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By expanding Feynman path integrals in a Fourier series a practical Mo~te Carlo method is developed 
to calculate the thermodynamic properties of interacting systems obeymg quantum Boltzmann 
statistical mechanics. Working expressions are developed to calculate ~ternal energies, ~eat . 
capacities, and quantum corrections to free energies. The method is apphed to the ~a~omc osctl~ator, 
a double-well potential, and clusters of Lennard-Jones at?m~ parametrized t~ mImIC the behaVIor of 
argon. The expansion of the path integrals in a F?urier senes IS f~~d to be rapIdly conv~rgent and the 
computational effort for quantum calculations IS found to be wlthm an or~er of m~gmtude of th~ 
corresponding classical calculations. Unlike other related methods no specIal techmques are reqUlred 
to handle systems with strong short-range repulsive forces. 

I. INTRODUCTION 

Monte Carlo simulations 1 provide an extremely valu­
able method of determining the thermodynamic properties 
of complex interacting many-body systems. At best, when 
realistic intermolecular forces are used, Monte Carlo calcu­
lations provide information which can be compared with 
experimental results or used to supplant results for which 
experiments are unavailable. At worst, when the intermole­
cular forces used are qualitative, Monte Carlo results pro­
vide a benchmark useful for comparison with analytic theor­
ies. A significant amount of the current microscopic 
understanding of the behavior ofliquids has evolved directly 
or indirectly from Monte Carlo simulations. The importance 
of the technique to modem statistical mechanics cannot be 
overemphasized. 

Until very recently Monte Carlo calculations have been 
limited to systems for which a classical mechanical descrip­
tion was adequate. Systems with significant contributions 
from low temperature vibrational motion, tunneling, parti­
cle statistics or other inherently quantum effects have been 
qualitatively treated. 

To introduce quantum effects into statistical mechani­
cal treatments of interacting many-body systems there have 
been a number of recent methods2

-
s developed which use 

Feynman path integral9 representations of the quantum sta­
tistical mechanical density matrix. In most of these applica­
tions2-5.7 the path integrals have been discretized and short 
interval approximations have been introduced. Using the 
short interval approximation, path integral methods have 
been successfully applied to a number of systems. It has been 
noted2 that systems with strongly repulsive short range in­
teractions (such as Lennard-Jones forces) are poorly treated 
in the short interval approximation. This limitation has been 
overcome by a modified short interval formulation given by 

·)Visiting StalfMember at Los Alamos National Laboratory, 1982-1983. 
b) Permanent address. 

Barker for hard core systems. For Lennard-Jones systems 
with a small finite number of quantum degrees offreedom a 
numerical matrix multiplication scheme7 has successfully 
been applied to the calculation of the particle density. We are 
unaware of any method which has been used to treat systems 
simultaneously having a large number of quantum degrees 
of freedom and potentials with strong repulsive cores. For 
such general systems the convergence difficulties associated 
with short interval approximations to path integrals imply a 
need to find alternative approaches to quantum statistical 
mechanics. 

In a recent noteS we reported a Monte Carlo approach 
to quantum Boltzmann statistical mechanics which utilized 
an alternative method of evaluating the required Feynman 
path integrals. In this method the paths were expanded in a 
Fourier series about a fixed path, and the integration over all 
paths was evaluated by an equivalent integration over Four­
ier coefficients. We showed that the integration over the 
Fourier coefficients could be evaluated by the Monte Carlo 
method introduced by Metropolis et al. 10 Because the expan­
sion of paths in a Fourier series was found to converge rapid­
ly we indicated that the computational effort in our ap­
proach was within an order of magnitude of the 
corresponding classical calculation. Furthermore in mixed 
systems with both quantum and classical degrees of freedom 
advantage could be taken by treating part of the problem 
classically. 

The purposes of the present work are threefold. First, 
we wish to show that the Fourier method can be applied to 
systems with repulsive potentials, like Lennard-Jones sys­
tems, without modification. Second, we wish to give a de­
scription of the method in more detail than was possible in a 
short note. Finally, we wish to show that the method can be 
applied to realistic interacting many-body systems. The con­
tents of the remainder of this paper are as follows. In Sec. II 
we develop the expressions for the quantum statistical me-
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5710 D. L. Freeman and J. D. Doll: Quantum Boltzmann statistical mechanics 

chanical density matrix in a Fourier representation of the 
required path integrals. We also show how the thermody­
namic properties of an interacting quantum system can be 
evaluated with Monte Carlo methods. In Sec. III we apply 
the method developed in Sec. II to calculate the internal 
energy, the free energy and the heat capacity of the linear 
harmonic oscillator, a double-well potential and clusters of 
Lennard-Jones representations of argon atoms. In Sec. IV 
we summarize our conclusions. 

