
University of Rhode Island University of Rhode Island 

DigitalCommons@URI DigitalCommons@URI 

Chemistry Faculty Publications Chemistry 

3-8-1998 

Dynamic Path Integral Methods: A Maximum Entropy Approach Dynamic Path Integral Methods: A Maximum Entropy Approach 

Based on the Combined use of Real and Imaginary Time Quantum Based on the Combined use of Real and Imaginary Time Quantum 

Monte Carlo Data Monte Carlo Data 

Dongsup Kim 

Jimmie D. Doll 

David L. Freeman 
University of Rhode Island, dfreeman@uri.edu 

Follow this and additional works at: https://digitalcommons.uri.edu/chm_facpubs 

Citation/Publisher Attribution Citation/Publisher Attribution 
Kim, S., Doll, J. D., & Freeman, D. L. (1998). Dynamic Path Integral Methods: A Maximum Entropy Approach 
Based on the Combined Use of Real and Imaginary Time Quantum Monte Carlo Data. Journal of Chemical 
Physics, 108(10), 3871-3875. doi: 10.1063/1.475790 
Available at: http://dx.doi.org/10.1063/1.475790 

This Article is brought to you by the University of Rhode Island. It has been accepted for inclusion in Chemistry 
Faculty Publications by an authorized administrator of DigitalCommons@URI. For more information, please contact 
digitalcommons-group@uri.edu. For permission to reuse copyrighted content, contact the author directly. 

http://ww2.uri.edu/
http://ww2.uri.edu/
https://digitalcommons.uri.edu/
https://digitalcommons.uri.edu/chm_facpubs
https://digitalcommons.uri.edu/chm
https://digitalcommons.uri.edu/chm_facpubs?utm_source=digitalcommons.uri.edu%2Fchm_facpubs%2F47&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dx.doi.org/10.1063/1.475790
mailto:digitalcommons-group@uri.edu


Dynamic Path Integral Methods: A Maximum Entropy Approach Based on the Dynamic Path Integral Methods: A Maximum Entropy Approach Based on the 
Combined use of Real and Imaginary Time Quantum Monte Carlo Data Combined use of Real and Imaginary Time Quantum Monte Carlo Data 

Publisher Statement Publisher Statement 
© 1998 American Institute of Physics. 

Terms of Use 
All rights reserved under copyright. 

This article is available at DigitalCommons@URI: https://digitalcommons.uri.edu/chm_facpubs/47 

https://digitalcommons.uri.edu/chm_facpubs/47


Dynami c path integra l methods : A maximu m entrop y approac h based
on the combine d use of real and imaginar y tim e quantum
Mont e Carlo data

Dongsup Kim and J. D. Doll
Department of Chemistry, Brown University, Providence, Rhode Island 02912

David L. Freeman
Department of Chemistry, University of Rhode Island, Kingston, Rhode Island 02881

~Received 20 October 1997; accepted 5 December 1997!

A new numerical procedure for the study of finite temperature quantum dynamics is developed. The
method is based on the observation that the real and imaginary time dynamical data contain
complementary types of information. Maximum entropy methods, based on a combination of real
and imaginary time input data, are used to calculate the spectral densities associated with real time
correlation functions. Model studies demonstrate that the inclusion of even modest amounts of
short-time real time data significantly improves the quality of the resulting spectral densities over
that achievable using either real time data or imaginary time data separately. © 1998 American
Institute of Physics. @S0021-9606~98!51010-0#

I. INTRODUCTION

The Monte Carlo method1,2 has been applied to the finite
temperature quantum dynamics problem in two basic ways.
One approach is to utilize Monte Carlo methods ~or their
generalization! to calculate directly the required ‘‘real time’’
quantum dynamical correlation functions. Another approach
is to obtain the required dynamical information ‘‘indirectly’’
using suitably designed, imaginary time equilibrium simula-
tions. Both approaches have their own unique advantages
and disadvantages.

