University of Rhode Island [DigitalCommons@URI](https://digitalcommons.uri.edu/)

[PHY 204: Elementary Physics II -- Slides](https://digitalcommons.uri.edu/phy204-slides) PHY 204: Elementary Physics II (2021)

2020

20. Alternating current circuits. Impedance. Resonance

Gerhard Müller University of Rhode Island, gmuller@uri.edu

Robert Coyne University of Rhode Island, robcoyne@uri.edu

Follow this and additional works at: [https://digitalcommons.uri.edu/phy204-slides](https://digitalcommons.uri.edu/phy204-slides?utm_source=digitalcommons.uri.edu%2Fphy204-slides%2F45&utm_medium=PDF&utm_campaign=PDFCoverPages)

Recommended Citation

Müller, Gerhard and Coyne, Robert, "20. Alternating current circuits. Impedance. Resonance" (2020). PHY 204: Elementary Physics II -- Slides. Paper 45. [https://digitalcommons.uri.edu/phy204-slides/45](https://digitalcommons.uri.edu/phy204-slides/45?utm_source=digitalcommons.uri.edu%2Fphy204-slides%2F45&utm_medium=PDF&utm_campaign=PDFCoverPages)

This Course Material is brought to you by the University of Rhode Island. It has been accepted for inclusion in PHY 204: Elementary Physics II -- Slides by an authorized administrator of DigitalCommons@URI. For more information, please contact digitalcommons-group@uri.edu. For permission to reuse copyrighted content, contact the author directly.

Alternating Current Generator

Coil of *N* turns and cross-sectional area *A* rotating with angular frequency *ω* in uniform magnetic field \vec{B} .

- Angle between area vector and magnetic field vector: $\theta = \omega t$.
- Flux through coil: $\Phi_B = NBA \cos(\omega t)$.
- Induced EMF: $\mathcal{E} = -\frac{d\Phi_B}{dt} = \mathcal{E}_{max} \sin(\omega t)$ with amplitude $\mathcal{E}_{max} = NBA\omega$.
- U.S. household outlet values:

•
$$
\mathcal{E}_{max} = 120 \text{V} \sqrt{2} \simeq 170 \text{V}
$$

\n• $f = 60 \text{Hz}, \quad \omega = 2 \pi f \simeq 377 \text{rad/s}.$

Single Device in AC Circuit: Resistor

Voltage of ac source : $\mathcal{E} = \mathcal{E}_{max} \cos \omega t$ Current through device: $I = I_{max} \cos(\omega t - \delta)$

Resistor

 $V_R = RI = \mathcal{E}_{max} \cos \omega t \Rightarrow I = \frac{\mathcal{E}_{max}}{R}$ *R* cos *ωt* amplitude: $I_{max} = \frac{\mathcal{E}_{max}}{P}$ $\frac{max}{R}$, phase angle: $\delta = 0$ impedance: $X_R \equiv \frac{\mathcal{E}_{max}}{I}$ $\frac{\sigma_{max}}{I_{max}} = R$ (resistance)

Single Device in AC Circuit: Inductor

Voltage of ac source : $\mathcal{E} = \mathcal{E}_{max} \cos \omega t$ Current through device: $I = I_{max} \cos(\omega t - \delta)$

Inductor

Single Device in AC Circuit: Capacitor

Voltage of ac source : $\mathcal{E} = \mathcal{E}_{max} \cos \omega t$ Current through device: $I = I_{max} \cos(\omega t - \delta)$

Capacitor

 $V_C = \frac{Q}{C}$ $\frac{Q}{C} = \mathcal{E}_{max} \cos \omega t \Rightarrow I = \frac{dQ}{dt} = -\omega C \mathcal{E}_{max} \sin(\omega t)$ $V_{\rm app}$ amplitude: $I_{max} = \omega C \mathcal{E}_{max}$, phase angle: $\delta = -\frac{\pi}{2}$ 2 impedance: $X_C \equiv \frac{\mathcal{E}_{max}}{I}$ $\frac{\mathcal{E}_{max}}{I_{max}} = \frac{1}{\omega}$ $+$ $\frac{1}{\omega C}$ (capacitive reactance) $\bigwedge' \bigwedge'$ ωt

Single Device in AC Circuit: Application (1)

The ac voltage source $\mathcal{E} = \mathcal{E}_{max}$ sin ωt has an amplitude of $\mathcal{E}_{max} = 24V$ and an angular frequency of $\omega = 10$ rad/s.

