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ABSTRACT

A graph G(V,E) is a structure used to model pairwise relations between a set

of objects. In this context, a graph is a collection of vertices (representing the

objects) and a collection of edges (representing the relation) that connect pairs of

vertices. It is possible to represent a graph using an adjacency matrix, but often

this is not the most efficient representation of the relation. In studying graph

representation, the object is to capture the structure of the graph more efficiently

using a variety of other discrete structures.

This work considers path representations of graphs. Consider a host graph, H.

A path representation [H : r : q] of a target graph G is a labeling in which each

vertex is assigned a unique path of length r found in H in such a way that if

uv ∈ E(G), then the Pr assigned to u and the Pr assigned to v have at least a Pq in

common. This study considers representations in which the host tree is the com-

plete graph on n vertices, [Kn, r, q] which will be referred to as Pr,q-representations.

This work also considers the area in graph theory known as vertex-coloring, specif-

ically coloring planar graphs, and explores a special class of planar graphs called

“coils”.
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PREFACE

In mathematics, a graph is a data structure that consists of a finite set of of

ordered pairs of vertices which represent edges. Graph theory is the area of

mathematics which studies these data structures. An active area of research

within graph theory is the study of graph representations.

Different data structures are used to capture the information contained in a

graph: adjacency lists, incidence lists, adjacency matrices, incidence matrices.

Each has with it a time complexity cost associated with performing various

operations on a graph, for example adding or removing a vertex or an edge.

Depending on the nature of the graph, certain structures are preferred over

others. If the graph is sparse, it would be preferable to use a list. If the

graph is dense (the number of edges |E| is close to the square of the number

of vertices |V 2|), it would be preferable to use a matrix. Many applications

work with graphs with special structures. In studying graph representations

we attempt to exploit this structure in order to obtain a simpler and more effi-

cient representation which in turn will reduce the costs associated with computing.

A representation of a target graph G consists of three objects, 1) a host set H,

2) an assignment function f , and 3) a conflict rule g. The assignment function

assigns a subset of the host set to each vertex of a target graph. The conflict rule

compares these assigned subsets to determine whether or not two vertices should

be adjacent in G. If, given a host set H and conflict rule g, there is a suitable

assignment function such that the graph G is induced by the conflict rule, we say

that G is [H : g]-representable.
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The first part of this dissertation will look at a special type of graph representa-

tion, the [Kn : Pr, Pq]-representation where the host graph is the complete graph

on n vertices, the vertices are labeled with paths of length r, and vertices are

adjacent if they have a path of length q in common. We share our results to date

and discuss our proposed work moving forward. This line of research provides

ample room for future work. In my dissertation I look at some general cases of

P (r, q)-representations, but spend considerable effort on P (3, 1). The immediate

goal is to classify all graphs which are P (3, 1)-representable, and eventually look

at P (4, 2)-representations.

For the second part of my dissertation I look at a special class of graphs called

planar graphs. Planar graphs are graphs that may be drawn in the plane in such

a way that no edges are crossing. Specifically, I look at a sub-class of planar

graphs called coils, a planar graph whose depth-first search tree is a path. Here,

we are not so concerned with representation but move toward producing a short

proof that this special class of coils may be colored using four colors. For more

than a century there has been interest in proving the Four-Color Theorem (4CT)

by means of a short proof. The conjecture was first posed in 1852 by Francis

Guthrie and remained open until 1976 when Appel and Haken of the University

of Illinois discovered its first proof.

The proof was the subject of much controversy, as it relied on an assumed accuracy

of computers to check almost two-thousand cases. This proof was the first of its

kind. In the years since, many mathematicians have revisited the 4CT. In 1996,

Robertson, Sanders, Seymour, and Thomas published a new computer-assisted

proof by analyzing only 633 cases.
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In 2004, Werner and Gonthier used the Coq proof assistant, a formal proof

management system developed in France, to discover a proof based on the 1996

proof, but with some original content. Although the proofs mentioned are gen-

erally accepted within the mathematics community, a short self-contained proof

is still desirable. Attempts to find such a proof have resulted in the exploration

of interesting generalizations of graph colorings, including ‘list colorings’ and

‘defective colorings’. These variations provide many interesting questions for

further research opportunities. In this part of my dissertation I make a conjecture

about a lower bound for the number of colorings that exist in coloring a coil using

only four colors and outline a proof which is self-contained and used counting

techniques.

Each part of my dissertation discusses open problems. There are many interesting

questions which remain unanswered in both areas of graph representations and

colorings, providing a lifetime worth of research opportunities.

[?, ?, ?, ?, ?, ?, ?, ?, ?, ?]
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CHAPTER 1

Graph Representations by Subgraphs

1.1 Introduction

The study of graph representations is an active research area in graph theory.

Given a graph G = (V,E), a representation of G is the following collection

of objects: (1) a set H, (2) a function f : V → P(H), and (3) a function

g : f(V ) × f(V ) → {0, 1} so that g (f(v1), f(v2)) = 1 iff (v1, v2) ∈ E. We call

H the host set, f the assignment function, and g the conflict rule. We say that

a graph G is representable under a given host set H and conflict rule g if there

exists a suitable assignment function f .

Much is known about graph representations when the conflict rule depends on

intersection between assigned subsets. Intersection Representations have been

well-studied by many authors. (See [1] for a comprehensive list.)

Certain substructures within a graph can make that graph difficult or impossible

to represent with certain host sets and conflict rules. One such example is the line

graph. In 1970, Beineke characterized the set of all such graphs. ([2])

1.2 Graphic models

A subgraph of a graph H is a graph G with V (G) ⊆ V (H) and E(G) ⊆ E(H).

We start with a host graph H and two subgraphs, a prototype R, and a quota

Q. Throughout we will assume that r is the order of R and q the order of Q. A
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subgraph of H that is isomorphic to a fixed graph C is a copy of C in H. An

(H;R,Q)-representation of a graph G is an assignment v → Rv of each vertex v

to a copy Rv of R such that

(∗) vw ∈ E(G) ⇐⇒ Rv ∩Rw contains a copy of Q.

The class of all graphs that have an (H;R,Q)-representation is [H;R,Q]. If any

one of H,R, or Q is replaced by a ∗ in this notation, then that parameter is to be

regarded as arbitrary. It is conventional to call the graph being represented the

target. To help distinguish the two levels of abstraction, it is also conventional to

refer to the vertices of the target as vertices, but to designate the vertices of the

host and its subgraphs as nodes. The subgraph Rv is the representing subgraph

for v. The universal graph Γ[H;R,Q] for [H;R,Q] has all copies of R as vertices,

with adjacency determined as in (∗).

Line graphs are a classical example.

Definition 1.2.1 Given a graph G, its line graph L(G) is a graph such that each

vertex of L(G) represents an edge of G, and two vertices of L(G) are adjacent if

and only if their corresponding edges are adjacent in G.

In 1968, Beineke ([2]) proved the following theorem, characterizing line graphs.

Theorem 1.2.2 The following statements are equivalent for a graph G.

1. G is the derived graph of some graph, that is, G is a line graph.

2. The edges of G can be partitioned into complete subgraphs in such a way that

no vertex belongs to more than two of the subraphs.
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3. The graph K1,3 is not an induced subgraph of G; and if abc and bcd are

distinct odd triangles, then a and d are adjacent.

4. None of the following nine graphs is an induced subgraph of G.

Figure 1. Set of nine forbidden subgraphs.

Here the prototype is the path P2, the path on two nodes, and the quota is P1.

The class of all line graphs arising from graphs of order ≤ n is [Kn, P2, P1]. The

class of all line graphs is [∗, P2, P1].
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1.3 Path Representation

We will now look at the structure of graphs in [∗, Pr, Pq], where Pk denotes

a path on k nodes. For simplicity, we will use the notation P(r, q) to mean

[∗, Pr, Pq] and say that a graph has a P (r, q)-representation if the graph is in P(r, q).

Proposition 1.3.1 P(r, q) ⊆ P(s, q) for all s > r.

Proof. Let G be a graph in P(r, q). Since we are unrestricted on the host graph,

attach to the end of each path Pr a vertex not used anywhere in the P (r, q)-

representation. This yields a P (r+1, q)-representation. We repeat this process for

a total of s− r times, creating a P (s, q)-representation.

Proposition 1.3.2 P(r, q) ⊆ P(r − 1, q − 1) for all q > 1.

Proof. Let G be arbitrary in P(r, q). Consider the set of all r-length paths used

in a P (r, q)-representation of G. For each Pr, form the line graph L(Pr), which is

itself a Pr−1. The collection of these line graphs become the new label set for G,

that is, if v1 had label P 1, its new label is L(P 1). For example, the path 1-2-3-4-5

is now 12-23-34-45=A-B-C-D. It is easily verifiable that vertices in the Pr-labeling

share a Pq if and only if the vertices in the Pr−1-labeling share a Pq−1. Hence, G

is in P(r − 1, q − 1).

The question arises: When is there strict containment? When is there equality?

We spent a great deal of time looking at this question. It lead us to consider

the set of line graphs, L(G) and the set of line graphs of line graphs, L2(G).

There appears to be some nesting properties associated with L and P for small

values of r and q. We are interested in exploring this idea further. We know that
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P(2, 1) = L(G) (based on their definitions.) We also know from Whitney ([11])

that with one exceptional case (the graphs K3 and K1,3 whose line graphs are

both K3) the structure of a graph G can be completely recovered from its line

graph. In other words, G is known if its adjacencies are known. This might prove

useful in further characterizing the relationships that exist between line graphs

and P (r, q)-representations.