II. THEORY 

In this section we develop the expressions required for 
Monte Carlo evaluations of the thermodynamic properties 
of interacting quantum many-body systems. Although some 
of the expressions developed in this section are available else­
where8 we present sufficient detail to make our approach as 
clear as possible. The development is limited to Boltzmann 
statistics. 

We consider a general N-particle system whose Hamil­
tonian is given by 

" N~ 
H = I p,.I2mi + V(rl,· .. ,rN)· (1) 

i= I 

In~. (I) r i is the coordinate of particle i whose mass is mj 

and Pi is the momentum operator for particle i. From Eq. (1) 
we define the density operator by 

p = exp{ - PIll, (2) 

where/3 = l/kB T, kB being the Boltzmann constant and T 
the absolute temperature. All equilibrium thermody~amic 
properties of a system can be evaluated in terms of p. For 
example, the internal energy (U) is given by 

(U) = Trp~. (3) 
Trp 

For Monte Carlo calculations it is convenient to evaluate the 
traces in Eq. (3) in coordinate representation. Consequently 
we need to evaluate nondiagonal elements of the density op­
erator. We then write for the density matrix elements 

(4) 

Density matrix elements are often evaluated numerically by 
discretizing integral representations of Eq. (4) and using 
short interval approximations. 2-5.

7 To allow for comparisons 
with the method we introduce shortly we now briefly review 
this approach. For convenience we let R be the collecti ve 3N­
dimensional coordinate of our many body system. Then we 
can write 

p(R;R'} = (RJ(e- PHIM)MIR') (5) 

= f d 3NR I d3NR2···d3NRM(R\e-PHfM 

X \R1)(R1\r PHfM\R2) .. · (RM\e- PHIM\R'). (6) 

For large M each factor in Eq. (6) can be replaced by the 
approximation2 

(R\e- PHIM\R')g,:(41r !£..-p)-3N/2 
M 2m 

xexp[ -M (R _;')2m _ L(V(R) + V(R'lll, (7} 
2 /3 2M j 

which becomes exact as Mbecomes infinite. As Barker2 has 
stated the approximation given in Eq. (7) will be accurate as 
long as the potential energy function V changes slowly com­
pared to the first term in the exponential. For systems with 
strongly repulsive short range interactions (e.g., Lennard­
Jones systems) the potential energy may vary too rapidly for 
Eq. (6) to be well converged. Consequently to treat the im­
portant class of systems with strongly repulsive cores it is 
important to seek alternative approaches for evaluating the 
quantum mechanical density matrix which may be more ra­
pidly convergent. 

The approach to the evaluation of the quantum density 
matrix used in this work begins with the limiting form ofEq. 
(6) when M becomes infinite. In this continuous limit the 
density matrix is written in path integral form9 

= f .@rl(u).@r2(u) ... .@rN(u) exp{ - ~ f: 
XdU[ ~ itl mj ri (u)2 + V [rl(u), ... ,rN(u)] ]}. (8) 

In Eq. (8) the path integrals are evaluated over all paths 
which connect r l to r;, r2 to r~, ... , and rN to r;". We trans­
form each path integral to an ordinary Riemann integral by 
using Feynman's trick9 of expanding the path in a Fourier 
series about a fixed path which connects to r i to r;. The exact 
nature of the fixed path is arbitrary and can be chosen to 
optimize the computational work required for a particular 
problem. For a wide variety of situations we have found it 
convenient to choose a linear fixed path connecting r, to r;. 
For this choice we write for the x component of coordinate 
ri : 

Xi(u) = Xi + (x; - Xi )ulPIi + i: akxi sin krru. (9) 
k = I /31i 

Another possible choice of fixed path will be given in the 
Appendix for systems whose motion is primarily vibrational. 
If we introduce Eq. (9) into Eq. (8) the u integration over the 
kinetic energy term in the exponential can be evaluated ana­
lytically. The resulting path integrals are replaced by inte­
grals over all Fourier components and we obtain 

p(r;, ... ,r;.,;rl, ... ,rN)=JiDI exp{ - ;;~2(rj -r:f} 

X Jl f d Jaki exp! - alJ20ij J 

xexp { - ~ f: V [r1(u), ... ,rN(U)]du}. (10) 

In Eq. (10) J is the Jacobian ofthe transformation from the 
integral over all paths to the integral over all Fourier coeffi­
cients. This Jacobian has been evaluated by Miller 1 1 in an­
other context who found 

N ( m. )3/2 '" 1 
J=n -'- n--

i = 1 21rif/3 k = I fiii(1 ki 

(11) 

In this work our only concern is the fact that J is a constant; 
i.e., independentofri and V. In Eqs. (10) and (ill (1ki is given 
by 
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FIG. 1. The width of the Gaussian distribution of Fourier coefficients as a 
function of temperature and Fourier index (m = proton mass.) 

