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 26 

Abstract 27 

With the addition of perfluorooctanesulfonate (PFOS), chlordecone, hexachlorocyclohexane (HCH) 28 

isomers and endosulfan to the Stockholm Convention, the list of  chemicals addressed by the 29 

Convention no longer consists solely of hydrophobic organics. Water has become a widely used 30 

environmental matrix for monitoring POPs, particularly for the chlorinated pesticides, despite 31 

challenges related to collecting samples and determining trace levels.  Here we review the sampling 32 

and analytical considerations for water sampling of POPs in general, and the hydrophilic POPs in 33 

particular, with the goal of identifying and recommending best approaches particularly for 34 

assessment of spatial and temporal trends on a global scale. Methods are available for both “active” 35 

and “passive” sampling of water for hydrophilic POPs, however, no single approach can be 36 

recommended at this time. A performance based approach in which the sampling and quantitative 37 

analysis is evaluated is needed so that future global trends of hydrophilic POPs can be monitored. 38 

 39 

Keywords:  40 

perfluorooctanesulfonate (PFOS), chlordecone, hexachlorocyclohexane (HCH), endosulfan, 41 

dieldrin, passive sampling,  seawater, oceans, lakes   42 

Abbreviations/glossary 43 

GMP, global monitoring plan of the Stockholm Convention 44 

POCIS, Polar organic chemical integrative sampler;  45 

PRC, Performance and reference compound 46 

QA/QC, quality assurance/quality control 47 

SPE, Solid-phase extraction;  48 

SPMD, Semi-permeable membrane device;  49 

TWA, Time-weighted average  50 

XADTM,  hydrophobic crosslinked polystyrene copolymer resin  51 

EmporeTM disk,  particle loaded disk within an inert matrix of polytetrafluoroethylene  52 

OASIS HLBTM, a polymeric reversed-phase sorbent 53 

LDPE, Low-density polyethylene plastic 54 

POM, polyoxymethylene plastic 55 

PFASs, perfluoro- and polyfluoroalkyl substances  56 

PUF, polyurethane foam 57 

LC-tandem MS, liquid chromatography-tandem mass spectrometry 58 

WAX, weak anion exchange solid phase cartridges 59 

Kow, octanol-water partition coefficient 60 

CTD, Characteristic Travel Distance 61 

EQS, Environmental Quality Standard 62 

EQG, Environmental Quality Guideline 63 

AWQC, Ambient Water Quality Criteria 64 
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NOEC, No observable effect concentration 65 
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 66 

1. Introduction 67 

Water concentrations of persistent organic pollutants (POPs) in large lakes, coastal seas, and open 68 

oceans reflect a dynamic balance of inputs via rivers and atmospheric deposition as well as re-69 

release from sediments, and removal pathways such volatilization and sedimentation [1, 2]. Long-70 

term data on POPs in water thus provides important information that can be used to assess the 71 

effectiveness of measures taken to reduce emissions. Concentrations of POPs in surface water are 72 

directly linked to their bioaccumulation in the food-chain [3, 4]; hence knowing dissolved 73 

concentrations in the water enables prediction of concentrations in aquatic species using 74 

bioaccumulation factors or lipid-water partitioning and food web biomagnification models [5]. 75 

With the addition of perfluorooctanesulfonate (PFOS) as well as the somewhat soluble 76 

hexachlorocyclohexane (HCH) isomers, chlordecone, and endosulfan to the Stockholm Convention, 77 

POPs can no longer be characterized solely as hydrophobic organics. There is in fact a wide range 78 

of solubility with at least 7 POPs having water solubilities > 0.1 mg/L (Table 1). These 7, along 79 

with their transformation products, also have lower organic carbon partition coefficients (Koc) and 80 

lower octanol-water partition coefficients (Kow) than other POPs (Table 1). Thus their 81 

environmental distribution is likely to be different from the more hydrophobic polychlorinated 82 

biphenyls (PCBs), polybrominated diphenylethers (PBDEs) and polychlorinated dibenzo-p-dioxins 83 

and dibenzofurans (PCDD/Fs). Indeed global ocean and large lake waters represent a major sink for 84 

PFOS, HCHs and endosulfan and to a lesser extent for other POPs. Ocean and large lake waters can 85 

also represent a source of POPs emissions to the atmosphere as a result of declining air 86 

concentrations and climate change e.g. reduced ice cover, increased water temperatures [6-8].  87 

Awareness is growing that transport via ocean currents may be an important pathway for 88 

persistent chemicals to reach polar and other remote regions, especially for the more soluble 89 

substances [9, 10]. Zarfl et al. [11] showed that Characteristic Travel Distances (CTDs) in water 90 

were important for chemicals with long half-life in water and a low air-water partition coefficient 91 

