
University of Rhode Island University of Rhode Island 

DigitalCommons@URI DigitalCommons@URI 

Cell and Molecular Biology Faculty Publications Cell and Molecular Biology 

2005 

Mouse Intestine Selects Nonmotile Mouse Intestine Selects Nonmotile flhDC  Mutants of Mutants of Escherichia 

coli  MG1655 with Increased Colonizing Ability and Better MG1655 with Increased Colonizing Ability and Better 

Utilization of Carbon Sources Utilization of Carbon Sources 

Mary P. Leatham 
University of Rhode Island 

Sarah J. Stevenson 
University of Rhode Island 

Eric J. Gauger 
University of Rhode Island 

Karen A. Krogfelt 

Jeremy J. Lins 
University of Rhode Island 

See next page for additional authors 

Follow this and additional works at: https://digitalcommons.uri.edu/cmb_facpubs 

Citation/Publisher Attribution Citation/Publisher Attribution 
Leatham, M. P., Stevenson, S. J., Gauger, E. J., Krogfelt, K. A., Lins, J. J., Haddock, T. L., Autieri, S. 
M.,...Cohen, P. S. (2005). Mouse Intestine Selects Nonmotile flhDC Mutants of Escherichia coli MG1655 
with Increased Colonizing Ability and Better Utilization of Carbon Sources. Infection and Immunity, 73(12), 
8039-8049. doi: 10.1128/IAI.73.12.8039–8049.2005 
Available at: http://dx.doi.org/10.1128/IAI.73.12.8039-8049.2005 

This Article is brought to you by the University of Rhode Island. It has been accepted for inclusion in Cell and 
Molecular Biology Faculty Publications by an authorized administrator of DigitalCommons@URI. For more 
information, please contact digitalcommons-group@uri.edu. For permission to reuse copyrighted content, contact 
the author directly. 

http://ww2.uri.edu/
http://ww2.uri.edu/
https://digitalcommons.uri.edu/
https://digitalcommons.uri.edu/cmb_facpubs
https://digitalcommons.uri.edu/cmb
https://digitalcommons.uri.edu/cmb_facpubs?utm_source=digitalcommons.uri.edu%2Fcmb_facpubs%2F48&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dx.doi.org/10.1128/IAI.73.12.8039-8049.2005
mailto:digitalcommons-group@uri.edu


Mouse Intestine Selects Nonmotile Mouse Intestine Selects Nonmotile flhDC  Mutants of Mutants of Escherichia coli  MG1655 MG1655 
with Increased Colonizing Ability and Better Utilization of Carbon Sources with Increased Colonizing Ability and Better Utilization of Carbon Sources 

Authors Authors 
Mary P. Leatham, Sarah J. Stevenson, Eric J. Gauger, Karen A. Krogfelt, Jeremy J. Lins, Traci L. Haddock, 
Steven M. Audtieri, Tyrrell Conway, and Paul S. Cohen 

Terms of Use 
All rights reserved under copyright. 

This article is available at DigitalCommons@URI: https://digitalcommons.uri.edu/cmb_facpubs/48 

https://digitalcommons.uri.edu/cmb_facpubs/48


INFECTION AND IMMUNITY, Dec. 2005, p. 8039–8049 Vol. 73, No. 12
0019-9567/05/$08.00�0 doi:10.1128/IAI.73.12.8039–8049.2005
Copyright © 2005, American Society for Microbiology. All Rights Reserved.

Mouse Intestine Selects Nonmotile flhDC Mutants of Escherichia coli
MG1655 with Increased Colonizing Ability and Better

Utilization of Carbon Sources
Mary P. Leatham,1 Sarah J. Stevenson,1 Eric J. Gauger,1 Karen A. Krogfelt,2 Jeremy J. Lins,1

Traci L. Haddock,1 Steven M. Autieri,1 Tyrrell Conway,3 and Paul S. Cohen1*
Department of Cell and Molecular Biology, University of Rhode Island, Kingston, Rhode Island 028811; Department of

Gastrointestinal Infections, Statens Seruminstitut, 2300 Copenhagen S, Denmark2; and Department of Botany and
Microbiology, University of Oklahoma, Norman, Oklahoma 730193

Received 29 June 2005/Returned for modification 24 August 2005/Accepted 8 September 2005

D-Gluconate which is primarily catabolized via the Entner-Doudoroff (ED) pathway, has been implicated
as being important for colonization of the streptomycin-treated mouse large intestine by Escherichia coli
MG1655, a human commensal strain. In the present study, we report that an MG1655 �edd mutant
defective in the ED pathway grows poorly not only on gluconate as a sole carbon source but on a number
of other sugars previously implicated as being important for colonization, including L-fucose, D-gluconate,
D-glucuronate, N-acetyl-D-glucosamine, D-mannose, and D-ribose. Furthermore, we show that the mouse
intestine selects mutants of MG1655 �edd and wild-type MG1655 that have improved mouse intestine-
colonizing ability and grow 15 to 30% faster on the aforementioned sugars. The mutants of MG1655 �edd
and wild-type MG1655 selected by the intestine are shown to be nonmotile and to have deletions in the
flhDC operon, which encodes the master regulator of flagellar biosynthesis. Finally, we show that �flhDC
mutants of wild-type MG1655 and MG1655 �edd constructed in the laboratory act identically to those
selected by the intestine; i.e., they grow better than their respective parents on sugars as sole carbon
sources and are better colonizers of the mouse intestine.

Bacterial colonization of the intestine is defined as the in-
definite persistence of a bacterial population in stable numbers
in an animal’s intestine without repeated introduction of the
bacterium into that animal. Persistence in the intestine is re-
flected by persistence in feces. Colonization resistance refers to
the ability of a complete intestinal microflora to resist coloni-
zation by an invading bacterium (45). As an example, when
healthy human volunteers are fed Escherichia coli strains iso-
lated from their own feces, those strains do not colonize (1).
Due to colonization resistance, studies aimed at determining
the nutritional basis of E. coli intestinal colonization are diffi-
cult, if not impossible, with conventional animals.

The nutritional basis of E. coli intestinal colonization can be
studied in the streptomycin-treated mouse. Streptomycin treat-
ment alters the microecology of the cecum, decreasing the
populations of facultative anaerobes (enterococci, strepto-
cocci, and lactobacilli) and strict anaerobes (lactobacilli and
bifidobacteria). Accompanying these changes in microflora is a
general decrease in the concentration of volatile fatty acids,
which may play a role in the natural resistance of the conven-
tional mouse intestine to invading E. coli strains (18, 19). Nev-
ertheless, populations of the genera Bacteroides and Eubacte-
rium in cecal contents of streptomycin-treated mice remain
largely unchanged (19). Moreover, the overall number of strict
anaerobes in the cecal contents of streptomycin-treated and
conventional mice are essentially identical (1 � 109 to 2 � 109

CFU/g of contents) (19). Therefore, while the streptomycin-

treated mouse model is not perfect, invading microorganisms
must compete for nutrients with a large number of strict anaer-
obes in the intestine, just as they do in conventional animals.

