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Graphical Abstract 
 

 
 
HIGHLIGHTS 
• Sulfite activation results in less magnetic resultant iron particles 
• Activation further influences particle morphology and size distribution 
• Sulfite activation may impede downstream physiochemical water treatment processes 
 
ABSTRACT  
 
The activation of ferrate with sulfite increases oxidative transformation of recalcitrant 
organic compounds; however, it also changes the characteristics of the iron particulates 
that result from the ferrate reduction. In this study, particles resulting from ferrate 
reduction both with and without sulfite were compared in a laboratory matrix 
simulating water treatment conditions at the bench-scale. Characteristics examined 
included magnetization, morphology, size, and surface charge. The activation of ferrate 
with sulfite changed the characteristics of resultant particles in several important ways. 
Activated ferrate resultant particles were less magnetic, more polydisperse including a 
higher fraction of nanoparticles, and exhibited a less-crystalline morphology compared 
to particles resulting from ferrate self-decay. Surface charges between the two particle 
types were similar, and negative. The relatively rapid formation of Fe(III) from Fe(VI) 
activation leads to particles of different character, likely though a greater supply of 
precursory low molecular weight iron hydroxo-species. Particles resulting from 
activated ferrate used as a preoxidant will impact downstream processes in important 
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ways, such as gravimetric or magnetic separations and contaminant adsorption. Ferrate 
activation presents a possible trade-off between improved oxidation and impeded 
downstream physicochemical processes, and formation and fate of formed particles 
warrants consideration.   
 
KEYWORDS 
Activated Ferrate; Iron nanoparticles; Magnetism; Pre-oxidation; Coagulation; Water 
treatment. 
 
 
1. INTRODUCTION 

Ferrate (Fe(VI)) is a high-valance iron species that is used for oxidative transformation 

of target compounds.1,2 In a water treatment context, the relatively high oxidation 

potential of Fe(VI) successfully transforms many inorganic3–5 and organic 

contaminants,6–8 as well as disinfection byproduct precursors.9–12 However, some 

recalcitrant contaminants of emerging concern are not effectively oxidized by Fe(VI) at 

relevant dosages and pH values.13 Oxidation with Fe(VI) can be improved by 

“activation” of Fe(VI) by common chemical reducing agents,14 acids,15 carbon 

nanotubes, ammonia,16 and ultraviolet light.17 Disagreement in the literature exists with 

respect to exact mechanisms of activation, and vary with activation approach; however, 

an important role of ephemeral iron species (e.g. Fe(V) and Fe(IV)) is likely.  

 

When sulfite is used as the activating agent, the formation of sulfate and hydroxyl 

radicals also increases oxidation,18 and most published research on activated Fe(VI) has 

focused on this approach.19,20 For example, oxidation of benzotriazole, phenol, 

ciprofloxacin and sulfamethoxazole all increased from less than 10% to greater than 75% 

when 50 µM Fe(VI) was activated with 250 µM of sulfite (1:4 molar ratio).21 In this way 

activated Fe(VI) represents an emerging advanced oxidation technology for enhanced 

degradation of organic contaminants.18  
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Prior work on Fe(VI) activated with sulfite (and other reductants) provides important 

data towards potential adaptation; however, most prior work has been executed in a 

phosphate buffer to sequester Fe(III) solids that result from Fe(VI) reduction. This 

dramatically simplifies required analytical steps but prohibits any assessment of 

resultant particles,22 which blocks vertical advancement of sulfite-activated Fe(VI). 

Particles resulting from Fe(VI) self-decay (e.g. non-activated) have shown unique and 

important properties, including a core-shell architecture,23 participation in adsorption 

reactions3,24 and coagulation,10,25,26 magnetism,27 relatively small size,28 and poor 

settleability.29 It is yet unknown how reduction of Fe(VI) with sulfite may impact these 

particle characteristics. The overarching objective of this work was to fill this urgent 

research gap with an assessment of Fe(III) particles resulting from sulfite activated 

Fe(VI). Specifically, the characterization included an assessment of magnetism, 

morphology, size, and surface charge.  