Theorem 1.3.3 P(4, 2) ( P(3, 1).

Proof. Let H = K7 with nodes labeled 1, 2, 3, 4, A,B,C. Form two partions

X = {1, 2, 3, 4} and Y = {A,B,C}. Let the target graph G be the graph labeled

with all the P3’s formed by beginning a path in partition X, moving to partition

Y , and ending back in partition X. For example, 1-A-2 will be the label of a

vertex in G. The resulting graph G will have 18 vertices which is complete with

exception of 18 non-edges. Graph G can be partitioned into A, B and C partitions

representing all paths that use nodes A, B and C respectively. (See Figure 2.)

Notice that the induced subgraph Gc = G\C has a perfect matching of non-edges,

as does Gb = G \ B and Ga = G \ A. Also notice that the non-edges in G form

three non-adjacent cycles of length 6.

We found a P (4, 2) representation of a graph G12 on 12 vertices that contains a

perfect matching of non-edges (Figure 3). Through exhaustion (see Appendix)

we determined that this representation which uses exaclty four nodes from its

host graph is the only way (up to isomorphism) to represent G12. Since there are

only twelve unique paths using four labels it would be impossible to label three

partitions on 18 vertices since the induced graph any two partitions Gi ∪ Gj is a

copy of G12.



6

Figure 2. A P (3, 1)-representation of G.

Proposition 1.3.4 P(r, q) ⊆ P(r, q − 1) for all q > 1.

Proof. This follows from Propositions 1.3.2 and 1.3.1.

Proposition 1.3.5 P(n, 1) ⊆ P(kn, k).

Proof. Let G have a P (n, 1)-representation. For each of the n nodes used in the

Pn to label the vertex in G, say 1-2-3-...-n, replace with the path 11-...-1k21-...-2k-

...-n1-...-nk. It is easy to see that this gives to each vertex a Pkn label and if two

vertices shared a P1 in the P (n, 1)-representation, they will share a Pk. Hence, G

is in P(kn, k).

The question arises: Is P(n, s) ⊆ P(kn, ks) for s 6= 1?
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Figure 3. A P (4, 2)-representation of G12.

We know that the technique used for proving Proposition 1.3.5 will not work

for values of s > 1. This does not mean that these graphs are not P (kn, ks)-

representable, however. There may be a different method for labeling the vertices

in such a way as to get a representation. Our initial thought, however, is that the

answer to the question is negative.

Theorem 1.3.6 P(2, 1) = P(3, 2)

Proof. P(3, 2) ⊆ P(2, 1) follows from Proposition 1.3.2 so we need only show

P(2, 1) ⊆ P(3, 2). Assume G has a P (2, 1)-representation. Without loss of

generality, assume that all labels are ordered chronologically, that is, label 5-4

would be 4-5. Consider a vertex v1 labeled 1-2. v1 is adjacent to all vertices

labeled 1-x or 2-y where x 6= 2 and y 6= 1. v1 is not adjacent to any vertex labeled

w-z where w < z and w, z /∈ {1, 2}. Re-label all vertices i-j with the new label

i-A-j. v1 is now labeled with the P3 1-A-2. All vertices previously labeled 1-x or

2-y are now labeled 1-A-x or 2-A-y, respectively. All vertices previously labeled

w-z where w < z and w, z /∈ {1, 2} are re-labeled w-A-z. vi is still adjacent to
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1-A-x or 2-A-y and not adjacent to vertices labeled w-A-z.

Hence, P(2, 1) = P(3, 2).

1.4 Characterization of P (3, 1)

Theorem 1.4.1 G has a P (3, 1)-representation if and only if there exists an edge

covering of G into cliques such that each vertex belongs to exactly three cliques and

there is no K4 contained in the intersection of three cliques.

Proof. Assume that G has a P (3, 1)-labeling. Without loss of generality, assume

the size of the host graph is minimal, that is, all its n nodes are used in the

labeling of G. Each node in the host graph H represents a clique in G, that is,

K1, K2, ..., Kn. Since each vertex in G uses exactly three nodes from H in its

label, create an edge covering of G where each vertex belongs to exactly three

cliques. Since there is a P (3, 1)-labeling, there does not exist a K4 contained in

the intersection of three cliques in the covering.

Now, assume you can edge cover G into cliques such that each vertex belongs

to exactly three cliques and there is no K4 contained in the intersection of three

cliques. Label the cliques K1, K2, ..., Km and use the labels of the cliques to denote

the P3 in H with which to label each vertex. Since there are at most three vertices

in the intersection of any of the the cliques, Ka, Kb, Kc, there are three unique

paths available to label each vertex: abc, acb, and bac. Hence, G has a P (3, 1)-

labeling.

Definition 1.4.2 Let F = {K1,4, C,D,W} where
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A 4 7 10 13 19 25 28 37 55 82
B 3 3 3 3 3 2 3 2 2 1
C 3 3 3 2 2 2 1 2 1 1
D 3 2 1 2 1 2 1 1 1 1

Table 1. Values of A,B,C, and D for the set C

• K1,4 is the set of all graphs containing an induced K1,4.

• C is the set of all graphs not in K1,4 that contain a K = KA in the intersection

of three unique KA+1’s, say KB, KC, and KD such that vi ∈ (Ki \K) and

N(vi) contains an ∅i for each i = {B,C,D}. (Refer to Table 1 for values of

A,B,C,D, and note that ∅1 signifies that the vertex is adjacent to no vertices

other than those in KA. See Figure 4.)

• D is the set of all graphs not in K1,4 that have an induced D8 (a graph which

contains two non-adjacent vertices, x and y that share a neighborhood that

is itself a P6) and are of the following form: there exists a vertex z which is

not adjacent to x or y, yet it is adjacent to at least one of the vertices in the

P6=w1, w2, w3, w4, w5, w6. Vertex z has the following characteristic: adjacent

to the entire P6; or adjacent to w2 but not w3; or adjacent to w3 but not w2;

or adjacent to w4 but not w4; or adjacent to w5 but not w4. (See Figure 5.)

• W is the set of all graphs not in K1,4 that are on 7 or 8 vertices and contain a

vertex v of degree 6 or 7 respectively, such that for every clique Ka in N(v),

the induced subgraph N(v) \Ka yields either an ∅3 or a C5.

Theorem 1.4.3 If G is P (3, 1)-representable, no graph contained in the set F of

forbidden graphs is an induced subgraph of G.

Proof. K1,4 /∈ P(3, 1): Assume GK is in K1,4 such that v1 ∈ V (GK) and N(v1)

contains an induced ∅4. In any edge covering of GK , v1 is necessarily contained in
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four cliques, hence, by Theorem 1.4.1, GK has no P (3, 1)-representation.

C /∈ P(3, 1): Assume GC is in C, that is, GC contains a K = Km, contained in

three unique Km+1’s, say K1, K2, and K3. Let vi ∈ (Ki \ K). Without loss of

generality, label v1 with the path ‘1-2-3’, v2 with the path ‘4-5-6’ and v3 with the

path ‘7-8-9’. Since each vertex in K is adjacent to each vi it must contain a label

from the set A = {1, 2, 3}, a label from the set B = {4, 5, 6} and a label from the

set C = {7, 8, 9}.

The P3’s which use exactly one node from each set represent all possible labels

for each vertex in K, assuming that each node in the P3 is available. With no

restrictions, there are 3 · 3 · 3 = 27 sets of size three which contain exactly one

element from the set A, B, and C. Each of these sets of size three can be combined

to represent three unique paths from the host graph H. For example, {1, 4, 7} can

be used to form the labels 1-4-7, 1-7-4, and 4-1-7, so there are 27 · 3 = 81 paths

available to label the vertices in K, so m = 82 is not P (3, 1)-representable.

Now assume that one of the vertices, vi, is also adjacent to another vertex, wi

which is not in K. One of the nodes in the path used to label vi must also be

contained in the path used to label wi, leaving only two nodes available for use in

the labeling of the vertices in K. This leaves only 2 · 3 · 3 = 18 nodes to be used

yielding 54 unique paths available to label the vertices in K, so m = 55 is not

P (3, 1)-representable.

Now assume that the vertex vi is adjacent to not only wi but zi where wi and zi

are not adjacent. One of the nodes in the path used to label vi must be contained
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in the path used to label wi, and a different node must be contained in the path

used to label zi, leaving only 1 node available for use in the labeling of the vertices

in K. This leaves only 1 · 3 · 3 = 9 nodes to be used yielding 27 unique paths

available to label the vertices in K, so m = 28 is not P (3, 1)-representable.

If we continue in this manner and consider all the different possible adjacencies

for each vi, we see that Table 3.1 gives the various restrictions on m, and the set

C of forbidden subgraphs are not P (3, 1)-representable.

