples the double excitations to the 
quadruple excitations, Q contains the matrix elements 
between the quadruple excitations, fa is the vector of 
the double excitation coefficients, and f. is the vector of 
the quadruple excitation coefficients. Sol ving for f., 
we obtain 

f4 = (.:lEQ I - Q)-lC+ fa (A2) 

From Eqs. (Al) and (A2), we have 

1 )-1 
£a=( AEQ 1- D -C .:lEQI-Q C+ B+. (A3) 

and 

1 )-1 
AEQ=B(AEQI-D-C AEQI-:t;l C· B+ (A4) 

Expanding the denominator of Eq. (A4), we find 
1 1 

AE =B B++B-------
Q AE Q I - D AE Q I - D 

1 + 1 + ( ) 
xC AEQI_QC .:lEQI_DB +_.. A5 

In the approximation that .:lE Q ~ .:lEd' the first term on 
the right-hand side of Eq. (A5) is the double excitation 
CI result. As we saw in the main text, this term con­
tains unlinked contributions. To determine the origin 
of the cancellations of the unlinked terms in Eq. (A5), 
we expand with respect to the AEQ contributions in the 
denominators and obtain 

To simplify the discussion, we focus on the unlinked terms arising from the excitations involving the two de­
terminants I <I>:'4S} and I<I>;~) considered in the main text. It is the second term on the right-hand side of Eq_ (A6) 
that contains the lowest pert-order unlinked contributions. This term gives 

( 1 \2 ( 1 \2 [ 1 ( 1 )2 1 1 1 J T2=-B -D) B+.:lEQ=-B -:0) B+ B -D B+-AEQB -D B++ ••• +B _DC _QC+ -D B++··· 

Considering only the first term in the square brackets, we have 

T ~ [ B~~ (_1_)2 B+~4 Btu ( 1 )2 B+tJ [B~' _1_ B+'" Btu _1_ B+,J 
2 = - as _ v:,"6 ",B - 78 _ D!~ 78 J ",6 _ D~ 018 + 78 _ D:~ 70 J 
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"" _ (rs I v I aJ3)(a/3lv Irs) x (rs Iv I am (a/3lv Irs) _ (tu I v I 1'6)(1'6 I v I tu, x (tu I v I 1'6)(1'6 I v I t,j) 
- (E,,+EB-E .. -E.'f (10,,+108-10 .. -10.) (E~+E6-Et-Eu) (E~+E6-Et-Eu) 

(rs Iv I a/3) (a/3lv Irs) (tu Iv 11'6) (1'6 Iv Itu) (tu Iv 11'6) (1'6 Iv I tu) (rs Iv I a/3) (a/3lv Irs) 
- (Ea +EB-E .. -E.)2 X (Ey +E6 -EI -Eu) - (Ey +E6 -EI -Eu)2 x (E,,+E8- E .. - E.) 

(A9) 

since 

(AlO) 

and 

(All) 

In Eq. (A9) we have included only exchanges for two out of the four matrix elements occurring in each term, so that 
in summing over distinct configurations we will avoid overcounting. This is consistent with the notation used in the 
main text [see Eq. (17)]. The first two terms in Eq. (A9) are linked pair rearrangement terms and the last two 
terms are unlinked. The cancellation of the latter terms is due to the fourth term on the right-hand side of Eq. 
(A6). We again limit the terms to the two double excitations considered previously and include only one quadruply 
excited function I <I>~s:y~ ): The resulting contribution is 

T = B _1_ C _1_ C+ _1_ B+ = Bf" 1 cr. ...... I" 1 [~r8'f"&I" 1 B+r. c::,u,r&lu _1_ B+tU] 
3 _ D _ Q _ D "B _ U:

B 
"B, "By6 _ Q':~~ "B. ,,1176 _ D~~ "B + y6. "By6 _ D;~ y6 

where 

Cn .... lu = (<1>'" I HI <I>".lu ) = (tu I v I '1'6) "B, ,,1176 aB aSy6 , 

and 

The first term yields 

(rs Iv I ci/3) (tu Iv I y6) 
[

(Y6IV Itu) (a/3lv Irs) + (a/3lv Irs) (1'0 Iv Itu)] 
(lOa +Es- 10 .. - E.) (Ey +E6 - 101 - IOu) 

(rs Iv I am (a/3lv Irs) (tu I v 11'6) (1'6 Iv I tu) 
(Ea + EB - E,. - E.'f(Ey + E6 - lOt - IOu) 

(Al2) 

(Al3) 

(Al4) 

(Al5) 

(AlB) 

which cancels the third term in Eq. (A9). The fourth term in Eq. (A9) is similarly cancelled by the second term in 
Eq. (Al2). Thus, all unlinked terms of fourth pert-order (two orders in AEo) cancel. 

