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The ability of hard-shelled clams (Mercenaria mercenaria) to accumulate fecal coliforms and other
microorganisms (Escherichia coli, Clostridium perfringens, and male-specific bacteriophages) was determined
over a 1-year period. Twenty separate trials were conducted during different seasons to encompass a wide
range of water temperatures. The greatest accumulation of microorganisms in hard-shelled clams occurred
during certain periods in the spring, at temperatures ranging from 11.5 to 21.5°C. These periods of
hyperaccumulation did not always coincide for all organisms; the accumulation of bacteriophages was not
predicted by the accumulation of either fecal coliforms or C. perfringens. Bacteriophages and C. perfiringens
showed significantly higher rates of accumulation than either the fecal coliform group or E. coli, especially
during the spring. The higher incidence of human viral gastroenteritis associated with the consumption of
shellfish during this period may be a result of the extraordinary concentration of certain microorganisms,
including enteric viral pathogens.

Molluscan shellfish are well identified as vectors of bacte-
rial and viral pathogens (21, 23). The reported number of
outbreaks and cases of illness associated with the consump-
tion of shellfish in the United States has been steadily
increasing since the early 1900s. Coincident with these
overall increases has been a steady rise in illnesses attributed
to viral pathogens (23). In these case reports a seasonal
pattern is evident, with incidents occurring most often in the
early spring and least frequently in the late summer (Fig. 1).

Public health problems associated with shellfish consump-
tion have resulted in a program to classify shellfish-growing
areas that is based, at least in part, on the sanitary quality of
surface waters, as indexed by the level of fecal coliforms
(31). One of the shortcomings of this indicator group is that
it does not reliably index the presence of enteric viruses in
either estuarine waters or shellfish (13, 14, 16, 28). The
reason may be in part that fecal coliforms are not as resistant
to chlorine disinfection (3, 15, 17, 19, 27) and environmental
stresses of salinity (22) and sunlight (5, 26) as some entero-
viruses are.
The ability of hard-shelled clams (Mercenaria mercenaria)

to accumulate a variety of microorganisms (both bacterial
and viral) has been previously examined in two general
ways. First, environmental studies have examined the den-
sities of particular microorganisms in overlying waters be-
fore and during the shellfish harvest and in the harvested
shellfish (6, 8, 14). Such studies have not demonstrated
relationships between the concentration of any particular
microorganism (fecal coliforms, Escherichia coli, entero-
cocci, Clostridium perfringens, and male-specific bacterio-
phages) in the water column at any given time and the
concentration found in the shellfish, regardless of the season
or water temperature. Second, accumulation studies have
been conducted under controlled conditions in laboratories.

* Corresponding author.
t Present address: Northeast Technical Services Unit, U.S. Food

and Drug Administration, North Kingstown, RI 02852.

Shellfish were exposed to suspensions of pure strains of
bacteria and viruses for various periods. Hard-shelled clams
accumulated E. coli and Salmonella typhimurium at concen-
trations 6.5 to 8.5 times greater than those found in the
surrounding water (7, 29). However, accumulations of cer-
tain viruses by hard-shelled clams under similar conditions
were generally reported to be greater than those found for
the bacterial species. An attenuated strain of human polio-
virus type 1 was found in hard-shelled clams at densities 10
to 100 times greater than those found in the surrounding
water (25), and coliphage S-13 was found in clams at
densities 10 to 1,100 times greater than in water (9).
The problem with the laboratory studies is that the accu-

mulation of pure laboratory suspensions of microorganisms
is not a realistic approach to reliably assess bioaccumulation
rates. Particle-bound microorganisms may show rates of
uptake that are substantially different from those of purified
suspensions. For example, crude suspensions and purified
cultures of poliovirus have been shown to accumulate dif-
ferently (21). In addition, such studies must take into ac-
count the effects of time of exposure (duration) and several
other variables that influence the accumulation of microor-
ganisms.
The objective of this study was to examine the effects of

