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Langevin analysis of the diffusion model for surface 
chemical reactions 

David L. Freemana) and Jimmie D. Doll 
University of California, Los Alamos National Laboratory. Chemistry Division. MS G738, Los Alamos. New 
Mexico 87545 
(Received 30 March 1983; accepted 18 May 1983) 

An analysis is presented of the magnitude of some of the potential sources of error in a Iecently developed 
diffusion model of surface chemical reactions. Using single absorber Langevin simulations. comparisons are 
made between the diffusion equation model and the Fokker-PIanck equation for the rates of diffusion 
controlled surface chemical reactions. The diffusion equation is found to predict rates in good agreement with 
the Fokker-PIanck equation for physical values of the diffusion constant. For unphysica1Iy large diffusion 
constants, the rates predicted by the diffusion equation are found to be in error. By employing multiple 
absorber Langevin simulations errors in the single absorber approximation used in the diffusion model of 
surface reactions are examined. The single absorber model is found to be accurate for weakly bound 
adsorbates. For strongly bound adsorbates rate expressions derived from a two-dimensional model are found 
to be appropriate. The relative rates of Eley-Ridea1 and Langmuir-Hinshelwood mechanisms are also studied 
by multiple absorber Langevin simulations. The ratios of the Eley-Ridea1 to the Langmuir-Hinshelwood rate 
is found to be in good agreement with the predictions of the diffusion equation model for physica1Iy 
reasonable diffusion constants. The time dependent solution to the diffusion equation considered in a previous 
publication is given in an appendix. 

I. INTRODUCTION 

In recent years, diffusion constants for the migration 
of adsorbates on crystal surfaces have become available 
both from molecular dynamics calculations 1-4 and a 
variety of experimental techniques. 5 The interest in 
surface diffusion is partially motivated by the fact that 
diffusion is a primary step in the dynamics of many 
surface processes. To connect diffusion information 
with kinetic rate constants in a recent publication6 

[hereafter referred to as I] we extended the theory for 
diffusion controlled reactions in solutions 7 to surface 
diffusion influenced reactions. In I, we analyzed the 
kinetic implications of the two-dimensional diffusion 
equation 

aW(r, t) _ DV2Wi( t) _ Wi(r, t) J 
at - r, r +, (1) 

which was first used for thin film nucleation studies. 8 

In Eq. (1), Wi(r, t) was the concentration of reactant 
species at coordinate r and time t, D was the sum of the 
diffusion constants for reactant molecules, r was the 
lifetime of a reactant molecule before desorption, and 
J was the number of reactant molecules per unit time 
per unit area adsorbing on the surface externally from 
the gas phase. Equation (1) differed from the usual 
diffusion equation by the addition of terms which allowed 
reactant molecules to enter or leave the reaction sur­
face. 

As pointed out in I, Eq. (1) has two parameters, Jr 
and 

')1= (Drt l
/

2 
, (2) 

where ')1.1 can be interpreted as one-half the average 

"'Visiting staff Member at the Los Alamos National Laboratory. 
Permanent address: Department of Chemistry, The Uni­
versity of Rhode Island, Kingston, Rhode Island 02881. 

distance traveled by a nonreacting molecule before de­
sorption. In terms of the key parameters from Eq. 
(1), expressions were derived in I for diffusion in­
fluenced rate constants, the activation energies for 
diffusion influenced reactions, and the ratio of the rates 
of Eley-Rideal processes to Langmuir-Hinshelwood 
processes. In I, we showed within the model defined by 
Eq. (1) that the Eley-Rideal rate should be less im­
portant than the Langmuir-Hinshelwood rate for many 
reactions, and we showed the activation energy for 
Langmuir-HinsheLwood reactions to be bounded by the 
activation energy for diffusion and the activation energy 
for recombination. As pointed out in I, the expres­
sions developed for diffusion influenced rate constants 
in terms of surface diffusion constants are particularly 
valuable for theoretical study because diffusion con­
stants can be calculated from a portion of the potential 
energy surface required for full reaction dynamics cal­
culations. 

