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Research articlePopulation genetic diversity and fitness in multiple 
environments
Jeffrey A Markert*1,2,4, Denise M Champlin1, Ruth Gutjahr-Gobell1, Jason S Grear1, Anne Kuhn1, 
Thomas J McGreevy Jr1,3, Annette Roth2, Mark J Bagley2 and Diane E Nacci1

Abstract
Background: When a large number of alleles are lost from a population, increases in individual homozygosity may 
reduce individual fitness through inbreeding depression. Modest losses of allelic diversity may also negatively impact 
long-term population viability by reducing the capacity of populations to adapt to altered environments. However, it is 
not clear how much genetic diversity within populations may be lost before populations are put at significant risk. 
Development of tools to evaluate this relationship would be a valuable contribution to conservation biology. To 
address these issues, we have created an experimental system that uses laboratory populations of an estuarine 
crustacean, Americamysis bahia with experimentally manipulated levels of genetic diversity. We created replicate 
cultures with five distinct levels of genetic diversity and monitored them for 16 weeks in both permissive (ambient 
seawater) and stressful conditions (diluted seawater). The relationship between molecular genetic diversity at 
presumptive neutral loci and population vulnerability was assessed by AFLP analysis.

Results: Populations with very low genetic diversity demonstrated reduced fitness relative to high diversity 
populations even under permissive conditions. Population performance decreased in the stressful environment for all 
levels of genetic diversity relative to performance in the permissive environment. Twenty percent of the lowest 
diversity populations went extinct before the end of the study in permissive conditions, whereas 73% of the low 
diversity lines went extinct in the stressful environment. All high genetic diversity populations persisted for the 
duration of the study, although population sizes and reproduction were reduced under stressful environmental 
conditions. Levels of fitness varied more among replicate low diversity populations than among replicate populations 
with high genetic diversity. There was a significant correlation between AFLP diversity and population fitness overall; 
however, AFLP markers performed poorly at detecting modest but consequential losses of genetic diversity. High 
diversity lines in the stressful environment showed some evidence of relative improvement as the experiment 
progressed while the low diversity lines did not.

Conclusions: The combined effects of reduced average fitness and increased variability contributed to increased 
extinction rates for very low diversity populations. More modest losses of genetic diversity resulted in measurable 
decreases in population fitness; AFLP markers did not always detect these losses. However when AFLP markers 
indicated lost genetic diversity, these losses were associated with reduced population fitness.

Background
Decreased population genetic diversity can be associated
with declines in population fitness (e.g., [1,2]). These
declines are thought to involve components of the so
called genetic 'extinction vortex', which directly ties
losses in population genetic diversity to increased extinc-

tion risk [3]. These losses cause a decrease in individual
fitness through the expression of inbreeding depression-
like effects, further reducing the effective population size
(Ne) and leading to additional increases in the number of
alleles that are alike by state within individuals [4]. The
impact of increased individual homozygosity on individ-
ual fitness has been extensively documented in both labo-
ratory, semi-natural, and natural settings [2,5-9]. The
effects are especially strong in altered or degraded envi-
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ronments [10-12], although the genomic basis of
heterozygosity-associated fitness differences and hetero-
sis are still debated [13-16]. In addition to increasing indi-
vidual homozygosity, lost population genetic diversity
also reduces the adaptive potential of a population. For
populations to persist over extended time-spans, they
must have sufficient allelic resources to adjust to novel
selective regimes. Forces ranging from invasive parasites
and diseases to shifting climatic patterns ensure that
environmental conditions will fluctuate temporally and
spatially for all populations. Some species have shown a
striking capacity to rapidly adapt to novel selective pres-
sures [17,18] while others have not [19,20]. Because over-
all population diversity affects both short-term individual
fitness and long-term population adaptive capacity, there
is a need to develop an empirical quantitative under-
standing of the relationship between population genetic
diversity and population viability.

Many laboratory models have demonstrated the large
role of genetic diversity in increasing population fitness
mediated through heterosis, particularly when inbreed-
ing levels are high. In one classic example, Leberg [21]
found that populations of mosquito-fish founded with
siblings grew more slowly than those founded by unre-
lated individuals. In a subsequent experiment using non-
relatives and experimentally manipulated levels of genetic
diversity, Leberg [22] detected no evidence of a relation-
ship between genetic diversity and population fitness. By
manipulating Ne while holding the census size constant
over three generations in the annual plant Clarkia pul-
chella, Newman and Pilson [23] were able to demonstrate
that populations with a small Ne were more than twice as
likely to go extinct as larger populations. Similarly, in a
multi-generation experiment using houseflies, Bryant et
al. [24] detected clear declines in relative fitness in low
founder number populations and in repeatedly bottle-
necked populations, even when the number of individu-
als subjected to a given bottleneck was relatively large.

Frankham et al. [25] developed a more direct method
for measuring the effect of population genetic diversity
on adaptive potential by steadily increasing the level of an
environmental stressor (NaCl) every generation in labo-
ratory Drosophila populations. In this study, both mildly
bottlenecked and highly inbred populations showed a
reduced ability to evolve tolerance to an environmental
stressor relative to outbred populations.