(12) 

The aki Fourier coefficients appear in Eq. (10) both inside the 
potential energy function and with a Gaussian dependence. 
The width of the Gaussian factors increases with decreasing 

I 

temperature so that the extent of quantum behavior is relat­
ed to the magnitude of 0' ki' This can be understood by exam­
ining Fig. 1 where 0' ki is plotted against the temperature for 
k = 1, 2, and 3. At low temperature O'ki is seen to be large 
whereas O'ki approaches zero at high temperatures. Using the 
relation 

8(x)= lim _1_exp{ -x2/2tr}, (l3) 
u_o J21i 0' 

and Eqs. (10) and (11) it is clear that 

lim p(r1, ... ,rN;ri , ... ,r~) 
(J-O 

(14) 

which is the classical density. 
From Eq. (10) we now develop two alternative expres­

sions for evaluating the internal energy. The first expression 
is derived by direct evaluation ofEq. (3). The second expres­
sion uses the quantum mechanical virial theorem. From Eq. 
(3) 

(U) = f d3rl ... d 3rN p(rl,···,rN;ri,···,r~) 

rl=ri / x[ -~~_I_V~+ v(r1, ... ,rN)] : 
2 1 mi , 

rN =rN 

(15) 

We introduce Eq. (10) into Eq. (15) and truncate the product on k in Eq. (10) at an upper limit, kmax ' The derivatives can be 
evaluated analytically and we arrive at the expression 

(il)k = 3N + fd3rl ... d3rN f If d 3ak1 •.• d 3akN 
max 2P k=l 

xexp { - .f ai;l2~i} exp{ - i. i{3fl v[r1(u), ... ,rN(U)]dU} 
1= 1 Ii 0 

xexp { - .f ai;l2~i} exp { - i. i{3fl V [r1(u), ... ,rN(U)]du}, 
1= 1 Ii 0 

(16) 

where 

lim (H ) k = (U). 
~_ 00 max (17) 

Equation (16) can be evaluated using the method of Metropolis etal. lO for the integrations overr1, ... , rN andak1 , ... , akN . The 
weight function contains a one-dimensional integration over U which can be evaluated with Gauss quadrature. Gauss quadra­
ture can also be used to evaluate the additional u integrations in Eq. (16). The utility ofEq. (16) depends upon the rapidity with 
which Eq. (17) is satisfied for finite k max , and the .1:ase in performing the u integrations by Gauss quadrature. As we shall see in 
the next section for all cases we have studied (H) k differs from (U) negligibly when only a few Fourier coefficients are 

max 

included. 
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5712 D. L. Freeman and J. D. Doll: Quantum Boltzmann statistical mechanics 

As an alternative to Eq. (16) the internal energy can be evaluated using the quantal virial theorem which states that 

Trill' T A [1 ~ V v] A --A = rp -k r;·; /Trp, (18) 
Trp 2 1= I 

where Tis the kinetic energy operator. Equation (18) is valid provided that the density matrix elements used are exact. lethe 
products on k in Eq. (10) are truncated at an upper limit, kmax we then can write 

where 
N 

E(rJ, ... ,rN ) = V(rl,.··,rN ) +! I r;.V; V. 
;=1 

From the virial theorem we know that 

Although Eqs. (17) and (21) look similar it is important to recognize that in general 

(H)k
m 
.. #(;)km .. , 

(19) 

(20) 

(21) 

(22) 

and the convergence properties of Eqs. (17) and (21) may not be the same. Equation (19) is numerically easier to evaluate than 
Eq. (16), but as we shall see in the next section Eq. (16) often converges much more rapidly than Eq. (19) with respect to kmax ' 

Consequently Eq. (16) is the preferred expression in many cases. 
The constant volume heat capacity C v defined by 

(23) 

can be evaluated numerically either by finite difference methods on calculated internal energies or by direct differentiation of 
Eq. (16) or Eq. (19) with respect to {3. For example in those cases for which Eq. (19) is well converged differentiation with 
respect to {3 gives the expression 

(24) 

Equation (24) can be evaluated by the methods of Metropolis et al. 10 with Monte Carlo evaluations of the integrations on the 
coordinates and Fourier coefficients, and Gauss techniques can be applied to the one-dimensional u integrations. Whether 
finite difference techniques or direct evaluation ofEq. (24) is to be preferred is a function of the system studied. In those cases 
we have investigated, finite difference techniques have proved to be satisfactory. 