The model developed in I for diffusion influenced rate 
expressions for surface reactions contains a number of 
assumptions the effect of which require further analysis. 
The expressions developed in I are based on the behavior 
of a two-dimensional isotropic fluid which obeys the dif­
fusion equation. Actual surface reactions occur on a 
lattice with appreciable activation barriers. The effect 
of such a lattice may be diffusion constants with spatial 
anisotropies. In I, isotropic diffusion constants were 
assumed. The rate constants within the diffusion model 
are evaluated from expreSSions for the concentration at 
an absorption boundary. It is well-known9 that the dif­
fusion equation gives inaccurate concentration profiles 
at such absorbing boundaries, and that a careful treat­
ment requires solutions to the Fokker-Planck equation 
for the full phase space distribution function. In I by 
analogy with diffusion influenced reactions in solution 
the rate expressions were developed from the limiting 
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form of a single absorber model. In contrast to solu­
tion kinetics the single absorber model may be inap­
propriate for surface reactions, because the influence 
of the absorption boundary conditions on the concentra­
tion profile is long range in two dimensions. 

In the present work, we analyze the magnitude of the 
errors in I which arise from the use of the diffusion 
equation within the Single absorber approximation. We 
carry out this analysis by comparing the expressions 
derived in I with the results of simulations of diffusive 
processes using the Langevin equation. We show the 
diffusion equation model to be accurate when the mag­
nitude of the diffusion constant is on the order of those 
measured and calculated for real physical systems. 
Only for nonphysically large diffusion constants do we 
find errors in the use of the diffusion equation to be 
appreciable. 

The organization and contents of the remainder of this 
paper are as follows. In Sec. II, we compare the rate 
constants evaluated from the diffusion equation with the 
results of Langevin simulations within the single ab­
sorber model. To justify the parameters used in the 
simulations, we present the time dependent solution to 
Eq. (1) which extends the steady-state solution we gave 
previously. In Sec. II, we compare both rate constants 
and concentration profiles from the Langevin simula­
tions with the diffusion equation. In Sec. III we compare 
the results obtained from the single absorber model with 
multiple absorber simulations. We determine the kinds 
of parameters for which the results of I are valid, and 
indicate expressions from I which can be used in other 
cases. We also calculate the ratio of Eley-Rideal 
rates to Langmuir-Hinshelwood rates and compare with 
the expression derived in I for this ratio. In Sec. IV, 
we summarize our conclusions. We derive the time 
dependent solution to Eq. (1) in the Appendix and de­
velop the behavior of the solution in a number of limits. 

II. SINGLE ABSORBER LANGEVIN SIMULATIONS 

The migration of adsorbated on crystal surfaces 
is accurately described by the classical diffusion equa­
tion only on time scales which are long compared to 
the inverse of the effective friction constant. 9 For time 
scales on the order of the inverse of the friction con­
stant an accurate treatment of adsorbate migration re­
quires solutions to the Fokker-Planck equation for the 
full phase space distribution function. For problems 
with absorbing boundary conditions the inaccuracies 
in the diffusion equation extend to distances close to the 
absorbing region at all times. For time scales on the 
order of the time for molecular motion the FOkker­
Planck equation is inaccurate and surface migration 
must be described by the generalized Langevin equa­
tion. 10,l1 

For diffusion controlled surface reactions it is ima­
gined that the rate limiting step is the time necessary 
for reactants to diffuse to some critical reaction dis­
tance. Once reactants reach a critical distance the 
reaction is assumed to be very rapid. In I, we modeled 
such diffusion controlled reactions with the diffusion 
equation given in Eq. (1). The rate constant expres-

sions derived in I required the evaluation of the .ab­
sorption rate at the absorption boundary. This rate was 
evaluated at steady state. Although the time to reach 
steady state is long compared to the inverse of the 
friction constant, the evaluation of the rate at the ab­
sorption boundary may be inaccurate, because of def­
iciencies in the diffusion equation at short distances. 
To test the errors in the rate derived from the diffusion 
equation, in this section we present the results of nu­
merical calculations of rates by Langevin simulations. 
The Langevin simulations give rates equivalent to rates 
which would be obtained from a solution to the Fokker­
Planck equation. The Langevin simulations are carried 
out with geometries identical to the geometries used in 
I. Consequently, in this section, errors in the diffusion 
equation are examined within the single absorber model. 
Errors introduced by the use of the single absorber ap­
proximation will be examined in Sec. III. 