In each of the three circuits, find

- (a) the current amplitude *Imax*,
- (b) the current *I* at time $t = 1$ s.

Single Device in AC Circuit: Application (2)

Consider an ac generator $\mathcal{E}(t) = \mathcal{E}_{max} \cos(\omega t)$, $\mathcal{E}_{max} = 25$ V, $\omega = 377$ rad/s connected to an inductor with inductance $L = 12.7$ H.

- (a) Find the maximum value of the current.
- (b) Find the current when the emf is zero and decreasing.
- (c) Find the current when the emf is $-12.5V$ and decreasing.
- (d) Find the power supplied by the generator at the instant described in (c).

Single Device in AC Circuit: Application (3)

Consider an ac generator $\mathcal{E}(t) = \mathcal{E}_{max} \cos(\omega t)$, $\mathcal{E}_{max} = 25$ V, $\omega = 377$ rad/s connected to a capacitor with capacitance $C = 4.15 \mu F$.

- (a) Find the maximum value of the current.
- (b) Find the current when the emf is zero and decreasing.
- (c) Find the current when the emf is $-12.5V$ and increasing.
- (d) Find the power supplied by the generator at the instant described in (c).

RLC Series Circuit (1)

Applied alternating voltage: $\mathcal{E} = \mathcal{E}_{max} \cos \omega t$

Resulting alternating current: $I = I_{max} \cos(\omega t - \delta)$

Goals:

- Find I_{max} , δ for given \mathcal{E}_{max} , ω .
- Find voltages V_R , V_L , V_C across devices.

Loop rule: $\mathcal{E} - V_R - V_C - V_L = 0$

Note:

- All voltages are time-dependent.
- In general, all voltages have a different phase.
- *V^R* has the same phase as *I*.

RLC Series Circuit (2)

Phasor diagram (for $\omega t = \delta$):

Voltage amplitudes:

• $V_{R,max} = I_{max}X_R = I_{max}R$ • $V_{L,max} = I_{max}X_L = I_{max}\omega L$ • $V_{C,max} = I_{max}X_C = \frac{I_{max}}{Q}$ *ωC*

Relation between \mathcal{E}_{max} and I_{max} from geometry:

$$
\mathcal{E}_{max}^2 = V_{R,max}^2 + (V_{L,max} - V_{C,max})^2
$$

$$
= I_{max}^2 \left[R^2 + \left(\omega L - \frac{1}{\omega C} \right)^2 \right]
$$

RLC Series Circuit (3)

$$
\text{Impedance: } Z \equiv \frac{\mathcal{E}_{max}}{I_{max}} = \sqrt{R^2 + \left(\omega L - \frac{1}{\omega C}\right)^2}
$$

Current amplitude and phase angle:

$$
\therefore I_{max} = \frac{\mathcal{E}_{max}}{Z} = \frac{\mathcal{E}_{max}}{\sqrt{R^2 + \left(\omega L - \frac{1}{\omega C}\right)^2}}
$$

$$
\therefore \tan \delta = \frac{V_{L,max} - V_{C,max}}{V_{R,max}} = \frac{\omega L - 1/\omega C}{R}
$$

Voltages across devices:

•
$$
V_R = RI = RI_{max} \cos(\omega t - \delta) = V_{R,max} \cos(\omega t - \delta)
$$

\n• $V_L = L \frac{dI}{dt} = -\omega L I_{max} \sin(\omega t - \delta) = V_{L,max} \cos(\omega t - \delta + \frac{\pi}{2})$
\n• $V_C = \frac{1}{C} \int I dt = \frac{I_{max}}{\omega C} \sin(\omega t - \delta) = V_{C,max} \cos(\omega t - \delta - \frac{\pi}{2})$

tsl303

AC Circuit Application (1)

In this *RLC* circuit, the voltage amplitude is $\mathcal{E}_{max} = 100$ V.