A number of techniques have been developed 12 to evaluate the free energy of an interacting many-particle system using 
classical Monte Carlo methods. Many of these classical techniques can be applied without change in the quantum case and we 
make no effort to review the extensive literature on the subject here. When classical free energies are available quantum 
corrections can be included by calculating the ratio of the quantum-mechanical partition function ZQM to the classical 
partition function ZCM' We define 
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.J = ZQM/ZCM ' 

From the fact that 

A = - kTlnZQM' 

we can write 

A = - kTln(ZCM .J ) 

=ACM - kTln.J, 

(25) 

(26) 

(27) 

(28) 

where ACM is the classical Helmholtz free energy. The ratio.J is also useful in calculating quantum corrections to the internal 
energy because 

(U) = - (a In ZQMlap)v, (29) 

so that 

(U) = (U)CM - (a~~.J )v, (30) 

where ( U) CM is the classical internal energy. To evaluate Eq. (25) with Metropolis-Monte Carlo methods we use Eq. (10) and 

obtain 

.J = fd3rl ... d 3rN f IT d 3akl ... d3akN exp{ - .f ai/2uii} exp{ - ~r V [r1(u), ... ,rN(U)]dU}/ 
k=1 1=1 Ii 0 

f d3rl •.. d 3rN f )jl d 3akl ... d 3akN exp{ - itl a~/2uii} exp{ - pVCM(rh· .. ,rN) (31) 

= f d3rl '" d 3rN f JJI d 3akl ... d 3akN exp { - itl ai/2uii} exp{ - pVCM(rl,···,rN)} 

xexp{ -~ (/Hi (V [rl(u), ... ,rN(u)] - VCM(rl,. .. ,rN))du}/fd3rl ... d 3rN f IT d3akl ... d 3akN 
Ii Jo k=1 

xexp{ - itl ai/2crki } exp{ - pVCM(rW··,rN)}· (32) 

In Eq. (32) we sample over the bare classical potential VCM (r I,···,r N)' 

III. APPLICATIONS 

In this section we illustrate the formalism developed in 
Sec. II by example calculations on a number of systems. The 
principal conclusions of this section are: 

(i) the expansion of path integrals in a Fourier series 
about a straight line path converges very rapidly for a wide 
variety of physical systems over a wide temperature range; 

(ii) the one-dimensional u integrations required for the 
evaluation of thermodynamic properties are easily evaluated 
with Gauss-Legendre quadrature using a small number of 
Gauss points; and 

(iii) the method has no special difficulties when applied 
to systems with strong short range repulsions. Some of the 
results presented here were included in the short note pub­
lished previously. 8 We repeat them to make the present work 
self-contained. 

A. The one-dimensional harmonic oscillator 

The one-dimensional harmonic oscillator is analytical­
ly solvable, and many chemical problems involve vibrational 
motion. Consequently in treating the harmonic oscillator by 
our numerical methods we will illustrate many of the fea­
tures to be expected for more complex systems. Analytically 
the internal energy of the linear harmonic oscillator is given 

by the well known expression 

(U) = Iiw + Iiw exp{ - Pliw)} , 
2 1 - exp{ - PIiw} 

(33) 

where lI) is the oscillator frequency . We can also calculate the 
internal energy ofthe oscillator either from Eq. (16) or Eq. 
(19). Because the virial theorem for the harmonic oscillator 
takes the form 

(1') = (V), (34) 

and (V) is required for Eq. (16), it is clear that Eq. (16) can­
not converge any faster than Eq. (19) with respect to the 
number of Fourier components included. Consequently we 
only examine Eq. (19) for the oscillator. In Eq. (19) all inte­
grations are Gaussian and can be evaluated analytically. The 
result is 

(l)k =-----
max kmax. 

(35) 

P- 2f3 L Bk 
k=1 

where 

(36) 
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TABLE I. The energy of the harmonic oscillator as a function ofthe number 
of Fourier coefficients [Eq. (35)]. 

kmax {3 (E) km", 

10.0 1 3.813 
3 4.661 
5 4.873 
7 4.942 
9 4.969 

11 4.982 
I3 4.989 
15 4.992 
00 5.001 

5.0 I 2.387 
3 2.506 
5 2.525 
7 2.530 
9 2.532 

11 2.533 
00 2.534 

1.0 1 1.081 
3 1.082 

00 1.082 

Notice that only odd values of k contribute to Eq. (36). The 
fact that even Fourier components do not contribute is 
unique to the harmonic oscillator and is not a consequence of 
the symmetry of the system. In Table I we give the energy of 
the harmonic oscillator as evaluated from Eq. (35) as a func­
tion of kmJ1x and /3fim. The number of Fourier coefficients 
required for convergence is a function of the temperature of 
the system. In all cases in Table I seven coefficients were 
sufficient to recover 99% of the total energy. It is important 

3 
.,r::. 
'-

" o 
E 
-'" 

/'.. 