In order to understand long-term population viability
in a changing environment, experimental models that can
build upon these results must be developed. Several pub-
lished studies provide evidence that severely reduced
genetic diversity can affect population fitness, but the
impacts on population viability of modest (and perhaps
more commonly occurring) reductions in genetic diver-
sity are less well characterized. Further, many laboratory

studies of evolutionary processes have relied on Droso-
phila or Tribolium (e.g., [8,25,26]). Both organisms have
many experimental advantages, but their very high fecun-
dities [27,28]--which can facilitate rapid rates of adapta-
tion--make them poor models for vertebrate species with
much lower reproductive rates. Laboratory models with
lower fecundity may be more directly relevant to verte-
brate conservation. Ideally, models of evolutionary genet-
ics should also be able to disentangle the effects of
population history and the effects of inbreeding from the
adaptive potential represented by genetic diversity per se.
To do this, they must also allow for fitness to be measured
in multiple environments.

Here we present data from laboratory populations of
the mysid shrimp (Americamysis bahia) a small crusta-
cean native to estuaries along the US East coast [29]. This
animal model has several experimental advantages that
make it a valuable tool in evolutionary and conservation
genetics. Because they are widely used in toxicological
studies, optimal culture conditions and demographics are
well characterized [30-32]. Time from conception to first
mating is approximately three weeks at 25°C and 30 parts
per thousand (ppt) salinity [31,33]. Mature females can
produce a new brood every seven days and provide an
unusually high level of brood care for an invertebrate;
they incubate a small number of fertilized eggs in a mar-
supium for seven days, giving A. bahia a reproductive
profile more similar to many birds and mammals than to
other more fecund invertebrates. Owing to their estua-
rine habitat, A. bahia tolerate a wide range of salinities. In
laboratory settings at 25°C, A. bahia cultures reproduce
well in natural seawater with a salinity of 31 ppt NaCl,
although they are reproductively viable in as little as 10
ppt NaCl [31]. In the wild, A. bahia have been collected in
waters with salinity as low as 3 ppt, although some field
surveys suggest they are uncommon below 9 ppt [34].

By simultaneously manipulating the selective environ-
ment and genetic diversity under controlled laboratory
conditions with replication, we used A. bahia cultures to
develop a more detailed understanding of the relation-
ship between genetic diversity and population fitness in a
changing environment. We also generated AFLP [35]
genotypes for many of the populations to determine how
well a typical molecular genetic fingerprint analysis pre-
dicts meaningful losses of genetic diversity. Our study
goal was to develop a model system for quantifying the
general relationship between genetic diversity and fitness
in both permissive and stressful environments.

Methods
Collection of stock populations
Americamysis bahia were collected by dragging a fine-
mesh net in shallow waters near Biloxi Beach, MS USA
(N30.39351, W088.90123) and Navarre Beach, FL USA
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(N30.38964, W086.83050) during April 2005. Live ani-
mals were keyed out under dissecting microscopes at the
US-EPA's Gulf Ecology Division in Gulf Breeze, FL USA.
Approximately 50 individuals from each collection site
were then transported to the US-EPA's Atlantic Ecology
Division facilities in Narragansett, RI USA. Populations
derived from each of the two collection sites were housed
separately in four 80 L tanks with flow-through seawater
maintained at 25°C and an ambient salinity of approxi-
mately 30 ppt. Animals were fed Selco enriched Artemia
ad lib [36]. Americamysis bahia cultures grew quickly to
more than 2000 individuals from each source.

Generation of low diversity lines
Replicate lines with low genetic diversity were generated
through a series of population bottlenecks. Individual
lines were housed in 9.4 L tanks (environmental condi-
tions as above). In late June 2006, 32 gravid females were
selected from each of the two source populations and
placed in separate tanks to become founders for 64 low
diversity lines (parental generation). Following the release
of young (F1 generation), the founding-females were
removed, and their offspring were allowed to grow to
maturity and breed for a period of three weeks. After this
time, two gravid F1 females were selected from each line
and remaining individuals were discarded. These F1
founders were removed after they had released their
broods, producing the F2 generation. After the broods
matured and became reproductively active, a single
gravid F2 female was selected to found F3 and subsequent
generations within each line. If the initial founding female
was fertilized by a single male (a reasonable assumption
given mysid reproductive biology), then pedigree based
estimates suggest an average 31% decrease in heterozy-
gosity (  = 0.3125). Alternatively, the 2-4-2 bottleneck
represents a harmonic-mean effective population size of
2.4 individuals and a 50% decrease in heterozygosity rela-
tive to the starting populations [37]. Starting with the F3
generation, random mating was permitted within each
line.

Generation of high diversity lines
Dihybrid (2x) Lines - The viable low diversity lines gener-
ated through bottlenecks (above) were designated '1x',
and represented the lowest level of genetic diversity in
our study. Randomly chosen sets of 1x lines were crossed
to generate higher diversity levels. Briefly, to generate 2x
lines three gravid females were selected from one of the
randomly selected low diversity lines. Their offspring
were discarded once they were released, and these
mature, now non-gravid females were randomly paired
with two males from another low diversity line. Crosses

were performed randomly yielding four Navarre ×
Navarre lines, three Biloxi × Biloxi lines and eight
Navarre × Biloxi lines. As the 1x parents of the 2x lines
were independently created from the base populations,
the inbreeding coefficent for 2x lines was zero (  = 0).