D /∈ P(3, 1): Assume GD is in D, that is, it contains an induced D8 and a vertex

z which is not adjacent to vertices x or y, both of which are adjacent to the same

P6 = (w1, w2, w3, w4, w5, w6). Yet, it is adjacent to at least one of the vertices in

the P6. Assume vertex z is adjacent to w2 yet not adjacent to w3. If there were

a P (3, 1)-labeling, there would exist an edge covering of GD in which neither x

and y were in 4 cliques. In this case, the edge covering would necessarily contain

the following six K3’s: xw1w2, xw3w4, xw5w6, yw1w2, yw3w4, and yw5w6. In

this case, w2 would be in two cliques. Since z is adjacent to w2, but not w3,

w2 would be forced to be in a clique containing the edge (w2, z) and another

containing the edge (w2, w3). Hence, w2 would necessarily be contained in four

cliques. By Theorem 1.4.1, GD has no P (3, 1)-representation. The case is similar

for z adjacent to w3 and not w2; z adjacent to w4 and not w5; and z adjacent

to w5 and not w4. Now assume that z is adjacent to the entire P6. Similar to

the argument for covering the edges between x and y and the P6, if there were a

P (3, 1)-labeling, in order to edge cover GD so that z is not in 4 cliques, the edge

covering would necessarily contain the following three additional K3’s: zw1w2,

zw3w4, and zw5w6. Hence, each vertex in the P6 would be contained in three
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cliques. However, the edges (w2, w3) and (w4, w5) would still need to be covered,

forcing these vertices to be in four cliques. Therefore, by Theorem 1.4.1, GD has

no P (3, 1)-representation.

W /∈ P(3, 1): Assume GW is in W such that v1 ∈ V (GW ) and v1 ∪N(V1) = GW .

Let K be an arbitrary clique in N(v1) and assume the induced subgraph N(v1)\K

yields an ∅3. In any edge covering of GW , v1 is contained in at least one clique

which covers the edges connecting v1 to K. In order to cover the edges connecting

v1 to each of the three vertices in the ∅3, v1 must be in three additional cliques,

hence, v1 is necessarily contained in four cliques and by Theorem 1.4.1 has no

P (3, 1)-representation. Now assume that the induced subgraph N(v1) \K yields a

C5. In this edge covering of GW , v1 is contained in at least one clique which covers

the edges connecting v1 to K. In order to cover the edges connecting v1 to the

vertices in the C5, v1 must be in three additional cliques, hence v1 is necessarily

contained in four cliques and by Theorem 1.4.1, GW has no P (3, 1)-representation.

Every induced subgraph of graph which is P (3, 1)-representable must also be

P (3, 1)-representable. Hence, if one of the graphs in F is an induced subgraph

of G, then G is not P (3, 1)-representable.

Theorem 1.4.4 If G is a tree and does not contain an induced K1,4, G has a

P (3, 1)-representation.

Proof. Assume G is a tree and does not contain an induce K1,4. Edge cover G

using each edge as a clique. Since there are no K1,4’s, each vertex is in at most

three cliques and by Theorem 1.4.1, G has a P (3, 1)-representation.
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Theorem 1.4.5 If G is a graph on 6 vertices and does not contain an induced

K1,4, then G is P (3, 1)-representable.

Proof. Assume G does not contain an induced K1,4. By Proposition 1.3.1, if G

has a P (2, 1)-representation, then it has a P (3, 1)-representation, so by Theorem

1.2.2 we need only consider the nine Beineke graphs which do not have a P (2, 1)-

representation. Six of the nine graphs are on six vertices, and it is easy to show that

these have a P (3, 1)-representation, so we will focus on the remaining three graphs.

Consider B1 = K1,3 where v0 is adjacent to v1, v2, and v3, the ‘outer vertices’.

Without loss of generality, assume v0 is labeled ‘1-2-3’, v1 is labeled ‘1- - ’,

v2 is labeled ‘2- - ’, and v3 is labeled ‘3- - ’. Let G = B1 ∪ va ∪ vb be a

graph on 6 vertices. There are 29 = 512 ways to form this union. Many of

these have an induced K1,4 or do not result in a connected graph. A large

number of them are isomorphic to each other. We considered the cases where

va and vb are adjacent, and the cases where they are not adjacent. We noted

that if either va or vb (or both) is adjacent to v0, it must also be adjacent to at

least one outer vertex in order to avoid a K1,4. We also noted that if vb is not

adjacent to v0 but is adjacent to va, vb may not be adjacent to all three outer

vertices or else there is a K1,4. In total, there were about 20 cases to check, and

in doing so, we verified that if G does not contain a K1,4, it is P (3, 1)-representable.

The remaining two graphs, B4 and B9, are on five vertices, so we need only check

that the addition of a single vertex, v, which does not result in a K1,4 is P (3, 1)-

representable. We give each graph a relaxed -P (2, 1) representation, that is, one in

which duplicate labels are allowed. Hence, each vertex has two labels. It is possible

to partition the vertices into three cliques, Ka, Kb and Kc where |Ki| ≤ 3. Label
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vertex v ‘a-b-c,and give to any vertx in Ki which is adjacent to v the additional

label i and if it is not, give to it an arbitrary unused label. Since there are no more

than three vertices in a partition, it is possible to re-order the labels to form up to

three unique paths, giving each graph a P (3, 1)-representation.

1.5 Future Work

It remains to write out the details of the proof of the following statement: If G is a

graph on 7 vertices and does not contain an induced K1,4 or an induced subgraph

from the forbidden set W , then G is P (3, 1)-representable.

Outline of proof. Six of the nine graphs are on six vertices. Five of these have

a relaxed -P (2, 1)-representation as well as a vertex set that may be partitioned

into three cliques of size less than or equal to three. Hence, these graphs are

P (3, 1)-representable. The other graph on six vertices, B7 = W6 a wheel on six

vertices does not have a relaxed -P (2, 1)-representation. The addition a single

vertex, v, adjacent only to the vertex of degree 5 is in W and does not have a

P (3, 1)-representation. In every other case, B7 ∪ v is P (3, 1)-representable.

Two of the three remaining graphs are on five vertices, B4 and B9. We checked

all the ways in which two additional vertices could be added. If the newly formed

graph does not have a K1,4, then it is P (3, 1)-representable.

The final graph B1 = K1,3 is on four vertices. We checked all the ways to add

three vertices to B1 . If the newly formed graph does not have a K1.4 and is not

in W , then it is P (3, 1)-representable.

These cases, however, are important in that we may now focus on graphs that

have size at least 8.
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Conjecture 1.5.1 A graph G is P (3, 1)-representable if and only if no graph con-

tained in the set F ∪ F ′ of forbidden graphs is an induced subgraph of G.

We are working on proving that a graph which contains no forbidden subgraphs

is P (3, 1)-representable. We have developed an ordered list of claims that build

upon each other. In proving these claims, we hope to identify what the set F ′

includes or determine that it is empty and out current list of forbidden graphs is

complete.

However, there are many questions still open regarding P (r, q)-representations.

Once we fully classify P (3, 1), we will begin to look at P (4, 2) and P (5, 3) and look

for possible generalizations.
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Figure 4. The set C of forbidden graphs.
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Figure 5. The set D of forbidden graphs.
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CHAPTER 2

Coloring Planar Graphs

2.1 Four-Coloring a Coil

A coil is an inner-triangulated graph whose depth-first search tree T (G) =

(v1, v2, . . . , vn) is a path with the property that for all i, the up-neighborhood

Ui = {vj : j < i− 1} is a subpath. We conjecture that a coil G is 4-colorable with

at least 4 · 3n−1
(
2
3

)m (3
4

)β−1
distinct colorings, where m is the number of edges

other than path edges, and β is the number of nonempty up-neighborhoods in G.

2.2 Introduction and Definitions

In this paper, we assume that G is a simple, inner-triangulated, and 2-connected

plane graph and all 3-cycles, except possibly the outer-circuit, are empty.

For C ′ = (w1, w2, . . . , wk), a cycle in G, we denote the vertices embedded in the

interior by I(C) and define G(C ′) to be the induced subgraph on I(C ′) ∪ C ′.

Let C = (v1, v2, . . . , v
∗
i ) be the outer-circuit. Induced subgraphs on the neighbor-

hoods of vertices in I(C) form cycles and those in C form paths. Whenever we

refer to the neighbors of a vertex as a cycle or a path, we’ll assume they are listed

in a clockwise direction. Starting with v1, we produce an ordering of the vertices,

T (G) = (v1, v2, . . . , vn), as they are encountered when forming a depth-first-search

tree of G. Thus, the second vertex v2 is the neighbor of v1 on the outer-circuit

clockwise of v1 and we proceed in a clockwise direction, using the rule: take the

next most clockwise neighbor that hasn’t been taken yet. The outer-circuit is the

initial subsequence of T (G).

The labeling of the vertices of G suggests an orientation of its edges - (vs, vr) is a

directed edge if and only r < s. Also the children of a vertex T (G) are given an

order that indicates the order in which they were chosen in T (G).



19

Definition 2.2.1 We consider an interior vertex vr and its neighborhood

(w1, w2, . . . , wk), where w1 is its parent in T (G) and wj is the first child. It is

clear that j > 2. The neighbors w2, w3, . . . , wj−1 of vr are referred to as its up-

neighbors and Ur = (w2, w3, . . . , wr−1) as its up-neighborhood. We define edges

of the form vsvr, where r < s− 1, as crossing edges. If T (G) is a path and all up-

neighborhoods are intervals, we say that T (G) is a coil. Thus, each up-neighborhood

is an up-interval.

Let vα be the vertex with the smallest subscript such that Uα 6= ∅. Note α ≥ 3. Let

β = n−(α−1) be the number of (not necessarily distinct) non-empty up-intervals.

We see that m, the number of crossing edges, is at most 2n− 5.