2.0 

1.5 

~ 1.0 

0.5 

QM 

7.0 

FIG. 2. The energy of a harmonic oscillator as a function of temperature 
evaluated with classical mechanics (CM), full quantum mechanics (QM), 
and from Eq. (35) with kmax = 1 and kmax = 3. 

to recognize that at T = 0 K Eq. (35) will not be correct for 
any finite kmax • However, for low temperatures a small finite 
kmax will be adequate. To clarify this in Fig. 2 we plot 
(i) kma/fim as a function of /3fim for kmax = 1, 3, and 00, as 
well as the classical energy. As /3fim becomes infinite all 
curves differ significantly from the quantum result. As k

max 

increases the temperature at which (i) k differs signifi­
cantly from the quantum result becomes l~;'er. 

To gain further insight into the utility of our approach 
we have also evaluated Eq. (19) numerically with Monte 
Carlo methods for the harmonic oscillator. A standard Me­
tropolis-Monte Carlo algorithm was used with moves taken 
in the coordinates and Fourier coefficients simultaneously. 
The box size for the Monte Carlo moves in a k was taken to be 
Uk' The results of the energy calculation are shown in Fig. 3. 
In Fig. 3 the solid line is the analytic result [Eq. (33)] and the 
points were obtained by Monte Carlo evaluation ofEq. (19). 
Each point on the graph was determined with one million 
Monte Carlo moves. The single standard deviation error 
bars are smaller than the resolution of the figure for this case. 
For the lowest temperature point kmax was taken to be 13, 
the second lowest used kmax = 7 and the remaining points all 
used kmax = 5. The u integrations in Eq. (19) were evaluated 
by Gauss-Legendre quadrature with four kmax Gauss-Le­
gendre points included. As a rather sensitive test of these 
results we also evaluated the heat capacity Cv of the oscilla­
tor by finite difference estimates using the calculated energy 
points. The heat capacity is given in Fig. 4 where the solid 
line is the analytic result and the points include an estimate 
of the error bars. Agreement with the analytic result is found 

0.32 

0.30 

0.28 

0.26 

0.24 

'" 0 0.22 
>< 

;:; 0.20 
0 
~" 

0 

~~ 0.18 

~ 
0.16 

0.14 

0.12 

0.10 

0.08 

0.06 
0 2.0 

FIG. 3. The energy of a harmonic oscillator calculated by Monte Carlo 
evaluation ofEq. (19). The solid line is the exact result [Eq. (33)]. 
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0.9 
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CD 
0.7 .J/f. 

'" > 
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FIG. 4. The heat capacity of the harmonic oscillator evaluated by finite 
difference methods from the results depicted in Fig. 3. The solid line is the 
exact result. 

over the entire calculated temperature range. 

B. The double-well potential 

In our previous noteS we presented energy calculations 
for the double-well system defined by the potential energy 
function 

(37) 

We repeat these results here for completeness and to extend 
our previous discussion. The potential function defined in 
Eq. (37) was chosen to assess the utility of the method for 
systems with strong tunneling contributions. To approxi­
mately mimic the behavior of hydrogen bonded systems we 
took m to be the mass of a hydrogen atom and w = 0.006, 
A = 0.009 and a = 0.09 all in atomic units. The double well 
with these parameters is shown in Fig. 5. For this system the 
SchrOdinger equation can be solved numerically, and the 
first five energy levels are also shown in Fig. 5 as horizontal 
lines. Only the ground state of this system lies below the 
potential barrier, and the excitation energy to the first excit­
ed state is 0.0041 a. u. The large splitting between the ground 
and first excited state is indicative of a system with a very 
high tunneling probability. Consequently quantum effects 
can be expected to be very large in this system. In Fig. 6 we 
present the internal energy of the double well as a function of 
temperature in units of kBlfw. The dashed line is the classi­
cal energy and was obtained by classical Monte Carlo tech­
niques. The solid line was obtained by evaluation ofEq. (3) in 
energy representation with the 14 lowest energy states in­
cluded. The change in the internal energy when 13 rather 
than 14 energy states were included was less than the resolu­
tion of the figure over the calculated temperature range. The 
solid points were obtained by Monte Carlo evaluation ofEq. 
(19) with kmax set to 5. Each calculated point was evaluated 
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FIG. 5. The double-well potential and numerically determined energy lev­
els. 