To derive expressions for rate constants for diffusion 
controlled reactions in I, we solved Eq. (1) at steady 
state subject to the boundary conditions 

(3) 

(4) 

where WD(r) is the steady state solution to Eq. (1), RA 
is a critical distance within which we assume all diffus­
ing absorbates to react with unit probability, and RB 

is an outer radius which provides a source of reactants 
at the initial concentration Co. The solution to Eq. (1) 
at steady state subject to the boundary conditions given 
in Eqs. (3) and (4) was found to be 

WD(r) =JT[l +AKo(yr) + B1o(yr» , (5) 

where In(x) and Kn(x) are modified Bessel functions of the 
first and second kind of order n, and A and B are coef­
ficients whose detailed expressions are given in I [Eqs. 
(49) and (50)]. The rate constants were extracted from 
Eq. (5) from the relation 

kD = 27rRAD (dWD) • (6) 
Co dr r=RA 

In I, Eq. (6) was evaluated in a number of limits of 
which 

. yKhRA) ( ) 
hm kD = kD", = 27rRAD K. ( R ) 7 

RB-'" 0 Y A 

and 

are important to the present discussion. For finite RB 
and y the rate constant from Eqs. (5) and (6) is 

kD = 27rRADy[BlhRA) -AK1(yRA)] . (9) 

In Eqs. (6), (7), and (9) we have taken Co =JT for con­
venience. 

Because a particle moving in a viscous medium will 
only display diffusive behavior at times long compared 
with the inverse of the friction constant it is well known 
that the diffusion equation provides a poor description 
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of stochastic motion at short times and short dis­
tances. 9 To describe the distribution of particles near 
the adsorber at radius RA for times long relative to 
the time scale of molecular motions it is necessary to 
solve the Fokker-Planck equation for the full phase 
space distribution function. When particles are allowed 
to flow into and out of the surface with the parameters 
of Eq. (1) the Fokker-Planck equation is 

af 3 1 
at + u • V"f = f3mD f + f3mD U· V.J 

+ j32~2D v!f-~ +J(;:) exp(- f3mriI2). 

(10) 

In Eq. (10), f(r, u, t) is the phase space distribution 
function, m is the mass of the particles, u is the par­
ticle velocity, and f3 = (1lkB T), kB being the Boltzmann 
constant, and T being the absolute temperature. Direct 
solutions to Eq. (10) subject to absorbing boundary 
conditions are difficult to obtain. 12 To compare the 
rate constants and concentrations profiles obtained 
from Eq. (1) with Eq. (10) we found it more convenient 
to solve the equivalent Langevin equation 

du 
dt = - ~u+R(t) • 

In Eq. (11), ~ is the friction constant related to the 
diffusion constant by 

1 
~=f3mD 

(11) 

(12) 

and R(t) is a random force. To solve Eq. (11) under 
conditions appropriate for the present study we used 
the geometry shown in Fig. 1. At time t= 0, particles 
were scattered over the entire region at random so 
that the average concentration was Co and the velacities 
we thermalized to temperature T. For each integra­
tion, time step particles were added to region C to 
maintain a constant outer concentrations of Co. Re­
flecting boundary conditions were applied to region C 
at the square walls. Particles were allowed to pass 
freely between regions B and C. Particles entering 
region A were removed and counted as absorbed. To 
account for a desorption mechanism particles in region 
B were removed in each time step with probability 
AtIT, where At was the length of a time step. Par­
ticles were adsorbed onto region B according to a Pois­
son distribution with an average number of particles 
Jw(R~ - R~)At added in each time step. The Langevin 
equation was solved by methods implicit in Eq. (240) 
of Ref. 9 using Gaussian random noise for the integrated 
random force. 

