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Utilization of the Mouse Large Intestine To Select an
Escherichia coli F-18 DNA Sequence That Enhances

Colonizing Ability and Stimulates Synthesis
of Type 1 Fimbriae

ROBERT L. BURGHOFF,lt LARS PALLESEN,1* KAREN A. KROGFELT,2 JOSEPH V. NEWMAN,'
MAC RICHARDSON,' JUDITH L. BLISS,' DAVID C. LAUX,' AND PAUL S. COHEN"*
Department ofMicrobiology, University ofRhode Island, Kingston, Rhode Island 02881,1 and

Department of Bacteriology, Statens Seruminstitut, 2300 Copenhagen 5, Denmark2

Received 28 July 1992/Accepted 17 January 1993

Escherichia coli F-18, a normal human fecal isolate, is an excellent colonizer of the streptomycin-treated
mouse large intestine. E. coli F-18 Col-, a derivative of E. coli F-18 which no longer makes the E. coli F-18
colicin, colonizes the large intestine as well as E. coli F-18 when fed to mice alone but is eliminated when fed
together with E. coli F-18. Random sequences of E. coli F-18 DNA were cloned into pRLB2, a parB-stabilized
derivative of pHC79. The entire gene library was transformed into E. coli F-18 Col- and fed to streptomycin-
treated mice. The mouse large intestine selected a predominant clone which contained a recombinant plasmid
(pRLB7) that enhanced E. coli F-18 Col- colonizing ability 100-fold but did not stimulate colicin synthesis.
Moreover, pRLB7 simultaneously improved the survival of E. coli F-18 Col- in stationary phase in vitro,
utilizing nutrients derived from mouse cecal mucus, and stimulated synthesis of both type 1 fimbriae and three
E. col F-18 Col- outer membrane proteins (74, 71, and 69 kDa). The 6.5-kb E. coli F-18 DNA sequence in
pRLB7 does not contain either the fim operon or pilG (hns), both known to be involved in type 1 fimbrial
synthesis. The sequence encodes six proteins, all smaller than the three E. coi F-18 Col- outer membrane
proteins whose synthesis it stimulates. Collectively, the results suggest that the cloned E. coli F-18 DNA
sequence contains one or more regulators of E. coli F-18 Col- operons expressed in the mouse large intestine
in vivo and in isolated mouse cecal mucus in vitro.

When fed simultaneously to streptomycin-treated mice,
Escherichia coli F-18, isolated from the feces of a healthy
human, is a far better colonizer of the mouse large intestine
than E. coli F-18 Col-, a strain derived from E. coli F-18 (5)
which no longer makes the E. coli F-18 colicin, colicin V
(25). It is highly likely that both E. coli F-18 and E. coli F-18
Col- colonize the mouse large intestine by growing in
intestinal mucus; i.e., both strains grow well when inocu-
lated alone into cecal mucus in vitro, but neither grows in
cecal luminal contents in vitro (31). Moreover, although both
strains grow well alone in cecal mucus, together E. coli F-18
grows well and E. coli F-18 Col- grows poorly (31).

Recently, we reported that, when streptomycin-treated
mice were simultaneously fed 108 CFU of E. coli F-18 Col-
and 103 CFU of E. coli F-18, E. coli F-18 became the
predominant strain within 5 days (31). This observation
suggested the possibility of cloning random sequences of E.
coli F-18 DNA into E. coli F-18 Col- and using streptomy-
cin-treated mice to select strains which contain E. coli F-18
DNA sequences that enhance E. coli F-18 Col- coloniza-
tion. In this report, we describe the isolation of an E. coli
F-18 DNA sequence, selected in vivo, that results in en-
hanced E. coli F-18 Col- large intestine colonizing ability,
enhanced survival in cecal mucus in stationary phase in

* Corresponding author.
t Present address: Protein Engineering Inc., Cambridge, MA

02138.
t Present address: Department of Microbiology, Technical Uni-

versity of Denmark, Lyngby, Denmark.

vitro, and increased synthesis of both type 1 fimbriae and at
least three outer membrane proteins.

MATERIALS AND METHODS
Bacterial strains. E. coli F-18 was isolated from the feces

of a healthy human in 1977 and is an excellent colonizer of
the streptomycin-treated mouse large intestine (5, 26). The
E. coli F-18 strain used here is resistant to streptomycin
(Strr) and rifampin (Rif) and produces colicin V (25). Its
serotype is rough:Kl:H5 (25). E. coli F-18 Col- fimA was
made (25) by bacteriophage P1 transduction into E. coli F-18
from E. coli ORN151, which contains the tetracycline resis-
tance gene from TnlO inserted in the fimA (pilA) gene (25),
making it type 1 fimbria negative. E. coli F-18 Col- was
isolated in 1979 in the following way (5). A Strr, nalidixic
acid-resistant (Nalr) mutant of E. coli F-18 was mated with
E. coli RS2, which contains the Rl drdl9 plasmid (R1+), and
an E. coli F-18 R1+ strain was isolated. The E. coli F-18 R1+
strain was cured of the Rl drd plasmid with acriflavine. One
of the cured clones, E. coli F-18 Col-, lost the ability to
make the E. coli F-18 colicin (5). E. coli F-18 Col- is a poor
mouse large intestine colonizer relative to E. coli F-18 (5,
26). At the time of isolation, E. coli F-18 Col- appeared to be
missing an 86-kb plasmid (5). When recently reexamined,
however, E. coli F-18 Col- was found to contain the 86-kb
plasmid, but it still does not make colicin V and remains a
poor colonizer (data not shown). The colV plasmid is known
to be able to insert into the E. coli chromosome (12), which
presumably accounts for its disappearance and reappearance
in E. coli F-18 Col-. E. coli F-18 Col- is resistant to colicin
V (5). A spontaneous double mutant of E. coli HB101
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FIG. 1. Restriction map of pRLB7. P, PstI; X, XhoI; C, ClaI; H,
HindIII; E, EcoRI; S, Sail. Numbers between restriction sites are in
kilobase pairs. The dashed line indicates the approximate 2-kb
deletion in pRLB2, and the vertical arrows delineate the undefined
ends of the E. coli F-18 sequence and pRLB2. The BglII (B) site is
a pRLB2 site.