In the direct approach, conventional Monte Carlo impor-
tance sampling methods are of limited use. The well known
‘‘sign problem’’ associated with the phase oscillations of the
real time propagator, eitH /\, leads to exponentially growing
variances as the time, t, increases.3–5 If only very short time
information is required, as would be the case if we were
studying the flux autocorrelation functions for a simple bar-
rier crossing event, then brute force Monte Carlo procedures
may suffice.6 If , however, longer time data are required, then
more general approaches are necessary.

Many approaches have been proposed to defeat the sign
problem.7–10 While progress continues, the actual application
of direct methods to realistic physical systems are, at present,
rare.

In the indirect approach, the correlation functions in
imaginary time are calculated by a usual equilibrium quan-
tum Monte Carlo simulation method,3,4 and the desired real
time correlation functions are obtained by an analytic con-
tinuation procedure.11–13 The main difficulty of this method
is that the analytic continuation is numerically unstable so
that the unavoidable statistical errors of the equilibrium
Monte Carlo calculations are magnified in an uncontrollable
way. Several different approaches to deal with the numerical
instability associated with the analytic continuation have
been proposed. Among those, the maximum entropy inver-

sion method14–18,23 is the most recent and by far the most
successful. It has been applied with success to problems such
as quantum lattice models,14 the solvated electron,16 liquid
4He,17 and adsorbate vibrational lineshapes.18 A major short-
coming of the maximum entropy method is that it requires
extremely accurate imaginary time correlation functions to
obtain converged results. This implies that it is often difficult
to obtain high resolution dynamical detail.

In this paper we develop a new method which utilizes
both imaginary time and real time quantum Monte Carlo
data. The method is mainly based on the maximum entropy
method, but unlike previous approaches, it uses both real and
imaginary time data as input. In the next section, we indicate
how the real time information can be included in the maxi-
mum entropy reconstruction scheme. We focus our attention
on calculating the lineshape function, I (v), in vibrational
spectroscopy. Extension to the general quantum dynamics
problem is straightforward. In Sec. III , we demonstrate the
utility of our method on a few selected examples.

II. FORMAL DEVELOPMENTS

A generic time correlation functions, C(t), is related to
its associated spectral density, I (v), by means of a Fourier
transform relationship

C~ t !5E
2`

`

e2 ivtI ~v!dv. ~1!

As documented elsewhere,14,15 the corresponding imaginary
time correlation function, G(t)[C(2 i t ), can be written as

G~t!5E
0

`

K~t,v!I ~v!dv, ~2!
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where I (v) is the same spectral density that appears in Eq.
~1! and K(t,v) is a known integral kernel. Of relevance for
the present discussion is that K(t,v) tends to be a strongly
decaying function of the frequency,v.

Although they share acommon spectral density, the dif-
ferences between kernels of Eqs. ~1! and ~2! have profound
implications with respect to the way in which this density is
‘‘expressed.’’ Specifically, the strongly decreasing character
of the integral kernel K(t,v) implies thatG(t) preferen-
tially contains information concerning the low-frequency
components of I (v). High frequency information is obtained
only with some difficulty. On the other hand, the Fourier
transform structure of Eq. ~1! implies that C(t) preferentially
provides information about the high frequency components
of the spectral density. That is, if approached through C(t),
it is the long-time or low-frequency information that is dif-
ficult to obtain.

Within the dipole approximation, the vibrational line-
shape, I (v), can be obtained from the position autocorrela-
tion function,19 C(t)5^r (t)•r (0)& by Eq. ~1!, where r (t) is
the Heisenberg operator, i.e., r (t)5eitH /\re2 i tH /\, and ^•••&
is the thermal average, ^•••&5Tr@e2bH

•••#/Q with the par-
tition function Q. H is the system’s Hamiltonian andb the
inverse temperature,b51/kT.