To understand the parameters used in the Langevin 
simulations it is useful to consider the solution to the 
time dependent diffusion equation [Eq. (1)] .. 
W(r, t) = WD(r) + exp(- tiT) L c"Vo(a"r) exp(- a!Dt) • 

"=1 
(13) 

The coefficients Crt and a", and the function Vo(a"r) 
used in Eq. (13) are defined in the Appendix along with 
a derivation of the equation. Because rate constants 

c 

FIG. 1. The geometry used in the single absorber simulations. 

are defined at steady state we wish to solve the Lange­
vin equation at steady state. We see that one parame­
ter which will govern the rate of decay of the transient 
part of Eq. (13) is 'T"1. For small T the transient solu­
tion will decay quickly and a comparison with the steady 
state solutions will be meaningful. Consequently, in the 
Langevin simulations we chose very short lifetimes 
to desorption so that steady state comparisons could 
be made. 

The spatial concentrations used initially in the Lange­
Vin simulations are the same as the boundary conditions 
used to solve Eq. (1); namely, 

W(r,O)=Co , RA<rsRB , 

W(RA,t) =0 , t>O, 

W(RB,t)=CO , t>O. 

(14) 

(15) 

(16) 

By construction the diffusion equation and Fokker­
Planck equation concentration profiles will agree ex­
actly at t = O. The principal discrepancies between the 
Fokker-Planck and diffusion equation concentration 
profiles will occur at long times for distances r near 
RA • To observe the discrepancies between the Fokker­
Planck and diffusion equation concentration profiles, 
Langevin simulations were carried out with RA = 20, 
RB = 50, Co = 0.04, T = 300 K, m = 29166 [that of an oxy­
gen atom], D = 10-3

, J = O. 04 X 10-5
, and T= lOS; all num­

bers expressed in a. u. The concentration profile 
evaluated from a 100 trajectory study at t = 500000 a. u. 
is shown in Fig. 2. In Fig. 2, the solid line represents 
the concentration profile evaluated from the Langevin 
simulations and the dashed line gives the concentration 
evaluated with Eq. (5). The evaluated points are given 
for the Langevin case. The concentration from the 
diffusion equation underestimates the Fokker-Planck 
concentration profile in agreement with recent one­
dimensional studies of Harris. 12 The concentration 
falls to zero far more abruptly in the Fokker-Planck 
case than the diffusion case. This does not necessarily 
imply a larger absorption rate because Eq. (6) is only 
valid for diffUSion equation solutions. 
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35 
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FIG. 2. The concentration of reactants as a function of dis­
tance from the absorber. The solid line is the Langevin result 
and the dashed line is the diffusion equation result. 

Absorption rate constants were calculated from the 
Langevin simulations by evaluating the number of par­
ticles entering region A of Fig. 1 as a function of time. 
An example of a graphical analysis of the rate data is 
given in Fig. 3. In Fig. 3, RA = 2, RB = 50, Co = O. 01, T 
T=300 K, D=10-\ m=29166, J=10-s, and 7=105, all 
in a. u. The Langevin simulations consisted of 100 
trajectories. The number of particles absorbed N 
increases linearly in time from 5 x 104 to 25 X 104 a. u. 
in time, implying that a steady-state rate of absorp­
tion has been attained for 7 = 105 a. u. The rate is ob-

1.5.-----.----r----r----,----r---, 

1.0 

N 

0.5 

FIG. 3. The number of absorbed particles as a function of 
time from single absorber Langevin simulations. 

TABLE I. Rate constants as a function of dif­
fusion constant. 

1 X 10-2 

1 X 10-3 

5 X 10-4 
2 x 10-4 

1 x 10-4 
5 x 10-5 
1 x 10-5 

"a. u. 