We next consider the sixth pert-order terms (three orders in AEQ). The terms from the pure double excitation 
part are found in the third term on the right hand side of Eq. (A6) and the second term in Eq. (A7). With the same 
simplifications as employed previously, the term from Eq. (A6) can be written 

B (....L)3 B+(AE )2"" B (~)3 B+ [B _1_ B+] 2 "" [Bra (_1_)3 B+"s Bt" (_1_) 3 B+tUJ [B". _1_ B+"8 Btu _1_ B+tU]2 
_ D Q - - D _ D - as _ D:ss a8 + y6 _ D;~ y6 018 _ ~.Il all + y6 _ D:~ y6 

(A17) 
The unlinked terms in Eq. (A I 7) are 

2(rs I v I a(3) (a/31 v I rs)(rs I v I a/3) (a/31 v Irs) (tu Iv 11'6) (1'6 I v I tu) (rs I v I a/3)(a/31 v I rs)(tu I v ,.yc5)(yc5lv I tu)(tu I v lyc5)(yc51 v I tu) 
(E" + lOB - lOr - E.)4(Ey + E6 - lOt - E,,) + (10" + lOS - Er - E.)3(Ey + 106 - 10 1 - Eu)2 

(AlB) 
plus the two terms obtained from Eq. (AlB) by exchanging a/3 with '1'6 and rs with tu. The second term in Eq. (A7) 
gives 

I n+"& tu I +IU] 
-D" • .D all + BY6 Dtu BY6 • 
- aB - y6 

(A19) 
The unlinked terms in Eq. (AI9) are 

(rs I v I a (3)(a/3 Iv Irs)(rs Iv I a/3)(a!3lvlrs)(tulv 11'6)(1'6 I v I tu) (rs Iv I ;m(af31 v I rs)(tu I v I y6)(yc5lv I tu)(rs I v I d'm(al3lv Irs) 
(E" + lOB - E,. - Es)4(Ey + 106 - EI - Eu) + (Eo< + lOs - lOr - Ea)3(Ey + 106 - 101 - Eu'f 

(rs / v / a(3)(af3/ v I rs)(tu I v / yo)(yo Iv / tu)(tu I v 11'0)(1'0 Iv I tu) 
+ (10" + Ell - lOr - Es'f(Ey + 106 - EI _ EY (A20) 

plus the three terms obtained from Eq. (A20) by interchanging rs with tu and a!3 with yc5. The terms that cancel 
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Eq. (AI8) and Eq. (A20) occur in the fifth through eighth terms of Eq. (A6) and the third term of Eq. (A7). The 
contribution from Eq. (A7) is 

[ 
B( I )2 B+ B leI c+ 1 B.l _ [BTS I B+TJ{BTS 1 CTS rstu I [+TS Tstu 1 +TS 

- _ 0 -=0 _ Q -=0 J - - a/! (_ D:s/!)2 "'8J ",8 _ D:a ",l,IX/!YO _ Q:s~~ C",/!,'",/!Y6 _ D:S/! Ba/! 

+C+tu,Tstu _1_ B +tu ] +Bf" _1_ CtU,TStu __ I_[C+rs'Tsfu _1_B+TS +C+tu,Tstu _1_ B+tJ} 
1'fi,ar/!YO -D;~ yO 1'6 -D:~ y6,allyO -Qr:a;~ aa,IX/!y6 _D:sl! a/! 1'6,aa1'O -D;~ 1'oJ 

(A21) 

plus the four terms obtained from Eq. (A21) by exchanging a{3 with y5 are rs with tu. Writing out the terms of Eq. 
(A21), we obtain 

(rs Iv 1li'(3)(a{3lv Irs)(rs Iv la/3)(a{3lv Irs)(tu Iv 1.y5)(y5Iv Itu) 