C(t) can be written in multidimensional integral form
using Feynman’s path integral representation of the
propagator.20,21 The direct approach is to evaluate the multi-
dimensional integral by Monte Carlo techniques with an ap-
propriate importance sampling procedure. This approach
may not, however, be the best one for the lineshape function
calculation. For example, if I (v) contains low frequency
components, one needs C(t) over a relatively long time in
order to resolve them. This information is difficult to obtain
since the complexity in the real time Monte Carlo calculation
grows exponentially as a function of the time, t. Because
C(t) must be truncated at some finite time, tmax, and since it
also contains the statistical errors, the Fourier transform usu-
ally gives artificial defects in I (v), typically rapidly varying
side robes around peaks. Various forms of windowing func-
tions have been used to prevent these phenomena.22 Maxi-
mum entropy methods have also been used in Fourier trans-
form for the same purpose. As demonstrated in the next
section, I (v) calculated using maximum entropy method is
much better than that of the usual numerical Fourier trans-
form with the windowing functions.

The same lineshape function I (v) can be obtained by
inverse Laplace transform of the imaginary time correlation
function, G(t)[C(2 i t ),

G~t!5E
2`

`

e2vtI ~v!dv. ~3!

The numerical instability associated with the inverse Laplace
transform is controlled by the maximum entropy method.
Using the Bayesian approach of probability theory, we can
formulate the maximum entropy approach as aminimization
problem involving the objective function, Q,

Q5
1

2
x22aS, ~4!

where the usualx2 measure is given by

x25(
i j

~Gi2Ḡi !@C21# i j ~Gj2Ḡj !,  ~5!

where Ḡi5G(t i) is the Monte Carlo data and Ci j is acova-
riance matrix element describing the correlation between
data, Ḡi and Ḡj . The entropy S is defined by

S@A,m#5E dv$I ~v!2m~v!2I ~v!ln@ I ~v!/m~v!#%.

~6!

The default model m(v) should be chosen by the prior
knowledge on the solution. The regularization parametera
is removed by the Bryan’s method23 in this work. If desired,
the real timecorrelation function C(t) can beobtained by the
inverse Fourier transform from I (v).24

Unlike the direct approach, it is very difficult to get the
high frequency components of I (v) since the integral kernel
e2vt is practically zero beyond a certain frequencyv. This
implies that it is often impossible to get the overtone peaks
which are usually in high frequency region and have small
intensities. Another drawback of the maximum entropy
method is that it often fails to resolve the closely spaced
peaks.17 To overcome these difficulties, some workers have
tried the problem-specific default models constructed from
the approximate solutions and sum rules. However, for the
lineshape function calculations, it is not adequate to use the
non-constant default model. The reason is that I (v) is typi-
cally composed of several sharp Gaussian peaks and any
incorrect default model thus imposes overly severe con-
straints on the solution. One might try to improve the result
by increasing the number of imaginary time data points or
improving a numerical integration schemes. Our experience,
however, tells us that neither of those attempts change the
outcome significantly. The only previously known way to
improve the result is to calculate increasingly accurate values
for G(t). Bearing in mind the fact that the variance in
Monte Carlo calculation decreases like 1/AN where N is the
number of Monte Carlo samples, such a ‘‘brute force’’ ap-
proach may prove somewhat inefficient.

The relation between C(t) and I (v) @Eq. ~1!# is gener-
ally true for the complex time, tc5t2 i t, wheret is the real
time and t is the imaginary time. Then, Eq.~1! can be ex-
plicitly expressed in terms of t, andt,

F~ t,t!5E
2`

`

e2 ivte2vtI ~v!dv. ~7!

This is the ‘‘Fourier1Laplace’’ transform. The only modifi-
cation from Eq. ~2! is that the integral kernel changes to
e2 ivte2vt. It is convenient to use the symmetrized version
of the lineshape function, A(v)[(11e2b\v)I (v). Using
the detailed balance condition, I (2v)5e2b\vI (v), and the
fact that F(t,t) can be complex, we have two equations to
be solved simultaneously,
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Re@F~ t,t!#5E
0

`

cos~vt !
e2~t2b\/2!v1e~t2b\/2!v

e2b\v/21eb\v/2 A~v!dv,

Im@F~ t,t!#5E
0

`

sin~vt !
e~t2b\/2!v2e2~t2b\/2!v

e2b\v/21eb\v/2 A~v!dv.

~8!

