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Abstract. We use the exact determinantal representation derived by Kitanine, Maillet, and Terras for ma-
trix elements of local spin operators between Bethe wave functions of the one-dimensional s = 1

2
Heisenberg

model to calculate and numerically evaluate transition rates pertaining to dynamic spin structure factors.
For real solutions z1, . . . , zr of the Bethe ansatz equations, the size of the determinants is of order r×r. We
present applications to the zero-temperature spin fluctuations parallel and perpendicular to an external
magnetic field.

1 Introduction

The one-dimensional (1D) s = 1

2
Heisenberg model was

solved, in principle, by Bethe some 70 years ago using
an ad-hoc trial wave function, now famously known as
the Bethe ansatz [1]. Decades went by before the power
and scope of this method of exact analysis became widely
known for applications to spectrum and thermodynamics
of a select class of completely integrable model systems
[2].

Until recently, the most vexing exception to immense
progress in the further development of the Bethe ansatz
has been the absence of a practical method to use the
exactly known and readily available Bethe wave functions
for the explicit calculation of transition matrix elements.
The knowledge of such transition rates is of paramount
importance for an understanding of dynamic correlation
functions in relation to the underlying quasiparticles and
for the interpretation of experimental probes of quantum
fluctuations in quasi-1D magnetic compounds.

It was most remarkable, therefore, when Kitanine, Mail-
let, and Terras [3] succeeded in reducing matrix elements
between Bethe wave functions for local spin operators to
determinantal expressions. Here we use these expressions
and the norms previously determined by Korepin [4] to
calculate dynamic spin structure factors of the Heisenberg
antiferromagnet with periodic boundary conditions and a
magnetic field:

H =

N
∑

n=1

[JSn · Sn+1 − hSzn] . (1)

2 Transition rates expressed as determinants

Consider Bethe wave functions with z-component SzT =
N/2− r of the total spin. They are specified by sets of ra-

pidities z1, . . . , zr, which are solutions of the Bethe ansatz
equations

Nφ(zi) = 2πIi +
∑

j 6=i

φ
[

(zi − zj)/2
]

, i = 1, . . . , r, (2)

where φ(z) ≡ 2 arctan z. The Bethe quantum numbers Ii
provide a natural classification of the spectrum. The chal-
lenge is to calculate transition rates for physically moti-
vated operators from the information encoded in the zi.
Using the Bethe wave function directly is feasible but com-
putationally inefficient and therefore limited to relatively
small systems (r . 12) [5]. The combined advances re-
ported in Refs. [3,4] are the basis of a much more powerful
approach, which will be used in the following to calculate
transition rates

Mµ
λ (q) ≡

|〈ψ0|Sµq |ψλ〉|2
‖ψ0‖2‖ψλ‖2

, µ = z,+,− (3)

from the ground state of (1) for the operators

Sµq =
1√
N

∑

n

eiqnSµn , µ = z,+,−. (4)

They probe the parallel (µ = z) and the perpendicular
(µ = +,−) spin fluctuations at zero temperature.

The transition rates for the parallel spin fluctuations as
inferred from Eq. (5.12) of Ref. [3] for the matrix element
〈ψ0|Szn|ψλ〉 can be brought into the form

Mz
λ(q) =

N

4

|Ωz|2
‖ψ0‖2‖ψλ‖2

, (5)

http://arXiv.org/abs/cond-mat/0205430v1
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where

Ωz({z0
j }r, {zj}r) =

r
∏

j=1

z0
j + i

zj + i

× 2r det(H̄ − 2P̄)
r
∏

i<j

(z0
i − z0

j )
r
∏

i>j

(zi − zj)
, (6)

H̄ab =
i

z0
a − zb

×





r
∏

j 6=a

(z0
j − zb + 2i) − d(zb)

r
∏

j 6=a

(z0
j − zb − 2i)



 , (7)

P̄ab =
i

(z0
a)

2
+ 1

r
∏

j=1

(zj − zb + 2i), (8)

d(zi) =

(

zi − i

zi + i

)N

. (9)