season and temperature on the ability of M. mercenaria to
accumulate both fecal coliforms and other sanitary indicator
organisms (E. coli, C. perfringens, and male-specific bacte-
riophages) as they would occur in estuarine water. Each of
these microorganisms is present in high densities in un-
treated wastewater (32) and in various degrees in receiving
waters (6). Accordingly, unamended human-derived waste-
water was used as the source of all indicator organisms for
studying uptake rates in shellfish. Replicate trials were
conducted throughout a 1-year period to determine the
extent to which season (and corresponding temperatures)
influences the accumulation of these microorganisms. Also,
the stability of each indicator after introduction into the
shellfish was assessed to distinguish results attributed to
differential indicator accumulation from die-off.
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FIG. 1. Number of cases of shellfish-associated diseases by
month in the United States for all viral and suspected viral agents for
1902 to 1990. (Adapted from reference 23.)

MATERIALS AND METHODS

Shellfish holding and purification. Hard-shelled clams (M.
mercenaria) used in this study were harvested from Nar-
ragansett Bay, R.I., relayed to a land-based marine labora-
tory located at Allen Harbor, R.I., and placed into a tank
continuously supplied with UV-disinfected seawater. This
system consisted of a rectangular, plywood-reinforced resin
tank (350 by 30 by 25 cm) with a working volume of 210
liters. Shellfish in this tank were placed in a monolayer on

galvanized hardware cloth (0.25-in. [ca. 0.64-cm] mesh)
suspended 10 cm above the bottom. Before entering the
system, ambient seawater (flowing at approximately 3 liters/
min) was disinfected with a four-bulb Kelly-Purdy (18) UV
irradiation unit (15-V germicidal lamp; General Electric,
Cleveland, Ohio). The effectiveness of disinfection was

determined daily by examining exit water (from the UV unit)
for the presence of all microbial indicators included in the
study. Shellfish were maintained in this system for a mini-
mum of 2 weeks before each accumulation trial to eliminate
background levels of the indicator organisms. During this
elimination period, both the tank and the shellfish were
rinsed daily to remove debris and expelled materials.

Shellfish contamination. Bioaccumulation experiments
were conducted routinely in the following manner. Ninety-
five hard-shelled clams were removed from the depuration
system and placed in a circular fiberglass resin tank (90-cm
diameter; 127-liter maximum capacity) with a working vol-
ume of 40 liters. Immediately before the contamination
phase of each experiment, 18 animals were removed to
determine the initial densities, if any, of each of the indicator
microorganisms within the shellfish. Indicator densities were
consistently below the detection limits for each of the assay
methods used. Ambient seawater was delivered into this
flowthrough uptake system at a rate of 3.0 liters/min. Raw
sewage, collected from a local sewage treatment facility in
East Greenwich, R.I., was delivered into this contamination
tank by a proportioning pump at a rate of 3 ml/min so that a

constant concentration of raw wastewater was maintained in
the tank. Seawater and sewage were constantly mixed in the
uptake tank by a submersible pump circulating 6 liters/min
(model 1; Little Giant, Oklahoma City, Okla.). At selected
intervals (0, 24, 48, and 168 h) after the initial contamination,
tank water and 18 randomly selected clams were collected
and analyzed to determine the densities of the indicator
microorganisms. Accumulation factors were calculated as

the geometric mean indicator density of each microorganism
in the shellfish divided by the corresponding geometric mean
density of the particular indicator found in the overlying
water.

Survival of microbial indicators. The stability of indicator
organisms within hard-shelled clams was determined by
using animals previously exposed to raw sewage, as de-
scribed above, for a period of 72 h. After this period, a
subsample of 18 animals was analyzed to determine indicator
organism densities. The remaining shellfish were rinsed with
raw seawater to remove debris, banded tightly shut with
elastic bands to prevent all filter feeding, and placed in a
flowthrough, UV-disinfected seawater system. At 24-h inter-
vals (up to 168 h), 18 animals were removed and analyzed for
each indicator organism.

