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Abstract 9 

Little is known about the fate of polybrominated diphenylethers (PBDEs) across the Oceans. 10 

Air and water were sampled using both active and passive polyethylene samplers on an East-11 

West transect across the tropical Atlantic Ocean in 2009, and analyzed for PBDEs. Typical 12 

particle-bound concentrations of PBDEs in the surface water were low, at < 1 pg L-1. Truly 13 

dissolved concentrations from passive samplers were ~ 0.5 pg L-1 for BDE 47 and around 0.1 14 

pg L-1 for BDEs 28, 99 and 100 (results from active samples were compromised). In the 15 

atmosphere, particle-bound BDE 209 dominated overall concentrations (median 1.2 pg m-3), 16 

followed by BDE 99 (0.13 pg m-3).  Gas-phase concentrations based on passive samplers were 17 

1–8 pg m-3 for BDE 47, and ≤ 4 pg m-3 for BDE 99.  Net air-water exchange gradients 18 

strongly favoured gas-phase deposition of PBDEs into the water. Net gas-phase deposition 19 

fluxes ranged from 10s of pg m-2 day-1 for BDEs 28 and 85 to around 1 ng m-2 day-1 for BDE 20 

47, 99 and 209. Settling fluxes of particle-bound PBDEs in atmosphere and surface water 21 

were around 50 pg m-2 day-1 for BDE 47, and < 10 pg m-2 day-1 for the other congeners.  22 

 23 

 24 



INTRODUCTION 25 

Oceans have emerged as an important buffer and final sink for a wide range of persistent 26 

organic pollutants (POPs).1-4 There are four major pathways affecting POPs in the Oceans. 27 

The most important pathway for persistent hydrophobic and lipophilic compounds is the 28 

biological pump, which moves POPs to depth by partitioning into phytoplankton and settling 29 

to depth 4,5. POPs can also be moved to depth via the subduction of surface water 3. Another 30 

‘physical’ pathway is the movement to depth via eddy diffusion, which will be most important 31 

for polar compounds which do not sorb strongly to organic carbon in the water column 6. 32 

Lastly, compounds can be prone to degradation, either biodegradation 7 or by direct and 33 

indirect photolysis in the surface water 8,9.  Potential sources of POPs to the Atlantic combine 34 

atmospheric deposition and riverine transport from terrestrial sources. In the case of 35 

polybrominated diphenylethers (PBDEs), there is the possibility that debromination reactions 36 

results in the production of lower brominated congeners in situ 10. Due to their low vapour 37 

pressure, and high lipophilicity, their transport on particles in atmosphere and seawater is 38 

likely the dominating process.  39 

This is particularly true for the Atlantic Ocean, which is affected by emissions from America, 40 

Africa and Europe.11,12 It has been extensively studied on several transects for legacy 41 

pollutants, such as polychlorinated biphenyls (PCBs)11 and polycyclic aromatic hydrocarbons 42 

(PAHs)13, polychlorinated dibenzo-p-dioxins and furans1 and hexachlorocyclohexanes 14-16. 43 

Most of these transects occurred on European research vessels on their biannual migration 44 

from the Arctic to the Antarctic and vice versa. These transects typically follow the western 45 

side of the North Atlantic. Sampling on these transects was invariably affected by continental 46 

emissions off Europe and Africa, making extrapolations across the entire Atlantic Ocean 47 

difficult and fraught with uncertainties.  48 



More recently, results of newer contaminants, such as brominated flame retardants and 49 

perfluorinated alkyl acids and sulfonates have been published.17-20 Yet we still know very 50 

little about their sources, transport and fate on the ocean-scale. Our recent results suggested 51 

that the remote oligotrophic Ocean has become a secondary source of PCBs21,22. Contrarily, 52 

PAHs continue to deposit into the Atlantic Ocean23, possibly linked to their reactivity in the 53 

surface water.13 Recent results showed the widespread presence of brominated flame 54 

retardants, particularly polybrominated diphenylethers (PBDEs), at trace levels in air and 55 

water across the Atlantic Ocean.17,24,25 Air-water exchange gradients implied on-going net 56 

deposition of PBDEs into the surface waters.17 57 

A research cruise of the R/V Endeavor in July-August 2009 from Namibia via Barbados back 58 

to her home port in Narragansett (RI), USA offered us a unique opportunity to determine 59 

PBDE concentrations in air, water and air-water exchange gradients across the tropical 60 

Atlantic Ocean (Figure 1). The cruise track covered both large east-west and north-south 61 

gradients, and was mostly far away from shore. In addition to the traditional sampling of 62 

PBDEs using active high-volume air and water sampling, we also deployed passive 63 

polyethylene (PE) samplers as complementary approaches to measure truly dissolved 64 

concentrations. Previous results suggested good agreement between active and passive 65 

sampling (e.g., within a factor of 2 for PCBs).21  66 

In summary, we collected and analyzed samples across the tropical Atlantic to deduce 67 

whether (i) there were significant east-west and north-south gradients of selected PBDE 68 

congeners; (ii) the tropical Atlantic Ocean was a net sink or secondary source of PBDEs; and 69 