The rapidities {z0
i } and {zi} belong to the ground state

|ψ0〉 and to the excited state |ψλ〉, respectively. The norm
of |ψλ〉 from Ref. [4], transcribed to our notation, reads:

‖ψλ‖2 =





r
∏

i6=j

zi − zj − 2i

zi − zj



 detN({zi}), (10)

Nab = −2i
∂

∂zb
ln







(

za + i

za − i

)N r
∏

k 6=a

za − zk − 2i

za − zk + 2i







, (11)

and can be compactified into

‖ψλ‖2 =
2r

2

detK({zi})
r
∏

i<j

K(zi − zj)
r
∏

i<j

(zi − zj)2
, (12)

where

Kab =

{

K(za − zb) : a 6= b

Nκ(za) −
∑r

j 6=aK(za − zj) : a = b
(13)

κ(z)
.
=

2

1 + z2
, K(z)

.
=

4

4 + z2
. (14)

For real zi the absolute square of (6) becomes:

|Ωz|2 =

22r
r
∏

i=1

[κ(zi)/κ(z
0
i )]

r
∏

i<j

(z0
i − z0

j )
2

r
∏

i<j

(zi − zj)2
| det(H̄ − 2P̄)|2, (15)

Rescaling H̄, P̄ consolidates powers of two. The calculation
of the transition rate is thus reduced to the evaluation of
three r × r determinants:

Mz
λ(q) =

N

4

Lr({zi})
Lr({z0

i })
Kr({z0

i })Kr({zi})

× | det(H − P)|2
detK({zi}) detK({z0

i })
, (16)

Lr({zi}) .
=

r
∏

i=1

κ(zi), Kr({zi}) .
=

r
∏

i<j

K(zi − zj), (17)

Hab
.
=

i

z0
a − zb

×





r
∏

j 6=a

G(z0
j − zb) − d(zb)

r
∏

j 6=a

G∗(z0
j − zb)



 , (18)

Pab
.
= i2κ(z0

a)

r
∏

j=1

G(zj − zb), (19)

G(z)
.
=
z

2
+ i. (20)

Along similar lines of manipulation, the transition rates

M±
λ (q) = N

|Ω±|2
‖ψ0‖2‖ψλ‖2

, (21)

for the perpendicular spin fluctuations as inferred from
the Eqs. (5.3) and (5.7) of Ref. [3] for the matrix element
〈ψ0|S+

n |ψλ〉 are brought into the form:

M±
λ (q) =

( Lr({z0
i })

Lr±1({zi})

)±1

Kr({z0
i })Kr±1({zi})

× N | detH
±|2

detK({zi}) detK({z0
i })

, (22)

H
+

ab =
i

za − z0
b

×





r+1
∏

j 6=a

G(zj − z0
b ) − d(z0

b )

r+1
∏

j 6=a

G∗(zj − z0
b )





H
+

a,r+1 = iκ(za), a = 1, . . . r + 1, b = 1, . . . , r, (23)

H
−
ab =

i

z0
a − zb

×





r
∏

j 6=a

G(z0
j − zb) − d(zb)

r
∏

j 6=a

G∗(z0
j − zb)





H
−
ar = iκ(z0

a), a = 1, . . . r, b = 1, . . . , r. (24)
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3 Applications

To demonstrate the efficacy of expressions (16) and (22)
for the transition rates Mµ

λ (q), µ = z,+,−, we present
three applications to the dynamic structure factors

Sµµ̄(q, ω) = 2π
∑

λ

Mµ
λ (q)δ (ω − ωλ) . (25)

We begin with the parallel spin fluctuations at magnetiza-
tion Mz/N = 1

4
(half the saturation value). The spectral

weight of Szz(q, ω) was shown to be dominated by a set
of collective excitations consisting of two unbound quasi-
particles named ψ and ψ∗ [6]. The spectral range of the
ψψ∗ continuum, shown in Fig. 1(a), has soft modes at
q = 0, π/2 and is partly folded back onto itself along a
stretch of its upper boundary.
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Fig. 1. (a) Energy versus wave number of the ψψ∗ excitations
for N → ∞. (b) Scaled transition rates between the ground
state and the ψψ∗ states at q = π/2 for N = 12, 16, . . . , 32
(open circles) and N = 512 (closed circles). The dashed line is
a fit a+ bωη−2 of the N = 512 data at ω/J ≤ 0.5. All results
are for Mz = N/4.