2.25 X 10-2 

3.42x10-3 

2.03 x 10-3 

1. 05 X 10-3 

6.54 X 10-4 

4.14x10-4 
1. 54 X 10-4 

2.17 X 10-2 

3. 42x 10-3 

2.03 X 10-3 

1. 05 X 10-3 

6.54 X 10-4 

4.14x10-4 

1. 54 X 10-4 

8.99x10-4 

7.11 X 10-4 

7. 02X 10-4 
5,74 X 10-4 

4.94 X 10-4 

3.04 X 10-4 
1. 98 X 10-4 

tained from the slope of Fig. 3 and the rate constant is 
defined as this rate per unit concentration. Rate con­
stants from Langevin simulations kL are compared with 
kD [Eq. (6)J and kDoo [Eq. (7)] in Table I. The values 
used for Ra , R B , Co, m, J, T, and 7 are the same in 
Table I as in Fig. 3. There is complete agreement 
between kD and kDoo for all values of D less than 10-2. 
For D = 10-2, 1'-1 = 31. 62 so that the concentration pro­
file has not leveled off at RB = 50. Consequently, the 
behavior at RB = 50 is somewhat different than the limit­
ing case of infinite RB • For D = 10-3 or less y-I:s 10 so 
that the steady-state solution to Eq. (1) at RB = 50 is the 
same as at infinite R B • The rate constants evaluated 
from the diffusion model are nearly linear in D as can 
be understood qualitatively from Eq. (7). This linear 
behavior is not observed from the Langevin simulations. 
For large values of D, kL is nearly D independent. The 
near D independence occurs for large D because the 
small friction constant leads to nearly free translation­
al motion within the geometry of the calculation. Indeed, 

lim kL = const , (17) 
D_oo 

in contrast to the diffusion equation behavior. To make 
the comparison of kD and kL clearer we plot -logloD 
against kDlkL in Fig. 4. The ratio is largest for large 

24 

20 

16 

..J ... 
"-
... 012 

S 

4 

00 6 

FIG. 4. The ratio of the diffusion equation rate constant to the 
Fokker-Planck rate constant as a function of the diffusion con­
stant. 
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FIG. 5. The number of reacted particles as a function of time 
from multiple absorber Langevin simulations. 

values of D because of Eq. (17). As D becomes small 
the ratio appears to approach unity. Diffusion constants 
determined for physical systems tend to be on the order 
of 10-4 or 10-5 a. u. Consequently, the expressions for 
diffusion influenced rate constants developed in I can be 
expected to be sufficiently accurate for kinetic analysis 
of diffusion constant information. We can expect that 
basing a rate theory on the diffusion equation rather than 
the Fokker-Planck equation will be accurate for physical 
diffusion constants. 

III. MULTIPLE ABSORBER SIMULATIONS 

In solution kinetics, rate constants for diffusion con­
trolled reactions are extacted from diffusion constants 
in the limit that RB is taken to infinity. The infinite RB 
limit is physically appropriate for reactions in solution, 
because such reactions are always dilute owing to the 
presence of a solvent. In addition, the influence of the 
outer boundary at RB is weak for solution reactions in 
contrast to the case of diffusion in two dimensions where 
the outer boundary has a strong influence on the con­
centration profile and calculated rate constants (see 
I, Sec. III A). The infinite RB limit is the essence of 
the single absorber model discussed in Sec. II. 

To help assess the validity of the single absorber 
approximation (or infinite RB limit), we carried out a 
series of multiple absorber Langevin simulations 
to compare with the diffusion controlled reaction rate 
constants evaluated in I and in Sec. II of this work. At 

time t = 0, we dispersed 100 particles at random with 
thermalized velocities on a square two-dimensional 
surface of dimension 100x 100 a. u. We propagated 
the motions of the particles with the Langevin equation. 
In each time step, we remove and counted as reacted 
any two particles whose centers were separated by a 
distance RA • To simulate the absorption and desorp­
tion processes discussed in Sec. 11 particles were de­
sorbed with probability MIT in each time step of length 
t:.t, and an average of 104 J t:.t particles were added to 
the surface in each time step. To approximate an ex­
tended system periodic boundary conditions were im­
posed at the walls of the surface. 

In each simulation the parameters were taken to be 
RA = 2, Co = O. 01, T= 300 K, m = 29166, J = 10-6

, and 
T = 105

, all in a. u. For each diffusion constant, we ran 
100 trajectories except for D = 10-5 a. u., where ten tra­
jectories were run. The decrease in the number of 
trajectories was necessary for small diffusion con­
stants, because the computer time became prohibitive. 
For each calculation the number of reacted particles 
was measured as a function of time from t = 5 X 104 to 
t = 25 X 104 a. u. The data were then plotted an example 
of which is shown in Fig. 5 (D = 10-4 a. u.). Unlike the 
single absorber simulations (Fig. 3) no error bars are 
shown in Fig. 5, because the errors are smaller than 
the resolution of the graph. The slope of the graph of 
the number of reacted particles N as a function of time 
gives the reaction rate. To extract a rate constant from 
the rate it is necessary to determine the steady-state 
concentration of particles on the surface which in gen­
eral will differ either from Co or JT. The steady state 
concentration was determined by mOnitoring the number 
of remaining surface particles at the end of each time 
step. 