Find the impedance *Z*, the current amplitude *Imax*, and the voltage amplitudes V_R , V_C , V_L , V_{LC}

- (a) for angular frequency is $\omega = 1000 \text{rad/s}$,
- (b) for angular frequency is $\omega = 500 \text{rad/s}$.

AC Circuit Application (2)

In this *RLC* circuit, we know the voltage amplitudes V_R , V_C , V_L across each device, the current amplitude $I_{max} = 5$ A, and the angular frequency $\omega = 2$ rad/s.

• Find the device properties R , C , L and the voltage amplitude \mathcal{E}_{max} of the ac source.

Impedances: RLC in Series (1)

Ω

Impedances: RLC in Series (2)

Filters

RLC Series Resonance (1)

resonance angular frequency:

$$
\omega_0 = \frac{1}{\sqrt{LC}}
$$

RLC Series Resonance (2)

BE SEE IT BEE 5

• relaxation times: $\tau_{RC} = RC$, $\tau_{RL} = L/R$

• angular frequencies:
$$
\omega_L = \frac{\omega_0}{\sqrt{1 - (\omega_0 \tau_{RC})^2/2}}
$$
, $\omega_C = \omega_0 \sqrt{1 - (\omega_0 \tau_{RC})^2/2}$

$$
\text{voltages: } V_0^{\text{max}} = V_{\text{max}} \omega_0 \tau_{RL}, \quad V_L^{\text{max}}(\omega_L) = V_C^{\text{max}}(\omega_C) = \frac{V_0^{\text{max}}}{\sqrt{1 - (\omega_0 \tau_{RC})^2/4}}
$$

RLC Parallel Circuit (1)

Applied alternating voltage: $\mathcal{E} = \mathcal{E}_{max} \cos \omega t$

Resulting alternating current: $I = I_{max} \cos(\omega t - \delta)$

Goals:

- Find I_{max} , δ for given \mathcal{E}_{max} , ω .
- Find currents I_R , I_L , I_C through devices.

Junction rule: $I = I_R + I_L + I_C$

Note:

- All currents are time-dependent.
- In general, each current has a different phase
- \cdot *I_R* has the same phase as \mathcal{E} .

RLC Parallel Circuit (2)

Phasor diagram (for $\omega t = \delta$):

Current amplitudes:

•
$$
I_{R,max} = \frac{\mathcal{E}_{max}}{X_R} = \frac{\mathcal{E}_{max}}{R}
$$

\n• $I_{L,max} = \frac{\mathcal{E}_{max}}{X_L} = \frac{\mathcal{E}_{max}}{\omega L}$
\n• $I_{C,max} = \frac{\mathcal{E}_{max}}{X_C} = \mathcal{E}_{max} \omega C$

Relation between \mathcal{E}_{max} and I_{max} from geometry:

$$
I_{max}^2 = I_{R,max}^2 + (I_{L,max} - I_{C,max})^2
$$

= $\mathcal{E}_{max}^2 \left[\frac{1}{R^2} + \left(\frac{1}{\omega L} - \omega C \right)^2 \right]$

RLC Parallel Circuit (3)

Impedance:
$$
\frac{1}{Z} \equiv \frac{I_{max}}{\mathcal{E}_{max}} = \sqrt{\frac{1}{R^2} + \left(\frac{1}{\omega L} - \omega C\right)^2}
$$

Current amplitude and phase angle:

•
$$
I_{max} = \frac{\mathcal{E}_{max}}{Z} = \mathcal{E}_{max} \sqrt{\frac{1}{R^2} + \left(\frac{1}{\omega L} - \omega C\right)^2}
$$

• $\tan \delta = \frac{I_{L,max} - I_{C,max}}{I_{R,max}} = \frac{1/\omega L - \omega C}{1/R}$

Currents through devices:

•
$$
I_R = \frac{\mathcal{E}}{R} = \frac{\mathcal{E}_{max}}{R} \cos(\omega t) = I_{R,max} \cos(\omega t)
$$