By using the streptomycin-treated mouse model, it has been
shown that when 105 CFU of either E. coli, Salmonella enterica
serovar Typhimurium, or Klebsiella pneumoniae strains are fed
to streptomycin-treated mice, they grow from low numbers at
5 h postfeeding (105 CFU/g of feces) to high numbers (108 to
109 CFU/g of feces) within 1 to 3 days postfeeding (11, 29, 33,
34). Following this initiation stage, a maintenance stage is
reached in which stable populations of 106 to 107 CFU/g of
feces persist indefinitely (11, 29, 33, 34). Studies of the human
commensal E. coli F-18 and K-12 strains strongly implicated
D-gluconate, which is catabolized via the Entner-Doudoroff
(ED) pathway, as being important for colonization of the
streptomycin-treated mouse large intestine during both initia-
tion and maintenance (8, 35, 43, 44). Furthermore, it has been
shown that the likely source of the gluconate is mouse intesti-
nal tissue and not food (44).

Since E. coli colonization of the mouse intestine appears to
require the ability to grow in mucus (23, 30, 34, 43, 44, 46), the
power of DNA microarrays was used to focus attention on
identifying genes induced by growth in mouse cecal mucus in
vitro relative to growth in minimal medium containing glucose
as the carbon source. This approach allowed the identification
of additional nutrients, including N-acetyl-D-glucosamine, N-
acetylneuraminic (sialic) acid, L-fucose, D-ribose, and D-gluc-
uronate, as being necessary for the maximum ability of E. coli
MG1655 to colonize the intestine (8). E. coli MG1655 was
chosen as the strain to be tested since it has been completely
sequenced (6).

* Corresponding author. Mailing address: Department of Cell and Mo-
lecular Biology, University of Rhode Island, Kingston, RI 02881. Phone:
(401) 874-5920. Fax: (401) 874-2202. E-mail: pco1697u@postoffice.uri.edu.
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In the present study, while examining the role of the ED
pathway in the ability of E. coli MG1655 to colonize the mouse
intestine, we made the discovery that the mouse intestine se-
lects nonmotile MG1655 flhDC mutants that are unable to
make the master regulator of flagellar biosynthesis. We show
that these mutants grow significantly faster than their parent
on several sugars that have been shown previously to be in-
volved in the colonization process, that they are better colo-
nizers of the mouse intestine than their parent, and that the
mutations in the flhDC operon are indeed responsible for these
effects.

MATERIALS AND METHODS

Bacterial strains, media, and growth conditions. The bacterial strains used in
this study are listed in Table 1. Luria broth (LB) was made as described by Revel
(39). Luria agar is LB containing 12 g of Bacto Agar (Difco) per liter. MacCon-
key agar (Difco) was prepared according to package instructions. M9 minimal
medium (27) was supplemented with reagent grade N-acetyl-D-glucosamine
(0.2%, wt/wt), L-fucose (0.2%, wt/wt), D-glucose (0.2%, wt/wt), D-galactose
(0.2%, wt/wt), D-gluconate (0.2%, wt/wt), D-glucuronate (0.2%, wt/wt), glycerol
(0.4%, wt/wt), D-mannose (0.2%, wt/wt), D-ribose (0.2%, wt/wt), potassium ace-
tate (0.4%, wt/wt), or sodium succinate (0.4%, wt/wt). Cultures (10 ml) were
grown at 37°C with shaking in 125-ml tissue culture bottles. Inocula were pre-
pared as follows. Overnight cultures on LB were started from a single colony on
Luria agar plates. The LB cultures were washed twice in M9 minimal medium
(no carbon source), and 10-�l volumes of the washed cultures were transferred
to M9 minimal glucose medium and then incubated overnight. These cultures
were washed twice as described above, and M9 minimal media (10 ml) containing
various carbon sources were then inoculated with 10-�l volumes of the washed
cultures, which were grown overnight. The next morning, each culture was
diluted to an A600 of about 0.045 into fresh M9 medium (30 ml) containing the
same carbon source and the cultures were incubated at 37°C with shaking in
125-ml tissue culture bottles. Growth was monitored spectrophotometrically
(A600) with a Pharmacia Biotech Ultrospec 2000 UV/Visible Spectrophotometer.
Generation times were calculated during exponential phase from three indepen-
dent experiments.

In vitro growth in mouse cecal mucus. Mouse cecal mucus was isolated as
previously described (9). Briefly, mice (5 to 8 weeks old) were fed Charles River
Valley Rat, Mouse, and Hamster Formula for 5 days after being received. The
drinking water was then replaced with sterile distilled water containing strepto-
mycin sulfate (5 g/liter). Twenty-four hours later, the mice were sacrificed by CO2

asphyxiation and their ceca were removed. The cecal contents were collected for
use in growth experiments (see below), and any remaining cecal contents were
washed out with sterile distilled water. Cecal mucus was scraped into HEPES-
Hanks buffer (pH 7.4), centrifuged, and sterilized by UV irradiation as described
previously (9) and was adjusted to a concentration of 1 mg/ml with respect to

protein with sterile HEPES-Hanks buffer (pH 7.4) as described previously (9).
Five-milliliter aliquots were inoculated at an A600 of about 0.1 with either
MG1655, MG1655*, MG1655 �edd, or MG1655 �edd*. Three 1-ml aliquots of
each strain in cecal mucus were transferred to polystyrene cuvettes, which were
then incubated standing at 37°C in a water bath, and the A600 of each culture was
determined hourly. Uninoculated sterile cecal mucus was used as a blank. Gen-
eration times were determined when growth was in exponential phase, as deter-
mined from semilogarithmic plots. Cecal contents (1-ml aliquots) were inocu-
lated to about 104 CFU/ml with each of the strains as described above for cecal
mucus, the cultures were incubated standing at 37°C, and samples taken at 0, 2,
4, 6, and 24 h were diluted, plated, and counted as described previously (30, 46).

Mouse colonization experiments. The method used to compare the large-
intestine-colonizing abilities of E. coli strains in mice has been described previ-
ously (43, 44, 46). Briefly, three male CD-1 mice (5 to 8 weeks old) were given
drinking water containing streptomycin sulfate (5 g/liter) for 24 h to eliminate
resident facultative bacteria (28). Following 18 h of starvation for food and water,
the mice were fed 1 ml of 20% (wt/vol) sucrose containing LB-grown MG1655
strains as described in Results. After ingestion of the bacterial suspension, both
the food (Charles River Valley Rat, Mouse, and Hamster Formula) and strep-
tomycin-water were returned to the mice and 1 g of feces was collected after 5 h,
after 24 h, and on odd-numbered days at the indicated times. Mice were housed
individually in cages without bedding and were placed in clean cages daily. Fecal
samples (no older than 24 h) were homogenized in 1% Bacto Tryptone, diluted
in the same medium, and plated on MacConkey agar plates with appropriate
antibiotics. Plates contained streptomycin sulfate (100 �g/ml) and nalidixic acid
(50 �g/ml), streptomycin sulfate (100 �g/ml) and kanamycin sulfate (40 �g/ml),
or streptomycin sulfate (100 �g/ml) and chloramphenicol (30 �g/ml). Antibiotics
were purchase from Sigma-Aldrich (St. Louis, MO). All plates were incubated
for 18 to 24 h at 37°C prior to counting. In some experiments, mice were
precolonized for 9 days, starved overnight for food and streptomycin-water, and
then fed 105 CFU of a second strain, after which food and streptomycin-water
were returned. Each colonization experiment was performed at least twice with
essentially identical results. Pooled data from at least two independent experi-
ments are presented in the figures.