(iii) to compare active and passive sampling approaches for PBDEs; and (iv) estimate settling 70 

fluxes of PBDEs in air and water to determine the turnover of PBDEs in these compartments.   71 

 72 



METHODS 73 

Sampling 74 

High volume water sampling 75 

Active air and water sampling were taken as detailed previously.22 In brief, a total of 57 water 76 

samples were collected in the ship’s laboratory from the ship’s seawater pipe using a 77 

sampling train, equipped with a pre-combusted glass fiber filter (GFF) and 3 polyurethane 78 

foam (PUF) plugs in series. Water samples were collected continuously. Initially (samples 1-79 

33) collected 600-1100 L of water, after Barbados, 200-500 L were filtered (samples 34- 57).  80 

 81 

High volume air samples  82 

Air sampling was conducted when the wind came from across the bow to collect 83 

uncontaminated marine boundary layer air. Previous work has shown that sampling of POPs 84 

can easily be contaminated from the ship’s emission (either indoor air or stack emission). 26 85 

During this transect, winds often shifted away from the bow, such that only 47 air samples 86 

were collected using a high-volume air sampler, equipped with a pre-combusted GFFs and 2 87 

pre-extracted PUF plugs. The active air sampler was set-up at the front of the monkey’s level 88 

(above the bridge), facing the wind. Up to sample 23, volumes of 400 – 570 m3 (~ 12 hours 89 

each) were collected, after Barbados, volumes were ~ 230 – 350 m3 (~ 8 hours each).  90 

 91 

PE sheet samplers 92 

Passive samplers were deployed to (a) the indoor air for 1 -2 weeks each (n=7); (b) the marine 93 

air for consecutive 48 hours (n=12); (c) to flowing seawater in the ship’s laboratory for 94 

consecutive 48 hours (n=13); and (d) samplers were towed behind the ship for 48 hours 95 

outside country’s exclusive economic zones (limiting these to n=9).   96 



The air PE samplers were exposed in inverted stainless steel bowls (‘UFO disk’) on the ship’s 97 

main (chimney) mast 17.5 m above sea level (i.e., several meters above the high-volume 98 

sampler). PE samplers were exposed continuously, even when hi-volume air sampling was 99 

paused due to adverse winds. The water PE was fixed in a steel pipe connected to the flowing 100 

seawater in side the ship’s special purpose laboratory, at a nominal flow rate of 10 L min-1.  101 

PE samplers were towed on a line via the A-frame, ca. 100 m behind the ship, for 40-70 hours 102 

each. 103 

 104 

Sample analysis 105 

High volume samples (PUFs, GFFs) 106 

Analytical standards for PBDEs (calibration sets, natives and 13C labeled) were purchased 107 

from Wellington Laboratories (Canada). PUFs and GFFs were extracted using automated 108 

warm Soxhlet extraction (40 minutes warm Soxhlet followed by 20 minutes of solvent 109 

rinsing) with dichloromethane (DCM) in a B-811 extraction unit (Büchi, Switzerland). The 110 

extracts of water PUF a GFF samples were first dried using Na2SO4, concentrated and then 111 

split into 2 portions, ¼ of extract was used for PAHs analysis,23 the remaining ¾ of extract 112 

were used for PBDEs, indicator PCBs and OCPs analysis.21 113 

 114 

Analysis 115 

Several 13C BDEs (28, 47, 99, 100, 153, 154, 183 and 209, all from Wellington Laboratories, 116 

Canada) were added prior to extraction. The extract was cleaned-up on a H2SO4 modified 117 

(30% w/w) silica column. Analytes were eluted with 40 mL DCM/n-hexane mixture (1:1). 118 

The eluate was concentrated using stream of nitrogen in a TurboVap II concentrator unit and 119 

transferred into an insert in a vial. The syringe standards (13C BDEs 77 and 138 and native 120 

PCB 121) were added to all samples, the final volume was 50 uL. 121 



HRGC/HRMS instrumental analysis for PBDEs was performed on 7890A GC (Agilent, USA) 122 

equipped with a 15 m x 0.25 mm x 0.10 µm DB5 column (Agilent J&W, USA) coupled to 123 

AutoSpec Premier MS (Waters, Micromass, UK). The MS was operated in EI+ mode at the 124 

resolution of >10 000. For BDE 209, the MS resolution was set to >5 000. Injection was 125 

splitless 1 µL at 280°C, with He as carrier gas at 1 mL min-1. The GC temperature program 126 

was 80°C (1 min hold), then 20°C min-1 to 250°C, followed by 1.5°C min-1 to 260°C (2 min 127 

hold) and 25°C min-1 to 320°C (4.5 min hold). 128 

 129 

PE sheet samplers 130 

Blanks and exposed sheets of PE were rinsed with Millipore water, dried with a disposable 131 

tissue and soaked for 24 hours in 200 mL of n-hexane followed by 24 hours in 200 mL of 132 

DCM. The two solvents were then pooled; concentrated using stream of nitrogen in a 133 