 

2. METHODS AND MATERIALS 

2.1. Particle Formation Reaction. High-purity potassium ferrate (K2FeO4) 

(Element 26 Technology, League City, TX) was added to reagent grade water buffered 

with 1 mM carbonate at pH 7.5. The Fe(VI) dose was 100 µM (5.6 mg/L as Fe), 

confirmed via absorption at 510 nm.30 The 1 liter reactors were mixed vigorously (G > 

200 sec-1) for one minute, then gradually (G ~ 50 sec-1). Water matrix (pH and buffer 

capacity) and dosing conditions were set to replicate a plausible, low organic carbon 

water treatment scenario. In Fe(VI) auto-decay experiments, complete Fe(VI) auto-

decay was confirmed via ABTS method,31 following 60 minutes reaction time. In sulfite 
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activation experiments, 400 µM SO3-2 as a 0.25 M Na2SO3 stock solution was added to 

the reactor 30 seconds after Fe(VI), following a similar protocol from prior research 

focused on activate Fe(VI) oxidation.18  

 

2.2. Particle Characterizations. Resulting particle size and surface charge were 

quantified by dynamic light scattering (DLS) and electrophoretic mobility (Malvern 

Zetasizer Nano ZS). Particle morphology was imaged with transmission electron 

microscopy (TEM) (JEM-2100, JOEL, Tokyo, Japan). Resulting particle suspensions for 

TEM were filtered through a glass-fiber (GF) filter (Whatman, 934AH), with an effective 

cut-off of 1.5 µm to remove large aggregates. Particles in GF filtrate were then loaded 

onto a 30 kDa ultrafilter (UF). The UF was submerged and sonicated in reagent grade 

water, with resuspended particles then drop-casted and air dried on a C film with Cu 

grid. Particles analyzed by scanning electron microscopy (SEM) (Zeiss Sigma VP, 

Overkochen, Germany) were prepared by drop casting the as-prepared particle 

suspension. Crystallinity was evaluated via X-ray powder diffraction (XRD) (Ultima IV, 

Rigaku, Tokyo, Japan), with a Cu Ka source at 0.5 deg/min scan speed. The as-prepared 

ferrate resultant particles were collected on a 0.7 µm cut-off glass fiber fine (GF/F) filter 

and transferred to the XRD holder for analysis. A sample of GF/F effluent was also 

subjected to DLS measurements.  

 

2.3. Evaluation of Magnetism. Magnetism was assessed using in situ and ex situ 

approaches. In situ assessment included transfer of particle suspension to a 10 mm 

spectrophotometer cell. One, 9.5 mm diameter N40 grade neodymium-iron-boron disc 1 

T magnet was affixed to the bottom of the cell on the outside. The apparatus was placed 
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in a spectrophotometer, and optical density (abs. at 600 nm) was tracked over 30 

minutes; the optical density over time was normalized to the optical density at the start 

of the settling experiment. Experiments were repeated with and without the magnet. Ex 

situ magnetization was measured using a magnetic properties measurement system 

(MPMS-3 from Quantum Designs, San Diego, USA). 1.5 L of Fe(VI) particle suspension 

was centrifuged at 4200 g. The supernatant was removed and the pellet was dried in an 

oven at 80 ºC for 24 h. Approximately 20 mg of powder sample was loaded into the 

magnetometer and a full cycle from -5 T to +5 T was acquired in DC mode at 26.85 ºC. 

 

2.4. Statistical and Other Information. Particle formation reactions and 

subsequent characterizations were conducted in triplicate unless otherwise noted. 

Graphical error bars represent one standard deviation. More statistical and 

experimental information is included in Supplementary Information (see SI-S1).   

 

3. RESULTS  

3.1. Activation and Magnetism. Fe(VI) decay without sulfite addition (nonactivated 

ferrate resultant particles, NFRPs) resulted in particles that were separated from fluid 

by a magnetic field more so than by gravity alone (Figure 1A). After 30 min, the optical 

densities of the NFRP suspension without and with a magnet were 0.92 and 0.86, 

respectively. For activated Fe(VI) resultant particles (AFRPs) the optical density both 

with and without a magnetic were > 0.96, indicating decreased gravity settling, and 

negligible impact of a magnetic field (Figure 1B). Results for AFRPs were similar to 

ferric chloride coagulant control (Figure S1). Both particle types settled poorly, a known 
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attribute of Fe(VI) resultant particles;29 however, only nonactivated particles showed 

appreciable increase in separation due to a magnetic field. 