In Table II, we present the final concentration C, the 
multiabsorber rate constant kJlA along with kD and kL 

for each calculated value of D. The values of D used 
to evaluate kD and kL were twice that used for kJlA , 

because the total diffusion constant for both reactants 
are required in the single absorber model. It is im­
portant to recognize that a rigorous comparison be­
tween kJlA and kD or kL is not possible owing to the 
fact that the final concentrations are not identical. The 
meaning of J, T, and Co are not the same in the single 
and multiple absorber simulations. 

From Table II, we see that kJlA becomes independent 
of D as D gets large. This same behavior was noticed 

TABLE II. Rate constants from single absorber and multiple 
absorber simulations as a function of diffusion constant. 

IJ1 Cl 
1 X 10-2 5.1x10-3 

IX 10-3 5.2x 10-3 
5 X 10-4 5.32 X 10-3 

1 X 10-4 5.78 X 10-3 
5 X 10-5 6.15 X 10-3 

1 x 10-5 6.90 X 10-3 

~.u. 

kJlA a 

1. 33 X 10-3 
1. 35 X 10-3 

1. 27 X 10.3 

8. 97 X 10.4 

6.86 X 10-4 
2.98 x 10·' 

kD
a 

4.23 X 10.2 

5.87 X 10-3 
3.42 X 10.3 

1. 05 X 10-3 
6.54x10·' 
2.33 X 10-4 

7.11 X 10-4 
5. 74x 10-4 
4.94x10-' 
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TABLE III. The diffusion equation ratio 
[Eq. (19») and multiple absorber 
Langevin ratio of the Eley-Rideal to 
Langmwr-Hinshelwood rates. 

])& 6L 6 

1 X 10-2 0.37 0.012 
1 X 10-3 0.33 0.073 
5 x 10-4 0.36 0.12 
1 x 10-4 0.45 0.38 
5x10oii 0.54 0.61 
1x10-li 1.09 1.63 

Ia.u. 

in the single absorber Langevin simulations, and 
occurs because the particles do not exhibit any diffusive 
motion over distances on the order of the interparticle 
separations. As D decreases, kliA exhibits a depen­
dence on D, and when D is on the order of 10-4 or ur5 

a. u. (the physical range of diffusion constants) the 
agreement between the rate constants is reasonably 
good. As the diffusion constant diminishes the rate 
constant decreases resulting in a higher final surface 
concentration. 

The results presented in Table II are representative 
of the behavior of surface diffusion controlled reactions 
when T is very short. We were unable to carry out 
simulations for large T because the approach to steady­
state behavior becomes prohibatively long for large T. 

The principal effect of making T large is to increase 
,,-1. In a true multiparticle surface reaction the con­
centration profile should reach an asymptote over a 
distance on the order of the interparticle separation. 
For the multiple absorber simulations reported here that 
distance is given by Ci1

/
2

• For the diffusion constants 
used in this study, this distance ranges between 12 and 
14 a. u. which is always larger than ,,-1. Consequently, 
kliA and kD have been found to be in good agreement for 
physical values of the diffusion constant. However, for 
very large T, ,,-1 would become much larger than an in­
terparticle spacing rendering the single absorber model 
inaccurate. A more accurate representation of the 
diffusion controlled rate constant would be a model with 
finite RB where RB is taken to be 

RB=Ci1/2/2. (18) 

For large T [or small", see I, Eq. (55)] the finite RB 
rate constant reduces to kDo [Eq. (8)]. 

The multiple absorber simulations also allowed us to 
calculate the ratio of the rate of Eley-Rideal reactions 
to the rate of Langmuir-Hinshelwood reactions. The 
E ley -Rideal rate was calculated by removing all reactant 
particles located within a distance RA of particles added 
by the external flux J. This calculated ratio is com­
pared with the expression given in Eq. (79) of I, 

(19) 

where 

(20) 

Equation (19) is based on the diffusion model. The 
multiple absorber Langevin values of 0, OL, are given in 
Table III along with results evaluated from Eq. (19). 
The agreement between the multiple absorber simula­
tion ratio and the diffusion equation ratio is good for 
small values of D. As expected the agreement is poor 
for large D, because the diffusion equation becomes 
inaccurate for the reasons discussed previously. 