6x, 8x and Admixed Lines - Populations containing the
genetic equivalent of either six or eight 1x lines were cre-
ated as the main experiment was established (see below).
We created these higher diversity levels by combining
individuals from different dihybrid lines. The founding
number for each population was 12 individuals, so 6x
lines were founded by randomly choosing four individu-
als from three 2x lines. Similarly, 8x lines were founded
by choosing three individuals from each of four unique 2x
lines. The founding 2x lines were chosen randomly, with
the constraint that any ancestral 1x population could be
used only one time within a 6x or 8x population (  = 0).
Lines with the highest level of diversity, "Admixed
(AMX)" were obtained by drawing six individuals each
from the Biloxi and Navarre stock populations as found-
ers. We chose to combine individuals from the stock pop-
ulations to maximize the level of allelic diversity in the
highest diversity populations. Space constraints did not
permit us to include Biloxi and Navarre stock populations
individually, however a series of pilot experiments (not
shown) did not suggest any performance differences
between these founding populations.

Salinity and culture
A pilot study demonstrated that reproductive rates for A.
bahia were similar in ambient seawater and at 10 ppt
salinity (data not shown). When the salinity was reduced
to 7 ppt, reproduction ceased. Based on this preliminary
data, together with published findings [31], and our
expectation that low genetic diversity populations would
be more sensitive to environmental stress, we chose 9 ppt
salinity as the target level of novel environmental stress.

Experimental populations were housed in 9.4 L tanks
with precisely controlled salinities, light cycles, and tem-
peratures. Both ambient seawater and seawater diluted
with dechlorinated tap water were available via a flow
through system, and we ran water through the tanks each
day for one hour in the morning and one hour in the eve-
ning to ensure precise control of salinities. At the
observed flow rate, this was sufficient for more than one
complete exchange daily. Tanks were kept in two water
tables to ensure uniform temperatures between tables
and replicates. Tanks were moved within and between
tables weekly to further reduce the potential for position
effects. Lights were on a 12:12 light:dark cycle with grad-
ual transitions to simulate natural conditions. Salinity
was measured using a Hach meter Model 60 d. Salinity

F

F

F
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and temperature were measured daily in a randomly
selected 10% of tanks. The mean temperature for all mea-
sured tanks was 25.3°C (± 0.03 S.E.). Low salinity tanks
were maintained at a mean of 9.4 (± 0.07) ppt. Normal
seawater tanks had an average of 29.4 (± 0.50) ppt. Ani-
mals were fed ad libidum with Selco-enriched
[36]Artemia (Aquafauna Biomarine, Hawthorne, CA
USA).

Experimental design
Phase 1 - population establishment and expansion
Experimental aquariums were established as matched
pairs, one serving as a control (permissive environment)
and one subjected to low salinity (stressful environment).
Experimental populations were founded with 12 individ-
uals (see above) and these were allowed to breed and
expand for three weeks in a permissive environment (~30
ppt salinity).
Phase 2 -- chronic low salinity stress
After this initial census, designated experimental popula-
tions were subjected to a stressful environment by gradu-
ally reducing the salinity to 9 ppt over the course of four
days. Salinity was maintained at this level thereafter. The
remaining control tanks were maintained with normal
seawater. During the experimental period, a weekly cen-
sus was conducted in which all individuals were counted
and the presence of neonates (animals < 7 days old) was
noted.

Fifteen pairs of low diversity (1x) lines were established.
We intended to establish these cultures from 15 indepen-
dently bottlenecked lines, however one of the designated
lines went extinct before the start of the experiment, so
one of the surviving lines was used twice. Fifteen inde-
pendent pairs of 2x cultures were also established. Higher
diversity levels (6x, 8x and Admixed) were replicated 10
times. The entire experiment contained 120 tanks. A
summary of the experimental design is shown in Table 1.

At the end of the 14-week survey period, surviving indi-
viduals were preserved in 100% ethanol from each tank
for molecular analysis.

Adaptation over time
To estimate the response to selection of each nominal
genetic diversity level over the course of the experiment,
population sizes in the stressful and permissive environ-
ments were compared three weeks (~1 full reproductive
cycle) after the environmental stress was introduced and
at the end of the experiment (~3 reproductive cycles
later).

Genetic analysis
AFLP genotypes generated from surviving control popu-
lations at the end of the experiment were used as a mea-
sure of starting genomic diversity for each diversity level.

It was not possible to genotype the founding populations
at the beginning of the experiment because the low diver-
sity stock lines had only a modest number of individuals,
and most of these were required to found the experimen-
tal populations. For the lowest diversity lines, the har-
monic mean population size was 33.8 individuals, which
suggests that the populations would have lost about 2% of
their heterozygosity due to genetic drift each generation.
In the highest diversity populations, Ne was estimated to
be 110.6 individuals, consistent with a decline in neutral
locus heterozygosity of less than 1% per mysid genera-
tion. Some lines were excluded from the molecular analy-
sis because fewer than 10 individuals were available.

Ten individuals were randomly chosen from each line
to estimate genetic diversity. DNA was extracted from
whole A. bahia using DNeasy® Blood and Tissue kit (Qia-
gen, Valencia, CA, USA). The manufacture's instructions
were followed except that we heated the elution Buffer
AE to 70°C for 10 minutes and incubated the sample with
Buffer AE for five minutes at room temperature before
eluting each DNA sample. Genomic DNA was quantified
using Quant-iT™ PicoGreen® dsDNA Assay Kit (Invitro-
gen, Carlsbad, CA, USA) with a Synergy™ HT Multi-
Mode Microplate Reader (BioTek, Winooski, VT, USA).