(Ea + Ell - ET - Es)4(Ey + Eo - Et - Eu) 

(rs I v I a-(3) ( a{31 v I rs)(rs I v I 1.'1/3)( a{3 I v I rs)(tu I v I y6)(y5 I v I tu) 

(E" + EIl- ET - Es)3(Ey + Eo - Et - E,,)2 

(A22) 
The fifth, sixth, and seventh terms of Eq. (A6) are 

_ t:..EQ [B(.2.-)2 C _1_ c+ _1_ B+ +B _1_ c(_I_)2 c+ _1_ B+ +B _1_C _1_ c+(_1_)2 BJ 
-0 -Q -0 -0 -Q -0 -0 -Q -0 ] 

"'" _ [BTS _1_ B+rs Btu _1_ B+tUJ [BTS (_1_) 2 CTS,T.tu 1 (C+T.,TStU __ 1_ B+TS C+tU,TStU _1_ B+ t-) 
- a/! _ DTS IX/! + yO _ Dtu 1'6 a/! _ DTS a/!, ",/!YO _ QTStU lX/!, a/!YO DTS IX/! + yO, "'/!1'6 DIU '16 

IX/! '16 all a/!yO - a/! - '16 

+BTS _1_CTs,rstu ( __ 1_~ (C.TS,TStu _1_ B+T• +C+tu,Tstu _1_ B +tU) 
all _ d.,sll all,IX/!yfi _ Q;~~~} all,...syO _ D:'a a/! yO,aM _ D:~ yO 

B rs _1_ CT.,T.tu _1_ (C.T.,TSIU ( 1 )2 B+TS C+tu, TStU ( 1 )2 BtU)] + IX/! _ DTS a/!, a/!1'O _ QTStU all, a/!YO _ Drs as + ,.0, "'/!1'O _ D t" yO 
a/! ",/!yO "'/! yO 

(A23) 

plus the six terms obtained from Eq. (A23) by exchanging a{3 with y5 and rs with tu. Combining the terms in Eq. 
(A23), we obtain 

_ [2(rs Iv Ict(3)(ct{3lv Irs)(rs Iv I i(3)(a{3 Iv Irs)(tu Iv I y-B) (yo Iv Itu) 

(Ea + Ea - ET - Es) (Ey + Eo - Et - Eu) 

(rs I v I a{3>(a{31 v I rs>(tu I v I y5)(y5 I v I tu>(tu I v I y5)(y5 I v I tu) (rs I v I li'(3)( a{31 v I rs)(tu I v I i5)(y51 v I tu)(tu I v I i5>(yB I v I tu) 
+ (E", + EIl - Er - Es)2(Ey + Eo - E t - E,,)3 + (E", + Ell - ET - Es)3{Ey + Eo - Et - Eu)2 

(rs Iv I a (3)(a{3 Iv Irs) (tu Iv ly5)(y5Iv Itu>(tu Iv ly5)(y5Iv Itu) 
+~~--~~~~~~~~~~~~~~~~~~~~~~--, 

(E", +Ea- E,.- E.)3(Ea +EB +Ey +Eo - Er - Es - E t - E.)(Ey +Eo - E t - Eu) 

(rs I v I a(3)(a{31 v I rs)(rs I v I a {3)(a{3 I v I rs)(tu I v I y5)(y51 v I tu) ] 

+ (E", + Ea - Er - Es)2(E", + Ea + Ey + Eo - Er - Es - Et - E,,)(Ey + Eo - E t - E,,)2 
(A24) 

The eighth term in Eq. (A6) is 

B 1 1 C+ 1 C 1 C+ 1 B+ _ BTS 1 C+TS rslu 1 [c+rs rstu 1 +TS rstu 1 (+TS Tstu 1 +TS 
-0 C -Q -0 -Q -D - al! -Drs al!,'0l/!Y6 QTStU all,'"I!YO -DTS C"8,~/lYO QT.tu C a8,'",/!Y0 -Drs Bas 
- - - - - - a8 - a8yO - ,,8 - allYO - IXS 

