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Summary: This article provides a comprehensive review of currently available treatment 

options for infections due to carbapenem-resistant enterobacteriaceae (CRE). 
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Abstract. 

Antimicrobial resistance in Gram-negative bacteria is an emerging and serious global public 

health threat. Carbapenems have been used as the “last-line” treatment for infections caused by 

resistant enterobacteriaceae, including those producing extended spectrum ß-lactamases.  

However, enterobacteriaceae that produce carbapenemases, which are enzymes that 

deactivate carbapenems and most other ß-lactam antibiotics, have emerged and are 

increasingly being reported worldwide.  Despite increasing burden, the most optimal treatment 

for carbapenem-resistant enterobacteriaceae (CRE) infections is largely unknown.  For the few 

remaining available treatment options, there is limited efficacy data to support their role in 

therapy.  Nevertheless, current treatment options include the use of older agents, such as 

polymyxins, fosfomycin, and aminoglycosides, which have been rarely used due to efficacy 

and/or toxicity concerns.  Optimization of dosing regimens and combination therapy are 

additional treatment strategies being explored.  CRE infections are associated with poor 

outcomes and high mortality.  Continued research is critically needed to determine the most 

appropriate treatment.  
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Introduction. 

 Antimicrobial resistance is globally recognized as one of the greatest threats to public 

health.  Of particular concern, are infections caused by resistant Gram-negative bacilli, which 

are increasingly being reported worldwide. The escalating burden of Gram-negative 

antimicrobial resistance is largely due to ß-lactamases, which are enzymes that bind and 

deactivate ß-lactam antibiotics, rendering them ineffective.  For years, carbapenems have been 

used successfully to treat infections due to resistant enterobacteriaceae, such as Escherichia 

Coli and Klebsiella pneumoniae, including those producing extended spectrum ß-lactamases 

(ESBLs; a subset of ß-lactamase enzymes which confer broad resistance to penicillins, 

cephalosporins, and the monobactam aztreonam).  

However, recently enterobacteriaceae producing carbapenemases (known as 

carbapenem-resistant enterobacteriaceae [CRE]) have emerged, which confer broad resistance 

to most ß-lactam antibiotics including “last-line” carbapenems.  Carbapenem resistance can 

also be conferred when porin deficiencies, which allow decreased entry of the ß-lactam into the 

cell membrane, are combined with ESBLs.[1]  The prevalence of CRE infections has incresed 

over the last decade, especially in healthcare settings and CRE have been recognized by the 

United States Centers for Disease Control and Prevention as an urgent public health threat.[2, 

3]  The Ceners for Disease Control and Prevention estimates that more than 9,000 healthcare-

assocaited infections are caused by the two most common type of CRE, carbapenem-resistant 

Klebsiella species and carbapenem-resistant Escherichia species, each year in the United 

States.[3]  CRE can cause a number of serious infection types (such as intra-abdominal 

infections, pneumonia, urinary tract infections, and device-associated infections) or 

asymptomatic colonization.[4-6]  Each year approximtaley 600 deaths result from CRE 

infections. [3]  CRE mortality rates are high and range from 18% to 60% depending on 

therapy.[7]  This may be due to delayed time to active therapy, pharmacologic limitations of 

available treatment options, and that patients with CRE infections tend to be critically ill.   
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At this time there are a limited selection of treatment options for CRE infections. 

Clinicians have been forced to re-evaluate the use of agents, which have been historically rarely 

used due to efficacy and/or toxicity concerns, such as polymyxins, fosfomycin, and 

aminoglycosides.  Additional CRE treatment strategies include optimization of dosing regimens 

and combination therapy.  This review will focus on the current treatment options for CRE 

infections.  

 

Overview of Carbapenem-resistant Enterobacteriaceae (CRE)Treatment. 