IV. CONCLUSIONS 

In this work, we have carried out a critical analysis 
of some of the assumptions in our recent development 
of a two-dimensional isotropic model of diffusion in­
fluenced reactions on crystal surfaces. Using Lange­
vin simulations we have found the single absorber model 
discussed in Sec. II to be well described by the diffusion 
equation for diffusion constants on the order of those 
expected for chemisorbed systems. 

By analysis of multiabsorber Langevin simulations 
we have been able to infer that the single absorber 
model for surface reactions is inappropriate for strong­
ly bound species with very long absorption lifetimes. 
For dilute weakly bound systems diffusion controlled 
rate constants can be best obtained from Eq. (7), 
whereas Eq. (8) is appropriate for strongly bound 
systems. When Eq. (8) is used RB should be taken 
from Eq. (18). 

In I, we developed expressions for the activation en­
ergy and the ratio of the Eley-Rideal to Langmuir­
Hinshelwood rates for diffusion controlled surface re­
actions at the infinite RB limit. If the finite RB limit 
is more appropriate the activation energy for the reac­
tion is identical to the activation energy for diffusion 
in the diffusion controlled case [see Eq. (8)]. In the 
infinite RB case, the activation energy for diffusion 
controlled reactions is only approximately given by the 
activation energy for diffusion [see I, Eqs. (87) to (89)]. 

For long adsorption lifetimes when RB is finite and" 
approaches zero the ratio of the Eley-Rideal to Lang­
muir-Hinshelwood rates is given by (see I, Sec. III C 
for details of such developments) 

FA 
6= FD ' 

(21) 

(22) 

As shown in I for most phYSical systems, Co is the same 
order of magnitude as JT. When Co =JT, Eq. (22) be­
comes 

6 = R~ In(RB/RA ) • 

2rrDT 
(23) 

Since T is large, 6 will be small for cases, where RB 
is taken to be finite, and the Langmuir-Hinshelwood 
mechanism will dominate. 

We are presently using the results developed in I and 
in the present work to extract rate information from cal­
culated diffusion constants. The results of these cal­
culations will appear separately. 

J. Chern. Phys., Vol. 79, No.5, 1 September 1983 

Downloaded 02 May 2013 to 131.128.70.27. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jcp.aip.org/about/rights_and_permissions



D. l. Freeman and J. D. Doll: Diffusion model for surface reactions 2349 

ACKNOWLEDGMENTS 

One of us (DLF) wishes to thank the Chemistry 
Division of Los Alamos National Laboratory for its 
hospitality and support while on sabbatical leave from 
the University of Rhode Island. We wish to thank J. 
Winterkamp of Los Alamos National Laboratory's 
Group ESS-5 for computational support. 

APPENDIX 

In this Appendix, we derive the time dependent solu­
tion to Eq. (1) subject to the boundary conditions given 
in Eqs. (14) to (16). Our treatment parallels the dis­
cussion of heat flow in an infinite hollow cylinder given 
by Luikov. 13 We also derive the short time behavior 
of the absorption rate in the infinite RB limit. 

From Eq. (1), we write 

(Al) 

where WD(r) is the steady-state solution to Eq. (1) which 
satisfies 

(A2) 

and p(r, f) is the transient solution to Eq. (1) which 
satisfies 

(A3) 

The steady-state solution was derived in I and is given 
in Eq. (5). 