Motility. Motility agar is LB containing 3.5 g of Bacto Agar per liter. Colonies
were toothpicked to motility agar, and plates were incubated at 37°C for 8 h and
then overnight and at each time were examined for growth and spreading.

Serotyping. Serotyping of O and H antigens was performed with specific
antisera produced by the World Health Organization International Escherichia
and Klebsiella Centre, Statens Seruminstitut, Copenhagen, Denmark.

Mutant construction. Primers used to construct deletion mutants were de-
signed according to the MG1655 genome database (6). DNA procedures were as
described previously (30). The MG1655 �gntK �idnK double-deletion mutant
(Table 1) was constructed by allelic exchange as described by Datsenko and
Wanner (10). Initially, 455 bp were deleted from the idnK (gluconate kinase II)
gene by using a PCR product containing the chloramphenicol resistance cassette
(10) flanked upstream and downstream by idnK-specific DNA sequences. The
chloramphenicol resistance cassette was then removed (10), leaving a deletion in
idnK beginning 42 bp downstream of the ATG start codon and ending 62 bp

TABLE 1. Bacterial strains used in this study

E. coli straina Relevant characteristic(s) Source or reference

MG1655 Strr Spontaneous streptomycin-resistant mutant of MG1655 29
MG1655 Strr Nalr (MG1655) Spontaneous nalidixic acid-resistant mutant of MG1655 Strr 29
MG1655 �gntK::cam �idnK

(MG1655 �gntK �idnK)
Lacks gluconate kinases I and II and fails to grow using

gluconate as sole carbon and energy source
This study

MG1655 Strr �edd::kan
(MG1655 �edd)

Lacks 6-phosphogluconate dehydratase and grows poorly using
gluconate as sole carbon and energy source

8

MG1655* Strr Nalr (MG1655*) 500-bp deletion immediately downstream of ISI in regulatory
region of flhD, extending into flhD

Colony isolated from feces 15 days
postfeeding of MG1655 Strr Nalr;
this study

MG1655 Strr �edd*::kan
(MG1655 �edd*)

2,384-bp deletion immediately downstream of ISI in regulatory
region of flhD through flhD, flhC, and motA and into motB

Colony isolated from feces 20 days
postfeeding of MG1655 Strr

�edd::kan; this study
MG1655 Strr �flhD::cam

(MG1655 �flhD)
546-bp deletion encompassing region immediately downstream

of ISI in regulatory region of flhD and into flhD
This study

MG1655 Strr �edd::kan �flhD::cam
(MG1655 �edd �flhD)

546-bp deletion encompassing region immediately downstream
of ISI in regulatory region of flhD and into flhD

This study

a The designations in parentheses are those used in the text.
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upstream of the TGA stop codon. The idnK deletion primers (uppercase letters,
MG1655 DNA; lowercase letters, chloramphenicol resistance cassette DNA)
were as follows: primer 1, 5�-ATGGCGGGTGAAAGCTTTATTTTGATG
GGCGTTTCAGGGAGTGGTgtgtaggctggagctgcttcg-3�; primer 2, 5�-AGGCGC
TGCCCTCTTTCGCACATATTCTGTTTTGTCGTATCGCCAcatatgaatatcctc
cttagt-3�. The MG1655 �idnK mutant was then used to construct the MG1655
�gntK �idnK double-deletion mutant. Four hundred base pairs, beginning 42 bp
downstream of the ATG start codon and ending 41 bp upstream of the TAA stop
codon, were deleted from the gntK (gluconate kinase I) gene of the MG1655
�idnK mutant with PCR product containing the chloramphenicol resistance
cassette flanked by upstream and downstream gntK-specific sequences as de-
scribed by Datsenko and Wanner (10). The gntK deletion primers (uppercase
letters, MG1655 DNA; lowercase letters, chloramphenicol resistance cassette
DNA) were as follows: primer 1, 5�-ATGGGCGTATCGGGCAGCGGCAAA
TCTGCGGTCGCCAGTGAAGTGcatatgaatatcctccttagt-3�; primer 2, 5�-CTT
ATTTGCCTTTTTTAATAACCTCAATGGTGCTTGCCACAACACgtgtaggct
ggagctgcttcg-3�. The MG1655 �gntK �idnK double-deletion mutant was con-
firmed phenotypically as being unable to grow in M9 minimal medium with
gluconate as the sole carbon and energy source and by sequencing (see below).

An MG1655 �flhD deletion mutant and an MG1655 �edd �flhD double-
deletion mutant (Table 1) were constructed by removing 546 bp originating
immediately downstream of IS1 in the flhD promoter and extending into flhD in
MG1655 and in MG1655 �edd with a PCR product containing the chlorampheni-
col resistance cassette flanked upstream and downstream by flhD-specific se-
quences as described by Datsenko and Wanner (10). The specific PCR primers
used to construct and confirm the flhD deletions (uppercase letters, MG1655
DNA; lowercase letters, chloramphenicol resistance cassette DNA) were as
follows: primer 1 (immediately downstream of IS1), 5�-TTAAGTAATTGAGTG
TTTTGTGTGATCTGCATCACGCATTATTGAAAATgtgtaggctgga gctgcttcg-3�;
primer 2 (within flhD), 5�-AGGCCCTTTTCTTGCGCAGCGCTTCTTCAG
GCTGATTAACATCATTCAGcatatgaatatcctccttagt-3�. The mutants were con-
firmed phenotypically by failure to spread on motility agar, genetically by PCR
with primers specific to upstream and downstream flanking sequences, and by
sequencing (see below).

The MG1655 �edd mutant strain was constructed previously (8). The primers
upstream and downstream of the edd gene used to amplify both the 2,300-bp
wild-type edd gene and the 1,900-bp �edd gene containing the kanamycin resis-
tance cassette (8) were as follows: forward, 5�-GGCTAATTGCGAACTGTG
CAC-3�; reverse, 5�-CGGTAACATGATCTTGCGCAGA-3�.

Determination of the sizes of the deletions in MG1655* and MG1655 �edd*.
The following primers used to define the size of the deletion in MG1655* were
those described by Barker et al. (2): forward, 5�-CCTGTTTCATTTTTGCTT
GCTAGC-3�; reverse (downstream of flhD), 5�GGAATGTTGCGCCTCACC
G-3�. Those used for MG1655 �edd* were as follows: forward, same as for
MG1655*; reverse (within cheA), 5�-CGCTGAAGCCAAAAGTTCCTGC-3�.

Sequencing. DNA sequencing was done at the URI Genomics and Sequencing
Center, University of Rhode Island, Kingston, with the CEQ8000 Genetic Anal-
ysis System (Beckman Coulter, Fullerton, CA) The Dye Terminator Cycle Se-
quencing Quick Start Kit (Beckman Coulter) was used in the sequencing reac-
tions. The primers used to amplify PCR products for sequencing to determine
the precise location of the deletion in idnK were as follows: primer 1 (upstream
of idnK), 5�-CGCATAACGTGATGTGCCTTG-3�; primer 2 (downstream of
idnK), 5�-GCCGATAAAGTGGTGAATAGC. Primer 2 was also used in the
idnK sequencing reaction. The primers used to amplify PCR products for se-
quencing to determine the precise location of the deletion in gntK were as follows:
primer 1 (upstream of gntK), 5�-ATTCGTGGCGAATCTGTGACAC-3�; primer 2
(downstream of gntK), 5�-TAAGATCTTGCCAAACATAGCTC-3�. Primer 2
was also used in the gntK sequencing reaction. The primers used to amplify PCR
products for sequencing to determine the precise locations of the deletions in
MG1655* and MG1655 �edd* were identical to those used to define the sizes of
the deletions. The primer used in the sequencing reactions was 5�-GGGAAA
GCTGCACGTAATCAGC-3�.