We denote the rooted full-ternary tree with n levels and root r by T . The coloring

φ assigns colors {1, 2, 3, 4} to the vertices of T according to the following rule:

r gets 1 and the three children of each parent are given distinct colors that are

different from the parent’s color. We denote by T = (T, φ) the tree T that is

colored by φ. If a proper coloring of G exists, it is represented by some path in T

from the root to level n. In this paper, we derive a minimum positive bound on

the number of such paths that depends on the number of vertices, crossing edges,

and nonempty up-intervals in G.

Definition 2.2.2 Let Uα = (v1, v2, . . . , v`α). We let T (Uα) denote the subtree of

T that consists of all of the intervals from levels 1 through `α that are colored with

at most three colors. We refer to the paths in T ∗(Uα) that extend from the root to

its leaves as interval-paths.

Definition 2.2.3 For i ≤ n, let Xi = G[{vi}
⋃
Ui] be the fan associated with vi.

Define Xn+1 to be the P3: vn, vn−1, vn−2, and Gj to be the union
n+1⋃
i=j

Xi.
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Definition 2.2.4 The up-degree of a vertex vi is the size of its up-interval; up-

deg(vi) = |Ui|.

2.3 Preliminary Lemmas

Lemma 2.3.1 A coil G on n vertices, with k crossing edges and one up-interval

has at least C = 3n−1
(
2
3

)k
proper colorings, such that the color of v1 is 1.

Proof. Note that n = k+ 2 so that 3n−1
(
2
3

)k
= 3k+1

(
2
3

)k
= 3 · 2k. G is the wheel

Wn on k + 2 vertices, and it is clear that Wn can be colored as desired.

Lemma 2.3.2 Let G be a coil on n vertices, with k crossing edges and one up-

interval Un. If k = 1, T ∗(Un) has one node. For k > 1 , T ∗(Un) has 3(2k−1 − 1)

nodes at level k. (giving 3(2k−1 − 1) interval-paths).

Proof. We are concerned only with the portion of the tree which represents the

up-interval Un, so we consider the subtree T ∗(Un) of height k. For k = 2, there

are 3 = 3(22−1 − 1) nodes at level k, so the base case holds. By induction, assume

the Lemma is true for n − 1 = k + 1 and the tree T ∗(Un−1) of height k − 1 has

3(2k−2 − 1) nodes at level k − 1.

In adding one more vertex to the coil, the up-interval Un has k vertices. We see

T ∗(Un) as an extension of T ∗(Un−1) to the kth level so that each interval-path

through the first k levels uses no more than three colors. Each node at level k− 1

has at least two children, since the k− 1 interval path from level 1 to level k− 1 is

missing at least one of the 4 colors. Also, there are exactly three nodes that have

a third child, since exactly three of the paths are missing two colors (the root node

is fixed at color 1). This gives 2(3(2k−2 − 1)) + 3 = 3(2k−1 − 1) nodes at level k as

desired.
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Lemma 2.3.3 Let G be a coil on n vertices, with k crossing edges and one up-

interval. There exists a corresponding tree T (G) that contains C = 3 · 2k full paths

from the root to level n, which represent proper colorings of G, such that the color

of v1 is 1.

Proof. Assume the root node of T ∗(Un) is colored 1. Consider the rooted subtrees

of T ∗(Un) consisting of the bottom three levels of the tree, that is, the collections

of subtrees whose roots are at level k and contains nine leaves at level k + 2. In

each of these subtrees, three of the nine leaves are colored the same color as the

root node and the remaining six leaves are colored with the remaining three colors

- two each. Note that no matter how large k is, exactly three paths will be missing

two colors.

Note that the full paths through T ∗(Un) represent colorings of G in which T (G)

is properly colored and the vertices contained in Un use at most three colors. We

have left only to remove those leaves (corresponding to vn) whose color is used in

the interval-path above it (corresponding to Un.)

Consider an interval-path through the first k levels. This path uses either 1, 2 or

3 colors.

Case 1 k = 1.

Clearly only one color is used as the interval is represented by a single node colored

1, and we keep the leaves which are colored by one of the remaining three unused

colors: 2,3 or 4. From the distribution of the nine leaves, we keep 2/3 of the

colorings, and we see that 9(2/3) = 3 · 21.

Case 2 k = 2.

Clearly each of the interval-paths use only two colors, and we keep the leaves which

are colored by one of the remaining two unused colors. From the distribution of
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the nine leaves of the sub-tree beneath a given interval-path, we keep 4/9 of the

colorings. So, there are 27 full paths, none of which used more than three colors

in the first k levels, and 4/9 of the paths corresponded to proper colorings, and we

see that 27(4/9) = 3 · 22.

Case 3 k ≥ 3.

We consider the subtrees whose roots are on level k and whose leaves are the leaves

are on level n. Exactly three of the 3(2k−1− 1) interval-paths from level 1 to level

k (see Lemma 2.3.2) use only two colors, and we keep the leaves of the subtrees

beneath those intervals which are colored by one of the remaining two unused

colors. Similar to case 2, we keep 4/9 of the colorings in these three subtrees. The

rest of the interval-paths use three colors, and we keep the leaves which are colored

the same as the remaining unused color.

In each subtree, one of the three colors in level k+ 1 is the missing color, therefore

only two of the nine nodes on level k + 1 can be colored with the missing color,

that is, we keep 2/9 of the colorings in these subtrees. This gives

3(2k−1 − 1) · 32 ·
(

3(4/9) + (3(2k−1 − 1)− 3)(2/9)

3(2k−1 − 1)

)
= 3 · 2k

colorings, as desired.

Definition 2.3.4 The color of the root node of T ∗(Un) is called the primary color

and the remaining three colors are the secondary colors. A node that has the

primary color is called a primary node and likewise, a node that has the secondary

color is called a secondary node.

Lemma 2.3.5 Let G be a coil on n vertices, with k crossing edges and one up-

interval. If k > 1, T ∗(Un) has the following distribution of nodes at level k.
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• For k even, there are Pk = 2k−1−2 primary nodes and Sk = 2k−1 secondary

nodes, with (2k − 1)/3 of each secondary node.

• For k odd, there are Pk = 2k−1− 1 primary nodes and Sk = 2k− 2 secondary

nodes, with (2k − 2)/3 of each secondary node.

Furthermore, the secondary nodes are equally distributed among the three secondary

colors.

Proof. Again, we are concerned only with the portion of the tree which represents

the up-interval, so we consider the subtree T ∗(Un) of height k. It is clear the base

case holds for k = 2 and k = 3.

From Lemma 2.3.2, we know that there are tk−1 = 3(2k−2−1) nodes at level k−1.

This total can be broken into primary nodes, Pk−1 and secondary nodes Sk−1 -

with the same number of each secondary node. Then tk−1 = Pk−1 + Sk−1. From

Lemma 2.3.2, tk = 2tk−1+3 = 2(Pk+Sk)+3. Since the root node is primary, every

path through t∗(Un) contains primary nodes. At the level k − 1, any secondary

will be extended to primary nodes at the k level, and no primary node at level

k − 1 will be extended to the primary color. So, Pk = Sk−1. Since nodes are

either primary or secondary, we know that Sk = tk − Pk = 2(Pk−1 + Sk−1) + 3 −

Pk = 2Pk−1 + 2Sk−1 + 3 − Sk−1 = 2Pk−1 + Sk−1 + 3. Using the initial values

P1 = 1, P2 = 0, P3 = 3, S1 = 0, S2 = 3, S3 = 6, solving the difference equation

yields the desired results.

By the symmetry of the tree, the distribution of the secondary nodes must be

equal.

Lemma 2.3.6 Of all the colorings in T (G), which result from Lemma 2.3.3, there

exists a collection S of size at least 3/4 of these colorings where each color class
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at level n − 1 other than the primary color is of equal size and holds at least 2/9

of the colorings in this collection.

Proof. Again, for the sake of simplicity, we assume the root node is colored 1,

that is, 1 is the primary color of T ∗(Un) and 2,3 and 4 are the secondary colors.

Let the notation s indicate the form of an interval that does not use the secondary

color s. Note that an interval may be of the form si, sisj, or sisjsk.

Let the notation (C1, C2, C3, C4) indicate the distribution of the colorings which

survive after Lemma 2.3.3. Ci gives the number of colorings that have the color

i at the n − 1 level. Given an interval-path, let φ denote the color of the bottom

node.

Case 1 k = 1.

There is only interval path, the single node colored 1 and φ = 1. This interval

is 234: 2 yields (0,0,1,1), 3 yields (0,1,0,1), and 4 yields (0,1,1,0). This leaves a

distribution of (0,2,2,2) at the n − 1 level. So, the sizes of the secondary color

classes at the n − 1 level are equal and hold at least 2/9 (in this case 1/3) of the

colorings.

Case 2 k = 2.

There are three interval paths, all starting with the primary color 1 ending in one

of each φ = 2, 3, and 4. These paths are colored 34, 24, and 23 respectively. From

φ = 2, colored 34: 3 yields (1,0,0,1) and 4 yields (1,0,1,0). From φ = 3, colored

24: 2 yields (1,0,0,1) and 4 yields (1,1,0,0). From φ = 4, colored 23: 2 yields

(1,0,1,0) and 3 yields (1,1,0,0). This leaves a distribution of (6,2,2,2) at the n− 1

level. Consider a subcollection of size 3/4 of these twelve colorings, that is, nine

colorings with distribution (3,2,2,2). The sizes of the secondary color classes at
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the n − 1 level are equal and hold at least 2/9 (in this case exactly 2/9) of the

colorings of this collection.