TurboVap II concentrator and the extract was split into 2 portions and processed using the 134 

same procedure as the high volume samples. 135 

 136 

Quality assurance, Quality control 137 

The results for PBDEs in high volume samples are recovery corrected (recoveries ranged 138 

from 34 to 110%, Table S7). Method performance was tested prior to sample preparation. 139 

Four field blanks were extracted for water and air GFFs each; Four PUF blanks were 140 

extracted for air and water samples each (one PUF blank was excluded for air samples) and 141 

combined for blank correction and method detection limit (MDL) determination. The MDL 142 

was calculated as 3 standard deviations of blank concentrations (for more details, see SI and 143 

Tables S2-S6).  144 

 145 

Physicochemical properties  146 



Best-fit values of PE-water (KPEw) equilibrium partition constants were taken from Lohmann 147 

(2012)27, and corrected for average sampling temperature and salinity (Table S1). PE-air 148 

(KPEa) values were calculated based on a linear regression of subcooled-liquid vapour pressure 149 

(pL) established for PAHs, OCPs and PCBs (data not shown). Octanol-water partition constant 150 

(Kow) and pL values were calculated on the correlation with molecular weight presented by 151 

Dugani and Wania (2003).28 The Setschnow constant was taken as 0.35, as reported 152 

elsewhere.29 Average values were taken for enthalpies of PE-water (25 kJ mol-1) and PE-air 153 

exchange (80 kJ mol-1), close to calculated values of internal octanol-water and octanol-air 154 

exchange.30,31 155 

 156 

Concentrations and fluxes from PE samplers  157 

Truly dissolved concentrations of PBDEs in water, Cdiss (pg L-1 H2O) and gas-phase, Cgas (pg 158 

m-3) were derived from PE-normalized concentrations, CPE (pg L-1 PE): 159 
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Where Rs (m3 day-1) is the overall sampling rate, t is the deployment time (days), VPE the 161 

volume of the PE sampler (m3) and KPEw (or KPEa) is corrected for the average temperature 162 

and salinity of the deployment (for details, see SI). Sampling rates were estimated based on 163 

PRC loss and typical uptake rates.21 For towed samplers, we assumed equilibration was 164 

achieved. In view of the high molecular weights (MW) of BDEs, Rs was modulated relative to 165 

BDE 28 as a function of MW-0.4, representing an average of previous relationships between Rs 166 

and molecular size.32 167 

Air-water exchange fluxes, Faw (pg m-2 day-1), were calculated according to the two-film 168 

theory. The air-water exchange velocity, kol (m d-1), was estimated as detailed previously. 23 169 
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 171 

Meteorological and sea surface auxiliary measurements 172 

From the ship’s routine measurements, we averaged values of latitude, longitude, surface 173 

water temperature (Twater), salinity, and fluorescence of the flow-through seawater; air 174 

temperature (Tair), relative humidity (RH), relative and absolute wind speed and direction 175 

recorded every minute for each sampling period (see SI). Back – trajectories were calculated 176 

for 5 days with 6 h steps at 300 m above sea level using HYSPLIT.33  Concentrations of 177 

dissolved organic carbon (DOC) were derived from relationships by Siegel et al. (2002), 178 

mostly around 1 mg DOC L-1. 34 179 

 180 

Cruise track 181 

On the water side, the cruise covered different major currents of the tropical Atlantic Ocean 182 

(Figure 1). Currents were identified based on a combination of changes in temperature (and 183 

salinity for the Amazon plume) and typical current fields 35 (see Table S9). In the southern 184 

hemisphere, these were the Benguela, South Equatorial and North Brazil Current. Discharges 185 

from the Amazon, the North Equatorial Current and Gulf Stream affected samples in the 186 

northern hemisphere. We obtained back-trajectories to confirm air mass origin.21 Initially, we 187 

encountered southeasterly trade winds, moving air masses in a westerly direction towards the 188 

equator. We then passed the intertropical convergence zone (ITCZ), which was situated at 189 

approximately 10 ° N during our cruise. The cruise then continued in the northeasterly trade 190 

winds moving air masses towards the west along the equator in the NH. The last few samples 191 

were affected by the westerlies, moving air masses eastwards across the Atlantic Ocean.  192 

 193 



RESULTS AND DISCUSSION 194 

 195 

PBDE concentrations in the water 196 

Particle-bound PBDE water concentrations 197 

Typical particle-bound concentrations of PBDEs in the surface water were low, at < 1 pg L-1, 198 

with the exception of BDE 209 (mean 7 pg L-1, median 1.8 pg L-1) (Table S18). The most 199 

abundant BDE congeners were 47, 99, 100 and 85, which were detected in approximately 2/3 200 

of all samples. In terms of concentrations, BDEs 47 and 99 displayed highest concentrations 201 

in most samples. When above the MDL, BDE 209 dominated overall aqueous concentrations 202 

of BDEs on particles.  203 

A strong hemispherical gradient was apparent for particle-bound aqueous PBDEs. The ratio of 204 

the mean concentrations was approximately 5-times higher in the northern than in the 205 

southern hemisphere. For example, mean concentrations of BDEs 47 and 99 were 0.04 pg L-1 206 

in the southern hemisphere, but 0.3 pg L-1 in the northern hemisphere. Similarly, the 207 

frequency of detection for all congeners was only 21% in the southern hemisphere, but 49% 208 

in the northern hemisphere. Clearly, the southern tropical Atlantic Ocean is much cleaner (on 209 

average 5-times) with respect to particle-bound PBDEs in the surface water than the northern 210 

hemisphere tropical Atlantic. We note that the increase in particle-bound PBDEs began at 5 – 211 