Microbiological analyses. (i) Shellfish. Eighteen animals
were collected, placed in polypropylene bags, stored on ice,
and examined (within 2 h) according to recommended pro-
cedures (2). Earlier results, obtained from 12 to 18 animals,
revealed substantial variability in densities of indicator or-
ganisms, possibly caused by the differences in filtering
activity between animals. To determine whether this was the
actual cause of the variability, we subdivided the clams into
three equal subsamples of six animals each. Each subsample
was scrubbed, and the shell contents (including meats and
liquors) were collected in a sterile blender jar (Waring Corp.,
Corning, N.Y.) and homogenized for 2 min at high speed.
The homogenates were held on ice until analysis (within 60
min). Concentrations of fecal coliforms, E. coli, and C.
perfringens were determined for each subsample with a
five-tube, multiple-dilution most-probable-number (MPN)
procedure. Fecal coliform and E. coli concentrations were
determined with lauryl tryptose broth (Difco Laboratories,
Detroit, Mich.) as the presumptive test medium (2) and
EC-MUG (Difco) as the confirmatory medium (24). Entero-
coccal concentrations were determined with azide dextrose
broth (Difco) as the presumptive test medium. Tubes that
showed turbid growth at 24 and 48 h were confirmed by
streaking a portion from each tube onto membrane filters
(HC filters; Millipore Corp., Bedford, Mass.) that had been
placed on mE agar plates (20) modified (11) by the addition of
indoxyl-,B-D-glucoside (750 ,ug/ml) (Sigma Chemical Co., St.
Louis, Mo.). Each membrane accommodated up to five
linear streaks. Inoculated plates were inverted and incubated
for 24 h at 41°C. Streaks (and corresponding tubes) were
scored positive if blue growth developed. C. perfringens
concentrations were determined by the iron milk method
procedure (1). Male-specific bacteriophage densities were
determined by a modified double-agar-overlay method de-
scribed by Cabelli (6). The concentration of each indicator
organism reported for each subsample is the geometric mean
number of organisms per 100 g, calculated from the densities
determined for each of the three subsamples.

(ii) Water. Samples were collected in sterile, 1-liter,
screw-cap, polypropylene sample bottles (Nalgene Labora-
tories Inc., Rochester, N.Y.) and stored on ice until analy-
sis. Fecal coliform and E. coli densities were determined by
the mTEC procedure (12), enterococcal densities were de-
termined by the modified mE procedure (11), and C. perfrin-
gens densities were determined by the mCP procedure (4).
Densities of male-specific bacteriophages were determined
by a modified double-agar-overlay method (10). This method
uses an E. coli strain (HS[pFamp]R) that is highly selective
for the enumeration of these bacteriophages from municipal
wastewaters and environmental waters.

Other parameters. Certain ambient physical and chemical
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FIG. 2. Bioaccumulation of fecal coliforms and E. coli by M.
mercenaria. Results shown are for paired trials in relation to
seawater temperatures. Accumulation factors (and their 95% confi-
dence limits, indicated by error bars) are calculated as the geometric
mean indicator MPN values determined for the shellfish divided by
the respective density of the particular indicator found in the
overlying contaminated water.

parameters of the uptake water (salinity, temperature, dis-
solved oxygen, and turbidity) were determined daily. Salin-
ities and temperatures were determined with an electrode-
less induction salinometer (model RS 5-3; Beckman, Cedar
Grove, N.J.). Concentrations of dissolved oxygen were
measured with a Yellow Springs Instruments (Yellow
Springs, Ohio) model 57 oxygen meter. Turbidities were
measured with a nephelometer (model 21PE; Monitek Inc.,
Hayward, Calif.).