resistant to both nalidixic acid and streptomycin was used
for characterization of relevant constructions. E. coli K38
(28) was used for identifying proteins encoded by the E. coli
F-18 DNA sequence which enhances the colonizing ability of
E. coli F-18 Col-. E. coli JM109, obtained from Promega
(Madison, Wis.), makes 3-galactosidase when comple-
mented by the pGEM-Zf(+) plasmid which encodes the lacZ
a-peptide. Therefore, E. coli JM109 colonies containing
recombinant pGEM-Zf(+) vector with inserts into the lacZ
a-peptide gene fail to make 3-galactosidase.
E. coli F-18 gene library construction. E. coli F-18 DNA,

isolated by the method of Marmur (23), was partially di-
gested with EcoRI. Digestion products in the 5- to 15-kb
range were used for subsequent ligation to EcoRI-restricted
pRLB2, a pHC79 derivative described previously (4). E. coli
F-18 Col- was found to be a poor recipient for the relaxed-
circular ligation products generated during plasmid bank
construction. For this reason, ligation products were initially
transformed into E. coli HB101. These colonies (10,000
CFU) were then mixed and added to 1 liter of L-broth
containing ampicillin (100 ,ug/ml) grown to an optical density
at 600 nm of 0.4, and plasmid DNA was amplified following
addition of chloramphenicol (200 ,g/ml). Supercoiled plas-
mid DNA was then isolated by cesium chloride-ethidium
bromide density centrifugation (22). The resulting purified
supercoiled plasmid DNA was assayed for variability by
restriction analysis and then transformed into E. coli F-18
Col- at high frequency (approximately 106 transformants per
jig of DNA). These transformants, representing the shotgun-
cloned E. coli F-18 gene library in E. coli F-18 Col-, were
used for all subsequent in vivo selection experiments.

Small-scale isolation of plasmid DNA was carried out by
the method of Birnboim and Doly (2). Agarose gel electro-
phoresis was carried out at a concentration of 0.8% agarose.
All restriction endonuclease and T4 DNA ligase reactions
were performed as described by the manufacturer (Bethesda
Research Laboratories, Gaithersburg, Md.). Calf intestinal
phosphatase and RNase I treatments were performed as

specified by the manufacturer (Boehringer Mannheim Bio-
chemicals, Indianapolis, Ind.). All restriction fragments
were purified with GENECLEAN, using the instructions
provided by the manufacturer (Bio 101, Inc., La Jolla,
Calif.).

Plasmid pRLB7 deletion construction. The parB stabilized
plasmid pRLB2, described previously (4), was used as the E.
coli F-18 gene library recipient plasmid. Plasmid pRLB7 was
selected by the mouse large intestine in vivo from the E. coli
F-18 gene library in E. coli F-18 Col-. The restriction map of
pRLB7 is presented in Fig. 1. pRLB18 is a deletion which
extends from the XhoI site to the SalI site of pRLB7 and was
constructed by digesting pRLB7 with XhoI and SalI and
religating the deleted plasmid by virtue of XhoI and Sall
restriction site compatibility. All plasmids used in this study
are listed in Table 1.
Mouse colonization experiments. The method used to dis-

tinguish the relative colonizing abilities of E. coli strains in
mice has been described in detail previously (5, 31). Briefly,
after 1 day of being fed streptomycin sulfate in their drinking
water (5 g/liter), male CD-1 mice (5 to 8 weeks old) were
starved for food (Charles River Valley Rat, Mouse, and
Hamster Formula) and water for 18 to 24 h and fed 1010 CFU
each of the L-broth-grown E. coli strains to be tested in 1 ml
of sterile 20% (wt/vol) sucrose. The mice drank the bacterial
suspension almost immediately and were then given food
and streptomycin-containing drinking water. The next day
and at 48-h intervals, fecal samples, no older than 24 h, were
collected, homogenized, diluted, and plated on selective
media as described below. In all colonization experiments,
plates were incubated at 37°C for 18 to 24 h. Colonizing
ability was assessed by the level at which a strain persisted
in feces. Each experiment was performed at least twice, with
essentially identical results.
To differentiate between E. coli F-18 Col- strains carrying

recombinant plasmids and E. coli F-18 Col- fimA(pRLB2),
fecal samples were plated on MacConkey agar containing
100 ,ug of streptomycin sulfate and 100 ,g of ampicillin per
ml and on MacConkey agar containing 100 p,g of streptomy-
cin sulfate, 100 p,g of ampicillin, and 10 ,ug of tetracycline
hydrochoride per ml. The former medium grows both strains
being tested, whereas the latter medium only grows the E.
coli F-18 Col- fimA(pRLB2) strain. When necessary, i.e.,
when the numbers of CFU on the two media were difficult to
distinguish as different, 100 colonies were typed by transfer-
ring samples of each by toothpick from the plates without
tetracycline to the plates containing tetracycline.
Growth in cecal mucus dialysates. Cecal mucus dialysates

were prepared from CD-1 mouse crude cecal mucus as

TABLE 1. Plasmids used in this study

Plasmid Description Reference or source

pRLB2 parB inserted in tet of pHC79 4
pRLB7 Contains an approximately 6.5-kb E. coli F-18 DNA sequence that enhances E. coli This study