Statistics. Where indicated, means derived from triplicate samples were com-
pared by Student’s t test (P values).

RESULTS

The ED pathway is important for E. coli MG1655 growth in
the mouse intestine. The edd (ED dehydratase) gene, which is
the promoter-proximal gene in the edd-eda operon, encodes
6-phosphogluconate dehydratase, which converts 6-phospho-

gluconate to 2-keto-3-deoxy-6-phosphogluconate in the ED
pathway, the primary route for gluconate catabolism. The eda
(ED aldolase) gene encodes 2-keto-3-deoxy-6-phosphoglu-
conate aldolase, which converts 2-keto-3-deoxy-6-phosphoglu-
conate to glyceraldehye-3-phosphate and pyruvate. Gluconate
can also be catabolized secondarily via the pentose phosphate
pathway. The MG1655 �edd mutant therefore grows on glu-
conate as a sole carbon and energy source with a generation
time of about 180 min, whereas wild-type MG1655 grows with
a generation time of about 80 min. Expression of eda is not
only required for the maximum rate of gluconate catabolism
but is absolutely required for growth of E. coli on glucuronate
as a sole carbon and energy source (4).

The MG1655 �edd mutant, which was previously shown to
be a poor colonizer of the mouse intestine, has been described
previously (8). It has a kanamycin resistance cassette (10) in
place of the edd gene; however, the kanamycin resistance cas-
sette insertion has a minimal, if any, effect on the downstream
expression of eda since the MG1655 �edd mutant grows well
with glucuronate as a sole carbon and energy source (Table 2).
Since the MG1655 �edd mutant still grows slowly on glu-
conate, we constructed MG1655 �gntK �idnK (Table 1), which
is unable to use gluconate as a carbon and energy source, to
assess the true impact of gluconate catabolism on MG1655
intestinal colonization (4). MG1655 �gntK �idnK fails to grow
on gluconate as a carbon source because it contains neither
gluconate kinase I (GntK) nor gluconate kinase II (IdnK) and
therefore cannot make 6-phosphogluconate from gluconate.
As shown previously (8), MG1655 �edd has a major coloniza-
tion defect in the presence of wild-type MG1655 characterized
by a failure to grow rapidly during the initial 24 h (the initiation
stage), a significant drop between days 1 and 3 postfeeding
(P � 0.001, Student’s t test), and a subsequent slow but con-
tinuous reduction thereafter (the maintenance stage) such that
by 15 days postfeeding it colonized at a level about 3.5 orders
of magnitude lower than that of MG1655 (Fig. 1A). In con-
trast, the MG1655 �gntK �idnK double-deletion mutant had a
defect in initiation, but by day 15 postfeeding it colonized at a

TABLE 2. Growth of MG1655, MG165*, MG1655 �edd,
and MG1655 �edd* on various carbon sourcesa

Carbon
source

Mean generation time (min) � SD (n � 3)

MG1655 MG1655
�edd

MG1655
�edd* MG1655*

Fucose 109 � 4abC 115 � 2aDE 101 � 4bDf 98.8 � 1CEf

Galactose 169 � 6aBc 171 � 6aDe 152 � 2BDf 159 � 5cef

Glucose 87 � 6abc 93 � 5ade 89 � 6bdf 85 � 4cef

N-AcGlcNH2
b 92 � 1ABC 111 � 6ADE 95 � 1BDF 80 � 5CEF

Gluconate 77 � 5ABc 178 � 4ADE 135 � 1BDF 70 � 4cEF

Glucuronate 93 � 2ABC 103 � 5ADE 85 � 2BDf 80 � 3CEf

Glycerol 114 � 2ABC 124 � 1ADE 103 � 2BDf 93 � 8CEf

Mannose 159 � 6ABC 177 � 1ADE 136 � 2BDf 135 � 3CEf

Ribose 134 � 2ABC 144 � 4ADE 125 � 3BDF 113 � 1CEF

Acetate 203 � 14ABC 242 � 6ADE 176 � 6BDf 172 � 12CEf

Succinate 106 � 4aBC 107 � 4aDE 87 � 3BDf 88 � 1CEf

Cecal mucus 105 � 2ABC 117 � 3ADE 100 � 1BDF 90 � 2CEF

a For each carbon source, the comparison of the generation time of any two
strains is indicated by the same superscript letter, e.g., MG1655 and MG1655
�edd by the letter a, MG1655 �edd and MG1655 �edd* by the letter d, MG1655
�edd* and MG1555* by the letter f, etc. Lowercase letters indicate that the two
generation times are not significantly different, whereas uppercase letters indi-
cate that the two generation times are significantly different. See text for P values.

b N-AcGlcNH2, N-acetylglucosamine.
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level only about 2.0 orders of magnitude lower than that of
MG1655 (Fig. 1B). These results suggested the possibility that
while gluconate is a major carbon source for MG1655 in the
intestine, an intact ED pathway might also be used for catabolism
of other carbon sources that are important for colonization. In-
deed, MG1655 grows faster than the MG1655 �edd strain on a
variety of carbon sources that are not directly catabolized via the
ED pathway, as described immediately below.

Growth of MG1655 and MG1655 �edd on various sole car-
bon and energy sources. The generation times of MG1655 and
MG1655 �edd on a variety of carbon sources were determined
as described in Materials and Methods. As shown in Table 2,
although MG1655 �edd grew at about the same rate as
MG1655 on glucose (P 	 0.10), fucose (P 	 0.10), and succi-
nate (P 	 0.10), it grew 10 to 20% more slowly than MG1655
on N-acetylglucosamine (P � 0.01), glucuronate (P � 0.05),
glycerol (P � 0.002), mannose (P � 0.01), ribose (P � 0.02),
and acetate (P � 0.02). Therefore, a functional ED pathway is

essential for maximum growth rates of MG1655 on a variety of
different carbon sources, including several that have been
shown to be utilized by MG1655 during colonization (8). By
contrast, with the exception of gluconate, MG1655 and the
MG1655 �gntK �idnK double-deletion mutant grew at the
same rate on glucose, fucose, succinate, N-acetylglucosamine,
glucuronate, glycerol, ribose, and acetate (data not shown).