10 °N, not the equator itself (Table S18). This was probably the result of the ITCZ having 212 

shifted northwards during the northern summer, as reflected in the back-trajectories. This also 213 

implies that particle-bound PBDEs reflected fairly recent deposition events. 214 

A closer look at the spatial distribution of particle-bound PBDEs showed that highest 215 

concentrations were detected in the Amazon plume, the Gulf Stream Eddy and in the sample 216 

closest to the U.S. coast (Figure 2). BDE 209 was only detected in a few samples from the 217 



Amazon River plume, where concentrations reached 36 pg L-1. In the sample taken in the Gulf 218 

Stream, particle-bound BDE congener concentrations were not elevated (Figure 2).  219 

Xie et al. (2011) published dissolved and particle-bound concentrations of PBDEs along a 220 

North-South transect of the Eastern Atlantic Ocean in 2008.17 Particle bound BDE 221 

concentrations were ≤ 0.1 pg L-1 (BDE 209 was not analyzed). Highest concentrations were 222 

observed close to Europe and off South Africa. Particle-bound concentrations of both cruises 223 

were similar in magnitude, implying that contamination-free sampling of particles was 224 

achieved on both cruises. 225 

 226 

Truly dissolved PBDE concentrations from passive sampling 227 

PBDEs were detected in the towed passive samplers deployed in the water, likely due to their 228 

extremely high KPEw values (causing strong enrichment in the polyethylene films) (see SI). 229 

Total mass of PBDEs accumulated in the towed PE samplers were at least 10 times higher 230 

than those in the flow-through water exposed PE samplers, highlighting the boundary-layer 231 

limitations we encountered in the laboratory. This was also evident in the detection frequency 232 

of PBDEs in both types of deployments. Whereas almost all PBDE congeners were regularly 233 

detected in the towed passive sampler (overall detection frequency was 90%, except BDE 66, 234 

which was never > MDL), only < 5 % of PBDEs were > MDL in the flow-through passive 235 

sampler exposure. Towing of passive samplers could be a potentially transformative way of 236 

sampling truly dissolved concentrations in the open Oceans.36 Concentrations of PBDEs were 237 

greater by a factor of approximately 2 in the northern and western tropical Atlantic compared 238 

to the southern and eastern section based on the towed passive sampler results.  239 

The dominant congeners were BDEs 47 and 99 (Figure 3). Typical concentrations in the 240 

towed PE were ~ 0.5 pg L-1 for BDE 47 and around 0.1 pg L-1 for BDEs 28, 99 and 100 241 

(Table S12). Overall, the PE-derived concentrations were remarkably similar to those reported 242 



by Xie et al. (2011) for the Eastern Atlantic Ocean on a R/V Polarstern cruise in 2008 (Figure 243 

3).17 On that cruise, samples were taken with a classical active sampling train using PAD 244 

resins and GFFs. Mean values reported by Xie et al. (2011) were 0.1 pg L-1 for BDEs 47 and 245 

99, and a factor of 10 lower for other PBDEs (BDE 209 was not analyzed).17 246 

BDE concentrations started to diverge for the highest molecular weight BDE congeners 247 

(Figure 3), with PBDE concentrations from towed PE samplers suggesting much lower truly 248 

dissolved concentrations than those from Xie et al. (2011)’s active sampling.17 This could be 249 

due to the assumption of all PBDEs having reached equilibrium between the water and the 250 

samplers during the 2-day tows. The good agreement between both types of sampling and 251 

cruises (~ factor of 2) for congeners with up to five bromines (BDE 100) suggests that 252 

compounds with a log Kow ≤ 7 had equilibrated. For congeners with six or more bromines, a 253 

correction for non-equilibrium could be necessary, or a longer deployment time (reducing the 254 

boundary layer through faster passive sampler movement seems unlikely to be achieved in the 255 

field, unless through special design features). Alternatively, active sampling results could be 256 

biased high due to the co-sampling of PBDEs bound to DOC.  257 

 258 

Dissolved PBDE concentrations from active sampling 259 

Dissolved concentrations from active sampling were, by and large, 8 times lower in the South 260 

Atlantic than in the North Atlantic (Table S16). The dominant PBDE congeners across all 261 

samples were 99, 47 and 85. In the South Atlantic, concentrations ranged from below MDL in 262 

most samples towards 90 pg L-1 for PBDE 99. In the North Atlantic, concentrations increased 263 

markedly in the Amazon River plume, where several PBDE congeners reached hundreds of 264 

pg L-1. Two other regions of elevated concentrations were in the Gulf Stream Eddy, and the 265 

sample closest to the US coast, where BDEs 47 and 99 reached several thousands pg L-1. 266 