(Kaw). They concluded that PFOS, α-, β- and γ-HCH and chlordecone all have significant mass 92 

fractions in water based on their known or estimated rates of degradation and Kaw values. Water and 93 

air CTDs for the POPs discussed by Zarfl et al. [11] are compared in Table 2. These distances 94 

should be compared only in a relative manner and are dependent on model parameterizations as 95 

illustrated for γ-HCH where the CTD for water ranges from 72 to 1646 km depending mainly on the 96 

half-life in water. Water soluble POPs such as PFOS and chlordecone have the highest CTDs in 97 
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water and greatest water/air CTD ratios. The CTD for PFOS is an underestimate since its half-lives 98 

in all compartments, particularly in water and soil are greater than the 17,000 h used in the model 99 

calculation. Indeed, PFOS and perfluorooctanoic acid (PFOA) have been proposed as stable 100 

chemical tracers of global circulation of ocean waters [12].  101 

Water has become a widely used environmental matrix for monitoring POPs, particularly for 102 

the chlorinated pesticides, despite challenges related to collecting samples and determining trace 103 

levels. The availability of expressed in terms of concentrations in water (environmental quality 104 

standards (EQSs; [13]), Environmental Quality Guidelines (EQGs; [14]), Ambient Water Quality 105 

Criteria (AWQC; [15], and peer reviewed literature on thresholds for effects on aquatic biota (e.g. 106 

No observable effect concentration (NOECs)), is a major driver of continuing interest in these 107 

measurements as part of risk/exposure assessments [16]. EQSs, and EQGs which are generally 108 

derived from NOECs for chronic or long term aquatic toxicity tests, by including an assessment 109 

factor of 10, are available for some of the more water soluble POPs (Table 3). These values provide 110 

a perspective on the detection limits required for exposure assessment of these POPs. 111 

PFOS, HCH isomers and endosulfan have been determined widely both in freshwater and 112 

marine waters while reports on concentrations of dieldrin, endrin, and chlordecone in surface waters 113 

are very limited [17, 18]. Sampling programs and selected individual investigations for POPs in 114 

water were reported in the UNEP persistent toxic substances reports [19].  115 

Here we review the sampling and analytical considerations for water sampling of the 116 

hydrophilic POPs with the goal of identifying and recommending best approaches. The focus is on 117 

the sampling and analytical considerations for performing water sampling for hydrophilic POPs, as 118 

the quantitative analysis aspects are similar for all matrices.  The assumption is that the information 119 

would be useful for the Global Monitoring Plan for POPs [20] although, at present, water sampling 120 

is recommended in the GMP only for PFOS [21]. Thus we have focused mainly on sampling of 121 

water for hydrophilic POPs at background sites on a global scale rather than near sources of 122 

contamination. 123 

 124 

2. Sampling considerations 125 

2.1. Procedures and requirements for sampling 126 

A wide range of water collection methodology has been employed for obtaining samples for POPs 127 

analysis, ranging from hand dipping of 1L bottles, to passive sampling, to in situ submersible 128 
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samplers collecting hundreds of liters. Standard operating procedures for selecting sites, cleaning 129 

equipment, and avoiding contamination, e.g. by use of “clean hands/dirty hands” protocols are 130 

available from USGS [22] with a focus on rivers and streams. Another USGS publication by 131 

Alvarez [23] provides practical guidance for passive sampling.  The European Commission [24] and 132 

ISO [25] provide guidance for sampling of contaminants in freshwaters. HELCOM [26, 27] offers 133 

useful advice on marine sampling design including seawater collection. Sampling procedures for 134 

selected studies are summarized in Table 4. 135 

While the collection methodology can be applied both near sources, and at far field sites, special 136 

consideration needs to be given to identifying collection sites in remote areas. The sampling sites 137 

need to be sufficiently remote from urban centres, harbours, industrial waste water inputs, and 138 

ocean dumpsites, and other sources of POPs, as to reflect concentrations typical of a large area 139 

around the site. Requirements for water sampling sites selection include: 140 

• ease of access by limnological or oceanographic vessels with capacity to deploy water sampling 141 

equipment 142 

• availability of suitable buoys or permanent stations for repeat sampling and for deployment of 143 

passive samplers 144 

• knowledge of site depth and bottom sediment/substrate composition 145 

• existence of an existing routine sampling program with water chemistry data 146 

• availability physical measurements (temperature, pH, conductivity/salinity), tidal conditions, 147 

flow (e.g. outflow from a lake) from which to assess sampling depth e.g. consideration of 148 

vertical gradients such as thermal stratification  149 

• meteorological observations 150 

• trained personnel to conduct the sampling. 151 

• availability of suitable laboratory facilities to prepare sampling media and subsequently extract 152 

and analyse the samples 153 

 154 

2.2. Active systems and Solid phase media 155 

“Active” sampling refers here to direct collection via various means ranging from hand dipping of 156 

sample bottles to in situ sampler pumps which all provide a snapshot of prevailing concentrations. 157 