 

 

Figure 1. Normalized optical density (absorbance at 600 nm) of particle suspensions 
resulting from (A) Nonactivated ferrate auto-decay and (B) ferrate activated with sulfite. 
pH = 7.5, Fe(VI) dose = 100 µM, 1 mM HCO3-, 400 µM SO4-2.  
 

Figure 2 shows the mass-normalized magnetization (M) versus magnetic field strength 

(M(H)) curves near room temperature for both particle types. The nonactivated 

resultant particles had higher M than AFRPs. This indicates that the portion of 

ferrimagnetic materials is higher in the nonactivated particles. Additionally, 

magnetization at high field ( > 3 T,) follows a positive, linear trend with H, with similar 

slopes (0.07 vs. 0.05 emu/g•T), characteristic of paramagnetic materials. Insert B in 

Figure 2 includes M(H) cycles after paramagnetic subtraction.   

Results are consistent with prior work demonstrating that nonactivated Fe(VI) resultant 

particles exhibit core-shell architecture with a g-Fe2O3 (maghemite; ferrimagnetic) core 
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and a g-FeOOH (lepidocrocite; paramagnetic) shell.23,27 It is important to note, however, 

that sulfite activation changes the resulting particle architecture by decreasing the 

ferrimagnetic component.  

 

By subtracting the paramagnetic contribution and assuming that the ferrigmanetic 

contribution is exclusively maghemite with a saturation magnetization (Ms) of 414 

kA/m, 32 it is estimated that NFRPs contain approximately 0.16% maghemite, while 

AFRPs contained 0.09% maghemite, on a mass basis. The lack of hysteresis in the M(H) 

cycle indicates the ferrimagnetic component of the particle structure is in the 

superparamagnetic regime. Superparamagnetism at room temperature is observed for 

spherical maghemite particles with diameters below 10 nm.32  
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Figure 2. (A): Magnetization (emu/g) of the non-activated and activated Fe(VI) 
resultant particles as a function of applied magnetic field. Data collected and room 
temperature and normalized by mass of solids. (B): magnetization in kA/m after 
paramagnetic subtraction, assuming the ferromagnetic material is maghemite. 
 

3.2. Size and Morphology. Sulfite activation changed the size distribution and 

morphology of Fe(VI) resultant particles (Figure 3). Both particle types had bimodal 

distributions with size features in the nanometer and micrometer size range. The 

intensity-weighted mean particle size (dave) for nonactivated and activated Fe(VI) 

resultant particles were 1.72 and 2.49 µm, respectively. AFRPs were more polydisperse 

than NFRPs with log normal standard deviations (slog) of 1.98 and 2.14 nm, respectively. 

AFRPs were least prominent in the 1 – 2 µm size range, compared to nonactivated 

particles which were most common in that range. NFRPs resulted in ~90% of 

cumulative intensity response occurring below 2 µm, while AFRPs resulted in ~50%. 

Below 2 µm diameter, the first distribution dave changes to 1091 nm and 511 nm for 

NFRPs and AFRPs, respectively (see Table S1). GF/F DLS results were similar, showing 

a difference in the submicron size range (Figure 3, panels A and C), after larger particles 

have been removed. On a mass basis, > 98% of all Fe was retained on the GF/F filter, 

indicating that both particle types were almost all > 0.7 µm, and likely above the 

measurement range of the DLS instrument, due to limited diffusion.  

 

Very low counts were noted below 100 nm in all GF/F DLS measurements, indicating a 

low concentration of nanoparticles, however, particles of that size or smaller were 

captured via TEM analysis (see Figure 3B and 3D), following particulate concentration 

from GF/F effluent on the 30 kDa membrane UF. Nanoparticle morphology was 

different between the NFRPs (Figure 3B) and AFRPs (Figure 3D). NFRPs TEM images 
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had clearly defined regions of contrast compared to AFRPs, indicating greater 

crystallinity, and appeared to contain aggregates of < 10 nm nanoparticles–a trend 

noted in prior TEM investigations, although precipitation condition varied.23,29,33 SEM 

also showed more defined nanoparticles for the NFRP than the AFRP (see Figure SI S3 

and S4). XRD results indicated, however, that NFRPs were amorphous (see Figure S2). 