using one million Monte Carlo moves. As with the harmonic 
oscillator the u integrations were evaluated with Gauss-Le-
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FIG. 6. The energy ofthe double-well potential calculated by Monte Carlo 
evaluation of Eq. (19). The solid line was obtained from Eq. (3) in energy 
representation by summation over the lowest 14 energy levels. The dashed 
line is the classical result. 
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gendre quadrature, and moves in x and ak were made simul­
taneously. The error bars associated with the calculated 
points are smaller than the resolution of the figure. The gap 
between the classical and quantum energies is very large for 
this system and was as large as a factor of two at the lowest 
calculated temperature. The Monte Carlo procedure for de­
termining quantum mechanical properties is seen to be very 
successful. It is important to recognize that the numerical 
effort in these calculations is within an order of magnitude of 
the corresponding classical calculation. 

C. Cluster systems 

The thermodynamic properties of clusters is of great 
importance to nucleation phenomena. 13 Ofparticular inter­
est is the free energy of clusters as a function of the number of 
constituent atoms which can be directly related to steady­
state nucleation rates. The calculation of the free energy of 
formation of atomic and molecular clusters will be the sub­
ject of future pUblications. In this work we use clusters as 
examples of interacting many particle systems to assess the 
utility of the methods developed in Sec. II. Cluster systems 
provide a sensitive test of our procedure because they incor­
porate realistic intermolecular forces with rotational motion 
in a many-body system. For the clusters considered in the 
present work we consider aggregates of identical atoms in­
teracting with pairwise additive Lennard-Jones interactions; 
i.e., 

n n 

V(rl,· .. ,rn ) = L v(rij) + L VI(ri)' (38) 
i<j ;= 1 

with 

(39) 

and 

(40) 

In Eq. (39) E and q are the standard Lennard-Jones param­
eters, and vl(r) in Eq. (38) and defined in Eq. (40) is a con­
straining potential. In Eq. (40) Rem is the coordinate of the 
center of mass of the cluster defined by 

1 n 

Rem =- L r i 
n i=1 

(41) 

and Rc is an external parameter. In practice Rc is chosen so 
that vl(r) is very small for associated clusters and acts to 
reflect atoms for clusters that dissociate. At very low tem­
peratures vl(r) is always unimportant. The potential vl(r) acts 
in a way which is analogous to the hard constraining wall 
used by Lee, Barker, and Abraham. 14 A fuller discussion of 
the constraining potential used in this work will be given in 
future publications on nucleation studies. For our present 
purposes it is best to take Eqs. (38H4O) as a definition of a 
particular interacting many-body system. In all the systems 
discussed here E = 119 K, q = 6.436673 a.u., and Rc = 4C7. 
The Lennard-Jones parameters are appropriate for argon. 

TABLE II. The internal energy of a diatomic Lennard-Jones system at 
T = 10 K as a function of the number of Fourier coefficients using Eq. (19). 

N 

I 10' - 3.167 ± 0.009 
2 106 - 2.946 ± 0.006 
3 4X 106 - 2.843 ± 0.001 
5 106 - 2.647 ± 0.008 
8 106 - 2.625 ± 0.006 

(U)CM O = (- 2.636 ± 0.(03) X 10-4 (U) .. ,o = - 2.36X 10-4 

• Atomic units 

1. Diatomic clusters 

We first consider the Monte Carlo evaluation of the 
quantum mechanical internal energy of diatomic clusters. 
At temperatures low enough for only the ground vibrational 
state of this system to be occupied but large compared to the 
rotational temperature of the system the internal energy can 
be estimated as that of a classical rigid rotator and a quan­
tum harmonic oscillator. For Lennard-Jones systems the 
natural frequency of vibration is given by 

W= [V"(r)/m]I12lr=req (42) 

= [57.14643 812Elma2r 12, (43) 

where req is the value of r at which vIr) is a minimum. For the 
argon system we can expect that an estimate of the internal 
energy will be given by 