Various large volume techniques such as pumping water through solid phase media (C18 disks or 158 

columns, XAD resin, or polyurethane foam) have been employed for direct extraction of POPs 159 

including HCHs and endosulfan. The water can also be collected by pumping into plastic, glass or 160 
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stainless steel vessels or by use of Van Dorn, Niskin or “Glo-flo” samplers used in limnological and 161 

oceanographic sampling. There is potential for wall effects (contamination, sorption) particularly 162 

with small volumes [28, 29] but these are less of a problem for hydrophilic POPs. Adsorption losses 163 

can be evaluated using spikes of surrogates added to sample containers or to oceanographic bottles 164 

once they have been brought to the surface.  165 

Sample collection is typically done subsurface to avoid contamination from surface 166 

microlayers which can have elevated concentrations of POPs [30, 31] as well as to minimize 167 

exposure to boat motor exhausts and airborne contaminants emanating from ships [23, 32]. 168 

Direct pumping thru a filter into a column holding the solid phase media has been widely 169 

employed in studies of HCH and endosulfan in remote lake and ocean waters (Table 4). There are 170 

many variations of this including the use of in situ samplers which are programmed to turn on and 171 

off underwater, and in line systems bringing seawater directly into clean rooms on ships (Table 4).  172 

Solid-phase extraction (SPE) cartridges have been widely used to extract relatively small 173 

volumes (1–5 L) for HCH, endosulfan and other chlorinated pesticides. They also have the 174 

advantage of being performed in the field with simple portable pumping equipment [33] and other 175 

media such as divinylbenzene solid-phase disks have been shown to outperform XAD resins for 176 

OCP and PCB extractions of filtered water [34].  177 

 178 

2.3. Passive sampling 179 

Passive sampling offers an alternative for widespread monitoring of POPs in water including the 180 

hydrophilic POPs such as HCH isomers, endosulfan and dieldrin, as well as anionic PFOS [35] 181 

(Table 4). Recent reviews by Harman et al. [36], Alvarez et al. [37] and Booij [38] have covered the 182 

history and use of passive samplers in POPs monitoring in the aquatic environment. SPMDs 183 

consisting of low density polyethylene (LDPE) tubing filled with triolein were originally developed 184 

to determine bioavailable concentrations of hydrophobic organics (log Kow >5) in water [39, 40], 185 

and remain widely used for hydrophobic organics. Single-phase polymeric materials, such as LDPE 186 

strips [41], polyoxymethylene (POM)[42] [43], and silicone  [44-46] are also used.  187 

Lohmann et al. [47] discuss the use of passive sampling devices for monitoring and 188 

compliance checking of POP concentrations in water, highlighting the benefits over alternative 189 

matrices applicable in trend monitoring (e.g. sediments or biota). The use of passive samplers 190 

enables better control of analytical and natural environmental variance, which in turn results in a 191 

reduction of the number of analysed samples required to obtain results with comparable statistical 192 



 8

power. Compliance checking with regulatory limits and analysis of temporal and spatial 193 

contaminant trends have been suggested as two possible fields of application of passive sampling of 194 

POPs [47]. 195 

Allan et al. [48] compared several passive devices (including LDPE, silicone and SPMDs) and 196 

liquid-liquid extraction for several  PAHs with similar log Kow to HCHs, dieldrin and endosulfan, 197 

as well as with the more hydrophobic POPs,  p,p’-DDE, PCBs and hexachlorobenzene. They used 198 

fluoranthene-d10 and chrysene-d12 as performance reference compounds (PRC) and noted that 199 

amounts of these less hydrophobic PRCs were lost relatively quickly, particularly from LDPE. This 200 

indicating that analytes with log Kow values in the same range as these PRCs had reached or were 201 

close to equilibrium. The major conclusions of the study were: 202 

1. Passive samplers provided data that was less variable than that from “whole water” sampling 203 

since the latter may be strongly influenced by levels of suspended particulate matter.  204 

2. Detection limits were much better with passive samplers due to high sampling rates and 205 

sampler/water partition coefficients.  206 

3. While all passive devices performed well, LDPE samplers were found to be the most 207 

reproducible.  208 

4. Linear uptake was observed for the more hydrophobic contaminants during exposures of up 209 

to one month 210 

5. Despite different modes of calculation, relatively consistent time-weighted average (TWA) 211 

concentrations were obtained for the different samplers; and 212 

6. Biofouling induced only minor changes in estimates of TWA concentrations. 213 

The period of time of deployment is an important consideration for passive samplers. There 214 

exists a trade-off between longer deployment periods to maximize uptake of POPs while limiting 215 

biofouling in the field. During their deployment, passive samplers integrate dissolved 216 

concentrations over time, until equilibrium is reached. Time to equilibrium is chemical-specific for 217 

different sampler types and dependent on the sampler-water partition coefficient values, i.e. sorptive 218 

capacities for particular chemicals. Passive samplers can either be deployed as equilibrium samplers 219 

or in the linear uptake phase (integrative sampling).  For the various POPs, times to reach 220 

equilibrium will vary dramatically between e.g., the HCHs and DDTs. The long deployment periods 221 

that are still adequate for integrative sampling of very hydrophobic compounds (log Kow > 6) such 222 

as DDT will result in equilibrium sampling of less hydrophobic compounds. This means that the 223 
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sampler might not reflect TWA concentrations of hydrophilic POPs if it is exposed for extended 224 

time periods.  225 

For devices that operate in the linear or integrative mode, the sampling rate is given by the 226 

product of the overall analyte mass transfer coefficient and the active surface area of the sampler. 227 