F-18 Col- colonization, inserted in the EcoRI site of pRLB2
pRLB18 XhoI-SalI deletion of pRLB7 This study
pPKL4 Contains the E. coli K-12fim operon in pBR322 16
pTHK113 Contains pilG cloned into pBR322 13
pGP1-2 Contains the RNA polymerase gene of phage T7 under the heat-inducible control of 30

the PL promoter cloned into pBR322
pGEM-7Zf(+) Contains the phage T7 promoter Promega (Madison, Wis.)
pLPA213 Contains the PstI-Sall fragment of pRLB7 inserted into pGEM-7Zf(+) such that the This study

PstI-Sall fragment is transcribed in that direction, using the phage T7 promoter
pLPA214 As pLPA213, but with the PstI-SalI fragment inserted in the opposite orientation This study

INFECr. IMMUN.
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described previously (10). Dialysates (0.5 ml) were inocu-
lated with 104 CFU each of the plasmid-containing strains to
be tested, incubated standing at 37°C, and plated on Mac-
Conkey agar containing streptomycin sulfate (100 ,ug/ml),
nalidixic acid (50,ug/ml), and ampicillin (100,ug/ml) at 0, 4, 8,
12, 16, 20, 24, 48, and 120 h. The plates were incubated at
37°C for 18 to 24 h; 150 colonies from each time point were
transferred by toothpick to MacConkey agar containing
streptomycin sulfate (100 ,ug/ml), nalidixic acid (50 ,ug/ml)
and tetracycline hydrochloride (10 jig/ml), and after incuba-
tion colonies were scored for either resistance or sensitivity
to tetracycline.

Plate test for colicin production. The indicator strain used
to detect colicin production was E. coli ORN152 (25).
Approximately 106 CFU from an aerobically grown L-broth
overnight culture (37°C) was spread on the surface of an
L-agar plate. The strain to be examined for colicin produc-
tion was transferred by toothpick from a fresh streak to the
plate containing the indicator strain. After overnight incuba-
tion at 37°C, colonies of the test strain were examined for
zones of inhibition.

Radioactive labeling of E. coli F-18 Col- strains during
growth in mouse cecal mucus. E. coli F-18 Col- strains and
their plasmid-containing derivatives were grown in L-broth
as described previously (25) and diluted 104-fold in HEPES
(N- 2- hydroxyethylpiperazine -N' -2- ethanesulfonic acid)-
Hanks buffer (pH 7.4) into 2 ml of crude cecal mucus (4 mg
of protein per ml) containing 10 ,uCi of Tran35S-label (1,100
Ci/mmol; ICN Biomedicals, Inc., Costa Mesa, Calif.) per ml.
Cultures were incubated standing for 16 h at 37°C, washed
twice in HEPES-Hanks buffer (pH 7.4), and resuspended in
the same buffer at a concentration of about 109 CFU/ml. The
specific activity of the cultures was routinely between 2 x
i-3 and 5 x 10-' cpm/CFU.
Adhesion assay. The adhesion assay has been described in

detail previously (25). Briefly, 35S-labeled cells (0.2 ml) in
HEPES-Hanks buffer (pH 7.4) or 35S-labeled cells (0.2 ml) in
HEPES-Hanks buffer (pH 7.4) containing a-methyl-D-man-
noside (100 mM) were added to multiwell polystyrene plates
containing an immobilized mannose-bovine serum albumin
(BSA) glycoconjugate (Carbohydrates International, Arlov,
Sweden). The plates were incubated for 1 h at 37°C, and the
wells were then washed twice with HEPES-Hanks buffer
(pH 7.4) to remove unbound bacteria. Adherent bacteria
were released by adding 0.5 ml of 5% sodium dodecyl sulfate
(SDS) to each well and then incubating the plates for 3 h at
37°C. The SDS was removed from each well, and the level of
radioactivity was determined by scintillation counting.

Isolation of outer membranes and periplasm. The periplasm
of 35S-labeled cells grown in cecal mucus was released from
spheroplasts (21). Spheroplasts were centrifuged at 15,000 x
g for 10 min at 4°C, resuspended in 30 mM Tris buffer (pH
7.3) containing 3 mM EDTA, and lysed by sonication.
Surviving spheroplasts were removed by centrifugation at
15,000 x g for 5 min at 4°C, and the supernatant was
centrifuged at 40,000 x g for 90 min at 4°C to collect whole
cell membranes. Outer membranes were then prepared from
whole membranes by differential centrifugation, using the
detergent sodium dodecyl sarcosinate as described by Filip
et al. (9).