These concentrations are far greater than reported by Xie et al (2011)17, and the 267 



concentrations deduced from our towed passive samplers (both below 1 pg L-1).  In fact, the 268 

concentrations from active sampling on this cruise exceeded those reported for coastal 269 

environments or Lake Michigan: dissolved ΣPBDEs of up to 60 pg L-1 were reported in the 270 

coastal waters of Hong Kong37, 100 – 200 pg L-1  for Izmir Bay38, while Streets et al. (2006) 271 

reported average concentration of ΣPBDEs of 18 pg L-1 for Lake Michigan39. 272 

The strong discrepancy between the dissolved PBDE concentrations reported by Xie et al. 273 

(2011)17 and our BDE concentrations from passive sampling with our results from active 274 

sampling is reason for concern. Apparently dissolved PBDE concentrations from active 275 

sampling on our study were elevated by 10 – 1,000 fold. We examined whether the collection 276 

of colloids or microplastics in our PUF-based sampling approach could explain the difference. 277 

We assumed 1 mg DOC L-1 during the cruise. DOC-water partition constants, KDOC, were 278 

taken either from Burkhard (2000)40 for natural colloids, or values extrapolated from sediment 279 

partitioning experiments by Wang et al. (2011)41. In either case only up to 50% of the 280 

congeners dominating total dissolved concentrations (BDEs 47, 100 and 99) were bound to 281 

colloids. The subtropical gyres in the Atlantic Ocean are known to accumulate small pieces of 282 

plastic debris, or microplastics.42 If half of the [DOC] consisted of microplastics with sorption 283 

properties similar to PE, around 50% of BDE 47 would be colloidal-bound, and 80% of BDEs 284 

99 and 100. These calculations imply that co-sampling of colloids or microplastics cannot 285 

explain the observed active sampling results. Most likely, active sampling results became 286 

contaminated before, during or after sampling. 287 

 288 

PBDE concentrations in the atmosphere 289 

Particle-bound PBDEs in the atmosphere 290 

A wide range of PBDEs were routinely detected on particles in the marine boundary layer, 291 

including BDEs 66, 100, 99, 154, 153 and 183, and often BDE 209 (Figure 4). When 292 



detected, BDE 209 dominated overall concentrations (median 1.2 pg m-3), followed by BDE 293 

99 (0.13 pg m-3). For all other BDEs, mean and median concentrations were < 0.1 pg m-3. 294 

There were no significant differences between BDE concentrations on particles between both 295 

hemispheres (Table S10). 296 

Concentrations were slightly greater than those reported by Xie et al. (2011) across the 297 

Eastern Atlantic Ocean (BDE 209 was not measured in that study).17 During their cruise, only 298 

BDE 47 had a median concentration greater 0.1 pg m-3, with other congeners mostly below 299 

detection limits.17 300 

 301 

True gas-phase PBDE concentrations from passive sampling 302 

Most PBDEs were detected routinely in the air passive samplers (Table S14). Greatest 303 

concentrations were obtained for BDE 47 at 1 – 8 pg m-3, followed by BDE 99 (≤ 4 pg m-3), 304 

with the other BDEs < 1 pg m-3 (Figure 4). The intermittent detection of BDE 209, ranging 305 

from < MDL - 260 pg m-3,  could be due to its episodic transport, or reflect contamination on-306 

board. There was no significant difference between the two hemispheres in terms of gas-phase 307 

PBDE concentrations. These concentrations are comparable to, or slightly higher than those 308 

reported by Xie et al. (2011) for gas-phase PBDEs across the Eastern Atlantic (Figure 4).17 Li 309 

et al. (2011) published combined gas+particle phase concentrations across the south-eastern 310 

Atlantic Ocean.43 Mean concentrations were a few pg m-3, similar to the concentrations 311 

reported here.  312 

 313 

Gas-phase PBDE concentrations from active sampling 314 

In the southern hemisphere air samples, gas-phase PBDEs were routinely below detection 315 

limits (on the order of 1 pg m-3 for most congeners, see Tables S16). In several southern 316 

hemisphere samples, all PBDE congeners were detected, with concentrations reaching 1 ng m-317 



3 for BDEs 47 and 99 in sample NAM-AP-020. During the collection of that particular 318 

sample, the high volume sampler motor was shut off for 12 hours due to adverse wind 319 

conditions, but the PUFs and GFF left in place. The exceedingly elevated concentrations from 320 

this sample imply ship’s emission as a strong contamination source of PBDEs.  321 

Concentrations of gas-phase BDEs increased in the northern hemisphere (i.e., once the ship 322 

crossed the ITCZ), with most congeners being detected above MDL regularly. Typical 323 

concentrations were around 100 pg m-3 for BDEs 47 and 99 and at or below 10 pg m-3 for the 324 

other congeners. A strong north-to-south gradient was apparent, with ratios of mean or 325 

median concentrations implying that concentrations of PBDEs were greater in the NH by 326 

factors of 2-8. The comparison with the passive sampling results, and the BDE concentrations 327 

reported previously by Xie et al. (2011)17 imply that gas-phase samples were routinely 328 

contaminated.26 329 

 330 

Air concentrations inside the ship 331 

The PE samplers deployed inside the ship displayed elevated concentrations of PBDEs, 332 

particularly BDE 47 at hundreds pg m-3 (Table S15). Other prominent congeners were BDE 333 