RESULTS

The bioaccumulation of microbial indicator organisms
from seawater by hard-shelled clams was investigated from
November 1989 through December 1990. Typical seasonal
variations for temperate climates were observed for water
temperatures (2.5 to 24.5°C). Salinities throughout these
trials remained relatively constant (29 to 31 %o). Dissolved
oxygen levels always exceeded 90% saturation. Turbidities
were consistently <5.0 nephelometric turbidity units.

Fecal coliforms and E. coli were concentrated by the
shellfish to various degrees over the 13-month period. Figure
2 summarizes data collected from 20 trials during this study.
There was a seasonal influence on the rates of accumulation
of these vegetative indicators. The mean accumulation fac-
tors for fecal coliforms and E. coli in hard-shelled clams for
the 20 trials were 2.7 (range, 0.02 to 20.4) and 2.0 (range, 0.02
to 17.5), respectively. The greatest accumulation for both
organisms occurred during May, when the water tempera-
ture was 13.0°C (trial G). May was considered a period of
hyperaccumulation, defined as the level of uptake at which
the mean accumulation factor of an indicator is at least two
standard deviations above the mean overall accumulation
factor for all trials. This period of hyperaccumulation was
preceded by steadily increasing water temperatures during
the seasonal transition from winter (low water temperature,
2.5°C) to spring. Uptake rates (accumulation factors) just
before and just after the period of hyperaccumulation were
significantly lower (3.6 and 2.6 for fecal coliforms and E.
coli, respectively). Spring and summer accumulation rates
for fecal coliforms and E. coli (excluding the period of
hyperaccumulation) were 0.7 to 6.4 and 0.5 to 3.5, respec-
tively. As temperatures declined through the fall and winter

0
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FIG. 3. Bioaccumulation of fecal coliforms and male-specific
bacteriophages by M. mercenania. Results shown are for paired
trials in relation to seawater temperatures. Accumulation factors
(and their 95% confidence limits, indicated by error bars) are
calculated as the geometric mean indicator MPN values (for fecal
coliforms) and PFU (for male-specific bacteriophages) for the shell-
fish divided by the respective density of the particular indicator
found in the overlying contaminated water.

months, the accumulations of these indicator organisms
were generally lower than for any other time of the year.
When autumn water temperatures decreased from 12.0 to
2.5°C, the accumulation factors for fecal coliforms and E.
coli ranged from <0.1 to 3.1 (generally <1.0). In each of the
three determinations made when water temperatures were
below 7.0°C, the accumulation factors for both of these
indicators were <0.2. With the exception of the springtime
phenomenon, accumulations of the fecal coliforms and E.
coli were very similar, regardless of the season or the water
temperature.
Accumulation factors for fecal coliforms and male-specific

(f-specific) bacteriophages in hard-shelled clams are shown
in Fig. 3. The pattern of uptake was somewhat similar to
those shown for fecal coliforms and E. coli. However, one
distinct period of hyperaccumulation that did not correspond
to the hyperaccumulation period for fecal coliforms and E.
coli was found for male-specific bacteriophages (trial F).
Hyperaccumulation of all three indicators did occur within a
relatively short time (2 weeks). This period of extraordinary
uptake (when the water temperature was 11 to 12°C) was
reflected by an accumulation factor of 55.5 for male-specific
bacteriophages. A second difference between the bacterio-
phage and fecal coliform indicator groups was their overall
mean accumulation factors. The mean accumulation factor
for male-specific bacteriophages was 7.6 (range, <0.1 to
55.5), which is more than twice that found for fecal coli-
forms. When water temperatures were below 6.5°C, bacte-
riophage accumulation factors dropped to <1.0, which is
similar to that for fecal coliforms, probably because hard-
shelled clams appear to stop filter feeding at temperatures
below 4°C (data not shown).