+ C+fu,TStu _1_ B+ lu\ + C+IU,TStU _1_ CtU,TS!U 1 (C+Ts,rstu ___ 1 __ B+TS + C+tu,TStu 1 +tu),l 
yO,a/!y6 -D:~ yo) y6,a/!y6 -D;~ yO,a/!YO _ Q~s~'l! a8,a/lyO -D:s8 a8 YO,aM -D:~ ByO 'j (A25) 

plus the four terms obtained from Eq. (A25) by exchanging a{3 with y5 and rs with tu. Combining the terms in Eq. 
(A25), we obtain 

(ct{31 v I rs)(yo I v I iit)(tu I v I yo)(yo I v I i;>(tu I v I yo>(rs I v I a(3) 

(a{3lv Irs)(y5Iv It7~)(rs Iv I a(3)(a{3lv Irs)(tu Iv ly5)(rs Iv I a(3) 
(A26) 

It is clear that the sum of the terms in Eq. (A26), (A24), and (A22) cancel the sum of the terms in Eq. (AlB) and 
(A20). 

The above development has shown explicitly that all unlinked terms through order (t:..EO)3 cancel. Corresponding 
arguments can be used to demonstrate that all orders of t:..Eo cancel in a corresponding way. For the case of two 
"nonoverlapping" pair excitations, all the true correlation contributions thus come from double excitations, and 
the sole effect of quadruple excitations is to cancel the unlinked terms. 

In demonstrating the cancellations of unlinked terms in Eq. (A5), we considered only the coupling between the 
determinants I <I>'::a> and 1<1>;:>. It is instructive to examine the second term on the right-hand side of Eq. (A5) and 
include cross terms that arise from a simultaneous consideration of the determinants I <I>~Sa), I <I>~"a>, I <I>;~), and 
I <I>:~). For this case in lowest pert-order, we have 
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X [c+rs,rstll _1_B+rs+C+tll,TSfll _1_ B+tll + C+tll,rstu _1_B+tu+C.rs,rstfl _1_ B +rs] 
all, a/l)oG _ n:~ all yG,allyG _ D;: yG ",II, ",lIyG _ D~~ ",II yG, a/l)oG _ D;g yG (A27) 

plus the four terms obtained from Eq. (A27) by exchanging cy{3 with yo and rs with tu. The first two terms of Eq. 
(A27) are the same as those that appear in Eq. (Al2) and are written cut in Eq. (Al6). The second two terms give 

(rs / v / a(3)(tu / v / y6)(yo / v / rs)( 0!{3/ v / tu) 
(E", + Ell - Er - Es)( Eo< + Ell + Ey + EG - Er - Es - E t - Eu)( E", + Ea - E t - Eu) 

(rs / v / a(3)(tu / v / y5)(0!{3/ v / tu)(yo / v / rs) 
+ ~------~~~~~~~~~~~~~~~~~----------~ 

(E", + Ell - Er - Es)(E", +Ea +Ey +EG - Er - Es - E t - Eu)(Ey +EG - Er - Es) 
(A28) 

These two terms are linked and their direct diagrammatic representation is shown in Fig. 19. These diagrams 
have exactly the same structure as the linked coupling rearrangement diagrams that arise in the coupling of two 
pairs with the same two particle states (i. e., if r= t and s =u) or the same hole states (O! =y, 0 =(3). 

*Supported in part by a grant from the National Science Foun­
dation. 

tIBM Predoctoral Fellow. Present address: Department of 
Physics, The University of Utah, Salt Lake City, Utah 84112. 

lC. C. J. Roothaan, Rev. Mod. Phys. 23, 69 (1951). 
2H. F. Schaefer III, The Electronic Structure of Atoms and 

Molecules (Addison-Wesley, Reading, MA, 1972). 
3R. K. Nesbet, Adv. Chern. Phys. 14, 1 (1969). 
40. Sinano~lu, Adv. Chern. Phys. 14, 237 (1969). 
5H. P. Kelly, Adv. Theoret. Phys. 2, 75 (1968). 
6J. Cizek, J. Chern. Phys. 45, 4256 (1966). 
7J. D. Doll, Ph. D. thesis, Harvard University, Cambridge, 

MA, 1971. 
8J. D. Doll and W. Reinhardt, J. Chern. Phys. 57, 1169 (1972). 

9H. P. Kelly, Phys. Rev. Lett. 23, 455 (1969). 
1'11. P. Kelly, Phys. Rev. AI, 274 (1970). 
l1T. Lee, N. C. Dutta, and T. P. Das, Phys. Rev. Lett. 25, 

204 (1970). 
12J. E. Rodgers, T. Lee, T. P. Das, and D. Ikenberry, Phys. 