Sampling rate may be interpreted as the volume of water cleared of analyte per unit of exposure 228 

time (e.g. L day-1) by the device and is independent of the analyte concentration in the sampled 229 

medium. It can be affected and modulated by the analyte diffusion and partition properties in the 230 

media along the diffusional path (water boundary layer and polymers), and is determined in 231 

laboratory calibration studies or via the use of PRCs in the field. 232 

Often the main barrier to mass transfer is the water boundary layer (WBL) located at the 233 

external surface of the sampler. In such a case the sampling rate is significantly affected by 234 

environmental variables such as water temperature, flow rate and biofouling. If laboratory 235 

calibration data is to be used for calculation of TWA concentrations, the effect of these variables 236 

has to be either controlled or quantified. PRCs must be added to help understand if the sampler is 237 

approaching equilibrium and the degree to which environmental variables such as temperature, 238 

turbulence and biofouling affect the sampling kinetics [49]. The measurement of PRC dissipation 239 

provides information on contaminant exchange kinetics between water and the sampler.  Use of 240 

multiple PRCs with a range of log KOW makes it possible to establish when kinetics of uptake into 241 

the sampler are membrane- or boundary layer-controlled. 242 

Equilibrium sampling can be achieved through the use of thin membranes, in which POPs 243 

display high diffusivities, as often used in contaminated sediments and harbours. After equilibrium 244 

has been obtained in the field, dissolved concentrations are simply obtained by dividing the POP 245 

concentration in the passive sampler by its passive sampler-water partitioning coefficient , corrected 246 

for temperature and salinity, as appropriate for the deployment period [41]. 247 

Passive samplers are generally deployed in stainless steel cages or frames attached to moorings 248 

so that their position in the water column is maintained [23, 50]. Deployment at background sites, as 249 

envisioned for the GMP for water, is challenging since permanent moorings are needed. Lohmann 250 

and Muir [51] have suggested making use of existing monitoring buoys in key locations in major 251 

lakes and seas, as well as in outer coastal areas. The major requirement for a given site is that it 252 

should be away from a major point source, and temperature (and salinity, where appropriate) data 253 

need to be available for the deployment period.  254 
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Polar Organic Chemical Integrative Samplers (POCIS) have mainly been used for passive water 255 

sampling of compounds with log Kow <4 such a pharmaceuticals, pesticides and alkyl phenols [37, 256 

52] but hydrophilic POPs including dieldrin, and lindane have also been determined, e.g. [53]. 257 

Unlike other passive water samplers, POCIS consists of solid sorbent sandwiched between two 258 

microporous polyethersulfone diffusion-limiting membranes. The most widely used absorbent is 259 

OASIS HLB (a polymeric reversed-phase sorbent). PFOS was analysed quantitively in water using 260 

a POCIS modified with a weak anion exchange sorbent as a receiving phase. A 7 day deployment in 261 

Sydney harbour yielded concentrations, calculated based on a sampling rate determined in a 262 

calibration study, that were within 78% of results in grab water samples from the same site [35]. 263 

Thus modified POCIS samplers may represent an alternative to grab sampling for PFOS and other 264 

PFASs. Morin et al. [52] have noted the need for standardized protocols for deployment and 265 

QA/QC of POCIS, and validation of calibration procedures (e.g., intercomparison exercises). It is 266 

unclear whether POCIS in their current configuration are sufficient to overcome detection limits for 267 

targeted POPs at background sites. 268 

 269 

2.4. Sampling for PFOS 270 

PFOS and related perfluoro- and polyfluoroalkyl substances (PFASs) are water soluble and have 271 

relatively low Koc values compared to neutral halogenated compounds on the POPs list (Table 2). 272 

Thus the PFASs are preferentially found in the dissolved phase in surface and ground waters. PFOS 273 

and other PFASs are readily detected in all surface waters at pg/L to ng/L. There have already been 274 

a large number of surveys of PFOS and other PFASs in rivers and lakes as well as measurements in 275 

all the major world oceans [12, 54, 55]. Collection of seawater samples has been done through ship 276 

intake systems [54] and via Niskin bottles [56] into plastic or glass bottles.  In lakes and large 277 

rivers, direct pumping into sampling bottles [57] and collection from Niskin type samplers [58, 59] 278 

and from ship intakes [60] has been used. Sampling procedures used for selected studies are 279 

summarized in Table 4.  280 

Samples for PFOS analysis have generally not been filtered prior to extraction. A study of 281 