One can construct two dimensional correlation function sur-
faces by the appropriate quantum Monte Carlo technique and
then use the surfaces as input data in maximum entropy re-
construction scheme. In the conventional maximum entropy
method, only F(0,t)[G(t) is used as input data. The obvi-
ous advantage of the present method is that we have more
information on the system. Al l the data are not independent
so that simply adding more data may not improve the result
in a linear fashion. In fact, Re@F(t,t)# and Im@F(t,t)# are not
independent. However, this does not mean information on
imaginary part is redundant. Both data are statistically im-
portant. The statistical importance of including Im@F(t,t)#
wil l be demonstrated in the next section. The important fact
to be emphasized is that the real and imaginary time data are
mutually complementary: using the real time data it is rela-
tively easy to obtain information on the high frequency spec-
tral components, while, conversely, imaginary time data tend
to preferentially provide information concerning low fre-
quency spectral components. It is thus quite natural to expect
that by using both real and imaginary time data we can
achieve an improved result.

III. NUMERICAL EXAMPLES

In this section, the utility of our idea is numerically dem-
onstrated for a number of simple examples. In the first
model, the lineshape function is assumed to have three
Gaussians of width 10 cm21 centered at 300 cm21,
1000 cm21, and 1800 cm21, with the relative intensity 0.1,
1, and 0.1. Each number is chosen to try to represent the
typical vibrational spectrum of hydrogen atom adsorbed on
the transition metal surfaces.18,25 The 1000 cm21 and
1800 cm21 peaks are representative of the perpendicular vi-
brational motion of the H atom ~fundamental and overtone
peak!, while the peak characteristic of the 300 cm21 is the
contribution of metal phonon modes. The time correlation
functions, F(t,t), are constructed fromA(v) and corrupted
by Gaussian noise to simulate the effects of Monte Carlo
construction. A(v), G(t), and the real part ofC(t) are
shown in Fig. 1. The temperature is set to 100 K.

Figure 2 shows the reconstructed A(v) obtained solely
from imaginary time @G(t)# data with various noise levels.
64 imaginary time data points are included in the calcula-
tions. We can see that the proper A(v) is achieved only in
the zero error limit . We also notice that, as expected, it is
much more difficult to get the small peak at high frequency
region than the peak at low frequency region using only the
imaginary time data.

The same I (v) reconstructed from purely real time
@C(t)# data by the conventional numerical Fourier trans-
form and the maximum entropy method is shown in Fig. 3 as
a function of tmax. The real time data are taken at every 1 fs.
In the conventional Fourier transform method, we have used

the windowing function, w(t)50.4210.5 cos(pt/tmax)
10.08 cos(2pt/tmax) to prevent the error due to the finite time
truncation of C(t).22 The maximum entropy method shows
superior performance over the usual Fourier transform
method. As expected, relatively long time information is
needed to correctly locate the low frequency peak. We want
to emphasize again the fact that the correct spectrum can be

FIG. 1. ~a! The first model lineshape function A(v). ~b! Imaginary time
position correlation function G(t) computed fromA(v) by Laplace trans-
form. The temperature T5100 K. ~c! Real part of the real time position
correlation function Re@C(t)# computed from A(v) by Fourier transform.

FIG. 2. Lineshape functions extracted from G(t) data for Fig. 1 using
maximum entropy method. Each G(t) is corrupted by 1%, 0.1%, 0.01%,
and 0.001% ~relative to maximum value! unbiased Gaussian noises.
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obtained only at the zero error limi t for G(t) case or long
time limi t for C(t) case and that it is extremely hard or
time-consuming to approach either of these two limits.