There are numerous different types of carbapenemase enzymes, each conferring 

varying spectrums of resistance.  An overview of the carbapenemase enzyme types with the 

greatest clinical importance can be found in Table 1.  In general, the presence of a 

carbapenemase confers broad resistance to most ß-lactam antibiotics including penicillins, 

cephalosporins, and the monobactam aztreonam (excluding MBLs and OXAs).[1]  In vitro 

activity of carbapenems in the setting of one of these enzymes is variable, and the exact role of 

carbapenems in infectious due to these organisms is controversial.  To further complicate 

treatment, CRE often exhibit resistance to structurally unrelated antimicrobial classes such as 

aminoglycosides and fluoroquinolones.[8]  However, aminoglycoside susceptibility can vary as a 

function of KPC strain type and co-existing aminoglycoside modifying enzymes, which are not 

tested in a traditional clinical laboratory.  The emergence of resistance during therapy is another 

emerging concern.[9, 10]  

Despite their increasing burden, the most optimal treatment for CRE infections is largely 

unknown.  At this time, there is no published data from randomized controlled trials assessing 

antimicrobial treatment options for CRE infections.  While important, in the United States at this 

time there may not be a sufficient amount of patients with serious CRE infections to conduct 

such a trial.  Therefore, much of the existing evidence is from reviews of case reports, case 

series and small retrospective studies, which have a number of inherent limitations.[11, 12]  A 
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potential CRE treatment algorithm and overviews of current treatment options can be found in 

Tables 2 and 3, respectively. 

Carbapenems. 

 Pharmacokinetic data suggests that T>MIC targets can be achieved using high-dose 

prolonged-infusion carbapenems when carbapenem MICs are relatively low (<4µg/ml) or even 

moderately elevated (8-16µg/ml).[13-17]   In a pharmacokinetic study of ten critically ill patients, 

high-dose meropenem (6000mg/day) administered by prolonged (over 4 hours)/continuous 

infusion had a high probability of target attainment (PTA) up to an MIC of 8-16µg/ml.[13]  In 

another study, the PTA for an MIC of 4µg/ml increased with prolonged-infusion (over 3 hours) 

as compared to traditional-infusion (over 30 minutes); the PTA for prolonged-infusions were 

100% (2000mg q8h) and 93% (1000mg q8h) as compared to 69% for traditional-infusion 

(1000mg q8h).[14]  At an MIC of 8µg/ml, only high-dose prolonged-infusion meropenem had a 

high PTA(85%).  

 While pharmacokinetic data appears favorable, there is only limited clinical data 

assessing the efficacy of carbapenem monotherapy in the treatment of CRE infections.  In a 

study that compiled data from eight clinical trials, in 44 patients treated with carbapenem 

monotherapy for infections due to carbapenemase-producing K. pneumoniae, treatment efficacy 

varied based on MIC.[17]  The efficacy ranged from 69% (MIC <4µg/ml), 60% (MIC 8µg/ml), to 

only 29% (MIC >8µg/ml).  Treatment efficacy when the MIC was <4µg/ml was similar to that 

observed in 22 patients with non-carbapenemase-producing K. pneumoniae infections (73%). 

The lowest mortality rate was observed in patients who received carbapenem-containing-

combination treatment (MIC <4µg/ml).  The mortality rate was lower for patients who received 

carbapenem-containing as compared to non-carbapenem regimens (12%[3/26] vs. 

41%[46/112]; P=0.006).[17]  In a recent review, the mortality rate associated with carbapenem 

monotherapy was unacceptably high (40.1%).[12]  For patients with serious infections and/or 
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who are critically ill adding another active agent may increase the probability of clinical 

response. 

 Additionally, several retrospective studies have observed lower rates of mortality with 

carbapenem-based combination therapy as compared to non-carbapenem combination 

therapy.[17-20]  The efficacy of carbapenem combination therapy also appears to be MIC 

dependent.  In a large multi-center study where high-dose prolonged-infusion meropenem was 

used (2000mg administered over >3 hours q8h) mortality rates stratified by MIC were as 

follows: 13%(2/13) for <4µg/ml, 33% (1/3) for 8µg/ml, and 35.2%(6/17) for ≥16µg/ml.[19]   In a 

large cohort study (see Table 4), the mortality rate associated with carbapenem-containing- 

combination therapy for carbapemase-producing K. pneumoniae bacteremia increased from 