The transient solution must satisfy the boundary 
conditions 

p(RA,t)=O, t>O, 

p(RB,f)=O, t> 0, 

and 

p(r,O)=CO-WD(r) , RA<rsRB • 

It is useful to write 

(A4) 

(A5) 

(A6) 

p(r,t) =j(r) exp(-eDt) . (A7) 

If we introduce Eq. (A7) into Eq. (A3), we find that 

V2j+ a2j= ° , (AB) 

where 

(A9) 

Introducing the two-dimensional Laplacian into Eq. (AB), 
it is elementary to show that 

(AIO) 

where G and H are coefficients to be determined by the 
boundary conditions, and In(x) and Yn(x) are Bessel 
functions of the first and second kind of order n. Then, 

p(r, f) = exp(- tll')[GJo(ar)+HYo(ar)] exp(- a 2Dt) • 
(All) 

Equations (A4) and (A5) imply that 

GJO(aRA ) + HYo(aRA ) = 0 , 

GJO(aRB) + HYo(aRB ) =0 • 

(A12) 

(A13) 

Equations (A12) and (A13) have nontrivial solutions only 
when 

(A14) 

Equation (Al4) has an infinite number of real roots, 13 

an so that 

'" 
p(r, f) = exp(- fiT) L [G"Jo(anr) + HnYo(anr)] exp(- a!Dt) 

n=l 

which can be rearranged to 
(A15) 

p(r,t)=exp(-tIT)L cnVo(anr)exp(-a~Dt), (Al6) 
n=l 

where 

Vo(anr) =Jo(anr)YO(anRA) -JO(anRA)YO(anr) • (A17) 

The coefficients {cn} are determined from Eq. (A6), or 

Co- WD(r) = L cnVo(anr). (AlB) 
n=l 

Using orthogonality properties of Vo(anr), 13 Eq. (A18) 
can be solved to give the coefficients 

ila;Ji(agRB) JRB 
cn = 2[J~(anRA) -J

o
2(anRB)] RA tico - WD(r)] Vo(anr)dr • 

(A19) 
The integrals in Eq. (A19) can be evaluated from tables14 

to give 

C = 1fJo(mJ1.n) rCo - J l'+ [(&)2 _,.2J-1 
n J O(J1. n) + Jo(m/J.n) l' R. 

X {JT C J o(J1.n)}l (A20) 
- 0 J O(J1. n) - J o(mJ1. n) , 

where 

(A21) 

and 

m=RBIRA • (A22) 

With Eq. (A20), the derivation of Eq. (13) is complete. 

It is useful to examine the behavior of the transient 
solution in a number of limits. From Eq. (A20), we 
immediately obtain 

limc = rrJo(mJ1.,,)Co [1- J O(J1. n ) ] 
r-O n J O(J1. n) + Jo(mJ1.n) J O(J1.n) - J o(mJ1.n) 

(A23) 
which is the nth coefficient of the tWO-dimensional 
transient diffusion equation. Another interesting limit 
is that for infinite RB • For simpliCity, we evaluate 
this limit for Co =JT. Using the relation 

lim J1. =!!! 
",-lie n m ' 

we have from Eq. (A20) , 

lim cn '" Cn'" 
RB-'" 

_ 1fJo(n1f)Co 

- Jo(::;r) +Jo(n1f) 

(A24) 

(A25) 

(A26) 
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Using 

limJo (~) = 1 , 
", .. 110 m 

Eq. (A26) becomes 

J¥­
(~:) _y2 

(A27) 

(A28) 

Using Eqs. (A16) and (A28) with the definition of the 
transient rate 

(A29) 

we obtain 

lim F t = - 4wCoDexp(- tlr) 
RB-OO 

" ~ Jt(mr) (~:r (22 I 2 

X ;~~oo!:t l-J~(n7r) (n7T) 2 exp -n 7T Dt R B ) • 
- -y 
RB (A30) 

At the infinite RB limit, we may approximate the summa­
tion in Eq. (A30) by an integration to obtain 

lim Ft~ - lim 4RB CoDexp(- tiT) 
8 8 ,,Il10 RB" 00 

100 J2( R ) 2 

X dy 1 jt( ~ ) --.-Z......... exp(-lDt) • 
./ R B - 0 Y B Y· - y" 

(A3l) 
If we replace the Bessel functions by their asymptotic 
forms 

lim JO(yRB) = [ 2R ]1/2 cos (yRB - -4
7T

) 
RB-oo 7Ty B 

(A32) 

and the cos2 [yRB-(7T/4)] terms by their average values 
Eq. (A3l) can be evaluated to give 

(A33) 

where Ej(x) is the exponential integral function. 15 At 
short times this rate is divergent 

1" 1" F ~ 2Co D 1 t 1m 1m ,=-- n-
t-O RB-oo 7T T 

(A34) 
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