Purification and quantitation of type 1 fimbriae. E. coli F-18
Col- strains were grown in 100 ml of Minimal Broth Davis
(Difco) containing 1% (wt/vol) D-glucose as described previ-
ously (25). Fimbriae were purified from each strain as
described by Eisenstein and Dodd with minor modifications
(7). Briefly, bacteria were collected by centrifugation and

were then washed and resuspended in Tris-HCl buffer (pH
7.4). The fimbriae were sheared off by blending. Bacterial
cells and membrane debris were removed by centrifugation,
and the supernatant was subjected to ultracentrifugation
(227,000 x g, 2 h, 4°C). The pellet was resuspended in 5 M
urea, diluted to 1 M urea, and layered over a 1 M urea-i M
sucrose-5 mM Tris cushion. Pellets of pure fimbriae were
obtained by ultracentrifugation of the samples at 4°C for 16 h
at 200,000 x g. The fimbrial preparations were subjected to
SDS-polyacrylamide gel electrophoresis (PAGE) (20), and
the purity of the fimbriae was assessed by silver staining (3).
The preparations contained a small amount of a high-molec-
ular-weight protein in addition to the 17-kDa FimA protein.
Therefore, type 1 fimbrial protein in each preparation was
calculated by subtracting the amount of protein in prepara-
tions derived from E. coli F-18 Col- fimA, which does not
contain type 1 fimbriae (25). Protein was quantitated by the
Bio-Rad protein assay (Bio-Rad Laboratories, Richmond,
Calif.). Assays were performed in accordance with package
instructions, using BSA as the standard.

Insertion of the PstI-SalI sequence of pRLB7 into pGEM-
7Zf(+). pGEM-7Zf(+) (Promega Corp.) was digested with
SmaI and treated with calf intestinal phosphatase. pRLB7
was digested with PstI and SalI and then incubated with the
Kienow fragment of E. coli DNA polymerase in the presence
of the four deoxynucleotide triphosphates to fill in recessed
3' ends. Phosphatase-treated pGEM-7Zf(+) was then ligated
to the pRLB7 fragments that had been incubated with
Klenow fragment, and ligation products were transformed
into E. coli JM109 and plated on L-agar containing IPTG
(isopropyl-3-D-thiogalactopyranoside; 24 ,ug/ml), ampicillin
(100 ,ug/ml), and X-Gal (5-bromo-4-chloro-3-indolyl-1-D-ga-
lactopyranoside; 40 ,ug/ml). White colonies were screened
for the PstI-SalI insert into pGEM-7Zf(+), and its orienta-
tion with respect to the T7 promoter was determined by
digesting the recombinant plasmids with XhoI, HindIII, and
ClaI.

Labeling of plasmid-encoded proteins by the 17 RNA poly-
merase/promoter system. E. coli K38 cells containing both
plasmid pGP1-2 and the plasmid to be tested were grown in
L-broth containing 40 jig of ampicillin and 40 pg of kanamy-
cin sulfate per ml at 30°C. AtA590 = 0.5, 0.2 ml of cells was
centrifuged and washed with 5 ml of M9 medium, recentri-
fuged, and resuspended in 1 ml of M9 medium supplemented
with 20 ,ug of thiamine per ml and 0.01% of 18 amino acids
(i.e., no cysteine or methionine). Cells were grown with
shaking at 30°C for 60 min and then shifted to 42°C for 15 min
to lift repression on T7 RNA polymerase synthesis (30).
Rifampin was added to a final concentration of 200 ,ug/ml to
block E. coli K38 RNA polymerase activity (30), and the
incubation was continued at 42°C for 10 min. The tempera-
ture was then shifted to 30°C for 20 min, and the cells were
pulsed with 10 p,Ci of Tran35S-label per ml for 10 min at
30°C. Finally, the cells were centrifuged for 20 s in an
Eppendorf 5415 centrifuge and subjected to SDS-PAGE and
autoradiography, as described previously (32).

Labeling of DNA with 32p. The various probes used were
labeled with 32p, using [_-32P]dCTP (3,000 Ci/mmol; NEN
Research Products, Boston, Mass.) and the Boehringer
Mannheim Random Primed DNA Labeling Kit, according to
instructions.

Southern blots. DNA fragments were separated in 1%
agarose gels and transferred to GeneScreen filters (NEN
Dupont, Boston, Mass.) as described by the manufacturer.
Prior to transfer, the gels were placed in 0.37% (vol/vol) HCI
for 10 min, washed twice with water, placed in denaturation
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buffer (1.5 M sodium chloride, 0.5 M sodium hydroxide) for
40 min, washed twice with water, and finally placed in
neutralization buffer (3 M sodium citrate, pH 5.5) for 60 min.
The filters were prehybridized in 0.25 M phosphate buffer
(pH 7.2) containing 6% SDS, 1 mM EDTA, and 50 ,g of
denatured salmon sperm DNA per ml at 65°C for 60 min. The
filters were then hybridized with probe in the same solution
as described above, in the absence of salmon sperm DNA,
for 18 h at 65°C. The filters were then washed four times for
15 min each time at 65°C in 20 mM phosphate buffer (pH 7.2)
containing 1% SDS and then washed once for 15 min at 65°C
in 10 mM phosphate buffer (pH 7.2) containing 0.5% SDS.
Autoradiography was performed as described previously
(32).

RESULTS

In vivo selection of an E. coli F-18 DNA fragment that
enhances E. coli F-18 Col- colonizing ability. Three strepto-
mycin-treated mice were fed 1010 CFU of E. coli F-18 Col-
cells containing random E. coli F-18 DNA fragments cloned
into pRLB2. On day 9 postfeeding, 16 colonies were selected
from the feces of each mouse and characterized. Of the 48
colonies, 44 contained a recombinant plasmid which by
restriction enzyme analysis appeared to contain the same
insert (Fig. 1). One plasmid, termed pRLB7, was used in
further experiments.
pRLB7 was transformed into a fresh E. coli F-18 Col-

background, and one colony was selected and designated E.
coli F-18 Col-(pRLB7). This strain (1010 CFU) was fed to
eight streptomycin-treated mice along with 101U CFU of E.
coli F-18 Col- fimA(pRLB2), which colonizes as well as E.
coli F-18 Col-(pRLB2) (data not shown). E. coli F-18
Col-(pRLB7) colonized at about 5 x 107 CFU/g of feces,
whereas E. coli F-18 Col- fimA(pRLB2) colonized at a level
of only 5 x 105 CFU/g of feces; i.e., pRLB7 contained a
sequence that appeared to improve the colonizing ability of
E. coli F-18 Col- 100-fold (Fig. 2A).