Case 3 k ≥ 3.

Case 3.1 k is odd.

There are 2k−1−1 interval-paths beginning with the primary color 1 and also ending

in the primary color, that is, φ = 1. Three of these are two-colored intervals.

The path 1-2-1-... is 34: 3 yields (0,1,0,1), 4 yields (0,1,1,0).

The path 1-3-1-... is 24: 2 yields (0,0,1,1), 4 yields (0,1,1,0).

The path 1-4-1-... is 23: 2 yields (0,0,1,1), 3 yields (0,1,0,1).

These three intervals yield 2(0,2,2,2).

Of the remaining interval-paths that end in 1, one-third are 2, each yielding

(0,0,1,1); one-third are 3, each yielding (0,1,0,1); and one-third are 4, each yielding

(0,1,1,0). These interval paths yield 2k−1−4
3

(0,2,2,2).

From the trees hanging beneath these interval-paths (ending in the primary color

1), we keep a combined distribution of (0,x,x,x) where x = 2k+4
3

.

There are 2k − 2 interval-paths beginning with the primary color 1, ending in a

secondary color, 2,3, or 4, that is φ = 2, 3, or 4. In one-third of these paths, φ = 2:

half of those are 3 each yielding (1,0,0,1), half are 4 each yielding (1,0,1,0). In

one-third of these paths, φ = 3: half of those are 2 each yielding (1,0,0,1), half

are 4 each yielding (1,1,0,0). In one-third of these paths, φ = 4: halfof those are

2 each yielding (1,0,1,0), half are 3 each yielding (1,1,0,0). These interval-paths

yield 2k−1−1
3

(6,2,2,2).

From the trees hanging beneath these interval-paths ending in the secondary colors

2,3 and 4, we keep a distribution of (3z,z,z,z) where z = 2k−2
3

.

This gives a total of 6z+3x colorings with the distribution (3z, z+x, z+x, z+x)

at the n − 1 level. The sizes of the secondary color classes at the n − 1 level are
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equal. Since x > z, z + x > 2z and therefore, z + x is clearly at least 2/9 of the

colorings.

Case 3.2 k is even.

There are 2k−1−2 interval paths beginning with the primary color 1 and also ending

in the primary color 1, that is, φ = 1. One-third are 2 each yielding (0,0,1,1), one-

third 3 each yielding (0,1,0,1), and one-third 4 each yielding (0,1,1,0). Combined,

these yield 2k−1−2
3

(0,2,2,2). Notice, none can be two-colored.

From the trees hanging beneath these interval paths ending is the primary color

1, we keep a weighted distribution of (0,x,x,x) where x = 2k−4
3

.

There are 2k − 1 interval-paths beginning with the primary color 1, ending in a

secondary color 2, 3 or 4, that is, φ = 2, 3, or 4. Three of these are two-colored

intervals.

The path 1-2-1-2-... in which φ = 2 is 34: 3 yields (1,0,0,1), 4 yields (1,0,1,0).

The path 1-3-1-3-... in which φ = 3 is 24: 2 yields (1,0,0,1), 4 yields (1,1,0,0).

The path 1-4-1-4-... in which φ = 4 is 23: 2 yields (1,0,1,0), 3 yields (1,1,0,0).

These three intervals yield (6,2,2,2).

Of the remaining interval-paths that end in a secondary number, one-third end

in each 2,3, and 4. In one-third of these paths, φ = 2: half are 3 each yielding

(1,0,0,1), half are 4 each yielding (1,0,1,0). In one-third of these paths, φ = 3: half

are 2 each yielding (1,0,0,1), half are 4 each yielding (1,1,0,0). In one-third of these

paths, φ = 4: half are 2 each yielding (1,0,1,0), half are 3 each yielding (1,1,0,0).

Combined, these yield 2k−1−2
3

(6,2,2,2).

From the trees hanging beneath these interval paths ending in a secondary number,

we keep a combined weighted distribution of (3z,z,z,z) where z = 2k+2
3

.

This gives a total of 6z+3x colorings with the distribution (3z, z+x, z+x, z+x)

at the n− 1 level.



27

Leaving out 3 colorings that use the primary color in level n − 1, we obtain a

collection of size 6z + 3x − 3 with distribution (3z − 3, z + x, z + x, z + x). We

see that the size of this subcollection is larger than 3/4 of 6z + 3x and that the

sizes of the secondary color classes at the n− 1 level are equal and hold 2/9 of the

colorings in this collection.

Lemma 2.3.7 Let A and B be non-negative integers, R be the residue class modulo

4 of 3(A+ 3B), and r the residue class modulo 2 of B. If A+ R
3

+ 2r
3
≤ 3B, then

there exists an integer C of size at least 3
4
(A+ 3B) such that B is at least 2

9
C.

Proof. If B ≥ 2
3
A, we let C = A+ 3B. Since

2

9
C =

2

9
(A+ 3B) ≤ 2

9
(
3

2
B + 3B) = B,

we are done.

Assume B < 2
3
A. Let C = b9

2
Bc = 9

2
B − r

2
. (Recall that we are assuming

A+ R
3

+ 2r
3
≤ 3B from the statement of the Lemma.) Thus,

C =
18B

4
− r

2
=

9B + 9B

4
− r

2

=
3(3B) + 9B

4
− r

2
≥

3(A+ R
3

+ 2r
3

) + 9B

4
− r

2

=
3A+R + 2r + 9B

4
− r

2
=

3 +R + 2r + 3(3B)

4
− r

2

=
3

4
(A+ 3B) +

R

4
+
r

2
− r

2
=

3

4
(A+ 3B) +

R

4

= d3
4

(A+ 3B)e.

And, since C = 9
2
B − r

2
, we know 2

9
C = B − r

9
≤ B.

2.4 Main Conjecture

Conjecture 2.4.1 Let G be a coil on n vertices with m crossing edges and β

nonempty up-intervals. Denote by α the least subscript of a vertex that has a
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nonempty up-interval. There is a corresponding colored tree T (G) that contains at

least C = 3n−1
(
2
3

)m (3
4

)β−1
full-paths, each of which represents a proper coloring

of G. Also, there exists a sub-collection S of these paths of size at least 3/4 · C,

where each color class at level α−1 other than the primary color Pα holds an equal

number s of colorings, where s ≥ 2/9 · |S|.

Corollary 2.4.2 Based on this conjecture, all coils are 4-colorable.

Idea for Proof. We make great strides for proving this conjecture with a number

of important lemmas and observations.

We will prove the case for Pα = 1. The proof is by induction on β.

Lemmas 2.3.3 and 2.3.6 serve as the base case. Thus let T (Gn) = T (G) from

Lemma 2.3.3 and Sn = S from Lemma 2.3.6. Assume β > 1. Set u to be the

up-degree of vα. Then n− u− 1 is the order and m− u is the number of crossing

edges of Gα+1. By induction, we have T (Gα+1) and Sα+1 that satisfy the Theorem

for β − 1, with Cα+1 = 3n−u
(
2
3

)m−u (3
4

)β−2
full-paths, each of which represents a

proper coloring of Gα+1 such that the color of v1 is 1 and Sα+1 is the sub-collection

of these paths of size at least 3/4 of Cα+1, where each color class at level α other

than Pα+1 holds an equal number of colorings, the size of which is at least 2/9 of

the colorings in Sα+1.

STEP 1 T (Uα) is the tree with height is u and is colored (as previously described)

so that the color of the children are distinct and do not equal that of the parent.

For simplicity, assume the color of the root node is 1. Then 1 is the primary color

of the interval, while {2, 3, 4} are the set of secondary colors.

There are 3u−1 full paths in T (Uα).

STEP 2 T ∗(Uα) is formed by removing (if necessary) from T (Uα) the interval-

paths that use more than three colors. As was shown in Lemma 2.3.2, T ∗(Uα) has
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3(2u−1 − 1) unique interval-paths for u > 1. For u = 1, T ∗(Uα) is the single node

colored by the primary color 1.

There are X =

{
1 for u = 1
3(2u−1 − 1) for u > 1

full paths in T ∗(Uα).

STEP 3 Form T ′(Gα+1) from T (Gα+1) by keeping Sα+1 and removing all other

full paths. Hang isomorphic copies of T ′(Gα+1) off of the leaves of T ∗(Uα) by

transposing the color of the root of T ′(Gα+1) to match the color of the corresponding

leaf in T ∗(Uα).

The resulting tree has X|Sα+1| = X ·
3

4
· 3n−u

(
2

3

)m−u(
3

4

)β−2
full paths.

STEP 4 For each node x at level α. Following the path from x back to the root

node, we encounter x1, x2, . . . , xu at levels 1 through u. Remove x (and branch

below it) if and only if the color of x is the same color as any one of the nodes

x1, x2, . . . , xu. (The ones kept are called good colorings.) When finished, we are

left with T (Gα) whose full paths represent proper colorings of the coil Gα = G.

We calculate the number C of full paths in T (Gα), each representing a proper

coloring of Gα = G after STEP 4 by considering three cases.

Case 1 u = 1

Pα = Pα+1 = 1 and Uα is an interval of type 234. We see that 3(2/9)=2/3 are

good colorings. So, there are

1 · 3

4
· 3n−1

(
2

3

)m−1(
3

4

)β−2
2

3
= 3n−1

(
2

3

)m(
3

4

)β−1
colorings, as desired.