99, 28 and 100 at tens pg m-3 on average. The sum BDEs averaged 600 pg m-3 inside the ship, 334 

comparable to other published concentrations of PBDEs in indoor air. For example, a mean 335 

concentration of 940 pg m-3 for ΣPBDEs was reported for indoor air in Toronto, with other 336 

studies detecting 100 – 200 pg m-3 for indoor air.44 Much higher concentrations were reported 337 

for air in offices in Sweden, with concentrations ranging up to 4,700 pg m-3.45 338 

 339 

The ship as a major source of PBDE contamination of samples and the environment 340 

There are several lines of evidence that the R/V Endeavor itself was a major source of PBDEs, 341 

and partially contaminated active samples taken on-board. First, the indoor air displayed 342 



elevated concentrations of a wide range of PBDEs, in-line with concentrations observed in 343 

office and residential buildings on-land.36,37  Second, field PUF blanks taken during active air 344 

and water sampling resulted in elevated BDE concentrations (Tables S5-S6). Third, during a 345 

couple of active sampling events, the high volume sampler (hi-vol) was shut off (but the PUFs 346 

left in place) when the wind was coming from the side or stern of the ship. These samples 347 

displayed strongly elevated concentrations of PBDEs. Fourth, active sampling resulted in 348 

much greater PBDE concentrations than passive sampling.  The gas-phase PE sampler was 349 

mounted several meters above the hi-vol, implying that diffusive contamination from the ship 350 

did not reach the PE sampler. Fifth, there is a noticeable increase in PBDE concentrations in 351 

the PE field blanks, with lowest concentrations for the atmospheric PEs (exposed to marine 352 

air) at 170 pg per sample. The PEs mounted in the ship’s laboratory were accompanied by 353 

field blanks containing on average 540 pg per sample, while the towed PEs accumulated on 354 

average 5,300 pg per sample. Towed PEs were mounted on the back of the ship, where the 355 

ship’s circulated air and engine room ventilation could often be felt. 356 

 357 

Pollutant gradients across the Atlantic Ocean 358 

Our results suggest that the north-western tropical Atlantic carried 5-times higher 359 

concentrations of PBDEs on particles, and twice as high truly dissolved concentrations than 360 

the south-eastern Atlantic Ocean. Yet our atmospheric results do not show any significant 361 

differences between both hemispheres and regions. Our results seem to contradict PBDE 362 

concentrations reported by Xie et al. (2011), who reported higher atmospheric concentrations 363 

during their northern Atlantic Ocean transect relative to the samples taken further south.17  For 364 

their aqueous samples, there was no significant difference between dissolved or particle-365 

bound PBDE concentrations between the North and South Atlantic.17 We suggest that the 366 

gradients observed on the different cruises have as much to do with the particular regions 367 



being crossed rather than solely reflecting on northern versus southern hemisphere. The fact 368 

that we observed greater aqueous concentrations of PBDEs  in NH is mostly due to our cruise 369 

transecting the remote southern tropical Atlantic (with low PBDE concentrations) but ended 370 

up sampling the Amazon River, warm core, Gulf Stream, and US coastal seaboard in the 371 

northern hemisphere.  372 

Xie et al. (2011) sampled the atmosphere closer to Europe and Africa for most of their 373 

samples taken in the northern hemisphere, but farther from shore during their southern 374 

transect, which might explain the difference in atmospheric PBDE concentrations they 375 

reported.17 376 

 377 

Air-water exchange 378 

Air-water exchange gradients were calculated based on simultaneous passive sampler 379 

deployments in air and water. Gradients were based on PBDE concentrations in PE (ng g-1 380 

PE) at equilibrium.46 In short, passive samplers, such as the PE we used, reflect the chemical 381 

activity of the BDEs in their respective matrix (air and water in our case). The ratio of those 382 

BDE activities (corrected for non-equilibrium) is the activity gradient across the air-water 383 

interface.  384 

In the water, results from towed PE samplers were used; in the air, the equilibrium-corrected 385 

PBDE concentrations from the passive sampler deployed on the ship’s mast were used. In 386 

approximately 50% of possible cases, PBDEs were > MDL in both phases simultaneously 387 

(Table S19). Net air-water exchange gradients strongly favoured deposition of PBDEs from 388 

the gas-phase into the water phase. Gradients increased with increasing MW. For BDEs 28 389 

and 47, net air-to-water exchange gradients ranged from 3-13. For the higher MW BDEs 85, 390 

99 and 100, gradients increased to be in the range 10-50, and even greater for the higher MW 391 



congeners. Our results are similar to the gradients by Xie et al. (2011), who reported net 392 

deposition for all PBDEs along the eastern Atlantic Ocean.17 393 

Air-water exchange velocities ranged from < 1 to 36 cm day-1, and decreased with increasing 394 

MW (Table S22). Net gas-phase deposition fluxes ranged from 10s of pg m-2 day-1 for BDEs 395 