AFLP analysis followed the procedure of Vos et al. [35],
modified to accommodate fluorescent visualization and
using the restriction enzyme pair EcoRI/PstI [41]. Total
genomic DNA (75 -- 200 ng) was simultaneously digested
and ligated in a 15 μl reaction that included 5 units each
of EcoRI, PstI, and T4 DNA ligase (New England Biolabs),
30 pmoles of each EcoRI and PstI double-stranded DNA
adaptor [see [41]], 50 ng/ul BSA, and 50 mM NaCl in T4
Ligase buffer (New England Biolabs). Following complete
digestion and ligation at room temperature, products
were diluted ten-fold into 10 mM Tris pH 7.6, 0.1 mM
EDTA.

Initial PCR enrichment of a subset of fragments (pre-
amplification) used 5 μl of the diluted digestion-ligation
product as template: 0.5 μM of the EcoRI + A/PstI + C
primers (IDT, Coralville, IA) and 0.25 U Taq DNA poly-
merase (Invitrogen) in 20 μl of 20 mM Tris-HCl (pH 8.4),
50 mM KCl, 0.2 mM each dNTP, and 1.5 mM MgCl2.
PCR conditions were 2 min at 74°C; 24 cycles of 94°C for
30 sec, 56°C for 30 sec; 72°C for 1 min; followed by 30 sec
at 72°C. The pre-amplification product was then diluted
ten-fold with 10 mM Tris pH 7.6, 0.1 mM EDTA buffer.

Selective amplification reactions were similar to pre-
amplifications, with 3 μl of diluted pre-amplification
product used as template and substituting 50 pM of the
appropriate FAM--labeled EcoRI + 3/250 pM PstI + 2
selective AFLP primers. Three selective primer combina-
tions were used on all samples: EcoRI + ACT--PstI + CT;
EcoRI + AGG--PstI + CA; and EcoRI + ATG--PstI + CT.
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PCR conditions were 2 min at 94°C, 12 cycles of 20 sec at
94°C, 30 sec at 66°C dropping 1°C per cycle, 1 min at
72°C; then 20 cycles of 20 sec at 94°C, 30 sec at 56°C, 1
min at 72°C; followed by 30 min at 72°C. AFLP genotypes
were electrophoresed and visualized with an ABI 3730
DNA analyzer.

Bins within the range of 100 to 500 bp [38] were gener-
ated for the amplified fragments using GeneMarker® ver-
sion 1.6 (SoftGenetics LLC®, State College, PA, USA). We
manually checked the quality of each AFLP fingerprint
and bin using the method described by Whitlock et al.
[39] with slight modifications. We removed samples that
produced an AFLP fingerprint with less than 20 peaks
within the target size range and restricted our analyses to
fragments with relative florescence units greater than 100
to reduce background noise. We visually checked the
automatically created bins to ensure the bin was centered
on the distribution of peaks within the bin and removed
bins that had AFLP fragments that differed in size by
more than 1 bp. We also deleted bins with fragment-
length distributions that overlapped with adjacent bins to
reduce the occurrence of homoplasy [38,40]. The number
of initial bins for the three sets of restriction enzymes
ranged from 63 to 76 each. We developed an R http://
www.R-project.org/ script to convert the raw peak inten-
sity data output from GeneMarker to a format compatible

for AFLPScore version 1.3 [40]. We scored our raw AFLP
data using AFLPScore, normalized our data to the
median, filtered our data with a locus selection threshold,
and used a relative genotype calling threshold. We tested
a range of locus (100 to 1000 bp) and genotype thresholds
(1 to 120%) and selected the pair of values that simultane-
ously minimized the mismatch error rate, minimized the
probability of misscoring a presence allele (ε1.0 error rate),
and maximized the number of loci retained. We included
all pairwise comparisons for the samples that had greater
than two replicates in our mismatch analysis. We gener-
ated AFLP genotypes for each restriction enzyme pair
with the optimized locus selection and genotype thresh-
olds using AFLPScore.

The locus selection threshold was 1000 bp and the gen-
otype threshold was 10% for each restriction enzyme pair.
The average mismatch error rate for the three restriction
enzyme pairs was 8.3504 ± 1.7367 (S.D.) and the average
ε1.0 error rate was 19.484 ± 2.3992. Following the inten-
sive screening and quality control process, 59 loci (bins)
were available to estimate genetic diversity. AFLP based
estimates of genetic diversity were calculated using
AFLP-Surv v1.0 [38]. AFLP based estimates of genetic
diversity were calculated as either the fraction of poly-
morphic loci within the sample (PLP) or the heterozygos-
ity analogue (Hj) [41].

Table 1: Basic experimental design and levels of replication

Nominal Diversity Nominal Diversity Number of Replicates Environment

1x 0 15 Low Salinity

15 High Salinity

2x 0.5 15 Low Salinity

15 High Salinity

6x 0.833 10 Low Salinity

10 High Salinity

8x 0.875 10 Low Salinity

10 High Salinity

Admixed - 10 Low Salinity

10 High Salinity

Relative diversity is defined here as the expected heterozygosity assuming that the 1x lines were homozygous at all loci.

http://www.R-project.org/
http://www.R-project.org/
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Statistical analyses
Three different indices of population fitness were evalu-
ated: 1) the number of individuals in the Last Census
(LC), 2) the Median Population Size (MPS) using data
from all 13 censuses for each experimental tank and 3)
the Reproductive Index (RI), which was calculated as the
number of weeks in which reproduction was observed
divided by the total number of weeks that the population
survived for each population.

Statistical relationships among fitness, genetic diversity
(treating levels 1x, 2x, 6x, 8x, and Admixed as ordinal cat-
egorical data), and environmental stress were evaluated
using general linear models. All calculations were per-
formed using either JMP 7.0 or SAS 8.0 (SAS institute,
Cary NC).