Rev. A 7, 51 (1973). 
13J. H. Miller and H. P. Kelly, Phys. Rev. Lett. 26, 679 

(1971). 
14T. Lee and T. P. Das, Phys. Rev. A 6, 968 (1972). 
15N. C. Dutta and M. Karplus, Chern. Phys. Lett. 31, 455 

(1975). 
lSC• M. Dutta, N. C. Dutta and T. P. Das, Phys. Rev. Lett. 

25, 1695 (1970). 
17J • M. Schulman and D. N. Kaufman, J. Chern. Phys. 53, 

477 (1970). 
18J • M. Schulman and D. N. Kaufman, J. Chern. Phys. 57, 

2328 (1972). 
19R. J. Bartlett and D. M. Silver, Phys. Rev. A 10, 1927 

(1974). 
2'1t. J. Bartlett and D. M. Silver, J. Chern. Phys. 62, 3258 

(1975). 
21U. Kaldor, J. Chern. Phys. 62, 4634 (1975). 
22K. F. Freed, Phys. Rev. 173, 1 (1968). 

23K. F. Freed, Chern. Phys. Lett. 4, 496 (1970). 
24K. F. Freed, Ann. Rev. Phys. Chern. 22, 313 (1971). 
25H. P. Kelly and A. M. Sessler, Phys. Rev. 132, 2091 

(1963). 
26H. Kelly, Phys. Rev. 134, A1450 (1964). 
27p. O. Lowdin, J. Math. Phys. 3, 969 (1962). 
28J. Goldstone, Proc. R. Soc. (London), A 239, 267 (1957). 
29N. H. March, W. H. Young, and S. Sampanthar, The Many-

Body Problem in Quantum Mechanics (Cambridge UniVersity, 
New York, 1967). 

3°0. Sinano~lu, J. Chern. Phys. 36, 706 (1962). 
310. Sinano~lu, J. Chern. Phys. 36, 3198 (1962). 
32J. Paldus, J. Cizek, and I. Shavitt, Phys. Rev. A 5, 50 

(1972). 
33M. Karplus and W. P. Reinhardt, An Introduction to Many­

Body Theory with Applications to Atoms and Molecules, 
Chap. 7 (to be published). 

34p. Claverie, S. Diner, and J. P. Malrieu, Int. J. Quantum 
Chern. I, 751 (1967). 

35K. A. Brueckner and D. T. Goldman, Phys. Rev. 117, 207 
(1960). 

36J. H. Miller and H. P. Kelly, Phys. Rev. A 3, 578 (1971). 
37D. L. Freeman, Ph. D. thesis, Harvard University, Cam­

bridge, MA, 1972. 
38S. Fraga and B. J. Ransil, J. Chern. Phys. 36, 1127 (1962). 
391• Shavitt, R. M. stevens, F. L. Minn, and M. Karplus, J. 

Chern. Phys. 48, 2700 (1968). 
4'11. K. McDowell, Ph. D. thesis, Harvard University, Cam-

bridge, MA, 1972. 
41G• Das and A. C. Wahl. J. Chern. Phys. 44, 87 (1966). 
42 1• Ohrnine, N. Dutta, and M. Karplus (to be published). 
43S. Huzinaga, D. McWilliams, and B. Dornsky, J. Chern. 

Phys. 54, 2283 (1971). 

Hp. E. Cade, K. D. Sales, and A. C. Wahl, J. Chern. Phys. 
44, 1973 (1966). 

45R. K. Nesbet, Phys. Rev. 175, 2 (1968). 
46F. Grimaldi, J. Chern. Phys. 43, S 59 (1965). 

J. Chern. Phys., Vol. 64, No.6, 15 March 1976 

Downloaded 02 May 2013 to 131.128.70.27. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jcp.aip.org/about/rights_and_permissions


	Many-Body Perturbation Theory Applied to Molecules: Analysis and Correlation Energy Calculation for Li2, N2, and H3
	Citation/Publisher Attribution

	Many-Body Perturbation Theory Applied to Molecules: Analysis and Correlation Energy Calculation for Li2, N2, and H3
	Publisher Statement
	Terms of Use


	tmp.1368028118.pdf.045Tg