In Fig. 1(b) we have plotted the scaled transition rates

Mψψ∗

zz (π/2, ω) = NMz
λ(π/2) versus ω pertaining to the

ψψ∗ excitations. The open circles are results previously
obtained for N ≤ 32 by calculating matrix elements di-
rectly from Bethe wave functions [5]. The full circles are
data for N = 512 as obtained from the determinantal ex-
pression (16).

The function Mψψ∗

zz (π/2, ω) varies smoothly across the
entire ψψ∗ continuum including the fold. The observed in-
frared singularity,Mψψ∗

zz (π/2, ω) ∼ ωη−2, η−2 = −0.468 . . .
confirms exact predictions [7,8]. At the other end of the

continuum, Mψψ∗

zz (π/2, ω) tends to go to zero or a value
close to zero.

The density Dψψ∗

(π/2, ω) = 2π/[N(ωi+1−ωi)] of ψψ∗

states is shown in Fig. 2(a). It is flat and featureless except
near the upper band edge, where the fold in the contin-
uum produces a square-root divergence [6]. The spectral-

weight distribution Sψψ
∗

zz (π/2, ω) resulting from the prod-
uct of Mψψ∗

zz and Dψψ∗

is then a double-peak structure as
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Fig. 2. (a) Density of ψψ∗ states and (b) spectral weight distri-
bution of the ψψ∗ states in Szz(q, ω) at q = π/2 andMz = N/4
from data for N = 512.

shown in Fig. 2(b) with the divergences at the lower and
upper band edges caused by the transition rates and the
density of states, respectively. At frequencies where the
continuum is folded back, the spectral weight of two lines
of excitations must be added up to produce the correct
lineshape, causing a (barely visible) singularity within the
band.

Now consider the perpendicular spin fluctuations as
described by S−+(q, ω), again at Mz/N = 1

4
. At the zone

boundary (q = π), some 98% of the spectral weight is
carried by a continuum of collective excitations consist-
ing of two ψ quasiparticles [5]. The shape of the ψψ con-
tinuum is shown in Fig. 3(a) The scaled transition rates

Mψψ
−+(π, ω) = NM−

λ (π) pertaining to the ψψ excitations
are plotted versus ω in Fig. 3(b) for N = 1536 by numer-
ical evaluation of the determinantal expression (22). Also
shown are data points for N = 12, 16, . . . , 28 previously
obtained by a different method [5].

Again we find a smooth variation of the transition
rates across the continuum with distinct endpoint singu-

larities. The infrared divergence is strong, Sψψ−+(π, ω) ∼
ω1/η−2, 1/η − 2 = −1.346 . . . as predicted [7,8]. At the
upper band edge, the transition rates approach zero in
what looks like a linear trend. The density Dψψ(π, ω) of
ψψ states is again flat up to near the upper band edge,
where it has a square-root divergence [Fig. 3(c)]. Unlike
in the case of the ψψ∗ excitations discussed previously,
here the divergence of the density of states coincides with
a zero in the transition rates. In the resulting lineshape,
shown in Fig. 3(d), the divergence is thus suppressed and
converted into a cusp.