The genetic load of the inbred 1x was estimated relative
to the outcrossed AMX lines using the methods of Mor-
ton and Crow [42]. Genetic load was not estimated dur-
ing the creation of the inbred lines because reference
populations required for the calculation were not estab-
lished due to space limitations.

Results
Genetic Load and Extinction of Founder Lines
A substantial proportion of the bottlenecked lines either
failed to thrive or did not survive long enough to be used
in the main experiment. Of the 64 lines initiated, only 14
achieved a population size of at least 26 individuals, the
predetermined threshold deemed sufficient to generate
dihybrid lines and maintain the 1x lines.

Genetic load within the main experiment was esti-
mated to be higher in the stressful environment for all
three fitness indices. Using LC, the number of lethal

equivalent loci in the permissive environment was 2.87
compared to 10.97 in the stressful environment. Lethal
equivalents for MPS were 3.45 in the permissive environ-
ment and 6.71 in the stressful environment. For RI, in a
permissive environment we estimate that there were 1.06
lethal equivalents compared to 3.19 in the stressful envi-
ronment.

Molecular estimates of genetic diversity
After screening, a total of 59 AFLP markers were avail-
able for analysis. Average PLP for the 1x lines was 35.6 ±
7.3 (S.D.) and average Hj was 0.14 ± 0.05. In comparison,
AMX lines had an average PLP of 52.1 ± 4.3 and an aver-
age Hj of 0.19 ± 0.02. Nominal genetic diversity explained
a moderate amount of variation in AFLP diversity esti-
mates (PLP Spearman's ρ = 0.67, p < 0.0001; Hj Spear-
man's ρ = 0.44, p = 0.0043). In post-hoc tests, neither
estimator was effective at differentiating among the three
highest genetic diversity treatments; however the 1x, 2x
and higher diversity lines were distinguishable from each
other when PLP was used to estimate genetic diversity
(Table 2).

Population growth in permissive conditions
Abundance after three weeks of culture under permissive
conditions (Phase 1) was significantly correlated with
nominal genetic diversity level (Spearman's ρ = 0.68, p <
0.0001, Table 3). Final population sizes increased from 12
individuals at the start of the experiment to an average of
18.6 individuals in the low diversity lines (1x) and to 79.3
individuals in the highest diversity populations (AMX).
All treatments differed from each other, except 6x and 8x.
Variance was unequal among treatments (p = 0.0244)
with the coefficient of variation inversely related to
genetic diversity (Table 3, Figure 1).

AFLP diversity estimated as PLP explained a modest
percentage of the variation in abundance after three
weeks in permissive conditions (adjusted R2 = 0.24, p <
0.0001). AFLP diversity estimated as Hj explained less but
still significant abundance variation (adjusted R2 = 0.16, p
< 0.0001).

Population fitness, environmental stress and genetic 
diversity
A model including genetic diversity and environmental
stress explained much of variation in MPS during the
chronic low salinity experiment (Phase 2) (adjusted R2 =
0.74, p < 0.0001). Both factors contributed strongly to the
relationship (environment F = 127.8, p < 0.0001; diversity
F = 53.3, p < 0.0001). Treatment means ranged from 9.7
individuals (low salinity, 1X) to 123.2 individuals (normal
salinity, AMX). There was no significant interaction
between salinity stress and genetic diversity level (F =
0.59, p = 0.6693) (Figure 1).

Table 2: Estimates of average neutral locus genetic 
diversity

Nominal Diversity Avg. PLP Avg. Hj

1x 35.6 + 7.3A 0.14 + 0.05A

2x 43.1 + 9.2B 0.16 + 0.03B

6x 49.2 + 7.1C 0.19 + 0.02C

8x 47.8 + 5.1C 0.18 + 0.03B,C

Admixed 52.1 + 4.6C 0.19 + 0.02C

Average ± 1 S.D. for the percentage of polymorphic loci (PLP) and 
the heterozygosity analogue (Hj) for the multilocus AFLP 
genotypes are provided. Letters unite groups that are not 
statistically distinguishable using Tukey's HSD.
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An additional model that included the results of the
first census (Phase 1, pre-stress) as a covariate also
explained much of the variation in MPS (Adj R2 = 0.78, p
< 0.0001). Abundance at initiation of experimental treat-
ments was a significant covariate (F = 16.5, p < 0.0001). In
this more complex model, there was a significant interac-
tion between initial abundance and genetic diversity level
(F = 4.0, p = 0.0043), but no interaction between environ-
ment and genetic diversity (F = 0.78, p = 0.536). Both
nominal diversity level (F = 13.1, p < 0.0001) and environ-
ment (F = 22.3, p < 0.0001) were significant individually.

The last census sizes ranged from a mean of 2.5 individ-
uals (low salinity, 1x) to 84.4 individuals (normal salinity,
AMX). A model including nominal genetic diversity and
environmental stress explained 53% of the observed vari-
ation in LC (p < 0.0001). Genetic diversity (F = 50.8, p <
0.001) and environmental stress (F = 21.4, p < 0.001) were
both significant, but the interaction term was not (F =
0.54, p = 0.71). An expanded model for LC that included
the results of the first census (Phase 1, pre-stress) as a
covariate explained no additional variation in LC (Adj R2

= 0.53, p < 0.0001), and the covariate was marginally
insignificant (F = 3.45, p < 0.0658).