Additional control experiments were performed to be sure
that pRLB7 enhanced E. coli F-18 Col- colonizing ability.
First, 1010 CFU of E. coli F-18 Col- containing a random
4.5-kb E. coli F-18 DNA insert in pRLB2 and 101 CFU of E.
coli F-18 Col- fimA(pRLB2) were simultaneously fed to
three streptomycin-treated mice. Both strains colonized
equally well at about 107 CFU/g of feces (data not shown).
Second, and of greater importance, a 4.5-kb XhoI to Sall
deletion of pRLB7, designated pRLB18 (Fig. 1), was trans-
formed into E. coli F-18 Col-. This strain, E. coli F-18
Col-(pRLB18), and E. coli F-18 Col- fimA (pRLB2) were
simultaneously fed (1010 CFU of each) to nine streptomycin-
treated mice. Both strains colonized equally well at about 5
x 106 CFU/g of feces (Fig. 2B). These control experiments
supported the idea that pRLB7 contains a specific E. coli
F-18 DNA sequence that enhances E. coli F-18 Col- mouse
large intestine colonizing ability.

In the colonization experiments described above, we used
E. coli F-18 Col- fimA(pRLB2) because it has the tetracy-
cline resistance gene from TnlO inserted into fimA and we
could use the tetracycline resistance phenotype in cofeeding
experiments to determine whether E. coli F-18 Col-(pRLB7)
was the better colonizer. However, it might be argued that
E. coli F-18 Col- fimA(pRLB2) was a bad choice since the E.
coli F-18 DNA sequence in pRLB7 was subsequently shown
to result in increased synthesis of type 1 fimbriae in E. coli
F-18 Col- (see below). Therefore, E. coli F-18 Col-
fimA(pRLB7) was constructed and fed to six mice simulta-

o 6
a.~ ~ ~~Dy

U.

C.)

05

Days

FIG. 2. Colonization of E. coli F-18 Col-(pRLB7) in mice. (A)
(@) E. coli F-18 Col-(pRLB7); (0) E. coli F-18 Col- fimA(pRLB2).
(B) (@) E. coli F-18 Col-(pRLB18); (0) E. coli F-18 Col-
fimA(pRLB2).

neously with E. coli F-18 Col-(pRLB2). The two strains
were differentiated in mouse feces by transferring by tooth-
pick 100 colonies from each mouse at each time of sampling
to MacConkey plates containing tetracycline (10 ,ug/ml).
Under these conditions, E. coli F-18 Col- fimA(pRLB7)
colonized at a level of about 5 x 107 CFU/g of feces, whereas
E. coli F-18 Col-(pRLB2) colonized at some level below 5 x
105 CFU/g of feces, i.e., at least 2 orders of magnitude lower
(data not shown). Therefore, pRLB7 contains an E. coli F-18
DNA sequence which increases the colonizing ability of both
E. coli F-18 Col- and E. coli F-18 Col- fimA.

Colicin test. E. coli F-18 Col-, E. coli F-18 Col-(pRLB2),
E. coli F-18 Col-(pRLB7), E. coli F-18 Col-(pRLB18), and
E. coli F-18 were tested for colicin production (see Materials
and Methods). Only E. coli F-18 produced the colicin.
Moreover, E. coli F-18 Col-(pRLB7) and E. coli F-18 were
fed separately to three mice and were allowed to colonize for
30 days, and then colonies from each mouse were tested for
colicin production. E. coli F-18 Col-(pRLB7) was colicin
negative, whereas the zones of inhibition around the E. coli
F-18 colonies were far larger than those produced by E. coli
F-18 colonies isolated from frozen stocks. These results
suggest that pRLB7 does not enhance E. coli F-18 Col-
colonizing ability by inducing the synthesis of the E. coli
F-18 colicin, colicin V.

Restriction mapping of pRLB7. The E. coli F-18 DNA in
pRLB7 was mapped to an approximately 6.5-kb PstI-EcoRI
fragment (Fig. 1). The actual border on the PstI side of the E.
coli F-18 insertion could not be determined because residual
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FIG. 3. Growth and survival of E. coli F-18 Col-(pRLB7) rela-
tive to those of E. coli F-18 Col- fimA(pRLB2) in mouse cecal
mucus dialysates. El, ratio of E. coli F-18 Col-(pRLB7) CFU to E.
coli F-18 Col- fimA(pRLB2) CFU. The total viable counts at each of
the times listed beginning with time zero were as follows: 1.1 x lo,
4.5 x 105, 4.2 x 107, 4.6 x 108, 1.1 x 108, 9.7 x 107, 2.4 x 108, 1.8
x 108, and 5.3 x 107 CFU/ml. 0, ratio of E. coli F-18 ColP(pRLB2)
CFU to E. coli F-18 Col- fimA(pRLB2) CFU. The total viable
counts at each of the times listed beginning with time zero were as

follows: 9.5 x 104, 4.0 x 105, 2.3 x 107, 1.6 x 108, 1.1 x 108, 1.0 x
108, 1.3 x 108, 8.8 x 107, and 2.3 x 107 CFU/ml.

amounts of an extremely active E. coli F-18 nuclease present
during construction of the gene library (unpublished obser-
vations) deleted the pRLB2 plasmid sequence in pRLB7
from the EcoRI site to somewhere near the first BglII site, a

loss of approximately 2.0 kb. The nuclease-affected end of
the plasmid apparently blunt-end ligated with the E. coli F-18
DNA approximately 1 kb upstream of the PstI site to form
pRLB7 (Fig. 1). Sequence analysis of this region will be
necessary to locate the exact position defining the plasmid-
insert border.