(U)est = -E+ fIw + flwexp{ - {3f1w] +512/3, (44) 
2 l-exp{ - {3f1w] 

which gives - 2.36X lO-4 a.u. at lO K. In Table II we give 
(€) k

max 
as evaluated with Eq. (19) as a function of kmax • For 

comparison the classical energy of this system is 
( - 2.636 ± 0.(03) X lO-4 a.u. calculated by Monte Carlo 
integration. Notice that the quantum estimate of the internal 
energy bounds the classical energy from above as it must. In 
Table II, N is the number of Monte Carlo passes included in 
the evaluation of Eq. (19). In contrast to the quantum esti­
mate Eq. (19) predicts energies which bound the classical 
result from below which is impossible. These results indicate 
that Eq. (19) converges very slowly with respect to the num­
ber of Fourier coefficients included. The slow convergence is 
a consequence of the fact that the virial theorem is valid only 
for the trace over the exact density matrix. Evaluation of the 
trace of the virial operator over approximate density opera­
tors may be significantly in error as in Eq. (19). In Table III 
we give the energy of the diatomic cluster calculated from 
Eq. (16) as a function of kmax ' One million Monte Carlo 
points were used for each energy given in Table III. Unlike 
the virial expansion [Eq. (19)] the direct evaluation of the 
energy [Eq. (16)] converges very rapidly with respect to the 
number of Fourier coefficients and the results agree well 
with the estimate obtained from Eq. (44). The differences 
between Eq. (44) and the results in Table III are due to anhar­
monicity corrections, rotational-vibrational coupling, and 
quantum corrections to the rotational energy. 

The origin ofthe poor convergence for this system when 
the virial expressions are used can be understood by examin­
ing the virial operator 
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FIG. 7. The Lennard-Jones potential vIr) and associated virial operator A (r). 

where 

(46) 

In Fig. 7 A (r) is plotted along with vIr) for comparison. For 
r < r eq , where r eq is the value of r at which vIr) is minimum, 
A (r) becomes steeply negative. With quantum mechanical 
wanderings introduced by nonzero Fourier coefficients the 
deep negative values of A (r) greatly contribute to (l) k • 

max 

Only for very large kmax will the average coordinate contrib-
uting to (E) ~ax exceed r eq sufficiently to make Eq. (19) well 
converged. 

The poor convergence found in Eq. (19) can be expected 
for systems with potentials with large short-range repul­
sions. It is important to emphasize that the convergence of 
the density operator with kmax is excellent for systems with 
strong short-range repUlsions. This is made clear in Table 
III. The errors are incurred by use of the virial theorem for 
strongly repUlsive systems. For Lennard-Jones systems ex­
cellent results will be obtained from Eq. (16), and Eq. (19) is 
to be avoided. 

TABLE III. The internal energy of a diatomic Lennard-Jones system at 
T = 10 K as a function of the number of Fourier coefficients using Eq. (16). 

- 2.333 ± 0.003 
2 - 2.332 ± 0.005 

(U)CM' = (- 2.636 ± 0.(03) X 10-4 (U) .. ,. = - 2.36X 10-4 

• Atomic units. 

TABLE IV. The total internal energy of a 13 particle cluster of argon 
atoms at T= 10K [Eq. (16)]. 

( - 0.1 411 ± 0.000 1) X 10- 1 

2 (- 0.1413 ± 0.000 2)X 10- 1 

(U)CM' = (- 0.15580 ± 0.00003)X 10- 1 

• Atomic units. 

2. Polyatomic clusters 

To assess the applicability of the technique developed in 
Sec. II to interacting many-particle systems we have used the 
method to calculate the thermodynamic properties of polya­
tomic clusters of Lennard-Jones atoms. As in the diatomic 
case we have chosen the Lennard-Jones parameters to be 
appropriate for argon. In Table IV we give the internal ener­
gy of a 13 particle cluster of argon atoms evaluated with Eq. 
(16) at T = 10K as a function of kmax • Each calculation con­
sisted of 20 000 Monte Carlo passes used to initialize the 
system followed by 50 000 Monte Carlo passes during which 
data was accumulated. In each Monte Carlo pass the indi­
vidual atoms were moved separately using the algorithm of 
Metropolis et al. 1O The Fourier coefficients were altered si­
multaneously with the particles using Uk; as a box size. Con­
sequently a total of 650 000 Monte Carlo points were used in 
the evaluation of (U) in Table IV. The classical internal 
energy is also given in Table IV, and 100 000 Monte Carlo 
passes were used in its evaluation. From Table IV we see that 
only one Fourier coefficient is required for the quantum en­
ergy to converge to four figures at 10 K. The quantum cor­
rection to the energy is on the order of 10% at this tempera­
ture. For the kmax = 1 calculations the computer time 
required was a factor of 4.6 times longer than the classical 
calculation. In the evaluation ofEq. (16) the u integrations 
were performed with four kmax Gauss-Legendre points. Ex­
periments with larger numbers of Gauss points resulted in 
no change in the energy to the accuracy we report in Table 
IV. 