Environmental stress and genetic diversity explained
much of the variation in RI (adjusted R2 = 0.58, p <
0.0001). Both factors were statistically significant (stress F
= 95.4, p < 0.0001; genetic diversity F = 14.3, p < 0.0001)
with a marginally insignificant interaction between these
two factors (F = 2.18, p = 0.0751).

In these analyses, variance was unequal among treat-
ments, and remained unequal despite attempted trans-
formations. Variance was higher among low diversity
populations and under stressed conditions (Figure 2).
Variation (expressed as the coefficient of variation) in all
three fitness proxies is summarized in Table 3, and the
distribution of individual replicate values is shown in Fig-
ure 1. The most likely effect of unequal variances in these
analysis is an increase in Type I error, which could be
compensated for by reducing α by half to 0.025 [43]. All
effects that were previously found to be significant
remain significant under this more stringent criterion.

Population fitness, environmental stress and molecular 
diversity
The effects of AFLP diversity (estimated for each individ-
ual replicate using either PLP or Hj) and environmental
stress were evaluated for three different fitness indices:
MPS, LC, and RI.

A significant portion of the variation in MPS is
explained by a model incorporating AFLP diversity mea-
sured as PLP and environmental stress (adjusted R2 of
0.53, p < 0.0001). Both variables were statistically signifi-
cant (stress F = 59.1, p < 0.0001; PLP F = 32.9, p < 0.0001),
and there was no significant interaction between the two

terms (F = 0.04, p = 0.83). Similar results were obtained
when Hj was substituted for PLP (adjusted R2 = 0.51, p <
0.001; stress F = 56.1, p < 0.0001; Hj F = 27.2, p < 0.0001;
stress*Hj F = 0.26, p = 0.61).

Models evaluating the effect of AFLP diversity and
environmental stress on LC were also significant overall
(adjusted R2 = 0.37, p < 0.0001 using PLP, adjusted R2 =
0.38, p < 0.0001 using Hj). There was no interaction
between genetic diversity and stress in either model using
PLP (PLP F = 11.8, p < 0.0001; stress F = 36.8, p = 0.001;
stress*PLP F = 0.58, p = 0.45) or Hj (Hj F = 13.5, p <
0.0004; stress F = 37.2, p < 0.0001; stress*Hj F = 0.0009, p
= 0.97).

Similarly, both PLP and Hj explained a significant frac-
tion of the variation in RI (PLP Adj R2 = 0.53, environ-
ment F = 75.6, p < 0.0001, PLP F = 15.6, p = 0.0002), (Hj
Adj R2 = 0.52, environment F = 73.9 p < 0.0001, Hj F =
14.0, p = 0.0002). Neither genetic diversity estimator had
a significant interaction with environmental stress.

Observed population extinctions
Population extinctions were rare during the course of the
study, and were confined to the low diversity populations
(Table 3). Three out of 15 1x populations went extinct
under permissive conditions. Median time to extinction
for these populations was seven weeks. By contrast, 11 of
15 1x populations went extinct under stressful condi-
tions, with a median extinction time of nine weeks. Only
a single 2x population went extinct in the low salinity
treatment at 11 weeks.

AFLP data were available for nine of the 15 pairs in the
lowest diversity 1x treatment. The remaining six pairs
could not be surveyed due to extinction or low survivor
numbers in the control line. The lines that went extinct
had a mean PLP of 32.5 compared to 39.4 for the surviv-
ing lines, although this difference was not significant (p =
0.17). Hj in extinct lines was 0.11 and 0.18 in surviving
lines, and the difference was statistically significant (p =
0.014) (Table 2).

Adaptation over time
After three weeks exposure to low salinity (Week 6 of the
experiment), the average census size for 1x populations in
this stressful environment was 57% smaller than those in
the high salinity control environment, while the high
diversity AMX lines were, on average, 24% smaller in the
stressful environment relative to their controls. At the
end of the experiment (Week 16), census sizes for 1x
stressed populations were 94% smaller than their controls
on average, whereas average AMX populations reared in
low salinity was only 7% smaller than their controls. The
relative decline in census size of the salinity stressed 1x
populations was partly driven by the extinct lines; how-
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ever, when these were excluded the net decline relative to
the control population was still 83% (Figure 2).

Discussion
The experimental results presented here indicate that the
Americamysis bahia system for generating defined levels
of genetic diversity with a high level of replication is a
useful tool for addressing empirical questions in conser-
vation genetics. The results from this initial experiment
measure: 1) the relative performance of high and low
diversity populations in both good and bad environ-
ments; 2) the power of AFLP markers to detect meaning-
ful losses of genetic diversity; 3) the magnitude of genetic
load in both good and bad environments; 4) the potential
utility of genetic rescue and heterosis; and 5) the relative
potential for adaptation to novel environments.

Reduced diversity and population fitness
In this simplified laboratory environment, lower popula-
tion genetic diversity was associated with lower popula-
tion fitness, although this decrease was not always
statistically significant in all post-hoc tests. As expected,
average population fitness in the stressful environment
was always lower than fitness in the permissive environ-
ment for a given level of genetic diversity.

Interestingly, none of the interaction terms between
nominal genetic diversity and environmental stress were

significant for any of our three fitness indices although
the interaction was significant for RI. This may indicate
that factors interact less in our laboratory setting than
might be expected in a more complex natural environ-
ment, but we cannot rule out the possibility of insuffi-
cient statistical power. Power analysis could potentially
address this issue, however we lack a non-arbitrary esti-
mate of the magnitude of a meaningful effect [44]. Simi-
larly, we did not detect an interaction between either of
the AFLP based diversity estimates and the environment
when estimating fitness. This particular analysis is com-
plicated by the fact that extinctions in some of the 1x con-
trol lines reduced the number of lines available with very
low diversity.