In general, C. perfringens accumulation factors were
significantly higher than those observed for fecal coliforms
(Fig. 4) and male-specific bacteriophages (Fig. 5). Of the 20
trials, three (G, H, and J) qualify as periods of hyperaccu-
mulation for C. perfringens. The accumulation factors deter-
mined for these trials were >130 and occurred during the
spring when water temperatures ranged from 13.0 to 21.0°C.
The mean accumulation factor for C. perfringens for all 20
trials was 61.8, with a range from 0.4 to 229.6. Again, the
seasonality of hyperaccumulation of this species was similar

APPL. ENVIRON. MICROBIOL.
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FIG. 4. Bioaccumulation of fecal coliforms and C. perfringens
by M. mercenaria. Results shown are for paired trials in relation to
seawater temperatures. Accumulation factors (and their 95% confi-
dence limits, indicated by error bars) are calculated as the geometric
mean indicator MPN values determined for the shellfish divided by
the respective density of the particular indicator found in the
overlying contaminated water.

to that of fecal coliforms and bacteriophages. In fact, hyper-
accumulation of C. perfringens occurred simultaneously
with hyperaccumulation of fecal coliforms in trial G but not
with hyperaccumulation of male-specific bacteriophages.
The rates of uptake of the fecal coliforms, C. perfringens,

and male-specific bacteriophages by M. mercenaria were
significantly correlated (P < 0.05) during the year when
hyperaccumulation values were not included in the data set
(Tables 1 and 2). As water temperatures increased, substan-
tial changes in accumulation rates occurred between 4.5 and
11.5°C, particularly with C. perfringens and male-specific
bacteriophages. Accumulations of each indicator had been
relatively low just before this period. During the fall, as
water temperatures dropped below 11.5°C, the ability of the
shellfish to accumulate all microorganisms declined. A sharp
and dramatic decrease in uptake was seen when tempera-
tures reached 6.5°C, although shellfish siphon extension
activity was still observed. Accumulation factors at this time
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FIG. 5. Bioaccumulation of C. perfringens and male-specific
bacteriophages by M. mercenaria. Results shown are for paired
trials in relation to seawater temperatures. Accumulation factors
(and their 95% confidence limits, indicated by error bars) are

calculated as the geometric mean indicator MPN values (for fecal
coliforms) and PFU (for male-specific bacteriophages) for the shell-
fish divided by the respective density of the particular indicator
found in the overlying contaminated water.

TABLE 1. Shellfish accumulation of microbial indicators
by season

Accumulation factor' for:
Sesn TempSeason (°C) Fecal Male-specific

coliforms C. perfringens phages

Spring 4.5 0.1 0.4 0.1
Spring 8.5 1.1 51.7 0.6
Spring 11.5 3.6 95.5 55.5
Fall 11.5 0.6 46.2 7.1
Fall 7.5 1.1 17.4 4.1
Fall 6.5 0.4 2.0 1.0

a Ratio of the density of the indicator organism in shellfish (number of
organisms per 100 g) to the density of the indicator organism in the uptake
seawater (number of organisms per 100 ml).

were comparable to those found during the winter when
water temperatures were 3.0°C.
The ability of M. mercenania to concentrate each micro-

bial indicator was analyzed in relation to water temperature
by Pearson's correlation coefficient analysis (Table 2). Data
from all 20 trials showed no significant relationships between
water temperature and the accumulation factors for any of
the indicators. However, when hyperaccumulation trials for
each microorganism were omitted, significant relationships
emerged. Treated in this manner, accumulations for each of
these microorganisms by M. mercenaria had a significant
correlation to water temperature.