19.3% (MIC<8µg/ml) to 35.5% (MIC>8µg/ml).[20].  In a review of 20 clinical studies, 

carbapenem-containing-regimens were associated with lower mortality than non-carbapenem-

containing-regimens (18.8% vs. 30.7%).[12]   While encouraging, it is important to note, that not 

all reports have focused on carbapenem-containing-regimens.  A retrospective study conducted 

from a 10-bed intensive-care-unit (ICU) showed success in 24/26(92%) patients with KPC 

infections (16 ventilator-associated pneumonias [VAP], 7 bloodstream infections, 2 urinary tract 

infections [UTI], 1 peritonitis) with the use of carbapenem-sparing-combination therapy 

regimens.[21] 

 Double-carbapenem combination treatment may be an effective option for infections 

caused by pan-drug-resistant CRE, however data is limited to selected case reports.[22, 23]  

Experimental data has shown that the KPC enzyme may have increased affinity for ertapenem 

than other carbapenems, therefore when given together; KPC preferentially deactivates 

ertapenem, which hinders degradation and improves the activity of the concomitant 

carbapenem.[24, 25]  In case reports, ertapenem plus either doripenem or meropenem has 

been used successfully to treat select pan-drug-resistant and colistin-resistant KPC-producing 

K. pneumoniae infections (bacteremia, VAP, and UTI). Double-carbapenem combination 
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treatment is a promising option, which may be most effective in combination with a third 

drug.[26]  

 

Polymyxins. Colistin (polymyxin E) and polymyxin B are considered to be the most active in 

vitro agents against CRE.[27]  Polymyxin B and colistin differ by a single amino acid.  A 

comparison of the two drugs can be found in Table 5. There are several potential advantages to 

the use of polymyxin B over colistin, many of which stem from the fact that colistin is 

administered as the inactive prodrug colistimethate (CMS).  Only a small fraction of CMS is 

converted to colistin and this conversion is slow, with maximum concentrations occurring >7 

hours after administration.[28]  As the conversion of CMS to colistin is slow and inefficient in 

patients with normal renal function the majority of CMS is cleared prior to conversion to colistin. 

Therefore, despite being dosed at a lower mg/kg/day dose, polymyxin B can achieve higher 

peak serum concentrations which are achieved much more rapidly than with colistin.[28, 29]  

Renal dose adjustments are necessary for colistin/CMS but are not required polymyxin 

B.[26] The reason for this is that there is minimal renal clearance of colistin, but the prodrug 

CMS is predominately cleared renally.[26]  As with colistin, polymyxin B undergoes extensive 

renal tubular reabsorption and is eliminated by mostly nonrenal clearance. Importantly, 

however, polymyxin B package insert dosing recommendations include vague renal dosing 

adjustments that have been followed in all of the polymyxin B literature to date. The efficacy and 

safety of non-renally adjusted polmyxin B remains unclear.  The renal clearance of CMS allows 

an advantage over polymyxin B that a higher concentration of active drug in the urine is reached 

which would make colistin/CMS a viable UTI treatment alternative.[26, 30]  Despite the potential 

advantages of polymyxin B use, the majority of clinical data to date for CRE infections has 

focused on the use of colistin. 

 The ideal dosages of colistin and polymyxin B are largely unknown, especially in the 

case of renal failure, renal replacement therapy, and critical illness.[31] Scientifically based 
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dosing recommendations can be found in Table 5.[28, 29]  For serious infections caused by 

resistant Gram-negative pathogens, high total daily doses of colistin appear to be important to 

maximize treatment efficacy.[28, 32]  In a retrospective study of 258 ICU patients treated with 

CMS, 21.7% of patients on the highest total daily dose (9 million IU/day) died as compared to 

27.8% and 38.6% patients on lower doses of 6 and 3 million IU/day, respectively 

(p=0.0011).[33]   In a retrospective study of 67 patients with Gram-negative bacteremia, the 

median colistin dose was higher in patients who achieved microbiological success (2.9 vs. 