waters in the Elbe River (Germany) and the North Sea indicated that on average 14% of PFOS was 282 

in the particulate phase [60]. In ocean waters PFOS was not detectable on particles [54]  likely 283 

because of the lower suspended particulate material (SPM); thus filtration is not recommended, 284 

unless it can be done with an inline system or in a clean room [60] because it could introduce 285 

contamination. Contamination is also introduced from polytetrafluoroethylene (PTFE) materials due 286 
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to the use of PFOA as a processing aid for PTFE production. Common sources are PTFE tubing, o-287 

rings and other seals. PTFE bottles or bottles with fluorinated interior coatings should therefore be 288 

avoided [61].  289 

 290 

2. Sampling frequency, spatial scale and time series 291 

Consideration needs to be given on how frequently to sample and the spatial scale of the program 292 

although detailed discussion is beyond the scope of this article. Frequency and scale of sampling is 293 

generally dictated by the characteristics of the water body, knowledge of the time dependence of 294 

loadings of POPs, and logistical considerations such as ease of access and funding. The ISO water 295 

sampling guidance document [25] provides practical advice for  water quality sampling of natural 296 

waters.  Ort et al. [62] have critically reviewed sampling of wastewater systems and much of their 297 

advice is applicable for river and stream sampling. POPs concentrations in lake and ocean waters 298 

may vary seasonally due to seasonality in phytoplankton and particulate organic matter [63], and 299 

other factors affecting inputs such as precipitation, runoff, seasonal chemical use, etc. Seasonal 300 

cycles in water concentrations of POPs have been found in remote ocean waters in the Canadian 301 

Archipelago [64, 65].  The spatial scale of a water sampling program is also dependent on 302 

anticipated spatial heterogeneity and the goals of the monitoring program, i.e. whether it is designed to 303 

detect differences between global regions or between background and urban/industrial or agriculturally 304 

influenced waters [20, 24]. For water this heterogeneity could occur between near shore and open waters of 305 

lakes and seas as well as with depth.  306 

A goal of global monitoring of water for hydrophilic POPs should be the development of statistically 307 

powerful time series, where feasible, as has been done for POPs in the atmosphere in some locations [20]. 308 

This would allow assessment of the effectiveness of global, regional and national programs to control POPs 309 

as well as support time trend modelling. An often used criterion is the ability to detection a 5% change in 310 

concentration after a sampling period of 10 years at a power of 80% [20, 27] although this definition has 311 

mainly been used for trends of POPs in biota. To our knowledge there are no published time series for 312 

hydrophilic POPs in water from background sites although, as illustrated by the studies cited in Table 4, 313 

multiple year sampling is occurring in some regions such as the Great Lakes, the Baltic, the Mediterranean, 314 

the Sea of Japan/North Pacific, and the Arctic Ocean. 315 

 316 

4. Analytical considerations 317 

4.1. Background contamination 318 
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Sorbents such as XAD resin and PUFs are pre-cleaned by sequential Soxhlet extraction using a 319 

combination of polar and non-polar solvents (e.g. acetone: hexane and/or acetone followed by 320 

hexane) prior to use in extraction columns. Prepackaged media such as C18 disks and solid phase 321 

cartridges are conditioned by elution with a polar and non-polar solvent combination in the 322 

analytical laboratory or (if conditions permit) in the field prior to use [34, 66]. Glass fiber filters 323 

must also be baked (350-450 oC) prior to use and stored in a sealed container. 324 

Additional precautions for solid phase sampling systems are (1) field blanks consisting of 325 

the same media that are attached temporarily to the pumping system during the sampling period (2) 326 

procedural blanks prepared at the same time as the field blanks and held in the laboratory. 327 

Comparison of the field and procedural blanks permits an assessment of contamination during 328 

sampling [67]. The same approach is used for passive samplers. Field blanks are exposed to air for 329 

the same time as the deployed samplers allowing comparison with procedural blanks held in the 330 

laboratory [41, 68].  331 

 332 

4.2. Extraction procedures 333 

The elution of reversed-phase or XAD resin water sampler cartridges generally involves the use of a 334 

water-miscible solvent (usually methanol or acetone) first to remove water followed by a solvent of 335 

intermediate polarity such as dichloromethane (DCM), methyl t-butyl ether or ethyl acetate. 336 

Combined extracts are then partitioned into hexane [67, 69]. Other investigators have directly 337 

extracted media without removing residual water [70] and removed water with a Dean Stark 338 

apparatus or by pipette [66]. 339 

Solid-phase media such as Speedisks and SPE cartridges are eluted with medium polarity 340 

solvents such as DCM or ethyl acetate [34, 66]  as per manufacturer’s recommendations. Speedisks 341 

can be air-dried prior to extraction [71, 72]. Residual water in the eluate is also sometimes removed 342 

by pipette and the extracts are further dried with sodium sulfate that had been baked at 400-450 °C. 343 