Linear regression analyses (Table 3) revealed that the
accumulations of the bacterial indicators (fecal coliforms, E.
coli, and C. perfringens) had relatively strong correlations to
one another throughout all seasons and temperatures. In
contrast, the accumulation factors found for each of the
bacterial species showed no significant relationships to those
for the viruses (male-specific bacteriophages).
As a means of determining the die-off rates of each

indicator group, contaminated hard-shelled clams were
banded shut to prevent filter feeding and placed in seawater
maintained at one of two temperature ranges. Indicator
organism densities were determined 48 and 168 h after
banding. At least 94% of the initial density of each indicator
group was recovered after 48 h (Table 4). After 7 days, the
greatest decline among the indicator organisms occurred for
fecal coliforms, with reductions of 24% in 10 to 12°C waters.
In hard-shelled clams, the densities of C. perfringens and
male-specific bacteriophages were extremely stable, with 92

TABLE 2. Pearson correlation coefficient analyses of
accumulation factors and temperatures

Results for:

Microbial All data (n = 20) Data with hyper-
indicator accumulation omitted

r Probability r Probability'

Fecal coliforms 0.219 0.356 0.626b 0.004*
E. coli 0.127 0.595 0.478b 0.039*
C. perfringens 0.260 0.268 0.495c 0.044*
f-specific bacterio- 0.147 0.536 0.554d 0.017*

phages

a significant (P < 0.05) correlation between indicator uptake by hard-
shelled clams and water temperature.

b Trial G omitted; n = 19.
c Trials G, H, and J omitted; n = 17.
d Trial F omitted; n = 19.
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TABLE 3. Correlation of linear regression analyses of indicator
organism accumulations by M. mercenaria

Pearson correlation
Microbial indicators (n = 20)

r pa

Fecal coliforms vs E. coli 0.99 <0.001
Fecal coliforms vs C. perfringens 0.68 0.001
Fecal coliforms vs f-specific bacteriophages 0.14 0.560*
C. perfringens vs f-specific bacteriophages 0.25 0.280*

, no significant correlation (Pearson analysis) at P < 0.05.

and 90% of their initial densities, respectively, remaining
after 7 days. These results suggest that die-off did not affect
the accumulation rates determined by this study.

DISCUSSION

The experimental design of this study incorporated the
more positive aspects of earlier investigations to determine
the ability of shellfish to concentrate a variety of microor-
ganisms. These previous investigations used two separate
approaches: environmental monitoring and laboratory ex-
periments with pure cultures. In this study, we used shellfish
exposed to ambient seawater to which a constant amount of
raw wastewater was added in an effort to keep the indicator
levels in overlying water relatively constant. This type of
exposure alleviated two problems inherent in earlier studies
that used pure cultures. First, our method using raw waste-
water more closely replicates indicator densities in estuaries,
which are unpredictable and constantly changing; exposures
can never be known with certainty. Second, by not using
pure cultures, we alleviated the problem of uptake of indi-
vidual organisms, which may accumulate at rates apprecia-
bly different from those of particle-bound microorganisms
(21).

Shellfish are continually subjected to changing environ-
mental conditions that influence their physiological state and
thus strongly affect their ability to accumulate particulate
materials. This study examined the effects of two parame-
ters, season and water temperature, on the ability of hard-
shelled clams to filter and retain several different indicator
microorganisms. The ability of shellfish to concentrate con-
taminants was considerably reduced when ambient seawater
temperatures were below 7°C, partly as a result of their
diminished physiological activity. When water temperatures

TABLE 4. Survival of indicators inside banded hard-shelled
clams (M. mercenaria)

Organism concn at indicated temp and
time/initial concna

Microbial indicator 1012°C" 18.0-21.8aCb

48 h 168 h 48 h 168 h

Fecal coliforms 0.94 0.76 0.95 0.92
C. perfringens 1.00 1.00 0.98 0.92
f-specific bacteriophages 0.98 0.92 0.97 0.90

a The mean indicator organism concentrations in banded clams at 2 and 7
days were divided by the mean initial indicator organism concentrations.
Mean concentrations were calculated from results of duplicate trials at each
temperature range.

b Water temperatures were maintained within this range during each of two
trials.