Intestinal growth of low numbers of wild-type MG1655 bac-
teria in the presence of high numbers of the MG1655 �edd
mutant. Mice were fed high numbers (1010 CFU/mouse) of
bacteria of the MG1655 �edd mutant and low numbers (105

CFU/mouse) of bacteria of the MG1655 wild-type strain. Over
a period of several days, the level of the wild-type strain sig-
nificantly increased in the intestine and approached the level of
the MG1655 �edd mutant (Fig. 2A), which was not surprising
since the wild-type strain utilizes several carbon sources better
than MG1655 �edd does (Table 2). In a control experiment,

FIG. 1. E. coli MG1655 �gntK �idnK and MG1655 �edd coloniza-
tion of the mouse large intestine. Sets of three mice were fed either 105

CFU of E. coli MG1655 Strr Nalr (F) and 105 CFU of E. coli MG1655
Strr �edd::kan (�) (A) or 105 CFU of E. coli MG1655 Strr Nalr (F) and
105 CFU of E. coli MG1655 Strr �gntK::cam �idnK (�) (B). At the
indicated times, fecal samples were homogenized, diluted, and plated
as described in Materials and Methods. Bars represent the standard
error of the log10 mean number of CFU per gram of feces. The data
presented are from six experiments (18 mice) with MG1655 �edd and
four experiments (12 mice) with MG1655 �gntK �idnK.

FIG. 2. Growth of low numbers (105 CFU/mouse) of E. coli MG1655
bacteria in the presence of high numbers (1010 CFU/mouse) of E. coli
MG1655 �edd bacteria in the mouse large intestine. (A) Sets of three
mice were fed 105 CFU of E. coli MG1655 Strr Nalr (F) and 1010 CFU of
E. coli MG1655 Strr �edd::kan (�). At the indicated times, fecal samples
were homogenized, diluted, and plated as described in Materials and
Methods. Bars representing the standard error of the log10 mean number
of CFU per gram of feces for each set of six mice are presented for each
time point. (B) Sets of three mice were fed 105 CFU of E. coli MG1655
Strr �edd::kan (�) and, on day 10 postfeeding, 105 CFU of E. coli
MG1655 Strr Nalr (F). At the indicated times, fecal samples were homog-
enized, diluted, and plated as described in Materials and Methods. Bars
representing the standard error of the log10 mean number of CFU per
gram of feces for six mice are presented for each time point.
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when mice were fed high numbers (1010 CFU/mouse) of bac-
teria of the wild-type MG1655 strain (resistant to streptomy-
cin) and low numbers (105 CFU/mouse) of bacteria of the
same wild-type strain (resistant to streptomycin and nalidixic
acid), the bacteria maintained the initial ratio of their input
values, as expected of two strains that use all nutrients equally
well (data not shown).

To further explore the ability of the wild-type MG1655 strain
to outcompete the MG1655 �edd mutant, mice were precolo-
nized with the MG1655 �edd mutant for 10 days and then fed
low numbers of bacteria of the MG1655 wild-type strain (105

CFU/mouse). Surprisingly, the wild-type MG1655 strain failed
to grow to the level of the MG1655 �edd mutant in the intes-
tine and, in fact, stabilized at only about 102 CFU/g of feces
(Fig. 2B). These data suggested that the MG1655 �edd mutant
either adapted physiologically in the intestine such that it could
compete well with the nonadapted MG1655 wild type or that
the intestine selected a mutant of the MG1655 �edd strain that
was a better colonizer than the input strain. In order to deter-
mine which of these hypotheses was correct, one colony of
MG1655 �edd present in feces at 20 days postfeeding was
designated MG1655 �edd* and selected for further study.

MG1655 �edd* is a better mouse large intestine colonizer than
MG1655 �edd. After confirmation by PCR that the edd deletion
in MG1655 �edd* was intact (see Materials and Methods),
MG1655 �edd* and wild-type MG1655 bacteria were fed to-
gether to mice in low numbers (105 CFU/mouse). Under these
conditions, both the wild-type MG1655 strain and MG1655
�edd* cocolonized at a level between 106 and 107 CFU/g of feces
(Fig. 3). Therefore, MG1655 �edd* appeared to be a genetically
stable derivative of the original MG1655 �edd strain that was able
to colonize as well as wild-type MG1655.

Growth of MG1655 �edd* on various carbon sources. Since
MG1655 �edd* was found to be a better colonizer of the
mouse large intestine than MG1655 �edd, it was of interest to
determine the in vitro growth rates of the two strains on var-
ious carbon sources. As shown in Table 2, MG1655 �edd* and
MG1655 �edd grew equally well on glucose as a sole carbon

and energy source (P 	 0.10). In contrast, MG1655 �edd*
grew 15 to 30% faster than MG1655 �edd on acetate (P �
0.001), fucose (P � 0.01), galactose P � 0.01), N-acetylglu-
cosamine (P � 0.02), gluconate (P � 0.001), glucuronate (P �
0.01), glycerol (P � 0.001), mannose (P � 0.001), ribose (P �
0.01), and succinate (P � 0.002). It should be noted that al-
though MG1655 �edd* grew faster than MG1655 �edd with
gluconate as the sole carbon source (P � 0.001), it still grew far
more slowly on gluconate (P � 0.001) than wild-type MG1655
(Table 2). However, MG1655 �edd* grew about 10 to 20%
faster than wild-type MG1655 on glucuronate (P � 0.02), gly-
cerol (P � 0.002), mannose (P � 0.02), ribose (P � 0.02), and
succinate (P � 0.01) (Table 2). These data suggest that the
improved colonizing ability of MG1655 �edd* relative to
MG1655 may be due to its ability to grow more rapidly than
wild-type MG1655 on a number of carbon sources present in
the intestine.

Low numbers of wild-type MG1655 bacteria cannot grow to
high numbers in the presence of high numbers of MG1655
�edd* mutant bacteria. The results described above indicated
that wild-type MG1655 was able to use gluconate better, but
grew more slowly on several other carbon sources, compared
to MG1655 �edd* (Table 2). Since bacteria of both strains
were equally good colonizers when they were simultaneously
fed to mice in low numbers (Fig. 3), it became of interest to
determine whether low numbers of bacteria of wild-type strain
MG1655 could grow in the intestine in the presence of high
numbers of bacteria of the MG1655 �edd* strain, i.e., whether
the gluconate concentration was high enough during initiation
to overcome the advantage of MG1655�edd* on other sugars.
When mice were fed 1010 CFU of the MG1655 �edd* strain
and 105 CFU of the wild-type MG1655 strain, the wild type was
unable to colonize in the presence of high numbers of MG1655
�edd* bacteria and was, in fact, rapidly eliminated (Fig. 4A).
This result can be compared to that described above (Fig. 2A),
where low numbers of bacteria of the wild-type MG1655 strain
were able to grow to much higher numbers in the intestine in
the presence of high numbers of MG1655 �edd bacteria. These
data suggest that the more efficient use of carbon sources by
MG1655 �edd* prevented wild-type MG1655 from growing
despite its advantage in the utilization of gluconate. Thus, it
was of interest to test the hypothesis that the concentration of
gluconate in the mouse intestine is not high enough to confer
a growth advantage on wild-type MG1655 over the MG1655
�edd* strain. In support of this view, when 2% gluconate was
added to the drinking water, low numbers of wild-type
MG1655 bacteria (105 CFU/mouse) were able to grow to much
higher numbers in the presence of high numbers of MG1655
�edd* bacteria (1010 CFU/mouse) (Fig. 4B).