Case 2 u = 2
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Pα = 1, X = 3 and the intervals are of type 34 (φ = 2), 24 (φ = 3), and 23 (φ = 4).

The hanging trees are transpositions of T (Gα+1), so that in the tree where φ = 2,

the color classes 1,3 and 4 each hold at least 2/9 of the colorings at level α (see the

induction hypothesis). We are keeping the colors 3 and 4, that is, we are keeping

2 · 2
9

= 4
9

= (2
3
)2 of the colorings. The argument is similar for φ = 3 and φ = 4,

leaving

3 · 3

4
·

(
3n−2

(
2

3

)m−2(
3

4

)β−2)(
2

3

)2

= 3n−1
(

2

3

)m(
3

4

)β−1
colorings, as desired.

Case 3 u ≥ 3

Three of the X = 3(2u−1 − 1) intervals use exactly two colors, one of each of the

forms 34, 24, and 23. By selection on level α below this intervals, we see that

2(2/9)=4/9 of the colorings are good. The remaining use exactly three colors and

are evenly distributed among 2, 3, and 4. Below these such intervals we keep 2/9

of the colorings. We are keeping

3
(
4
9

)
+ (3(2u−1 − 1)− 3)

(
2
9

)
3(2u−1 − 1)

=

(
2
3

)u · 3u−1
3(2u−1 − 1)

of the colorings, that is,

3(2u−1 − 1) · 3

4
·

(
3n−u

(
2

3

)m−u(
3

4

)β−2) (
2
3

)u · 3u−1
3(2u−1 − 1)

= 3n−1
(

2

3

)m(
3

4

)β−1
colorings, as desired.

It remains to show: there exists a sub-collection S of full-paths in T (Gα) of size

at least 3/4 of C, where each color class at level α− 1 other than 1 holds an equal

number of colorings, the size of which is at least 2/9 of |S|.
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Notice that after STEP 4, a node x at level α − 1 may have 0,1,2, or 3 children

remaining in T (Gα) depending on the number of its children that were trimmed.

Consider all of the leaves of color s in T ∗(Uα). In STEP 3, the trees T (Gα+1) that

are hung from those leaves, are exactly the same. So each interval-path of type

s in T (Uα) accounts for the same number of each of the colors in level α − 1 of

T (Gα). Thus, the distribution of colors at level α − 1 depends upon φ, the color

of the leaf node at level u and the type of interval-path that extends from the root

to that node.

Consider the following tables.

φ \ s 2 3 4
1 (Y,0,X,X) (Y,X,0,X) (Y,X,X,0)
2 – (X,Y,0,X) (X,Y,X,0)
3 (X,0,Y,X) – (X,X,Y,0)
4 (X,0,X,Y) (X,X,0,Y) –

Table 2. Distribution of next level upon trimming.

The sequences (C1, C2, C3, C4) in Table 2 show the distribution of the colors in row

α − 1 of T (Gα), where φ is the color of the leaf of T ∗(Uα) and s is the type of

interval-path that extends from the root to the given leaf. So that Cs is the number

of surviving colorings with color s at level α − 1 - counting multiple children of a

node at level α− 1.

Case 1 u = 2

There are three interval paths, all starting with the primary color 1 ending in

one of each φ = 2, 3, and 4. These paths are colored 34, 24, and 23 respectively.

From φ = 2, colored 34: 3 yields (X,Y,0,X) and 4 yields (X,Y,X,0). From φ = 3,



32

colored 24: 2 yields (X,0,Y,X) and 4 yields (X,X,Y,0). From φ = 4, colored 23:

2 yields (X,0,X,Y) and 3 yields X,X,0,Y). This leaves a weighted distribution of

(6X,2(X+Y),2(X+Y),2(X+Y)) at the α− 1 level.

Again, we apply Lemma 2.3.7. In the case that Y = 0, R = 0. Since 6X +R
3

=

6X + 0 = 6X+ 6Y, we are done. Assume Y≥ 1. Since 6X +R
3
≤ 6X + 1 ≤ 6X+

6Y=3(2(X+Y)), we are done.

Case 2 u ≥ 3

Case 2.1 u is odd.

There are 2u−1 − 1 interval paths from level 1 through level u beginning with the

primary color 1 and also ending in the primary color, that is, φ = 1. Three of

these are two-colored intervals. Considering the subtrees T (Gα+1) hanging from

these vertices at level u, we use φ = 1 and Table 1.

The path 1-2-1-... is 34: 3 yields (Y,X,0,X), 4 yields (Y,X,X,0).

The path 1-3-1-... is 24: 2 yields (Y,0,X,X), 4 yields (Y,X,X,0).

The path 1-4-1-... is 23: 2 yields (Y,0,X,X), 3 yields (Y,X,0,X).

These three intervals yield 2(3Y,2X,2X,2X).

Of the remaining intervals that end in 1, one-third are 2 each yielding (Y,0,X,X),

one-third are 3 each yielding (Y,X,0,X), and one-third are 4 each yielding

(Y,X,X,0). These interval paths yield 2u−1−4
3

(3Y,2X,2X,2X).

Thus, from the trees hanging beneath these interval paths ending in the primary

color 1, we keep a combined weighted distribution of 2u−1+2
3

(3Y,2X,2X,2X).

There are 2u − 2 interval paths beginning with the primary color 1, ending in a

secondary color, 2,3, or 4, that is φ = 2, 3, or 4. Due to symmetry, in one-third of

these paths, φ = 2. Also due to symmetry, half are 3 each yielding (X,Y,0,X), half

are 4 each yielding (X,Y,X,0). In one-third of these paths, φ = 3: half are 2 each
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yielding (X,0,Y,X), half are 4 each yielding (X,X,Y,0). In one-third of these paths,

φ = 4: half are 2 each yielding (X,0,X,Y), half are 3 each yielding (X,X,0,Y). These

interval paths yield 2u−1−1
3

(6X,2(X+Y),2(X+Y),2(X+Y)).

This leaves a total weighted distribution of 2u−1−1
3

(6X+3Y,4X+2Y, 4X+2Y,

4X+2Y) + (3Y,2X,2X,2X) at the α− 1 level.

Here, we let A = 2u−1−1
3

(6X+3Y) + 3Y and B = 2u−1−1
3

(4X+2Y) + 2X. Applying

Lemma 2.3.7, and noticing that B is divisible by 2, we need only show that A+R
3
≤

3B which is equivalent to showing

R

3
≤ (2u−1 − 1)(2X) + (2u−1 − 4)Y + 6X

which is easily verified.

Case 2.2 u is even.

There are 2u−1−2 interval paths beginning with the primary color 1 and also end-

ing in the primary color 1, that is, φ = 1. One-third are 2 each yielding (Y,0,X,X),

one-third 3 each yielding (Y,X,0,X), and one-third 4 each yielding (Y,X,X,0). Com-

bined, these yield 2u−1−2
3

(3Y,2X,2X,2X).

There are 2u − 1 interval paths beginning with the primary color 1, ending in a

secondary color 2, 3 or 4, that is, φ = 2, 3, or 4. Three of these are two-colored

intervals.

The path 1-2-1-2-... in which φ = 2 is 34: 3 yields (X,Y,0,X), 4 yields (X,Y,X,0).

The path 1-3-1-3-... in which φ = 3 is 24: 2 yields (X,0,Y,X), 4 yields (X,X,Y,0).

The path 1-4-1-4-... in which φ = 4 is 23: 2 yields (X,0,X,Y), 3 yields (X,X,0,Y).

These three intervals yield (6X,2(X+Y),2(X+Y),2(X+Y)).

Of the remaining intervals that end in a secondary number, one-third end in each

2,3, and 4. In one-third of these paths, φ = 2: half are 3 each yielding (X,Y,0,X),

half are 4 each yielding (X,Y,X,0). In one-third of these paths, φ = 3: half are 2
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each yielding (X,0,Y,X), half are 4 each yielding (X,X,Y,0). In one-third of these

paths, φ = 4: half are 2 each yielding (X,0,X,Y), half are 3 each yielding (X,X,0,Y).

Combined, these yield 2u−1−2
3

(6X,2(X+Y),2(X+Y),2(X+Y)).

From the trees hanging beneath these interval paths ending in a secondary number,

we keep a combined weighted distribution of 2u−1+1
3

(6X,2(X+Y),2(X+Y),2(X+Y)).

This leaves a total weighting of 2u−1−2
3

(6X+3Y,4X+2Y, 4X+2Y, 4X+2Y) +

(6X,2(X+Y),2(X+Y),2(X+Y)) at the α− 1 level.

Applying Lemma 2.3.7, we need only show that P + R
3
≤ 3S which is equivalent

to showing

R

3
≤ (2u−1 − 2)(2X) + (2u−1 − 2)Y + 6Y

which is easily verified.

Case 3 u = 1

There is only one interval path, the single node colored 1 and φ = 1. This interval

is of the form 234: 2 yields (Y,0,X,X), 3 yields (Y,X,0,X), and 4 yields (Y,X,X,0).

This leaves a weighted distribution of (3Y,2X,2X,2X) at the α − 1 level. Setting

A =3Y and B =2X and applying Lemma 2.3.7, we need only show 3Y + R
3
≤ 6X.

(Note that r = 0 since the secondary class is even.)

We need more information about the distribution (3Y, 2X, 2X, 2X).

Case 3.1 upd(vα+1) > 1.