The complementary properties of G(t) and C(t) are
clearly illustrated in Fig. 4 which shows the lineshape func-
tions calculated by maximum entropy method using the vari-
ous data sets, ~i! G(t), ~ii ! Re@C(t)#, ~iii ! G(t)1Re@C(t)#,
and ~iv! G(t)1Re@C(t)#1Im@C(t)#, where Re@C(t)# and
Im@C(t)# are the real and imaginary part of C(t). The main
peaks are reasonably reproduced for all the cases, but cases
~i! and ~ii ! fail to capture the small peak at either high fre-
quency side or low frequency side. If G(t) and C(t) to-
gether are fed into the maximum entropy method as input
data, two minor peaks at both sides are successfully located
at the correct positions. We also see that case ~iv! performs

better than case ~iii !, which indicates the statistical impor-
tance of including the imaginary part of the real time data.
The best result can be obtained if we use all the data avail-
able which include the real and imaginary parts of F(t,t) on
2-D complex plane ~see Fig. 5!. There is no special difficulty
in calculating C(t) from A(v) using the Fourier transform,
since A(v) is numerically complete. Re@C(t)# obtained from
A(v) is shown in Fig. 6 which demonstrates the ability of
the method to ‘‘predict’ ’ the real time correlation function
only using the imaginary time data and the short time data.

The second model is composed of two closely spaced
Gaussian peaks of width 10 cm21 centered at 800 cm21 and
1000 cm21, with the same intensities. They may be thought
as the parallel and perpendicular vibrational modes of the
adsorbed hydrogen atom on the metal surface.25 The results
are similar to those of the first model. That is, the inclusion
of the real time data greatly improves the quality of the line-
shape function calculation, relative to that achievable using
imaginary time data alone ~see Fig. 7!.

FIG. 3. Lineshape functions A(v) extracted from Re@C(t)# data as a func-
tion of tmax. Re@C(t)# is corrupted by the Gaussian noise whose size is 1% of
the maximum value of Re@C(t)#. ~a! A(v) obtained by maximum entropy
method. ~b! A(v) obtained by the conventional numerical Fourier trans-
form with the windowing function w(t)50.4210.5 cos(pt/tmax)
10.08 cos(2pt/tmax).

FIG. 4. Lineshape functions A(v) extracted from the various data sets. 1%
relative Gaussian noises are added to G(t) and the Gaussian noises of 1%
relative to the maximum value of C(t) are added to C(t). tmax520 fs.

FIG. 5. Lineshape functions A(v) extracted fromF(t,t). Two dimensional
real and imaginary parts of F(t,t) have been used.tmax520 fs. The noise
levels are 1%, 5%, and 10% of the maximum value of F(t,t) for eacht.

FIG. 6. The real part of the real time correlation function Re@C(t)# obtained
from I (v) by numerical Fourier transform.I (v) for 1% noise level case in
Fig. 5 has been used for the calculation. The exact Re@C(t)# ~solid line! is
also plotted for comparison.
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IV. CONCLUSIONS

In this paper, we have developed the new numerical
method based on the maximum entropy method to investi-
gate the finite temperature quantum dynamics problems. The
method is based on the complementary nature of the imagi-
nary and real time information on the quantum system. Once
the time correlation function as a function of the imaginary
time t and the real timet has been expressed in terms of a
Fourier and Laplace transform of the spectral density, then it
is possible to use the maximum entropy method in a straight-
forward manner. We have demonstrated the advantages of
our new method for two examples representative of adsor-
bate vibrational lineshapes of metal/hydrogen systems. We
have found that ‘‘limited’ ’ real time information greatly im-
proves the usual maximum entropy scheme. By ‘‘limited’’
we generally mean information realistically available from
direct Monte Carlo methods. For our model studies, 20 fs is
roughly the time required to capture reasonably good results.
20 fs is about half of one vibrational period for both ex-
amples. Because the temperature is taken to be 100 K,
20 fs/b\ is about 0.3.

The ultimate utility of the method depends on how far
and how accurately we can get the real time information and
the expense of the real time quantum Monte Carlo calcula-
tions. We argue that the present results suggest that it may

prove computationally more efficient to include real time
data than exclusively adding Monte Carlo sampling points to
improve the imaginary time data. The new method appears
especially useful for systems whose lineshape functions have
small components in both of low and high frequency regions.
Based on our experience with the maximum entropy method,
the statistical independence of the input data is very impor-
tant. We thus want to point out that any Monte Carlo scheme
that introduces bias to the data may not be suitable to the
maximum entropy method.
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