Effect ofpRLB7 on E. coli F-18 Col- growth and survival in
vitro. E. coli F-18 grows as well in a mouse cecal mucus
dialysate as in crude mouse cecal mucus (10). E. coli F-18
Col-(pRLB7) and E. coli F-18 Col- fimA(pRLB2) were
inoculated simultaneously into the cecal mucus dialysate,
each at a level of approximately 104 CFU/ml. The strains
grew equally well during the exponential phase of growth
from 10 to about 108 CFU/ml, with doubling times of about
36 min. However, significant differences were noted during
stationary phase. That is, in a typical experiment illustrated
in Fig. 3, the ratio of E. coli F-18 Col-(pRLB7) to E. coli
F-18 Col- fimA(pRLB2) changed from 1.0 during the expo-
nential phase of growth to 3.6 during stationary phase; i.e.,
pRLB7 appeared to give E. coli F-18 Col- survival advan-
tage over E. coli F-18 Col- fimA(pRLB2) in stationary
phase. In support of this view, pRLB7 also afforded E. coli
F-18 Col- fimA the same survival advantage in stationary
phase when grown together with E. coli F-18 Col-(pRLB2)
in cecal mucus dialysates (data not shown). Moreover, the
survival advantage in stationary phase was abolished when
E. coli F-18 Col-(pRLB18), the XhoI-Sall deletion deriva-
tive of pRLB7, was grown together with E. coli F-18 Col-
fimA(pRLB2) in cecal mucus dialysates (data not shown).

pRLB7-directed stimulation of synthesis of type 1 fimbriae.
E. coli F-18 makes type 1 fimbriae in L-broth in vitro (19),

TABLE 2. Mannose-specific adhesion of E. coli
F-18 Col- strains

Adhesion (%, mean + SE)' to:
cclistrain Mannose-BSA Mannose-specificE. coli stram Mannose-BSA adhesion (%)b

F-18 Col-(pRLB2) 2.04 ± 0.09 0.80 ± 0.04 1.24
F-18 Col-(pRLB7) 18.30 + 0.89 2.22 ± 0.14 16.08
F-18 Col-(pRLB18) 1.97 ± 0.05 1.37 + 0.13 0.60
F-18 Col- 2.37 ± 0.05 1.5 + 0.18 0.87
F-18 Col- finmA 0.66 + 0.04 0.73 ± 0.02 0.00

a All adhesion assays were performed in triplicate.
b Calculated as percent adhesion to mannose-BSA minus percent adhesion

to mannose-BSA in the presence of 100 mM a-methyl-D-mannoside.
c a-Methyl-D-mannoside (aMM; 100 mM) was added with the labeled

bacteria.

and E. coli F-18 type 1 synthesis appears to be stimulated
during growth in mouse cecal mucus in vivo (19). pRLB7
was therefore tested for its ability to stimulate type 1 fimbrial
synthesis in E. coli F-18 Col-. E. coli F-18 Col-(pRLB7), E.
coli F-18 Col-(pRLB18), E. coli F-18 Col-(pRLB2), E. coli
F-18 Col-, and E. coli F-18fimA were grown in cecal mucus
in vitro and tested for abilities to bind specifically to a
mannose-BSA glycoconjugate (see Materials and Methods).
pRLB7 stimulated adhesion to mannose-BSA greater than
10-fold relative to pRLB2 (Table 2). The XhoI-SalI deletion,
pRLB18, which does not enhance E. coli F-18 Col- coloniz-
ing ability (Fig. 1B), did not stimulate adhesion to mannose-
BSA (Table 2).
When the E. coli F-18 Col- strains containing the recom-

binant plasmids were grown in Minimal Broth Davis con-
taining 1% (wt/vol) D-glucose and tested for their abilities to
bind to mannose-BSA, results similar to those depicted in
Table 2 were obtained (not shown). Therefore, type 1
fimbriae were purified from these cultures and quantified. E.
coli F-18 Col-(pRLB7) produced three to four times as much
type 1 fimbrial protein as E. coli F-18 Col-, E. coli F-18
Col-(pRLB2), and E. coli F-18 Col-(pRLB18) (Table 3),
further supporting the idea that the E. coli F-18 DNA in
pRLB7 encodes a gene(s) which stimulates the synthesis of
type 1 fimbriae.
pRLB7 does not contain the fin region or pilG (hns). The

fim (pi) operon contains both regulatory and structural
genes for type 1 fimbrial synthesis (17). pilG (hns), which
maps outside the fim operon, is thought to regulate the
frequency of switching of thefimA invertible promoter (29).
As shown by Southern blot analysis, neither fim nor pilG
sequences are contained in pRLB7 (Fig. 4).
E. coli F-18 Col- contains DNA homologous to the E. coli