Let upd(vα+1) = p

Case 3.1.1 p is odd.

There are 2p−1 − 1 interval paths from level 1 through level p beginning with the

primary color 1 and also ending in the primary color, that is, φ = 1. Three of these
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are two-colored intervals: 34, 24, and 23. Of the remaining 2p−1−4 interval paths,

they are equally distributed 2, 3, and 4. Since we are keeping 2’s, 3’s, and 4’s, at

level α, we look at what we are leaving at level α − 1 for each of the 6 specific

situations as described in Table 3 , φ = 1.

φ = 1
Uα+1 \ Uα 2 3 4

2 – (y,x,0,w) (y,x,w,0)
3 (y,0,x,w) – (y,x,w,0)
4 (y,0,w,x) (y,w,0,x) –

φ = 2
Uα+1 \ Uα 2 3 4

2 – (h,g,0,h) (h,g,h,0)
3 (z,0,v,z) – (w,y,x,0)
4 (z,0,z,v) (w,y,0,x) –

φ = 3
Uα+1 \ Uα 2 3 4

2 – (z,v,0,z) (w,x,y,0)
3 (h,0,g,h) – (h,h,g,0)
4 (w,0,y,x) (z,z,0,v) –

φ = 4
Uα+1 \ Uα 2 3 4

2 – (w,x,0,y) (z,v,z,0)
3 (w,0,x,y) – (z,v,z,0)
4 (g,0,g,h) (g,g,0,h) –

Table 3. Distribution of next level upon trimming when updegree is 1.

The single path 1-2-1-... is 34, so at level α + 1, we kept 3’s and 4’s. From the

3’s at level α + 1, we are keeping 2’s and 4’s at level α. From the 3-2’s, we keep

(y, 0, x, w). From the 3-4’s, we keep (y, x, w, 0). From the 4’s at level α+ 1, we are

keeping 2’s and 3’s at level α. From the 4-2’s, we keep (y, 0, w, x). From the 4-3’s,

we keep (y, w, 0, x).

The single path 1-3-1-... is 24, so at level α + 1, we kept 2’s and 4’s. From the

2’s at level α + 1, we are keeping 3’s and 4’s at level α. From the 2-3’s, we keep
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(y, x, 0, w). From the 2-4’s, we keep (y, x, w, 0). From the 4’s at level α+ 1, we are

keeping 2’s and 3’s at level α. From the 4-2’s, we keep (y, 0, w, x). From the 4-3’s,

we keep (y, w, 0, x).

The single path 1-4-1-... is 23, so at level α + 1, we kept 2’s and 3’s. From the

2’s at level α + 1, we are keeping 3’s and 4’s at level α. From the 2-3’s, we keep

(y, x, 0, w). From the 2-4’s, we keep (y, x, w, 0). From the 3’s at level α+ 1, we are

keeping 2’s and 4’s at level α. From the 3-2’s, we keep (y, 0, x, w). From the 3-4’s,

we keep (y, x, w, 0).

These three interval-paths yield 2(6y, 2x+ 2w, 2x+ 2w, 2x+ 2w).

Of the 2p−1 − 4 interval-paths that end in 1, one-third are 2, so we kept 2’s. From

these 2’s at level α + 1, we are keeping 3’s and 4’s at level α. From the 2-3’s, we

keep (y, x, 0, w). From the 2-4’s, we keep (y, x, w, 0). These three interval-paths

yield 2p−1−4
3

(2y, 2x,w,w).

Of the 2p−1 − 4 interval-paths that end in 1, one-third are 3, so we kept 3’s. From

these 3’s at level α + 1, we are keeping 2’s and 4’s at level α. From the 3-2’s, we

keep (y, 0, x, w). From the 3-4’s, we keep (y, x, w, 0). These three interval-paths

yield 2p−1−4
3

(2y, w, 2x,w).

Of the 2p−1 − 4 interval-paths that end in 1, one-third are 4, so we kept 4’s. From

these 4’s at level α + 1, we are keeping 2’s and 3’s at level α. From the 4-2’s, we

keep (y, 0, w, x). From the 4-3’s, we keep (y, w, 0, x). These three interval-paths

yield 2p−1−4
3

(2y, w, w, 2x).

The total distribution at α−1 from the φ = 1 intervals is 2p−1+2
3

(6y, 2x+2w, 2x+

2w, 2x+ 2w).

There are 2p−2
3

interval paths from level 1 through level p beginning with the

primary color 1 and ending in the secondary color 2, that is, φ = 2.

Of the 2p−2
3

that and in 2, half are 3, so we kept 3’s. From these 3’s at level α+ 1,
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we are keeping 2’s and 4’s at level α. From the 3-2’s, we keep (z, 0, v, z). From the

3-4’s, we keep (w, y, x, 0). These three interval-paths yield 2p−2
6

(z+w, y, x+ v, z).

Of the 2p−2
3

that and in 2, half are 4, so we kept 4’s. From these 4’s at level α+ 1,

we are keeping 2’s and 3’s at level α. From the 4-2’s, we keep (z, 0, z, v). From the

4-3’s, we keep (w, y, 0, x). These three interval-paths yield 2p−2
6

(z+w, y, z, x+ v).

The total distribution at α − 1 from the φ = 2 intervals is 2p−2
6

(2z + 2w, 2y, x +

v + z, x+ z + v).

We calculate the distribution arising from φ = 3 and φ = 4 in the same manner

(using Table 3) yielding 2p−2
6

(2z + 2w, x + v + z, 2y, x + z + v) and 2p−2
6

(2z +

2w, x+ v + z, x+ z + v, 2y) respectively.

The total combined distribution is

2p−1+2
3

(6y, 2x+ 2w, 2x+ 2w, 2x+ 2w) + 2p−2
6

(2z + 2w, 2y, x+ v+ z, x+ z + v) +

2p−2
6

(2z + 2w, x+ v+ z, 2y, x+ z + v) + 2p−2
6

(2z + 2w, x+ v+ z, x+ z + v, 2y) =

2p−1+2
3

(6y, 2x+ 2w, 2x+ 2w, 2x+ 2w) + 2p−1−1
3

(6z + 6w, 2y + 2x+ 2v + 2z, 2y +

2x+ 2v + 2z, 2y + 2x+ 2v + 2z).

Hence, there are (2p−1)(2y + 2z + 2w) + 6y 1’s.

There are 2p−1−1
3

(2y + 4x+ 2w + 2v + 2z) + (2x+ 2w) 2’s, 3’s and 4’s.

For simplicity, let C = 2p−1 − 1. So, we need to show C(2y + 2z + 2w) + 6y ≤

C(2y+ 4x+ 2w+ 2v+ 2z) + 6x+ 6w. Noting that C ≥ 3 for all odd p > 1, simple

algebra shows this is the equivalent of showing y ≤ 3x+ v + w.

Hence, we need to show that y ≤ 3x+ v.

Case 3.1.2 p is even.

The argument is similar, yielding the same inequality.

Case 3.2 upd(Vα+1) = 1.

We use the results from the previous case.
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2.5 Future Work

The depth-first search tree of a planar graph breaks the graph into coils. There is

no record of any attempt to four-color a coil, so this is a new unsolved problem.

In our attempt to solve this problem, we discovered many propositions which have

led us to our current state. We have a computer program that has validated the

conjecture for workable values of n. We are looking to see the pattern of behavior

for our last case. If we can isolate a pattern, we might understand better the

inequality. So far, the computer generated patterns show us that the inequality

that we need does hold, that is, our conjecture has not been disproven.
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APPENDIX

N = N;

K = 4;

perms = nextperm(N,K);

for (ii = 1:((prod (1:N)/(prod(1:(N-K))))))

P(ii,:,:) = perms();

PERMS(ii,:) = squeeze (P(ii,:,:))’;

end

L = N;

O = 2;

perms = nextperm(L,O);

for (ii = 1:((prod (1:L)/(prod(1:(L-O))))))

T(ii,:,:) = perms();

TABLE(ii,:) = squeeze (T(ii,:,:))’;

end

for (jj = 1:((prod (1:N)/(prod(1:(N-K))))))

for (kk = 1:((prod (1:L)/(prod(1:(L-O))))))

if (PERMS(jj,1:2) == TABLE(kk,:))

P3(jj,1) = ceil(kk/2);

end

if (PERMS(jj,2:3) == TABLE(kk,:))

P3(jj,2) = ceil(kk/2);

end

if (PERMS(jj,3:4) == TABLE(kk,:))

P3(jj,3) = ceil(kk/2);

end

end

end

%%

SOL = 0;

% First 0

for (a = 1:((prod (1:N)/(prod(1:(N-K))))))

if (isempty(intersect(P3(1,:),P3(a,:))))
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% First 1

for (b = 1:((prod (1:N)/(prod(1:(N-K))))))

if (~isempty(intersect(P3(b,:),P3(1,:)))

&& length(intersect(P3(b,:),P3(1,:)))<3)

if (~isempty(intersect(P3(b,:),P3(a,:)))

&& length(intersect(P3(b,:),P3(a,:)))<3)

% Second 0

for (c = 1:((prod (1:N)/(prod(1:(N-K))))))

if (isempty(intersect(P3(b,:),P3(c,:))))

if (~isempty(intersect(P3(c,:),P3(1,:)))

&& length(intersect(P3(c,:),P3(1,:)))<3)

if (~isempty(intersect(P3(c,:),P3(a,:)))