1.5mg/kg/day; P=0.011) and 7-day survival (2.7 vs 1.5mg/kg/day; P=0.007).[32] Another 

retrospective study found similar results with polymyxin B treatment.[34]  

 Historically, neurotoxicity was an important concern with the use of polymyxins, however 

with current formulations this side effect is reported less frequently.  Patients discussed in the 

recent literature are more critically ill, ventilated, and sedated which might significantly limit the 

ability to detect neurotoxicity, which primarily manifested as parasthesias and ataxia. However, 

nephrotoxicity remains a concern as it continues to occur in >40% patients treated with 

polymyxins.[35]   While nephrotoxicity has been reported with both colistin and polymyxin B use, 

recent evidence suggests that nephrotoxicity rates might be higher with colistin use than 

polymyxin B (50-60% vs. 20-40%).[35, 36]  The use of colistin and polymyxin B at higher doses, 

which may be necessary for CRE infections, may be associated with a higher risk of 

nephrotoxicity.[32, 34]  The better outcomes associated with high dose colistin, may come at the 

cost of worsening renal function.[32]  In a retrospective study, a colistin dose of >5mg/kg of 

ideal body weight/day was independently predictive of the development of renal 

insufficiency.[37]  For polymyxin B, a retrospective cohort study of 276 patients demonstrated 

that high doses (>200mg/day) were independently associated with lower mortality (adjusted OR 

0.43; 95% CI 0.23–0.79).[34]  However, the use of ≥200mg/day was associated with a 

significantly higher risk of severe renal impairment (adjusted OR 4.51; 95% CI 1.58–12.90; 

P = 0.005).  Even when controlling for the development of moderate to severe renal 
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dysfunction, multivariate analyses showed that doses ≥200mg/day were still associated with 

decreases in mortality. 

 Another concern with the use of polymyxins is on-treatment resistance development. 

Blood isolates from one patient infected with carbapenem-resistant K. pneumoniae and treated 

with polymyxin B monotheray, showed a significantly increased polymyxin B MIC in just 5 days 

(0.75µg/ml to 1,024µg/ml).[9] Additionally, there have been reports of colistin-resistant, 

carbapenem-resistant K. pneumoniae outbreaks.[38, 39]  Therefore, polymyxins may be most 

effective as part of a combination for serious CRE infections.[31, 40]  In a recent review which 

used compiled data on 889 patients with CRE infections (bacteremia, pneumonia, intra-

abdominal infections, UTIs, and surgical site infections), the mortality rate for colistin 

monotherapy was 42.8%.[12]   A review of 55 studies found that clinical success was lower for 

colistin monotherapy as compared to colistin combination therapy for treatment of infections 

caused by KPC-producers (14% [1/7] vs. 73% [8/11]).[41]  In a recent cohort study of 36 

patients with blood stream infections due to CRE (all but two yielded both OXA-48 and CTX-M 

ESBLs), colistin based combination therapy was associated with better 28-day survival than 

non-colistin regimens (33.3% vs. 5.5%; p=0.018).[42]  

 

Tigecycline. The majority of CRE isolates remain active against tigecyline in vitro, however 

resistance to tigecycline is increasing.[43-45]  There are only limited clinical data to support use 

of tigecycline monotherapy for infections caused by CRE that demonstrate in vitro 

susceptibility.[19, 20, 41, 46, 47]  In a small number of patients with carbapenem-resistant K. 

pneumoniae, 71.4% (5/7) patients had a favorable outcome with tigecycline treatment.[41]  High 

mortality rates have been reported with the use of tigecycline monotherapy in the treatment of 

bloodstream infections due to carbapenem-resistant K. pneumoniae in two separate cohort 

studies (see Table 4).[19, 20]   Additionally, despite in vitro susceptibility, on-treatment 

resistance emergence has been described.[10, 40, 48] 
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Tigecycline may be most effective when used at higher doses and/or in combination for 

serious CRE infections, and depending on the source of the infection.[40, 49, 50]  However, 

high dose tigecycline may only transiently lead to increased plasma concentrations, as higher 

doses may lead to increased intracellular accumulation and tissue distribution.[49] In 30 

complex patients with severe intra-abdominal infections due to KPC-producing K. pneumoniae, 

high dose tigecycline in combination with colistin was associated with lower mortality as 

compared to approved dose tigecycline plus colistin.[51] In a review which used compiled data 

on patients with various types of CRE infections, the mortality rate with tigecycline monotherapy 

was 41.1%.[12]  A carbapenem-sparing regimen of tigecycline plus either gentamicin or colistin 

was effective in 92%(24/26) of ICU patients treated for KPC infections.[21]  