A modest amount of neutral locus genetic diversity (as
estimated with AFLP genotypes) was explained by nomi-
nal diversity level. The overall relationship was in the
expected direction; however, post hoc tests (Table 2)
reveal that estimates of both PLP and Hj based on our
final set of 59 screened AFLP markers do not reliably
detect differences between the three highest nominal
diversity levels. Similarly, both estimators explain only a
modest amount of the variation in the three fitness indi-
ces. Despite the lack of a detectable molecular genetic dif-
ference, the observed mean fitness was always lower in 8x
populations than in AMX populations in the stressful

Table 3: Averages and coefficients of variation for each experimental treatment

Diversity
Level

Environment NI MPS RI LC %
Extinct

TTE

Avg. C.V. Avg. C.V. Avg. C.V. Avg. C.V.

1x Permissive 6.6 1.59 42.4 0.67 0.69 0.49 34.3 0.91 20 7

Stressful - - 9.5 1.07 0.27 0.77 2.5 2.44 73 9

2x Permissive 19.7 0.77 60.2 0.31 0.90 0.09 44.5 0.42 - -

Stressful - - 19.0 0.64 0.38 0.44 6.2 1.27 7 11

6x Permissive 33.7 0.49 95.3 0.19 0.93 0.09 66.3 0.37 - -

Stressful - - 49.7 0.50 0.68 0.34 33.6 0.58 - -

8x Permissive 33.3 0.43 94.9 0.22 0.94 0.06 63.6 0.49 - -

Stressful - - 47.4 0.38 0.57 0.41 28.4 0.63 - -

Admixed Permissive 67.3 0.28 123.2 0.20 0.97 0.04 84.4 0.39 - -

Stressful - - 77.4 0.21 0.73 0.22 65.6 0.47 - -

The Net Increase (NI) was calculated after three weeks in permissive conditions. MPS is the median population size calculated using weekly census 
data from 13 post stress weekly censuses. RI is the Reproductive Index: the fraction of census weeks in which reproduction was observed. LC is 
the population size at the Last Census. TTE is the median Time To Extinction among lines that went extinct.
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environment and for two of the three fitness proxies in
the permissive environment. Post-hoc tests showed these
differences were statistically significant for two of the
three proxies in the stressful environment (Figure 1).

In this simplified experimental environment, AFLP
markers detected large decreases in genetic diversity but
missed more modest but ecologically meaningful losses.
This may have important implications for the application
of AFLP genotypes. While AFLP markers lack the power
to detect all meaningful losses of genetic diversity, these
markers are unlikely to cause false positives; when detect-
able losses in AFLP diversity occur, our data suggest they
signal a serious decline in population viability.

Inbreeding, Genetic load and Hybrid Rescue
The clearest evidence for the effects of inbreeding on A.
bahia populations was obtained before the formal experi-
ment started. In order to generate the 1x lines used in this
study, we started with 64 founding lines. Fully three quar-
ters of these lines failed to generate the 26 individuals
that were required to found the experimental lines after
several months in culture. Some early losses may also be
due to demographic stochasticity--initial brood sizes are
small in young mysid females. However many lines that
survived failed to thrive during more than four months
under permissive conditions. Thus, inbreeding effects

Figure 1 Population fitness, estimated with Median Population 
Size (A), Last Census size (B), and Reproductive Index (C). Paired 
box plots define the median and middle two quantiles in stressful (left) 
and permissive environments (right). Lower case letters unite groups 
that are not statistically distinguishable using post-hoc tests (Tukey's 
HSD) at α = 0.05.
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were a major determinant of the number and types of
lines available for our main experiment making it neces-
sary to construct experimental populations using only the
modest number of lines that were most resistant to
inbreeding depression. This result is typical of animals
with large, panmictic populations [24,45].

From a conservation genetics perspective, it is impor-
tant to understand the population level consequences of
individual inbreeding depression (or the approximate
opposite, heterosis). It has been repeatedly noted that the
impact of individual inbreeding depression varies with
environment [46,47], and the negative effects of high lev-
els of inbreeding may be masked by permissive environ-
ments or when a direct comparison with outbred
individuals is not possible [6,12,48]. In experimental set-
tings, inbreeding depression is usually, but not univer-
sally, stronger in stressful environments [46]. In the mysid
experimental system, estimates of the genetic load in
both environments suggest that while inbreeding depres-
sion is expressed for all fitness metrics in the permissive
environment, the effects are far more pronounced in the
stressful environment. We note that owing to experimen-
tal constraints, this estimate of genetic load is applicable
only to the main experiment and does not necessarily
reflect genetic load within natural populations.

Because we constructed our higher diversity popula-
tions by combining different numbers of low diversity
lines, our study may be viewed as a series of replicated
'genetic rescue'[49] experiments (albeit with very high
immigration rates, comparable to [45]). Population fit-
ness was substantially improved when two or more 1x
lines were combined, and in almost all cases, the 'rescue'
was successful. Only a single 2x population went extinct
in the stressful environment. Within our system, nominal
genetic diversity was an important predictor of popula-
tion fitness for most levels of genetic diversity. In both
environments and for all three of the fitness proxies, the
2x lines performed better on average than the 1x lines,
and the 6x lines performed better than the 2x lines. The
difference was not always statistically significant in post-
hoc comparisons for each fitness index at each level (Fig-
ure 1), but the relative performance was as expected. Fur-
ther, the high diversity AMX populations were generally
more fit than any of the lower diversity populations.