In further support of the view that increased gluconate
availability could confer a growth advantage on the wild-
type MG1655 strain able to use it, mice were precolonized
with MG1655 �edd* and at day 10 postfeeding were fed
wild-type MG1655 (105 CFU/mouse) with (Fig. 5A) or with-
out (Fig. 5B) 2% gluconate in the drinking water. Under
these conditions, low numbers of wild-type MG1655 bacteria
failed to grow to high numbers in the intestine in the presence
of high numbers of precolonized MG1655 �edd* bacteria un-
less gluconate was present in the drinking water (compare
Fig. 5A and B). These data indicate that if gluconate were not

FIG. 3. E. coli MG1655 and MG1655 �edd* colonization of the
mouse large intestine. Sets of three mice were fed 105 CFU of E. coli
MG1655 Strr Nalr (F) and 105 CFU of E. coli MG1655 Strr �edd*::kan
(E). At the indicated times, fecal samples were homogenized, diluted,
and plated as described in Materials and Methods. Bars representing
the standard error of the log10 mean number of CFU per gram of feces
for six mice are presented for each time point.
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limiting at 10 days postfeeding, small numbers of MG1655
bacteria could still grow to much higher numbers in the intes-
tine in the presence of high numbers of precolonized MG1655
�edd* bacteria.

Isolation and characterization of MG1655*. To this point,
the data suggested that MG1655 �edd utilizes not only glu-
conate poorly relative to MG1655 but a number of other car-
bon sources as well. In addition, at some point after mice were
fed MG1655 �edd, it appeared that the mouse intestine se-
lected better-colonizing mutants, among them MG1655 �edd*,
that were better able to grow on at least some of the sugars
known to be present in mouse cecal mucus and utilized for
growth in the intestine, i.e., fucose, gluconate, N-acetylglu-
cosamine, glucuronate, mannose, and ribose (8, 13). It was
therefore of interest to determine whether the mouse intestine
would also select a mutant of the original wild-type MG1655
strain that was a better colonizer and grew faster than the
original MG1655 strain on a variety of carbon sources. To that

end, an MG1655 colony present in feces at 15 days postfeeding
was selected for further testing and was designated MG1655*.

E. coli MG1655* grew at 10 to 25% faster rates than
MG1655 on a variety of carbon sources, including acetate (P �
0.01), fucose (P � 0.02), N-acetylglucosamine (P � 0.02), gluc-
uronate (P � 0.01), glycerol (P � 0.01), mannose (P � 0.01),
ribose (P � 0.001), and succinate (P � 0.01), but not glucose
(P 	 0.10) (Table 2). It should also be noted that although
wild-type MG1655 grew significantly slower than MG1655
�edd* on several carbon sources, MG1655* and MG1655
�edd* grew at about the same rate on acetate (P 	 0.10),
fucose (P 	 0.10), glucuronate (P � 0.05), glycerol (P 	 0.05),
mannose (P 	 0.10), and succinate (P 	 0.10). In addition,
MG1655* not only grew at about twice the rate of MG1655
�edd* on gluconate (P � 0.001), it also grew about 10 to 15%
faster than MG1655 �edd* on N-acetylglucosamine (P � 0.01)
and ribose (P � 0.002) (Table 2).

When MG1655* and MG1655 �edd* bacteria were both fed
to mice in low numbers (105 CFU/mouse), MG1655* proved to
be a better colonizer than MG1655 �edd* (Fig. 6A). Further-

FIG. 4. Growth of low numbers (105 CFU/mouse) of E. coli MG1655
bacteria in the presence of high numbers (1010 CFU/mouse) of E. coli
MG1655 �edd* bacteria in the mouse large intestine. (A) Sets of three
mice were fed 105 CFU of E. coli MG1655 Strr Nalr (F) and 1010 CFU of
E. coli MG1655 Strr �edd*::kan (E). At the indicated times, fecal samples
were homogenized, diluted, and plated as described in Materials and
Methods. Bars representing the standard error of the log10 mean number
of CFU per gram of feces for each set of six mice are presented for each
time point. (B) Same as panel A, except that the drinking water contained
2% gluconate.

FIG. 5. Growth of low numbers (105 CFU/mouse) of E. coli MG1655
bacteria in mice precolonized with E. coli MG1655 �edd*. (A) Sets of
three mice were precolonized for 10 days with E. coli MG1655 Strr

�edd*::kan (E). On day10, the mice were fed 105 CFU of E. coli MG1655
Strr Nalr (F). At the indicated times, fecal samples were homogenized,
diluted, and plated as described in Materials and Methods. Bars repre-
senting the standard error of the log10 mean number of CFU per gram of
feces for six mice are presented for each time point. (B) Same as in panel
A, except that the drinking water contained 2% gluconate.
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more, unlike MG1655, low numbers of MG1655* bacteria (105

CFU/mouse) were able to grow to higher numbers in the
intestines of mice simultaneously fed high numbers (1010 CFU/
mouse) of MG1655 �edd* bacteria (Fig. 6B). This was also the
case when the mice were precolonized with MG1655 �edd*
(Fig. 6C). Therefore, the mouse intestine did indeed select an
MG1655 mutant better able to utilize several carbon sources

and better able to colonize the mouse large intestine than its
parent.

Growth of MG1655* and MG1655 �edd* in cecal mucus and
cecal contents in vitro. E. coli strains grow extremely well
(generation times of 25 to 35 min, viable counts of about 109

CFU/ml) in cecal mucus (23, 30, 34, 43, 44, 46). To determine
whether the MG1655* and MG1655 �edd* strains had a
growth advantage in cecal mucus, MG1655, MG1655*,
MG1655 �edd, and MG1655 �edd* were each inoculated sep-
arately into cecal mucus that had been diluted 50-fold into
HEPES-Hanks buffer, pH 7.4 (1 mg/ml with respect to pro-
tein), at an A600 of 0.1. A600 readings were taken at hourly
intervals for 8 h. All four strains grew to a final A600 of about
0.8 (approximately 1 � 108 to 2 � 108 CFU/ml), but MG1655*
(P � 0.001) and MG1655 �edd* (P � 0.02) grew more rapidly
than their respective parents and MG1655* grew more rapidly
than MG1655 �edd* (P � 0.001) (Table 2). Moreover,
MG1655 grew more rapidly in mucus than MG1655 �edd (P �
0.02) and MG1655 �edd* grew more rapidly than MG1655
(P � 0.01) (Table 2). Thus, the ability of these strains to grow
in cecal mucus in vitro correlated with their relative intestinal
colonizing abilities.

While E. coli strains grow extremely well in cecal mucus in
vitro, they fail to grow or grow poorly in cecal contents (feces)
(23, 30, 34, 43, 44, 46), suggesting that colonization of the
mouse intestine is due to the utilization of nutrients present in
mucus for growth. However, strains of E. coli MG1655 isolated
from feces during the maintenance stage of colonization had
never been tested for the ability to grow in cecal contents in
vitro. To that end, MG1655, MG1655*, MG1655 �edd, and
MG1655 �edd* were each inoculated into cecal contents iso-
lated directly from the mouse cecum (104 CFU/ml). The cul-
tures were incubated at 37°C, and viable counts were deter-
mined at 0, 2, 4, 6, and 24 h. Each strain doubled only twice in
6 h to about 4 � 104 CFU/ml and then remained at about the
6-h level at 24 h (data not shown). Therefore, neither
MG1655* nor MG1655 �edd* appears to be a better colonizer
because it grows or survives better in cecal contents than its
parent.