 

Fosfomycin. Limited data has demonstrated fosfomycin has activity against KPC-producing K. 

pneumoniae and NDM-1-producing enterobacteriaceae.[52, 53]  Fosfomycin achieves high 

urinary concentrations for prolonged time periods (after a single 3 gram dose peak urine 

concentrations of >4000µg/ml are obtained and above MIC concentrations persist for 72 

hours).[54]  Select case reports have demonstrated success of oral fosfomycin for treating UTIs 

caused by fosfomycin susceptible KPC- and NDM-producing enterobacteriaceae.[55, 56]  Two 

patients with OXA-48-producing K. pneumoniae UTIs were successfully treated with oral 

fosfomycin and colistin.[57] 

In Europe an intravenous fosfomycin formulation is available.  In a small (n=11) 

European study, intravenous fosfomycin (2-4 g q6h) in combination was associated with good 

bacteriological and clinical outcomes in all patients for various carbapenem-resistant K. 

pneumoniae infections (bacteremia, VAP, UTI, wound infections).[58]  In a report of three cases 

of KPC-producing K. pneumoniae bacteremia, intravenous fosfomycin was used as an adjunct 

“last-resort” treatment which initially led to bacteremia control, however ultimately all three 

patients failed treatment due to relapse and resistance development.[59]  The use of 
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intravenous fosfomycin monotherapy for the treatment of systemic infections may be limited due 

to the potential for the development of drug resistance during treatment.[60] 

 

Aminoglycosides.  Gentamicin is generally the most active aminoglycoside in vitro against 

carbapenem-resistant K. pneumoniae, however amikacin can be most active against other 

CRE.[46, 61, 62] Data on the use of aminoglycosides as monotherapy is limited and 

aminoglycosides monotherapy appears to be most efficacious in the treatment of UTIs.[12, 41, 

63]  In a retrospective cohort study of cases of carbapenem-resistant K. pneumoniae 

bacteriuria, treatment with an in vitro active aminoglycoside was associated with a significantly 

higher rate of microbiologic clearance as compared to either polymyxin B or tigecycline.[63]  In 

multivariate analysis, aminoglycoside treatment was independently associated with 

microbiologic clearance.   

Aminoglycoside therapy may be most appropriate as a component of combination 

therapy for infections, especially UTIs, caused by CRE.[64-66]  In the largest CRE bacteremia 

cohort study to date, similar mortality rates were observed for aminoglycoside monotherapy 

(22.2%) and combination therapy (26.5%), however only a small number of patients (n=9) were 

treated with monotherapy as compared to 68 patients treated with aminoglycoside combination 

therapy.[20] In a review of 24 cases of aminoglycoside combination therapy (most often with 

colistin, carbapenems, fluoroquinolones, and tigecycline), all patients who failed aminoglycoside 

based combination therapy had bloodstream infections.[66]  In a review of 20 clinical studies, 

the combination of an aminoglycoside and a carbapenem had the lowest mortality rate 

(11.1%).[12]  

 

Combination Therapy. Combination therapy for CRE infections may decrease mortality as 

compared to monotherapy.  It is also an important empiric consideration when a CRE is 

suspected.[18, 19, 31]  Benefits of combination therapy include reduction of initial inappropriate 
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antimicrobial therapy, potential synergistic effects, and suppression of emerging resistance.[31] 

As monotherapy options all have significant limitations (pharmacokinetics, toxicity, emergence 

of resistance), combination therapy can be an attractive option to optimize therapy.  However, 

with combination therapy there is the potential for an increased risk for the development of 

Clostridium difficile infection, colonization/infection with other resistant bacteria, and adverse 

effects such as nephrotoxicity.[11, 31]  Combination therapy leads to increased antimicrobial 

pressure and may potentiate the development of antimicrobial resistance. The benefits of 

combination therapy may outweigh the risks, and many experts recommend combination 

therapy as opposed to monotherapy for the treatment of severe CRE infections.[31, 40] 

 As previously described, emerging clinical evidence suggests that treatment with 

combination therapy may be beneficial for serious CRE infections.[12, 18-21, 41, 42, 67-69]  In 

the most comprehensive review to date, which included data on 889 patients with CRE 

infections, combination therapy with two or more in vitro active agents was associated with 

lower mortality than treatment with a single in vitro active agent (27.4%[121/441] vs. 