28 and 85 to around 1 ng m-2 day-1 for BDE 47, 99 and 209 (Table S23). Similar values were 396 

reported by Xie et al. (2011). 17 397 

We calculated the net annual gas-phase deposition of PBDEs, assuming these air-water 398 

exchange fluxes were representative across the Atlantic Ocean. For all PBDEs reported here, 399 

the gas-phase deposition flux is approximately 40 tons annually, of which 20 t are the median 400 

flux for BDE 209. 401 

 402 

Deposition of PBDEs across the Atlantic Ocean 403 

We calculated the deposition flux of PBDEs on particles, Fpart,dep (pg m-2 day-1), across the 404 

Atlantic Ocean as: 405 

deppartdeppart,  v C  F ×=        (3), 406 

where Cpart is the particle-bound PBDE concentration (pg m-3) from this cruise and vdep is the 407 

deposition velocity taken as 0.1 cm s-1 as reported by DelVento and Dachs (2007).47 This 408 

translates into a half-live of particle-bound PBDEs in a 1000 m marine boundary layer of 409 

around 6 days. Calculated deposition fluxes were dominated by BDE 209 (median flux of 100 410 

pg m-2 day-1), BDEs 47 and 99 (median fluxes of 46 and 11 pg m-2 day-1). These fluxes 411 

compare well to those calculated by Xie et al. (2011) for PBDEs across the Eastern Atlantic 412 

Ocean.17 413 

If the results reported here are representative across the Atlantic Ocean, the annual deposition 414 

of particle-bound BDEs 47, 99, 100 and 85 will be around a ton scaled to the entire Atlantic 415 

Ocean (surface area ~ 75 x 106 km2). The fact that particle-bound PBDE concentrations from 416 



our cruise were similar to those by Xie et al. (2011) support that assumption. The median 417 

annual deposition flux for BDE 209 is ~ 7,500 kg for the Atlantic Ocean. The fluxes derived 418 

above signal a significant annual deposition (gas-phase deposition of ~40 t and particulate-419 

bound deposition of ~10 t) of PBDEs into the Atlantic Ocean . 420 

Yet the current deposition flux of PBDEs pales in comparison to production volumes of these 421 

flame retardants. The estimated cumulative use of the commercial pentaBDE mixture alone 422 

was estimated to 100 000 t since 1970.48 This indicates that more is to come, as PBDEs 423 

slowly make their way from products into the environment. Relative to PCBs, the gas-phase 424 

deposition fluxes of PBDEs are similar in magnitude. 4 Yet the particle-bound deposition flux 425 

of PBDEs to the Atlantic Ocean already exceeds that of PCBs, which was estimated to be 426 

around 2.2 tons per year.49  A greater fraction of PBDEs is bound to particles, explaining the 427 

derived greater importance of their particle-bound deposition relative to PCBs. 428 

 429 

Settling fluxes of PBDEs out of the mixed layer 430 

We estimated settling fluxes of PBDEs out of the mixed layer depth across the tropical 431 

Atlantic Ocean. The settling flux of particulate organic carbon (POC) at 100 m depth, FOC,100, 432 

was estimated based on its relationship with Chlorophyll a (Chl a)50: 433 

Log (FOC,100) = ) Log(Chl0.812.09 α×+            (4) 434 

 435 

Resulting settling fluxes of OC at 100 m depth were typically 30 – 80 mg m-2 day-1, typical 436 

for the tropical oceans.51 To derive a settling rate of particles out of the mixed layer depth, we 437 

estimated POC concentrations based on published 10-year averages for July as reported by 438 

Stramska (2009).52 We took POC concentrations as 80 mg m-3 up to the equator, 40 from the 439 

equator to 5 °N, 30 from 5 to 10 °N, 20 from 10 to 30 °N, 30 from 30 to 35 °N and 80 north 440 

of 45 °N. Dividing FOC,100 by POC concentrations yields the settling velocity53, which ranged 441 



from 0.5 – 2.0 m day-1. Lastly, the product of settling velocity and particle-bound PBDE 442 

concentrations yielded the PBDE removal flux from the surface ocean layer. This PBDE 443 

export flux  rarely exceeded 1 ng m-2 day-1 for most congeners, except for BDE 209, which 444 

reached fluxes of tens ng m-2 day-1 (Figure S3). Settling fluxes were greater in the northern 445 

hemisphere than south of the equator, driven by the greater frequency of detection and 446 

concentrations of PBDE in the particle-phase (see above). 447 

 448 

Comparison of PBDE fluxes 449 

We compared the fluxes of gas-phase and particle-bound PBDEs out of the atmosphere to 450 

those out of the Atlantic Ocean’s mixed layer depth. Net gas-phase deposition fluxes were 451 

much greater than the particle-bound settling fluxes, implying additional removal from the 452 

surface mixed layer, probably via photolytic and microbial degradation.5  The median values 453 

of both particle-bound settling fluxes agreed surprisingly well in view of the assumptions 454 

behind the settling velocities in both atmosphere and surface water (Figure 6). Settling fluxes 455 

were around 50 pg m-2 day-1 for BDE 47 in both atmosphere and surface water, and < 10 pg 456 

m-2 day-1 for other congeners. For PBDEs 47 through 99, settling fluxes from the surface 457 

water exceeded atmospheric deposition fluxes, while for the higher brominated congeners, 458 

median settling fluxes out of the mixed layer depth (MLD) were zero due to PBDEs being < 459 