In Table V we present the ratio of the quantum to classi­
cal partition functions .d as calculated from Eq. (32) as a 
function of temperature for a 13 particle cluster. In each 
calculation kmax was set to 4 and data was accumulated with 
20 000 Monte Carlo passes. In Table VI we present.d as a 
function of the cluster size n calculated at T = 30 K. For the 
numbers presented in Table VI, kmax was set to 4 and 20 000 
Monte Carlo passes were used. From Tables V and VI we see 
that quantum effects, as measured by.d, become increasingly 
important as the temperature is lowered and as the cluster 

TABLE V. The ratio of the quantum to classical partition functions for a 
13 particle argon cluster [kmax set to 4]. 

T(K) .d 

25 0.050 ± 0.008 
30 0.15 ± 0.02 
35 0.31 ±0.02 
40 0.45 ±0.03 
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TABLE VI. The ratio of the quantum to classical partition functions for 
clusters of Ar atoms at 30 K [kmax set to 4]. 

11 .4 

10 0.31 ± 0.02 
11 0.29 ± 0.Q2 
12 0.20 ± 0.02 
13 0.15 ± 0.02 
14 0.13 ±0.02 
15 0.12 ± 0.02 
16 0.11 ±0.02 
17 0.09 ±0.01 

size increases. The inverse relation between.::1 and n arises 
because as n increases the number of the vibrational modes 
increases, whereas the importance of the classical rotational 
and translational modes remain effectively unchanged. 

IV. CONCLUSIONS 

Using Fourier representations of Feynman path inte­
grals we have developed and implemented a practical 
scheme for quantum mechanical calculations of the thermo­
dynamic properties of complex interacting many-particle 
systems. Our method utilizes the Monte Carlo algorithm 
developed by Metropolis et al.1O for classical systems and 
requires computational effort within an order of magnitude 
of the corresponding classical calculation. We have found 
that the expansion of the path integrals in a Fourier series 
converges rapidly for a variety of systems over a wide tem­
perature range. Unlike other related approaches to quantum 
statistical mechanics2

-
s.7 our approach requires no special 

treatment for the important class of systems with potentials 
having strongly repulsive cores. We have applied the method 
to one-dimensional problems with analytic or numerically 
exact results for comparison. We have also applied the meth­
od to the calculation of the thermodynamic properties of 
clusters of Lennard-l ones atoms. In all cases the results have 
been very accurate. 

Although the method we have developed can be formal­
ly applied to systems where quantum particle statistics are 
important the numerical requirements are presently limited 
to systems obeying Boltzmann statistics. Methods for ex­
tending the approach to cases where particle statistics are 
important are under study. 

We are presently applying the technique to evaluate ful­
ly quantum mechanical expressions for the free energy of 
formation of clusters and nucleation rates. The results of the 
cluster calculations will appear separately. 
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APPENDIX 

In the expressions we derived in Sec. II we evaluated the 
path integrals which occurred in Eq. (8) as a Fourier series 
about a straight line path. Although this series proved to be 
very rapidly convergent in all cases we have studied (see Sec. 
III) in some systems other choices for primary paths may be 
more convenient. For example if our system were well ap­
proximated by harmonic motion with a natural frequency w 
expansion about a classical harmonic oscillator path may be 
more convenient. This notion was also suggested by Miller. " 
For the x component of particle i the expansion of paths 
would take the form 

(x; - Xi cosh( {3fwJ)) 
xi(u) = Xi cosh(wu) +. sinh(wu) 

smh({3fwJ) 

00 • k1TU + L akxi sm -. (AI) 
k=' {3fz 

Introduction ofEq. (AI) into Eq. (8) results in the expression 

= J' exp{ - i:. miw [(tf + r;2) cosh( {3fwJ) 
i =, 2fz sinh( {3fwJ) 

- 2ri ·r:] f ii, d3akl ... d
3
akN expLt, a~/2S~i} 

xexp{ - ! f: (V [r,(u), ... ,rN(u)] 

(A2) 

where J' is a Jacobian factor independent of r i and V for all i; 

Ski = [2f3fz2/(m i (1Tk)2 + mi({3fwJf)] '/2 (A3) 

and Vo(r" ''',r N ) is the oscillator potential 

N I 2 
VoIr"~ ···,rN) = L - miw tf· (A4) 

i=' 2 
The oscillator reference has the appealing feature that the 
Gaussian width [Eq. (A3)] vanishes both for small and large 
{3. In practice Eq. (A2) has not proved to be more rapidly 
convergent than the straight line parametrization for those 
cases we have studied. 
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