F-18 DNA fragment in pRLB7. DNAs isolated from E. coli

TABLE 3. Type 1 fimbrial protein on E. coli F-18 Col- strains

Type 1 fimbrial protein
E. coli strain (pLg/CFU [10101)a

Expt 1 Expt 2

F-18 Col- 0.52 0.47
F-18 Col-(pRLB2) 0.49 0.55
F-18 Col-(pRLB7) 2.21 1.63
F-18 Col-(pRLB18) 0.56 0.38

a Values given have been corrected for the protein present in E. coli F-18
ColP fimA preparations (i.e., 0.29 x 1010 ,ug/CFU in experiment 1 and 0.35 x
1010 Lg/CFU in experiment 2).
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FIG. 4. Detection of the fim operon and pilG by Southern
hybridization. (A) Plasmid DNA digested with ClaI and probed with
32P-labeled fim operon DNA (i.e., the 8.7-kb ClaI fragment of
pPKL4 [16]): lane 1, pPKL4; lane 2, pRLB2; lane 3, pRLB7. (B)
Plasmid DNA digested with EcoRI and Sall and probed with
32P-labeledpilG (i.e., the 1.8-kb EcoRI-SaiI fragment of pTHK113
[13]): lane 1, pTHK113; lane 2, pRLB2; lane 3, pRLB7.

F-18 and E. coli F-18 Col- were restricted with PstI and SalI
and probed with the 32P-labeled PstI-SalI fragment of
pRLB7. Both E. coli F-18 and E. coli F-18 Col- contain the
same-size PstI-SalI fragment (Fig. 5). Therefore, although E.
coli F-18 Col- may be defective in the PstI-SalI region, it
contains the region.

pRLB7-directed synthesis of outer membrane proteins.
pRLB7 appeared to increase the synthesis of type 1 fimbriae,
enhance survival of E. coli F-18 Col- in stationary phase,
and enhance its colonizing ability in the streptomycin-
treated mouse large intestine. To determine whether pRLB7
might also direct the synthesis of unique outer surface
proteins, E. coli F-18 Col-(pRLB2), E. coli F-18 Col-
(pRLB7), and E. coli F-18 Col-(pRLB18) were grown to

1 2

21.2

5.14

0.95-

FIG. 5. Detection of the PstI-Sall fragment of pRLB7 in E. coli
F-18 Col- by Southern hybridization. Total DNA was digested with
PstI and SalI and probed with the 5.4-kb 32P-labeled PstI-SalI
fragment of pRLB7. Lane 1, E. coli F-18 DNA; lane 2, E. coli F-18
Col- DNA.

14-

FIG. 6. Outer membrane protein profile. Outer membrane pro-

tein preparations (50,000 cpm) were applied to each lane; the

membrane proteins were separated by SDS-PAGE and detected by

autoradiography. Lane 1, E. ccii F-18 ColP(pRLB7); lane 2, E. ccli

F-18 ColP(pRLB18); lane 3, F-18 ColP(pRLB2). The arrowheads,

from top to bottom, point to the 74-, 71-, and 69-kDa proteins,

respectively.

stationary phase in mouse cecal mucus in the presence of

35S-methionine and 15S-cysteine (see Materials and Meth-

ods), and the outer membrane and periplasmic fractions of

each strain were isolated, subjected to SDS-PAGE, and

autoradiographed. No clear differences were found in the

periplasmic fraction (not shown), but synthesis of three

outer membrane proteins (74, 71, and 69 kDa) clearly ap-

peared to be stimulated by pRLB7 (Fig. 6). Moreover,

pRLB18, the XhcI-SaiI deletion derivative, did not stimulate

synthesis of the three E. ccli F-18 ColP outer membrane

proteins (Fig. 6). Therefore, the enhancement of synthesis of

the three outer membrane proteins was due at least in part to

the XhcI-Sall E. ccli F-18 sequence in pRLB7.
Proteins encoded by the PstI-SaLI fragment of pRLB7. The

PstI-SaI frag-ment of pRLB7 was cloned into pGEM7Zf(+)

in both directions immediately upstream of the bacterio-

phage T7 promoter, and the recombinant plasmids were

transformed into E. ccli K38(pGP1-2) and tested for the

proteins encoded by the fragment (see Materials and Meth-

ods). When transcription occurred in the PstI-Sall direction,

three proteins were made (26, 22, and 20 kDa) (Fig. 7). When

transcription occurred in the SalI-PstI direction, three dif-

ferent proteins were made (32.5, 28.5, and 27 kDa) (Fig. 6).
The PstI-SalI fragment of pRLB7 contains approximately
5,400 bp, and the six proteins require only about 4,300 bp.
Since there may be as much as 1 kb of E. ccli F-18 DNA

upstream of the PstI site and about 1 kb downstream of the

SailI site in pRLB7, it is possible that the two largest proteins
encoded by the E. ccli F-18 sequence in pRLB7 could be

65.5 kDa (i.e., 32.5 + 33.0 kDa) transcribed in the SalI-PstI

direction and 59 kDa (i.e., 26 + 33.0 kDa) transcribed in the

PstI-Sall direction. Even if this were the case, the three

outer membrane proteins whose synthesis is stimulated by

pRLB7 are all larger than the largest proteins that could be

encoded by pRLB7, suggesting that the proteins encoded by

pRLB7 are not the outer membrane proteins whose synthe-
sis is stimulated by pRLB7 (Fig. 7).
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FIG. 7. Detection of proteins encoded by the PstI-Sall fragment
of pRLB7 in E. coli K38. Lanes 1 to 4, uninduced T7 RNA
polymerase, cells labeled for 20 min; lanes 5 to 9, induced T7 RNA
polymerase, cells labeled for 10 min. E. coli K38 contained the
following: lane 1, pGP1-2; lane 2, pGP1-2 plus pGEM-7Zf(+); lane
3, pGP1-2 plus pLPA213; lane 4, pGP1-2 plus pLPA214; lane 5, no

plasmid; lane 6, pGP1-2; lane 7, pGP1-2 plus pGEM-7Zf(+); lane 8,
pGP1-2 plus pLPA213; lane 9, pGP1-2 plus pLPA214. Arrowheads
on the right, from top to bottom, point to the 32.5-, 28.5-, 27-, 26-,
22-, and 20-kDa proteins, respectively.