This apparent disagreement is attributable to the size and architecture of nanoscale 

NFRPs and the large fraction of non-magnetic material: nanoscale maghemite may 

appear amorphous to XRD due to loss of symmetry near the surface of the particle, and 

poorly crystalline g-FeOOH shells and other amorphous phases may obscure the 

underlying more-crystalline g-Fe2O3 core of NFRPS.27  
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Figure 3. Left, particle size distributions for nonactivated (A) and activated (C) ferrate 
resultant particles before and after a glass fiber fine (GF/F) filter. Right, transmission 
electron microscopy (TEM) images of nonactivated (B) and activated (D) ferrate 
resultant particles. Scale bar represents 50 nm in each TEM image.  
 

3.3. Surface Charge. Particles resulting for both formation reactions had negative 

surface charges, representing a relatively stable colloidal suspension. Sulfite activation 

had only minor impacts on the surface charge of resultant particles (see SI-S6 and 

Figure S5 for more details). 
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4. DISCUSSION & CONCLUSION 

4.1. Mechanistic Interpretation. The differences in characteristics between NFRPs 

and AFRPs suggest differences in precipitation mechanism attributable to the presence 

of sulfite/sulfate. An stoichiometrically-excessive amount of sulfite will reduce Fe(VI) to 

Fe(III) rapidly (k > 1012 M-1 s-1),34 resulting in near-instantaneous formation of Fe(III) 

and SO4-2. Fe(VI) auto-decay produces Fe(III) at a rate many orders of magnitude 

slower at pH 7.5 (k ~ 20 M-1 s-1).22,35 Ferric-oxide particles typically form by growth of 

nuclei fed by low-molecular weight iron species (e.g. dimeric iron hydroxo-species), with 

the ultimate form and crystallinity dedicated by the rate at which these species are 

supplied.36,37 The more slowly the species are supplied, as in Fe(VI) auto-decay, the 

better ordered phases that result.38,39 Therefore, the slower “supply” of Fe(III) resulting 

from nonactivated Fe(VI) would set conditions for more crystalline structures, while 

activation likely leads to more amorphous structures (Figure 3). This mechanistic 

difference could apply to any mode of Fe(VI) activation that drastically accelerates the 

rate of decay. The presence of sulfate resulting from sulfite-based Fe(VI) activation may 

also specifically impact particle precipitation mechanisms. Sulfate forms complexes with 

Fe(III), and may impact particle formation in several ways, including increasing the rate 

of precipitation compared to solutions without divalent anions.37,40  

 

4.2. Water Treatment Implications. Magnetism of NFRPs has been highlighted as 

a potential advantage of Fe(VI) in a water treatment context, as it would allow for 

magnetically-based particulate separation.23,41 A force balance on maghemite particles 

indicates magnetic force is approximately 5 times larger than gravity for particles 0.5 cm 
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away from a 1 T magnet (see SI-S7). This dominance of magnetism is important, as 

exclusively gravimetric approaches to NFRP separation are generally effective (Figure 

1),29 and predicted Stoke’s terminal settling velocities for NFRPs are < 3 mm/day when 

diameter is < 500 nm. Attractive interparticle magnetic forces may also lead to 

aggregation of particles, in addition to van der Waals forces,42 which in turn could lead 

to enhanced gravimetric precipitation. Activation of Fe(VI) has been highlighted as a 

novel approach to advanced oxidation of recalcitrant organic contaminants. Results here 

demonstrate that a common method for Fe(VI) activation decreases subsequent particle 

magnetism and crystalline-morphology, while also changing the size distribution and 

settling velocities. In this way, Fe(VI) activation with sulfite represents a trade-off 

between improved oxidation and impeded downstream physicochemical processes. In 

addition, the crystal structure of FRPs is critical to the adsorption of arsenic and other 

contaminants.27,41 Our results show that sulfate activation changes the structure of the 

ferrate resulting particles, which could lead to a change in contaminant adsorption. 

Different activation approaches exist, such as sub-stoichiometric and/or staggered 

sulfite addition,43 which may better balance treatment goals. Other important solutes 

and water quality characteristics (i.e. dissolved organic carbon, pH) may impact 

resultant particle characteristics. Future work on activated Fe(VI) should consider the 

formation and fate of resultant particles in relevant water matrices, and evaluate the 

trade-off between improved oxidation of contaminants and reduced settleability,  

magnetism, and adsorption characteristics of the downstream particles. 
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