fell below 4.5°C, bioaccumulation was essentially halted.
Water quality during such periods of relative dormancy had
virtually no effect on the sanitary quality of M. mercenana.
However, water temperature alone did not appear to explain
shellfish accumulation rates. During the spring, when water
temperatures were increasing, there were threshold periods
in which animal activity was significantly influenced. Tem-
peratures between 4.5 to 11.5°C correlated with a marked
increase in the accumulation of all indicators. However,
each of the indicator groups displayed this phenomenon
during different trials. These findings suggest that accumu-
lation of microbial species by shellfish is differentially selec-
tive and may be based on biochemical changes in shellfish
tissues, particular characteristics such as size, shape, and
surface change, and possibly other factors as well. The
hyperaccumulation phenomenon has been observed during
the fall (6), although it was not observed during this study
year.
The spring period of hyperaccumulation corresponds to

epidemiological reports of outbreaks of illness attributed to
the consumption of raw molluscan shellfish (primarily oys-
ters and clams). The times of hyperaccumulation of biolog-
ical organisms and the increased incidence of human gastro-
intestinal illness (Fig. 1 to 5) appear to be correlated. The
increase in illness rates seen during the spring may be caused
by increased accumulation of sewage-derived enteric viral
pathogens. Although the fecal coliform data for overlying
water may indicate that a growing area is safe for harvest,
the animals may present consumers with an unacceptably
high degree of viral exposure because of the hyperaccumu-
lation phenomenon. Except during hyperaccumulations
(which appear as unpredictable anomalies), water tempera-
ture appears to be a good predictor of microorganism accu-
mulation in M. mercenaria. However, the quality of mollus-
can shellfish can never be reliably determined on the basis of
overlying water quality, especially as water temperatures
begin to rise in mid- to late spring.
The rates of accumulation of fecal coliforms and E. coli by

hard-shelled clams were virtually identical throughout the
year. These results were not unexpected, because E. coli
generally makes up the majority of the fecal coliform group
associated with human fecal waste. Densities of enterococci,
although currently used as health effect indicators for recre-
ational waters (30), were not reported in this study because
previous investigations have demonstrated that they behave
almost identically to other vegetative bacterial indicators.
A strong correlation between the accumulations of fecal

coliforms and C. perfringens was seen throughout the year.
Therefore, monitoring C. perfringens concentrations may
better reflect seasonal accumulation activity because these
organisms are concentrated to a much greater extent than
fecal coliforms. As such, C. perfringens may be useful for
predicting the increased uptake of bacterial pathogens. How-
ever, accumulation of the bacterial viruses cannot be pre-
dicted by monitoring any of the bacterial groups examined.
Accumulation, inactivation (die-off), and elimination of

microbial indicator organisms are processes that occur
simultaneously in all physiologically active shellfish. Deter-
mining the rates of each of these phenomena is difficult. This
study found that dribbling (the elimination of foreign mate-
rial in the absence of water transmission) and the inactiva-
tion of indicators by and within the shellfish had a minimal
role in decreasing microbial densities after their accumula-
tion. Accumulation factors derived in this study are, there-
fore, the results of true accumulations and not those of
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apparent accumulations after a significant inactivation of the
indicators.
The results of this study suggest that current management

practices for shellfish harvesting may not be consistent
with public health protection. These inconsistencies are
attributable, in part, to the shortcomings of the bacterial
indicators used for assessing shellfish quality and to the wide
range of biological activity observed for shellfish over a
calendar year. These shortcomings include the facts that (i)
M. mercenana accumulates male-specific bacteriophages,
which are enteric virus simulants, at rates and concentra-
tions different from those for the fecal coliform group or C.
perfringens; (ii) both season and temperature strongly influ-
ence the ability of shellfish to concentrate biological contam-
inants; and (iii) surface and bottom water quality do not
necessarily reflect the sanitary quality of shellfish harvested
from those waters. Reliable assessment of that quality re-
quires the examination of the meats and liquors and may be
the single most important means for minimizing public health
risks.
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