We did not detect a statistically significant difference
between the 6x and 8x populations in any of the fitness
assays or by using molecular markers. We note that the
best performing 8x were superior to the best performing
6x populations, however the worst performing 8x popu-
lations were inferior to the worst performing 6x popula-
tions. Because the 8X lines were founded with only three
individuals from each of four founding 2x lines, it is pos-
sible that some of the founding lines did not establish

themselves in some 8x populations. In any case, genetic
diversity levels in these two classes are expected to be
quite similar. Even for a locus that is fixed for alternate
alleles in the 1x populations, expected heterozygosity of
6x and 8x populations would only differ by 4% on average
(H = 0.833 and 0.875, respectively [50]). The actual
heterozygosity difference is likely under 2% since 1x lines
would have experienced only a 30% to 50% reduction in
heterozygosity relative to the founding stock populations.

Diversity, selection and adaptation
Many studies have focused on the individual fitness con-
sequences of inbreeding in benign and stressful environ-
ments due to inbreeding depression effects [46] but this is
only one way that genetic diversity affects extinction risk.
It also is important to determine the consequences of
reduced genetic diversity for the capacity of the popula-
tion to adapt to a novel environment. Even modest losses
of genetic diversity may result in a reduced ability to
adapt to environmental change, yet the short-term
impact of such losses may be minimal if populations are
maintained in stable environments or if the loss does not
cause detectable inbreeding depression-like effects. The
long-term impact of moderate losses on population per-
sistence can best be measured by estimating generational
changes in population fitness in multiple environments.
The mysid experimental system demonstrates that both
population fitness and inter-population variability are
influenced by genetic diversity, and that both fitness and
variability are influenced by environmental stress.

To assess the strength of selection in the stressful envi-
ronment, we calculated the ratio of populations in the
stressful environment to those in the permissive environ-
ment three weeks (~1 mysid generation) after the stress-
ful environment was introduced. We hypothesized that
the relative proportions should be similar at both time
points if inbreeding and heterosis are influencing the
relationship, but that when adaptation has occurred, pop-
ulation sizes in the stressful and permissive environments
will grow more similar over time. We found that after
three weeks of selection the 1x population sizes in the
stressful environment were 57% smaller than those in the
permissive environment, while the AMX population sizes
were only 24% smaller in the stressful environment.
These declines represent the selection pressure imposed
by the stressful environment. After 10 more weeks of
selection, the AMX population sizes in the stressful envi-
ronment were only 7% lower than those in the permissive
environment while the 1x population sizes were 94%
lower (Figure 2). Therefore, the low diversity populations
did poorly in the stressful environment early in the exper-
iment and grew progressively worse as the experiment
proceeded. By contrast, the high diversity populations
were relatively less disadvantaged early on and even
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showed some improvement by the end of the experiment.
In the AMX lines the level of improvement did not rise to
statistical significance; however, the trend was consistent
with the one predicted by evolutionary adaptation (and
some stressed populations even outperformed their
matched controls), suggesting that simple heterosis may
not be the only force operating in populations with high
genetic diversity. However, these results should be inter-
preted with some caution as the high diversity popula-
tions may have been close to the carrying capacity of the
habitat in both normal and low salinity environments.

In our mysid data set, nominal genetic diversity was an
important predictor of variability between populations
within an environmental treatment with lower diversity
populations having more inter-population variability
than higher diversity populations. Population size (either
median or final) was also notably lower in low genetic
diversity populations, so a much higher fraction of low
diversity lines are likely to fall below the minimum num-
ber of individuals required to maintain population viabil-
ity [51]. In general, temporal variation in abundance
within a single population is expected to increase the
chances of population loss [51,52], so these results indi-
cate that genetic diversity is an important component of
extinction risk.

Conclusions
Using the mysid experimental system, we found that: 1)
reduced population genetic diversity reduces population
fitness in both permissive and stressful environments; 2)
even some modest reductions in genetic diversity can
reduce the value of some fitness measures, especially in
stressful environments; 3) environmental stress and
genetic diversity appear to independently influence pop-
ulation fitness; and 4) AFLP genotypes detected large
reductions in population genetic diversity, but did not
reliably detect modest reductions in genetic diversity that
may influence population fitness. Therefore, many more
AFLP loci than are commonly used would be necessary to
detect these losses. However when genetic diversity
losses are detected using a moderate number of AFLP
loci, they are likely to be ecologically important. We also
found that: 5) low diversity populations show more inter-
population variability than high diversity populations for
most estimates of population fitness; and 6) high diversity
populations showed some capacity to adapt to the stress-
ful environment, but low diversity populations did not.

In natural populations the relationship between popu-
lation fitness and genetic diversity will depend on specif-
ics of the environment and the organism. Genetic
diversity may not always enable populations to persist,
but a lack of diversity essentially guarantees that adapta-
tion to altered environments will not occur. Despite the
importance of diversity for population survival, our

understanding of the relationship between diversity and
long-term population viability is limited. Studies in sim-
plified laboratory environments, such as the one
described here, can be used to determine a baseline for
the relationship between diversity and population risk
under the best possible conditions (i.e., with the least
environmental variation) and provide an important way
to assess molecular tools that are potentially useful in
conservation biology.
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