Breakthrough of target analytes on XAD or PUF is generally monitored using secondary 344 

columns [67, 73]. Recovery surrogates (usually mass labeled standards) are added prior to the 345 

extraction step. In addition some investigators add standards to resin columns prior to deployment 346 

[74, 75].   347 

Liquid-liquid extraction of water has been used frequently, especially for OCPs [30, 31, 76-348 

78] and was compared with XAD and PUF by Gómez-Bellnchón et al. [79]. Extraction of seawater 349 

with cyclohexane was shown to have equivalent results for PCBs in samples of 300-400 L. More 350 



 13

recent studies have come out against liquid-liquid extractions at background sites due to potential 351 

for contamination from laboratory air, difficulty of separating particle and dissolved phase, solvent 352 

disposal concerns, and poor performance compared to solid phase methods [29, 33, 80]. However, 353 

this likely to be a problem mainly for hydrophobic POPs such as PCBs and PBDEs that are, or 354 

were, in consumer and industrial products (e.g., [32]). Most authors report low background blank 355 

contamination for hydrophilic POPs, e.g. [55, 66, 73]. 356 

Liquid-liquid extraction, particularly of pre-filtered water [30], may be suitable in certain 357 

situations where higher levels of POPs i.e. ng/L, are anticipated. Another large volume application 358 

uses liquid:liquid extraction of water from a continuous flow centrifuge allowing larger samples to 359 

be extracted [81]. Blais et al. [76] determined HCHs and endosulfan in remote alpine lake waters 360 

using DCM extraction with this approach. Chlordecone was extracted from water by liquid:liquid 361 

extraction using 35% ethyl-ether hexane mixture [82]. 362 

PFOS and other PFASs are extracted from water with weak anion exchange (WAX) solid 363 

phase cartridges [83, 84]. The cartridges are preconditioned by elution with 0.1% NH4OH in 364 

methanol, and then methanol and (precleaned) water. Sample cartridges are eluted with 25mM 365 

ammonium acetate buffer (pH 4) and the target analytes then eluted with 0.1% NH4OH in methanol 366 

[83, 84]. Water volumes of 0.5-1L are sufficient for pg/L measurements of PFOS. In general no 367 

further cleanup of extracts for PFOS is required and samples can be submitted for LC-tandem MS 368 

analysis. 369 

Single phase passive samplers such as LDPE, POM and silicone strips are wiped with a 370 

damp paper tissue to remove biofilms and then extracted with pentane [48], hexane [50] or DCM 371 

[85]. At this stage sample extracts may be suitable for GC analysis although additional cleanup may 372 

be required particularly for PCDD/Fs [50]. Two phase passives such as SPMDs are dialysed with 373 

hexane [39]. Residual triolein is removed from the extract through a size-exclusion 374 

chromatographic column with DCM as the mobile phase [48, 68].  375 

Overall, the analysis of hydrophilic POPs in the water has been performed by various 376 

technologies. Common to all is the need for careful preparation and analysis of sampling materials 377 

to minimize contamination concerns in the laboratory and field. Blank sampling materials needs to 378 

be included regularly to identify and correct for artifacts during sampling and analysis.  379 

 380 

5. Conclusions 381 
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The first chemicals that were targeted by the Stockholm Convention, the so-called ‘dirty-dozen’ 382 

were all hydrophobic compounds. The recent inclusion of endosulfan, chlordecone, HCHs, and 383 

PFOS means that there are several water-soluble compounds now subject to global regulation, bans, 384 

and phase outs. For the first time, water has been recommended as a sampling medium in the GMP 385 

(for PFOS). Setting up a monitoring network for water is more challenging than for air, the current 386 

recommended matrix [20], due to analytical requirements and sampling constraints. Location of 387 

sampling sites that both reflect background conditions and can be accessed regularly is a key issue. 388 

Ideally, this should involve collaboration with oceanographers/meteorologists to make use of 389 

existing stations and monitoring networks. Critical components of any water sampling campaign 390 

involve continuous access, contamination concerns, and financial sustainability. If routine sampling 391 

is performed by non-specialists, adequate training has to be performed to minimize contamination 392 

concerns.  393 

For PFOS, snapshot sampling of small water volumes is possible, but for other hydrophilic 394 

POPs, larger water volumes need to be collected to achieve adequate detection limits. In view of the 395 

logistical and financial constraints of active sampling, passive sampling is a possible alternative for 396 

POPs such as HCHs, endosulfan, chlordecone and recent developments suggest it may have future 397 

application to PFASs. Passive sampling provides TWA concentrations, which are more meaningful 398 

for biological exposure and arguably more suitable for trend analysis. However, there are logistical 399 

challenges with passives particularly for deployment offshore in large water bodies. While there 400 

been many interlaboratory studies on analysis of PFOS and on chlorinated pesticides including the 401 