MDL in the water.  460 

 461 

Residence time of particle-bound PBDE in surface water 462 

The MLD was taken from published 10-year averages for July as reported by Stramska 463 

(2009).52 It ranged from 80 m up to the equator, 40 m from the equator to 20 °N, and 20 m 464 

north of 20 °N. The product of MLD and total (sum of truly dissolved + particle-bound) 465 

PBDEs yielded the mass loading of PBDEs on particles (ng m-2) in the surface water. The 466 



mass loading divided by the PBDE removal flux (ng m-2 day-1) gave the residence time (days) 467 

of particle-bound PBDEs in the surface water of the Atlantic Ocean, assuming particle settling 468 

was the only removal pathway. The tight coupling of particle-bound PBDE fluxes from 469 

atmosphere and out of the mixed layer could indicate that different fates of particle-bound 470 

PBDEs (settling) and those derived from gaseous diffusion, probably due to chemical and 471 

biological degradation of dissolved molecules in the water column. In the northern 472 

hemisphere, median PBDEs’ residence were several weeks, but were around one year in the 473 

southern hemisphere (Figure S5). These values suggest that settling on particles is an 474 

important removal pathway in the northern hemisphere, whereas biological and photolytic 475 

degradation are probably determining the fate of PBDEs in the southern hemisphere. 476 

 477 

Implications 478 

Our results imply that PBDEs continue to be deposited across the Atlantic Ocean. Our 479 

research vessel proved to be a significant source of contamination for PBDEs itself during 480 

active sampling of air and water. Yet the use of passive samplers enabled us to retrieve valid 481 

samples for both gas-phase and truly dissolved PBDEs. Other researchers have shown that 482 

other contamination-free sampling can be achieved, though on a different research vessels. 483 

17,43 Our results suggest that atmospheric deposition of particle-bound PBDEs is probably 484 

slightly lower but similar in magnitude to their removal flux on settling particles from the 485 

surface mixed layer. Net gas-phase deposition of PBDEs exceeded particle-bound deposition, 486 

suggesting that there are other important removal pathways for dissolved BDEs, such as 487 

microbial and photolyic degradation. The total deposition of PBDEs to the Atlantic Ocean, 488 

around tens of tons per year, pales in comparison to their historical production volumes. This 489 

might indicate the less efficient long-range transport of these higher molecular weight 490 

compounds, compared to, for example, polychlorinated biphenyls. It could also indicate that 491 



PBDEs are only slowly emitted from their current use, guaranteeing continuous fluxes into 492 

the oceans in the future.54 493 

 494 

Supporting Information Available  495 

The Supporting information includes additional details, such as physicochemical constants, 496 
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concentrations. This material is available free of charge via the Internet at http://pubs.acs.org. 498 
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Figure 1: Cruise track of EN 464 with chlorophyll a concentrations derived from 666 
MODIS 

55
 667 
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Figure 2: Concentrations of aqueous particle-bound PBDE congeners (pg L
-1

) in 2009 672 
 673 
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Figure 3: Dissolved concentrations of PBDE congeners derived from towed passive PE 677 
samplers (pg L

-1
) across the tropical Atlantic Ocean in 2009. Displayed are average 678 

concentrations for the southern and northern hemisphere, and mean and median results 679 
from Xie et al. (2011) 

17 for comparison. 680 
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Figure 4: Particle-bound atmospheric concentrations of PBDE congeners (pg m
-3

) in 685 
2009 686 
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Figure 5: Gas-phase atmospheric concentrations of PBDE congeners derived from 692 
passive PE samplers (pg m

-3
) across the tropical Atlantic Ocean in 2009. Displayed are 693 

average concentrations for the southern and northern hemisphere, and mean and 694 
median results from Xie et al. (2011) 17

 for comparison. 695 
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Figure 6: Comparison of median fluxes for PBDEs (pg m
-2

 day
-1

) from net gas-phase and 703 
particle-bound deposition out of the atmosphere and via particle-bound settling out of 704 
the mixed layer depth 705 
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 708 

ΣΣΣΣBDEs (PEs, towed) = 1 pg L
-1

 

ΣΣΣΣBDEs (PEs, in-ship) = < LOD 

ΣΣΣΣBDEs (PUFs, in-ship) = 100 pg L
-1 

ΣΣΣΣBDEs (GFFs, in-ship) = 0.5 pg L
-1

 

ΣΣΣΣBDEs (PEs, in-ship) = 100s pg m
-3

 

ΣΣΣΣBDEs (PEs) = 5 pg m
-3

 

ΣΣΣΣBDEs (PUFs) = 100 pg m
-3 

ΣΣΣΣBDEs (GFFs) = 1 pg m
-3

 

 Fdep =  

100 pg m
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