In the limit of zero external magnetic field (h → 0),
the ψψ continuum turns into the more familiar two-spinon
continuum. The exact two-spinon lineshape of S−+(π, ω)
as previously obtained for N = ∞ via algebraic analysis
[9] does indeed exhibit features very similar to those of

Sψψ−+(π, ω) observed here for the first time. In the zero-
field case, however, the power-law singularities are accom-
panied by logarithmic corrections.
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Fig. 3. (a) Continuum of ψψ excitations. (b) Scaled transition
rates between the ground state and the ψψ states at q = π for
N = 12, 16, . . . , 28 (open circles) and N = 1536 (solid line).
The dashed line is a fit a + bω1/η−2 of the N = 1536 data at
ω ≤ 0.25. (c) Density of ψψ states at q = π for N = 1536. (d)
Lineshape at q = π of the ψψ contribution to S−+(q, ω). All
results are for Mz = N/4.

Our concluding application pertains to the perpendic-
ular spin fluctuations as described by S+−(q, ω), for which
we again use the transition rates (22). Whereas the func-
tion S−+(q, ω) dominates the perpendicular spin fluctua-
tions in weak magnetic fields, it is the function S+−(q, ω)
that carries most of the spectral weight in strong fields.

A set of dynamically dominant collective excitations
is identified which consists of unbound pairs of ψ and ψ∗

quasiparticles as already encountered in the parallel spin
fluctuations. However, since the perpendicular and par-
allel spin fluctuation operators reach these excitations in
different invariant Hilbert subspaces, the spectral bound-
aries of the ψψ∗ spectrum in S+−(q, ω) are related to those
shown in Fig. 1(a) by reflection at the line q = π/2 [10,5].

One outstanding feature of the spectral-weight distri-

bution Sψψ
∗

+− (q, ω) is the distinct scaling behavior of the
transition rates for the ψ∗ branch of the lower boundary
[5]. Figure 4(a) shows the energy-momentum relation of
this set of excitations for various values of Mz/N . This
particular branch only exists for Mz 6= 0. With Mz in-
creasing from zero, it emerges at ω = 0, q = 0. The
frequency of its member state at q = 0 increases pro-
portional to h and the wave number of its member state
at ω = 0 increases proportional to Mz. Upon saturation
(Mz/N → 1/2), it turns into the branch of one-magnon
states with dispersion ω(q) = J(1 + cos q). In Fig. 4(b)
we plot the unscaled transition rates M+

λ (q) via (22) of
these states versus q for the same values of Mz/N as in
panel (a). Also shown are two additional values very close
to saturation. The N -dependence at fixed Mz/N of these
transition rates is very weak, in particular at small q. We
have seen that excitations belonging to a continuum have
transition rates with very different scaling behavior.

The ψ∗ transition rate at q = 0 is exactly known for
arbitrary values of Mz: S+−(0, ω) = (2Mz/N)2πδ(ω− h).
It represents a resonant mode of the field-induced magne-
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ω
/J

q/π

(a)
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 0.5

 1

 0  0.5  1

M
λ+
(q

)

q/π

(b)

Fig. 4. (a) Energy-momentum relation at Mz/N=192/1536=
0.125, 384/1536 = 0.25, 576/1536 = 0.375, 1364/3072 ≃

0.444, 9980/20000 = 0.499 of the ψ∗ branch that is part of
the lower boundary of the ψψ∗ continuum. (b) Unscaled tran-
sition rates for the states shown in (a) and those at Mz/N =
9990/20000=0.4995, 9995/20000=0.49975.

tization. In the limit h → hS = 2J , the transition rates
become independent of q and carry 100% of the intensity,
S+−(q, ω) = 2πδ(ω− 2J), which is well understood in the
context of magnon excitations [10]. This trend is very slow
but clearly visible in the finite-N transition rate data of
Fig. 4(b).

What is perhaps most surprising is that any one of
these modes carries a nonzero fraction of the spectral
weight already far below saturation. Hence they manifest
themselves in sharp resonance lines, separate from the ad-
jacent continuous spectral weight distributions, with in-
tensities that become stronger as the magnetic field in-
creases.

Financial support from the DFG Schwerpunkt “Kollektive Quan-
tenzustände in elektronischen 1D Übergangsmetallverbindungen”
(for M.K.) is gratefully acknowledged.
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