DISCUSSION

We have described the selection and partial characteriza-
tion of an E. coli F-18 DNA sequence that enhances the
mouse large intestine colonizing ability of E. coli F-18 Col-,
a poor colonizing derivative of E. coli F-18 (Fig. 2). This
sequence simultaneously enhances the ability of E. coli F-18
Col- to survive in stationary phase, utilizing nutrients de-
rived from mouse cecal mucus (Fig. 3), and stimulates
synthesis of type 1 fimbriae (Table 2). Also, the sequence

appears to stimulate the synthesis of three outer membrane
proteins in E. coli F-18 Col- (Fig. 6).
How might survival in stationary phase be a factor in E.

coli F-18 Col- mouse large intestine colonizing ability? As
suggested by Freter (11), it is possible that maintenance of a

microorganism in the mouse large intestine depends on its
ability to sequester small amounts of one or more nutrients
which that microorganism utilizes exceptionally well. If so,

as those nutrients become limiting, growth would slow
considerably, i.e., a situation in the intestine perhaps akin to

stationary phase. Of two nearly isogenic strains, the one that
can utilize the preferred nutrients better under limiting
conditions would become predominant. Alternatively, it is
possible that expression of the E. coli F-18 DNA sequence in
E. coli F-18 Col- improves its ability to survive in the
presence of its own metabolic products, which again would
enhance its large intestine colonizing ability. However, in
this context, it should be noted that E. coli F-18
Col-(pRLB7) does not make colicin V, the colicin made by
E. coli F-18 in vitro. It would therefore appear that pRLB7
does not enhance E. coli F-18 Col- colonizing ability or

survival in stationary phase by inducing colicin V synthesis
and then killing E. coli F-18 Col-(pRLB2).
The expression of type 1 fimbriae is subject to phase

variation, i.e., oscillation between the fimbriate and afimbri-
ate states, due to the stochastic inversion of a 314-bp DNA
segment which contains the fimA promoter (1, 14). The
products of twofim genes,fimB andfimE (hyp), influence the
frequency of inversion (14, 24, 27). The gene product offimB

appears to mediate inversion in both directions, with a
moderate preference for the "on" orientation (24), such that
in the presence of a large excess of fimB product all cells
express type 1 fimbriae (14). The fimE product has recently
been shown to promote inversion from "on" to "off" (24).
While we have shown here that the sequence we have
isolated has no homology with the fim region (Fig. 4), it is
still possible that it stimulates inversion to the "on" orien-
tation by either increasing the rate of synthesis of the fimB
protein or decreasing the rate of synthesis of the fimE
protein.
Three other genes are known to play a role in the fre-

quency of inversion. One of these genes is pilG (hns) (29).
The sequence we describe here is notpilG (Fig. 4), but it is
still possible that it regulatespilG expression. The other two
genes are himA and himD (hip), which encode the a and P
subunits of integration host factor, respectively, which is
required for efficient recombination of the fim invertible
element (6, 8). While we have not unequivocally ruled out
that our sequence contains a himA or himD gene, it is clear
from transmission electron microscopy studies that all mod-
ified Davis minimal medium (32)-grown E. coli F-18 Col-
cells which contain an extra fimB gene in trans express type
1 fimbriae compared with expression by only 0.5% of cells
in its absence (unpublished observations). Therefore, it is
highly likely that E. coli F-18 Col- contains functional himA
and himD (hip) genes and that the sequence we have isolated
contains a previously unidentified regulator of type 1 fimbrial
synthesis.
The sequence we describe here appears to regulate the

synthesis of not only type 1 fimbriae, but also three outer
membrane proteins (Fig. 6). The evidence for this is twofold.
First, the three outer membrane proteins that are affected by
the sequence appear to be made in its absence in E. coli F-18
Col-, but at reduced levels (Fig. 6). Second, the six proteins
encoded by the sequence are all smaller than the three outer
membrane proteins and are therefore likely to be playing a
regulatory rather than a structural role. The three outer
membrane proteins do not appear to be fim-encoded surface
proteins which are either too small, i.e., FimA, FimF, FimG,
and FimH (18), or too large, i.e., FimD (15). Whether one or
more of the three outer membrane proteins play an impor-
tant role in the colonization process is presently under
investigation.
At the present time, we do not know whether the genes in

the sequence that regulate synthesis of type 1 fimbriae are
the same genes that enhance E. coli F-18 Col- large intestine
colonizing ability. It is possible, for example, that colonizing
ability is enhanced by expression of the genes in the se-
quence that are transcribed in one direction and that type 1
fimbrial synthesis is regulated by the genes in the sequence
that are transcribed in the opposite direction (Fig. 7). Alter-
natively, it is possible that the sequence we have isolated
contains a gene or genes that coordinately regulate both type
1 fimbrial synthesis and enhanced colonizing ability.

In summary, we have used the streptomycin-treated
mouse large intestine to select an E. coli F-18 DNA sequence
which enhances the colonizing ability of E. coli F-18 Col-.
The enhancement in colonizing ability is accompanied by an
increase in the ability of E. coli F-18 Col- to survive
stationary phase in vitro, utilizing cecal mucus nutrients.
Simultaneously, the sequence stimulates the synthesis of
both type 1 fimbriae and three E. coli F-18 Col- outer
membrane proteins.
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