MG1655* and MG1655 �edd* are nonmotile. MG1655,
MG1655*, MG1655 �edd, and MG1655 �edd* were subjected
to 36 of the 41 biochemical tests listed in Table 5.3 of the 1984
edition of Bergey’s Manual of Systematic Bacteriology (7) as
described previously (30). The four strains were found to be
identical with respect to all biochemical characteristics. Fur-
thermore, the four strains contained approximately equal
amounts of type 1 fimbriae. However, in contrast to MG1655
and MG1655 �edd, MG1655* and MG1655 �edd* were non-
motile; i.e., they failed to tumble or swim after growth in LB
and failed to spread on Luria motility agar (Fig. 7). The sero-
type of MG1655 and MG1655 �edd strains was OR:H48; i.e.,
both were rough and both contained the H48 flagellar antigen
typical of K-12 strains. However, while both MG1655* and
MG1655 �edd* also typed as OR, neither strain contained the
H48 flagellar antigen. Furthermore, in contrast to their par-
ents, MG1655* and MG1655 �edd* had no flagella when
viewed by electron microscopy (data not shown). Therefore,
MG1655* and MG1655 �edd* are alike not only with respect
to their more efficient utilization of carbon sources but in the
loss of flagella and, consequently, motility.

FIG. 6. Colonization of mice with E. coli MG1655* and E. coli
MG1655 �edd*. (A) Sets of three mice were fed 105 CFU of E. coli
MG1655* Strr Nalr (■ ) and 105 CFU of E. coli MG1655 Strr �edd*::kan
(E). At the indicated times, fecal samples were homogenized, diluted, and
plated as described in Materials and Methods. Bars representing the
standard error of the log10 mean number of CFU per gram of feces for six
mice are presented for each time point. (B) Same as panel A, except that
sets of three mice were fed 105 CFU of E. coli MG1655* Strr Nalr (■ ) and
1010 CFU of E. coli MG1655 Strr �edd*::kan (E). (C) Same as panel A,
except that mice were precolonized with E. coli MG1655 Strr �edd*::kan
(E) and at day 10 were fed 105 CFU of E. coli MG1655* Strr Nalr (■ ).
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Although unlikely, it was possible that our MG1655 and
MG1655 �edd frozen stock cultures contained a high percentage
of nonmotile mutants. To test this possibility, overnight LB cul-
tures of MG1655 and MG1655 �edd were plated on MacConkey
agar and 600 individual colonies of each strain were tested for
motility on motility agar. All colonies tested were motile, indicat-
ing that the strains being fed to the mice were predominantly
motile and therefore that the nonmotile MG1655* and MG1655
�edd* strains were selected in the mouse intestine following col-
onization.

Identification of MG1655* and MG1655 �edd* genetic de-
fects. E. coli flhD mutants have been reported to grow more
rapidly than their parents in a tryptone-based medium (38).
The flhDC operon, consisting of the flhD and flhC genes, en-
codes the master regulator of the 40-gene flagellar regulon (3),
which has been reported to simultaneously regulate E. coli
genes involved in galactose transport, the ED pathway, and the
tricarboxylic acid cycle (36, 37). Additionally, in MG1655, an
IS1 element previously shown to be present in the regulatory
region of the flhDC operon has recently been reported to
enhance motility (2). It therefore seemed reasonable that
MG1655* and MG1655 �edd* might have been generated by
IS1-mediated events, i.e., IS1 deletion from the regulatory
region of the flhDC operon or IS1-mediated deletion of adja-
cent flhD/flhC DNA. Indeed, PCR revealed that MG1655* had
a 400- to 500-bp deletion in the flhD/flhC region and that
MG1655 �edd* had an about 2-kb deletion in the same region,
thereby explaining why the strains are nonmotile (Fig. 8). Se-
quencing revealed that both MG1655* and MG1655 �edd*
retained IS1 in the regulatory region of the flhDC operon but
that the deletion in MG1655* (500 bp) had occurred immedi-
ately downstream of ISI and extended into flhD, whereas in
MG1655 �edd*, the deletion (2,384 bp) extended from imme-
diately downstream of IS1 through flhD, flhC, and motA and
into motB (Fig. 8). The motA and motB genes encode proteins
involved in flagellar motor rotation (5). Since the flhDC
operon promoter was deleted in MG1655*, the flhC gene was

also presumably inactivated. The deleted genes in MG1655*
and MG1655 �edd* failed to be amplified by PCR (data not
shown), showing that they were indeed lost rather than in-
serted elsewhere in their respective chromosomes.

Construction and characterization of �flhD mutants. To be
sure that MG1655* and MG1655 �edd* are better intestinal
colonizers and utilize carbon sources better because of the
defects in the flhDC operon, an MG1655 �flhD mutant and an
MG1655 �edd �flhD mutant were constructed (see Materials
and Methods). The 546-bp deletion in both strains was de-
signed to begin immediately downstream of the IS1 element,
i.e., to include the flhDC operon promoter and extend into
flhD, thereby inactivating the entire operon (Fig. 8). Both
strains were tested for colonizing ability relative to their par-
ents and for utilization of ribose and mannose. By day 1 post-
feeding, the MG1655 �flhD mutant had grown to a level about
sixfold higher than the wild type in the intestine and beyond
day 5 postfeeding maintained an about 20-fold advantage
throughout the rest of the experiment (data not shown). Main-
tenance of the 20-fold advantage rather than a constantly in-
creasing advantage would be expected if the intestine selected
nonmotile, better-colonizing MG1655 mutants. Indeed, at 11
days postfeeding, of 600 MG1655 colonies tested for motility
(100 from each of 6 mice), only 2 were found to be motile (1
in each of two mice). Similarly, the MG1655 �edd �flhD mu-
tant grew to a level about 60-fold higher than MG1655 �edd by
day1 postfeeding and colonized at a level of greater than 100-
fold higher than MG1655 �edd thereafter (data not shown).
We were unable to determine the exact level of MG1655 �edd
at later times since MG1655 �edd �flhD is resistant to both
kanamycin and chloramphenicol, MG1655 �edd is only resis-
tant to kanamycin, and of 100 colonies toothpicked from kana-
mycin plates to chloramphenicol plates at each time point,
none were sensitive to chloramphenicol. In addition, both the
MG1655 �flhD and MG1655 �edd �flhD mutants utilized both
mannose and ribose at faster rates than their parents (data not
shown). Therefore, the flhDC operon deletion mutants con-
structed in the laboratory behaved identically to those selected
by the intestine, suggesting that loss of the flhDC operon is
indeed responsible for improved utilization of carbon sources
and better mouse intestine-colonizing ability.