HCHs, there is a need to compare and contrast different sampling approaches (active, passive) for 402 

hydrophilic POPs, and agree on best practices.  403 

There is currently a lack of standard reference materials for water analysis, but the use of 404 

spiked blanks and inter-laboratory comparisons can help with ensuring QA/QC aspects of water 405 

sampling. The choice of sampling technology and analytical methods will likely vary globally and 406 

no single approach can be recommended at this time. A performance based approach in which the 407 

entire series of steps from sampling through quantitative analysis is evaluated using intra- and inter-408 

laboratory comparisons is needed so that future global trends of hydrophilic POPs can be 409 

monitored. 410 

 411 
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 654 
 655 
Table 1. Water solubility, octanol-water, and organic carbon partitioning coefficients of selected 656 
individual components or transformation products of POPs  657 
Listed Chemical Representative 

Analyte in water 
Water solubility1 

(mg/L) at 25oC 
Log 
Kow 

Log 
Koc2 

Ref 

Perfluorooctane sulfonate PFOS 680 - 2.6 [86, 87] 
Hexachlorocyclohexane, gamma isomer γ-HCH 7.3 3.7 3.0 [88] 
Chlordecone Chlordecone 2.7 4.5 3.4 [89] 
Hexachlorocyclohexane, alpha isomer α-HCH 1.0 3.8 3.8 [88] 
Pentachlorobenzene PeCBz 0.55 5.2 4.5 [88] 
Endosulfan, alpha isomer α-Endosulfan 0.50 4.9 3.6 [89] [90] 
Heptachlor Heptachlor epoxide 0.35 5.0 4.0 [88] 
Endrin Endrin 0.23 5.2 4.0 [88] 
Endosulfan transformation product Endosulfan sulfate 0.22 3.6 3.2 [89] [90] 
Dieldrin Dieldrin 0.17 5.2 4.1 [88] 
PCB congener PCB 28 0.16 5.8 5.3 [88] 
Chlordane, cis isomer cis-(α)chlordane 0.056 6.0 5.5 [88] 
DDT transformation product 4,4’-DDE 0.04 5.7 5.0 [88] 
PCB isomer PCB 52 0.03 6.1 5.6 [88] 
Aldrin Aldrin/dieldrin 0.02 3.0 2.6 [88] 
Toxaphene congener P26 - 5.5 5.0 [91] 
Toxaphene congener P50 - 5.8 5.3 [91] 
Hexabromobiphenyl congener HBB 153 0.011 6.4 5.9  [92] 
Pentabromo diphenyl ethers  BDE 47 0.011 6.8 6.3 [93] [94] 
PCB isomer PCB 101 0.01 6.4 5.9 [88] 
DDT isomer 4,4’-DDT 0.0055 6.2 5.4 [88] 
HCB HCB 0.005 5.5 5.0 [88] 
PBDE isomer BDE  99 0.0024 7.3 6.8 [93] [94] 
PCB isomer PCB  153 0.001 6.9 6.4 [88] 
Polychlorinated dibenzofurans isomer 2,3,7,8-TCDF 0.000419 6.5 6.0 [88] 
Mirex Mirex 0.000065 6.9 6.0 [88] 
Polychlorinated dibenzo-p-dioxin isomer 2,3,7,8-TCDD 0.0000193 6.8 6.3 [88] 
Heptabromo BDE congener BDE 183 - 8.3 7.8 [94] 
1Water solubility of the solid and reported in mg/L 658 
2Koc estimated from Seth et al. [95] 659 

660 
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 661 

Table 2. Characteristic Travel Distances (CTD)  in water for selected POPs using the OECD 662 

LRTAP tool1  663 

Chemical t1/2 air 
(h) 

t1/2 water 
(h) 

t1/2 soil 
(h) 

CTD Air 
(km) 

CTD Water 
(km) 

CTD 
ratio 

(W/A) 
α-HCH 91.2 5256 1152 1527 389 0.255 
β-HCH 1344 4320 2184 2903 443 0.153 
γ-HCH 448 17000 9600 2591 1646 0.635 
 γ-HCH 448 1700 9600 2418 175 0.073 
 γ-HCH 55.2 720 17520 918 72 0.079 
Chlordecone 10000 4320 8640 396 444 1.121 
Dieldrin 27.8 4320 8640 542 295 0.543 
α-endosulfan 31.3 4320 8640 638 194 0.305 
HBB 4368 4320 8640 3669 353 0.096 
BDE-99 264 3600 3600 2708 217 0.080 
PeCB 3720 4656 4656 59562 216 0.004 
PFOS 1830 17000 17000 1220 1717 1.407 
1Properties and half-lives (t1/2) from Zarfl et al. [11] and from EPISuite V4.1 [96] 664 

 665 

666 
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 667 

Table 3. Summary of EQSs, EQGs, AWQCs, and NOECs for the more water soluble POPs1 
668 

Chemical WS 2 
(mg/L) 

EQG  
ng/L 
(Canada) 