&& length(intersect(P3(c,:),P3(a,:)))<3)

% Second 1

for (d = b+1:((prod (1:N)/(prod(1:(N-K))))))

if (~isempty(intersect(P3(d,:),P3(1,:)))

&& length(intersect(P3(d,:),P3(1,:)))<3)

if (~isempty(intersect(P3(d,:),P3(a,:)))

&& length(intersect(P3(d,:),P3(a,:)))<3)

if (~isempty(intersect(P3(d,:),P3(b,:)))

&& length(intersect(P3(d,:),P3(b,:)))<3)

if (~isempty(intersect(P3(d,:),P3(c,:)))

&& length(intersect(P3(d,:),P3(c,:)))<3)

% Third 0

for (e = 1:((prod (1:N)/(prod(1:(N-K))))))

if (isempty(intersect(P3(e,:),P3(d,:))))

if (~isempty(intersect(P3(e,:),P3(c,:)))

&& length(intersect(P3(e,:),P3(c,:)))<3)

if (~isempty(intersect(P3(e,:),P3(1,:)))

&& length(intersect(P3(e,:),P3(1,:)))<3)

if (~isempty(intersect(P3(e,:),P3(a,:)))

&& length(intersect(P3(e,:),P3(a,:)))<3)

if (~isempty(intersect(P3(e,:),P3(b,:)))

&& length(intersect(P3(e,:),P3(b,:)))<3)

% Third 1

for (f = d+1:((prod (1:N)/(prod(1:(N-K))))))

if (~isempty(intersect(P3(f,:),P3(1,:)))

&& length(intersect(P3(f,:),P3(1,:)))<3)

if (~isempty(intersect(P3(f,:),P3(a,:)))

&& length(intersect(P3(f,:),P3(a,:)))<3)
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if (~isempty(intersect(P3(f,:),P3(b,:)))

&& length(intersect(P3(f,:),P3(b,:)))<3)

if (~isempty(intersect(P3(f,:),P3(c,:)))

&& length(intersect(P3(f,:),P3(c,:)))<3)

if (~isempty(intersect(P3(f,:),P3(d,:)))

&& length(intersect(P3(f,:),P3(d,:)))<3)

if (~isempty(intersect(P3(f,:),P3(e,:)))

&& length(intersect(P3(f,:),P3(e,:)))<3)

% Fourth 0

for (g = 1:((prod (1:N)/(prod(1:(N-K))))))

if (isempty(intersect(P3(g,:),P3(f,:))))

if (~isempty(intersect(P3(g,:),P3(1,:)))

&& length(intersect(P3(g,:),P3(1,:)))<3)

if (~isempty(intersect(P3(g,:),P3(a,:)))

&& length(intersect(P3(g,:),P3(a,:)))<3)

if (~isempty(intersect(P3(g,:),P3(b,:)))

&& length(intersect(P3(g,:),P3(b,:)))<3)

if (~isempty(intersect(P3(g,:),P3(c,:)))

&& length(intersect(P3(g,:),P3(c,:)))<3)

if (~isempty(intersect(P3(g,:),P3(d,:)))

&& length(intersect(P3(g,:),P3(d,:)))<3)

if (~isempty(intersect(P3(g,:),P3(e,:)))

&& length(intersect(P3(g,:),P3(e,:)))<3)

% Fourth 1

for (h = f+1:((prod (1:N)/(prod(1:(N-K))))))

if (~isempty(intersect(P3(h,:),P3(1,:)))

&& length(intersect(P3(h,:),P3(1,:)))<3)

if (~isempty(intersect(P3(h,:),P3(a,:)))

&& length(intersect(P3(h,:),P3(a,:)))<3)

if (~isempty(intersect(P3(h,:),P3(b,:)))

&& length(intersect(P3(h,:),P3(b,:)))<3)

if (~isempty(intersect(P3(h,:),P3(c,:)))

&& length(intersect(P3(h,:),P3(c,:)))<3)

if (~isempty(intersect(P3(h,:),P3(d,:)))

&& length(intersect(P3(h,:),P3(d,:)))<3)

if (~isempty(intersect(P3(h,:),P3(e,:)))

&& length(intersect(P3(h,:),P3(e,:)))<3)

if (~isempty(intersect(P3(h,:),P3(f,:)))

&& length(intersect(P3(h,:),P3(f,:)))<3)

if (~isempty(intersect(P3(h,:),P3(g,:)))

&& length(intersect(P3(h,:),P3(g,:)))<3)
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% Fifth 0

for (i = 1:((prod (1:N)/(prod(1:(N-K))))))

if (isempty(intersect(P3(i,:),P3(h,:))))

if (~isempty(intersect(P3(i,:),P3(1,:)))

&& length(intersect(P3(i,:),P3(1,:)))<3)

if (~isempty(intersect(P3(i,:),P3(a,:)))

&& length(intersect(P3(i,:),P3(a,:)))<3)

if (~isempty(intersect(P3(i,:),P3(b,:)))

&& length(intersect(P3(i,:),P3(b,:)))<3)

if (~isempty(intersect(P3(i,:),P3(c,:)))

&& length(intersect(P3(i,:),P3(c,:)))<3)

if (~isempty(intersect(P3(i,:),P3(d,:)))

&& length(intersect(P3(i,:),P3(d,:)))<3)

if (~isempty(intersect(P3(i,:),P3(e,:)))

&& length(intersect(P3(i,:),P3(e,:)))<3)

if (~isempty(intersect(P3(i,:),P3(f,:)))

&& length(intersect(P3(i,:),P3(f,:)))<3)

if (~isempty(intersect(P3(i,:),P3(g,:)))

&& length(intersect(P3(i,:),P3(g,:)))<3)

% Fifth 1

for (j = h+1:((prod (1:N)/(prod(1:(N-K))))))

if (~isempty(intersect(P3(j,:),P3(1,:)))

&& length(intersect(P3(j,:),P3(1,:)))<3)

if (~isempty(intersect(P3(j,:),P3(a,:)))

&& length(intersect(P3(j,:),P3(a,:)))<3)

if (~isempty(intersect(P3(j,:),P3(b,:)))

&& length(intersect(P3(j,:),P3(b,:)))<3)

if (~isempty(intersect(P3(j,:),P3(c,:)))

&& length(intersect(P3(j,:),P3(c,:)))<3)

if (~isempty(intersect(P3(j,:),P3(d,:)))

&& length(intersect(P3(j,:),P3(d,:)))<3)

if (~isempty(intersect(P3(j,:),P3(e,:)))

&& length(intersect(P3(j,:),P3(e,:)))<3)

if (~isempty(intersect(P3(j,:),P3(f,:)))

&& length(intersect(P3(j,:),P3(f,:)))<3)

if (~isempty(intersect(P3(j,:),P3(g,:)))

&& length(intersect(P3(j,:),P3(g,:)))<3)

if (~isempty(intersect(P3(j,:),P3(h,:)))

&& length(intersect(P3(j,:),P3(h,:)))<3)

if (~isempty(intersect(P3(j,:),P3(i,:)))

&& length(intersect(P3(j,:),P3(i,:)))<3)

% Sixth 0
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for (k = 1:((prod (1:N)/(prod(1:(N-K))))))

if (isempty(intersect(P3(k,:),P3(j,:))))

if (~isempty(intersect(P3(k,:),P3(1,:)))

&& length(intersect(P3(k,:),P3(1,:)))<3)

if (~isempty(intersect(P3(k,:),P3(a,:)))

&& length(intersect(P3(k,:),P3(a,:)))<3)

if (~isempty(intersect(P3(k,:),P3(b,:)))

&& length(intersect(P3(k,:),P3(b,:)))<3)

if (~isempty(intersect(P3(k,:),P3(c,:)))

&& length(intersect(P3(k,:),P3(c,:)))<3)

if (~isempty(intersect(P3(k,:),P3(d,:)))

&& length(intersect(P3(k,:),P3(d,:)))<3)

if (~isempty(intersect(P3(k,:),P3(e,:)))

&& length(intersect(P3(k,:),P3(e,:)))<3)

if (~isempty(intersect(P3(k,:),P3(f,:)))

&& length(intersect(P3(k,:),P3(f,:)))<3)

if (~isempty(intersect(P3(k,:),P3(g,:)))

&& length(intersect(P3(k,:),P3(g,:)))<3)

if (~isempty(intersect(P3(k,:),P3(h,:)))

&& length(intersect(P3(k,:),P3(h,:)))<3)

if (~isempty(intersect(P3(k,:),P3(i,:)))

&& length(intersect(P3(k,:),P3(i,:)))<3)

SOL = SOL + 1;

disp(’Solution number:’);

disp(SOL);

disp([P3(a,:); P3(b,:); P3(c,:); P3(d,:); P3(e,:);

P3(f,:); P3(g,:); P3(h,:); P3(i,:); P3(j,:); P3(k,:)]);

end

end

end

end

end

end

end

end

end

end

end

end

% end Sixth 0

end

end

end
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end

end

end

end

end

end

end

end

% end Fifth 1

end

end

end

end

end

end

end

end

end

end

% end Fifth 0

end

end

end

end

end

end

end

end

end

% end Fourth 1

end

end

end

end

end

end

end

end

% end Fourth 0

end

end

end

end

end



45

end

end

% end Third 1

end

end

end

end

end

end

% end Third 0

end

end

end

end

end

% end Second 1

end

end

end

end

% end Second 0

end

end

end

% end First 1

end

end
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