DISCUSSION

The findings reported here can be considered in light of
Freter’s nutrient/niche theory, which postulates that the ap-
proximately 500 species indigenous to the mammalian gut (32)
can coexist as long as each member of the microflora is able to
utilize one or a few limiting nutrients better than all the others
and that its rate of growth during the colonization process is at
least equal to the washout rate from the intestine (14, 15, 16).
According to the theory, the growth rate of a particular bac-
terium in the intestine is determined by the nature of the
limiting nutrients it utilizes and the density to which it grows is
determined by the available concentration of those nutrients. It
is also possible for a species that does not compete well for
limiting nutrients to colonize if it is able to adhere to the
intestinal wall and thereby avoid washout (16). The available
evidence suggests that E. coli MG1655 does not adhere to
epithelial cells in the intestine but is limited to the mucus layer

FIG. 7. Spread of E. coli MG1655 Strr Nalr, E. coli MG1655* Strr

Nalr, E. coli MG1655 Strr �edd::kan, and E. coli MG1655 Strr �edd*::kan
on Luria motility agar after 8 h at 37°C.
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and the luminal contents (29, 30), both of which turn over.
While commensal strains of E. coli are present in both mucus
and luminal contents, a large body of experimental evidence
shows that growth is rapid in intestinal mucus both in vitro and
in vivo but is either poor or completely inhibited in luminal
contents (23, 30, 34, 43, 44, 46). It is therefore highly likely that
the ability of a commensal E. coli strain to grow and survive in
intestinal mucus plays a critical role in its ability to colonize the
intestine. In support of this view, the better-colonizing strains
selected by the mouse intestine, MG1655* and MG1655
�edd*, grew more rapidly than their parents in cecal mucus in
vitro (Table 2).

It had been previously shown that MG1655 utilizes glu-
conate, N-acetylglucosamine, and sialic acid as carbon sources
for growth in the mouse intestine during the initiation stage of
colonization and gluconate, glucuronate, mannose, fucose, and
ribose for growth during the maintenance stage (8). The data
presented here support the notion that it is the ability of
MG1655* and MG1655 �edd* to utilize several carbon sources
better than their parents (Table 2) that makes them better
colonizers of the mouse intestine. This finding has broad im-

plications with respect to colonization resistance. For example,
low numbers of MG1655 bacteria were eliminated by high
numbers of MG1655 �edd* bacteria when both were fed si-
multaneously to mice (Fig. 4A) and failed to grow to high
numbers in mice precolonized with MG1655 �edd* (Fig. 5A).
Therefore, selection of a mutant derivative of MG1655 �edd
(MG1655 �edd*) which uses several carbon sources better
allowed the mouse colonized with this strain to resist coloni-
zation by MG1655.

The role of diet in microfloral stability is not clear (32).
However, in the present study, we have shown that diet may
play a role in minimizing colonization resistance as long as a
specific preferred nutrient is not completely absorbed in the
small intestine. That is, although it has been shown that the
source of gluconate for E. coli colonization is the mouse intes-
tinal tissue and not mouse chow (44), increasing the gluconate
concentration in the intestine was possible since as much as
70% of the gluconate fed to animals reaches the cecum (20).
Under these conditions, with 20 g/liter gluconate in the drink-
ing water, small numbers of MG1655 bacteria were able to
grow to high numbers in the presence of high numbers of

FIG. 8. Deletions in the flhDC region of MG1655*, MG1655 �edd*, MG1655 �flhD, and MG1655 �edd �flhD. (Top) Bars indicate the
positions of deletions in MG1655* (500 bp) and MG1655 �edd* (2,324 bp) and a region (628 bp) that is deleted and replaced by the
chloramphenicol resistance (CAM) cassette (1,154 bp) in MG1655 �flhD and MG1655 �edd �flhD. Small arrows indicate the positions of
primers PCR2 (5�-CCTGTTTCATTTTTGCTTGCTAGC-3�) and cheAr (5�CGCTGAAGCCAAAAGTTCCTGC-3�). Bent arrow indicates
the transcription start site. (Bottom) PCR products obtained with primers PCR2 and cheAr with wild-type MG1655 (lane 1), MG1655* (lane
2), MG1655 �flhD (lane 3), MG1655 �edd (lane 4), MG1655 �edd* (lane 5), and MG1655 �edd �flhD (lane 6). Molecular size standards
(lane M) are noted to the left (sizes are in base pairs).
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MG1655 �edd* bacteria when both were fed simultaneously to
mice (Fig. 4B) or when low numbers of MG1655 bacteria were
fed to mice precolonized with MG1655 �edd* (Fig. 5B). These
data suggest that in the streptomycin-treated mouse, coloniza-
tion resistance, at least as it applies to E. coli MG1655, has a
primarily nutritional basis and is not due to antimicrobials in
the intestine.

We do not know whether the MG1655 flhDC operon dele-
tion mutants utilize carbon sources better than their parents as
a result of release of repression of genes normally regulated
by the FlhD2/FlhC2 regulatory complex (e.g., the complex is
known to repress gltA [citrate synthase], sdhCDAB [succinate
dehydrogenase], mdh [malate dehydrogenase], and mglBAC
[galactose transport] [36, 37]) or because increased energy is
available for other cellular processes in the absence of flagellar
synthesis and rotation, which is estimated to be about 2% of
the total that is normally consumed (24). In either case, it
appears that at least one enteric pathogen also benefits from
loss of FlhD, as it was recently reported that an flhD mutant of
S. enterica serovar Typhimurium was more virulent than its
parent in C57BL/6J mice and appeared to grow more rapidly
than its wild-type parent in the spleen and in mouse macro-
phages in tissue culture (40). Furthermore, nonmotile E. coli
O157:H
 strains, found in up to 40% of human hemolytic-
uremic syndrome cases in Germany, have recently been shown
to contain a 12-bp deletion in flhC (31).

The IS1 element in the regulatory region of the flhDC
operon presumably directed the downstream deletions identi-
fied in MG1655* and MG1655 �edd*, which then allowed the
isolation of stable, nonmotile, better-colonizing mutants se-
lected by the intestine. However, it is possible that commensal
E. coli strains that lack insertion elements in the regulatory
region of the flhDC operon can also become nonmotile and
utilize carbon sources better in the intestine by down regulat-
ing expression of flhD and flhC, perhaps via one or more of the
known negative regulators of the operon, which include LrhA,
OmpR, and RcsB (12, 21, 22, 41), but retain motility and utilize
carbon sources normally after growth in the laboratory. In fact,
it has been reported that after growth in cecal mucus in vitro,
both E. coli F-18, a human commensal strain, and an avirulent
S. enterica serovar Typhimurium strain failed to tumble and
swim but were motile upon subsequent growth in laboratory
medium (25, 26). In this same vein, it has recently been shown
that transcription of several Campylobacter jejuni flagellar
genes was generally down regulated after 24 to 48 h in a rabbit
ileal loop model (42). Despite these reports, it is important to
emphasize that not all bacteria in the intestine benefit from
becoming permanently nonmotile. In fact, stable nonmotile
mutants of many enteric pathogens, including C. jejuni, have
been reported to be impaired in both intestinal colonization
and virulence (17).

In summary, in the present study, we present evidence that
under the nutrient-limiting conditions in the mouse intestine,
better-colonizing MG1655 mutants are selected with deletions
in the regulatory region of the flhDC operon. The deletions
render the mutants nonmotile and simultaneously make them
able to grow faster than their parents on a number of sugars
present in the mouse intestine and in cecal mucus in vitro. The
selection of E. coli mutants better able to utilize sugars than their
parents may play an important role in limiting the ability of

invading strains, either commensal or pathogenic, to colonize the
intestine. It will be of great interest to examine whether the
specific strategy described here is peculiar to MG1655 or is shared
by other commensal and pathogenic strains of E. coli.
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