AWQC 
ng/L 
(USA)3 

EQS  
ng/L 
(EU)4 

NOEC 
ng/L 

References 

α-HCH 1.0    50 (Daphnia) [97] 
β-HCH     32000 (Medaka) [97] 
γ-HCH 7.3 10  80 20  (all 

isomers) 
2100 (Brook trout) [98];  [[9999]] 

Chlordecone 2.7    2500 (Daphnia) [100] 
Endosulfan 0.5 3  56 5  50 (Rainbow trout) [101];.[102] 
Dieldrin/aldrin 0.17  56 10 120 (Rainbow trout) [17]; [99] 
PFOS 680    49000 [103] 
1EQSs = Environmental Quality Standards, EQGs = Environmental Quality Guidelines; AWQCs = 669 

ambient water quality criteria, NOECs = no observable effect concentrations 670 
2 WS= water solubility 671 
3For protection of freshwater aquatic life – chronic effects [15]   672 
4Inland surface waters. From Borchers [99] 673 

 674 

675 
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Table 4. Summary of selected water sample collection and extraction techniques for hydrophilic 676 

POPs in ocean, large lake, and remote lake waters 677 
General type Analytes Equipment Extraction Methology Vol (L) Referen

ce 

“Active sampling”     
lake water and 
glacial melt 

HCHs, 
endosulfa
n 

GF/A filters (0.6 um) DCM  on water  from 
continuous flow 
centrifuge 

~65 [76] 

In situ 
sampling; lake 
water and snow 
melt 

HCHs, 
endosulfa
n 

AXYS “Infiltrex” in situ 
sampler; submersible 
pumping system 

GFF (1 um); modified 
“Speedisks” 
divinylbenzene solid-
phase extraction device 

50 [34];[10
4]  

In situ 
sampling; lake 
water 

HCHs, 
endosulfa
n 

AXYS “Infiltrex”in situ 
sampler; submersible 
pumping system 

GFF (1 um) and XAD-2 
resin (75 g)  

100 [105] 

Pumping from a 
reservoir; ocean 
water, Great 
Lakes water 

HCHs Submersible pump to 20 
L stainless steel cans 

GFF (0.7 um); 200 mg 
“ENV+”( polystyrene-
divinylbenzene (DVB) 
copolymer) cartridge 

4-20 [7, 66] 

Sea cruise, 
Mediterranean 

α-HCH Towfish intake to on 
board inline system 

GFF and XAD column 90 to 
350 

[63] 

Ocean cruises, 
Arctic, Atlantic 

PFOS 
and 
PFCAs 

Ship intake, in line 
sampling 

Unfiltered; Oasis WAX 
cartridge 

0.5-1 [55] 

Ocean cruise, 
Atlantic 
 

PFOS 
and 
PFCAs 

Ship intake, in line 
sampling and rosette-
sampler for depth profile 

GFF (1.2  um); Oasis 
WAX cartridge 

2 [54] 

Ocean cruise 
Pacific, Arctic 

PFOS 
and 
PFCAs 

Stainless steel bucket GFF (0.7 um); Oasis 
WAX cartridge 

1 [106] 

Ocean cruise 
Pacific, Arctic 

HCHs, 
endosulfa
n 

Ship intake, in line 
sampling 

GFF (1.2 um); Serdolit 
PAD-3 (DVB styrene) 
self-packed column 

176–
1120 

[107]; 
[108] 

Ocean cruise 
Pacific, Arctic 

HCHs, 
endosulfa
n 

Stainless steel bucket 
and Niskin for depth 
profile 

GFF (0.45 µm); C18 
ENVI 18 SPE cartridge 

4 [109] 

Estuary and 
open ocean 
water 

HCHs, 
endosulfa
n 

AXYS “Infiltrex” 
sampler and on-board 
extraction 

GFF (0.7 um) and XAD-2 
r 

100  [110] 

Open ocean 
water 

HCHs Ship intake, in line 
sampling 

GFF (0.7 um) and XAD-2 
resin 

720-
1250 

[73] 

Under ice  and 
open ocean 

HCHs AXYS “Infiltrex” 
sampler 

GFF (0.7 um) and XAD-2 
r 

~100 [111] 

Ocean – 
Singapore Strait 

HCHs Pumping system Liquid-liquid extraction 
with hexane 

10 [31] 

     
“Passive sampling” Media Extraction system Deploy-

ment (d) 
 

Global scale HCHs,  LDPE hexane 14-90 [51] 
Plymouth 
harbour UK 

γ-HCH, 
dieldrin 

“Chemcatcher” type - 
C18 Empore disks; 
Ecoscope - hexane filled 
dialysis bag 

Empore disk extracted 
with acetone then 1:1 
(v/v) ethylacetate: 
isooctane 

7-14 [53] 

Godthåbsfjord, HCHs Polyoxymethylene n-hexane extraction ~90 [43] 
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Greenland 
Sydney harbor, 
AU 

PFOS 
and 
PFCAs 

Modified POCIS - Strata 
XAW weak anion 
exchanger 

Methanol extraction 2-7  [35] 

 678 

 679 
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