38.7%[134/346], p<0.001).[12]  Monotherapy resulted in mortality rates that were not 

significantly different from those in patients treated with inappropriate therapy with no in vitro 

active agents (46.1%[48/102]).  Another comprehensive review found similar mortality results 

(18.3% vs. 49.1%).[31]  Several observational studies have assessed the efficacy of 

combination therapy versus monotherapy in the treatment of bloodstream infections due to 

carbapenemase-producing K. pneumoniae (mostly KPC-producers).[18-20, 67]  A summary of 

these studies can be found in Table 4. In the first study, all patients who received combination 

therapy had favorable outcomes, while 46.7% patients who received active monotherapy 

died.[67]  The next retrospective cohort study also demonstrated  lower mortality rate with 

combination treatment (usually a carbapenem with colistin or tigecycline) compared with 

monotherapy.[18] A larger multi-center retrospective cohort study also found similar results.[19] 

Interestingly, meropenem, colistin, tigecycline combination was associated with a significant 
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reduction in mortality even in patients who received inappropriate empiric therapy (14% vs. 

61%).  In the most recent and largest cohort study to date, combination therapy again was 

associated with lower mortality than monotherapy (27.2% vs. 44.4%).[20]  Combination therapy 

was an independent predictor of survival; which was mostly due to the effectiveness of 

carbapenem-containing regimens.   

 

Emerging treatment.  An overview of emerging treatment options can be found in Table 6.  

The Food and Drug Administration approved ceftazidime-avibactam in February 2015 for the 

treatment of complicated intra-abdominal infections (cIAI) and complicated urinary tract 

infections (cUTI).[70]  It is expected that ceftazidime-avibactam will be available in the second 

quarter of 2015, however ceftazidime-avibactam received a priority review based on Phase II 

data, and as such should be reserved for patients with limited or no alternative treatment 

options.[70] 

Ceftazidime-avibactam is combination of an established broad-spectrum cephalosporin 

(ceftazidime) and a novel β-lactamase inhibitor (avibactam) with activity against class A, class 

C, and some class D β-lactamases.[71, 72]  Avibactam has activity against KPC-type 

carbapenemases and some OXA enzymes, however it has no activity against metallo- β -

lactamases (such as NDM-1).[71, 72]  In two Phase II trials, efficacy and safety rates were 

similar for ceftazidime-avibactam versus comparator drugs for the treatment of cIAI and 

cUTI.[73, 74]    For cIAI, favorable clinical response rates were observed for ceftazidime-

avibactam (2000/500 mg IV q8h) plus metronidazole (500 mg IV q8h) as compared to 

meropenem (1000 mg IV q8h; 91.2% [62/68] vs. 93.4% [71/76], p=0.06).[74]  For cUTI, 

favorable clinical response rates were observed for ceftazidime-avibactam (500/125 mg IV q8h) 

as compared to imipenem (500 mg IV q6h; 85.7% [24/28] vs. 80.6% [29/36], p=0.06).[73]  The 

most common adverse drug reactions (>10%) in trials were vomiting, nausea, constipation, and 

anxiety.[70]  In a Phase III trial, clinical cure rates for ceftazidime-avibactam were lower for 
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patients with a creatinine clearance between 30 to 50 ml/min.[70]  Additionally, seizures have 

been reported with the use of ceftazidime and as with other β-lactam antibiotics there is a risk 

for serious hypersensitivity.[70]  Phase III trails are underway assessing ceftazidime-avibactam 

for the treatment of cIAI, cUTI, and nosocomial pneumonia and results will likely be available in 

late 2015.[70] 

 

Conclusions. The burden of antimicrobial resistance among Gram-negative pathogens, 

particularly carbapenem-resistant enterobacteriaceae is increasing rapidly worldwide.  

Treatment options for serious CRE infections remains extremely limited at this time.  

Optimization of dosing of currently available agents and combination therapy may be the most 

appropriate treatment strategies at this time.  However, continued research is desperately 

needed, in particular randomized controlled trials, to determine the most appropriate treatment 

for serious CRE infections. 
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