\n• $I_L = \frac{1}{L} \int \mathcal{E} dt = \frac{\mathcal{E}_{max}}{\omega L} \sin(\omega t) = I_{L,max} \cos\left(\omega t - \frac{\pi}{2}\right)$
\n• $I_C = C \frac{d\mathcal{E}}{dt} = -\omega C \mathcal{E}_{max} \sin(\omega t) = I_{C,max} \cos\left(\omega t + \frac{\pi}{2}\right)$

tsl308

Impedances: RLC in Parallel (1)

Ω

Impedances: RLC in Parallel (2)

RLC Parallel Resonance (1)

resonance angular frequency:

$$
\omega_0 = \frac{1}{\sqrt{LC}}
$$

RLC Parallel Resonance (2)

currents at resonance:

$$
I_R^{max} = \frac{V_{max}}{R}, \quad I_L^{max} = I_C^{max} = I_0^{max} = V_{max} \sqrt{\frac{C}{L}}.
$$

AC Circuit Application (3)

Find the current amplitudes I_1 , I_2 , I_3

- (a) for angular frequency $\omega = 2 \text{rad/s}$,
- (b) for angular frequency $\omega = 4$ rad/s.

AC Circuit Application (4)

Given the current amplitudes *I*1, *I*2, *I*³ through the three branches of this *RLC* circuit, and given the amplitude $\mathcal{E}_{max} = 100$ V and angular frequency $\omega = 500$ rad/s of the ac source, find the device properties *R*, *L*, *C*.

Power in AC Circuits

Voltage of ac source: $\mathcal{E} = \mathcal{E}_{max} \cos \omega t$ Current through circuit: $I = I_{max} \cos(\omega t - \delta)$

Instantaneous power supplied: $P(t) = \mathcal{E}(t)I(t) = [\mathcal{E}_{max} \cos \omega t][I_{max} \cos(\omega t - \delta)]$

Use $\cos(\omega t - \delta) = \cos \omega t \cos \delta + \sin \omega t \sin \delta$

 \Rightarrow $P(t) = \mathcal{E}_{max}I_{max}[\cos^2 \omega t \cos \delta + \cos \omega t \sin \omega t \sin \delta]$

Time averages: $[\cos^2 \omega t]_{AV} = \frac{1}{2}$ $\frac{1}{2}$, $[\cos \omega t \sin \omega t]_{AV} = 0$

Average power supplied by source: $\emph{P}_{AV}=\frac{1}{2}$ $\frac{1}{2}$ E_{max}I_{max} cos $\delta = \mathcal{E}_{rms}I_{rms}$ cos δ

Power factor: cos *δ*

Transformer

• Primary winding: *N*¹ turns

$$
V_1(t) = V_1^{(rms)} \cos(\omega t), \quad I_1(t) = I_1^{(rms)} \cos(\omega t - \delta_1)
$$

- Secondary winding: N_2 turns $V_2(t) = V_2^{(rms)} \cos(\omega t), \quad I_2(t) = I_2^{(rms)} \cos(\omega t - \delta_2)$
- Voltage amplitude ratio: $\frac{V_1^{(rms)}}{V_2^{(rms)}}$ $V_2^{(rms)}$ $=\frac{N_1}{N_1}$ *N*²

• Power transfer:
$$
V_1^{(rms)}I_1^{(rms)}\cos\delta_1 = V_2^{(rms)}I_2^{(rms)}\cos\delta_2
$$

Consider an *RLC* series circuit with inductance *L* = 88*m*H, capacitance *C* = 0.94*µ*F, and unknown resistance *R*.

The ac generator $\mathcal{E} = \mathcal{E}_{max} \sin(\omega t)$ has amplitude $\mathcal{E}_{max} = 24V$ and frequency $f = 930$ Hz. The phase angle is $\delta = 75^{\circ}$.

- (a) Find the resistance *R*.
- (b) Find the current amplitude *Imax*.
- (c) Find the maximum energy U_L^{max} stored in the inductor.
- (d) Find the maximum energy U_{C}^{max} stored in the capacitor.
- (e) Find the time t_1 at which the current has its maximum value I_{max} .
- (f) Find the time t_2 at which the charge on the capacitor has its maximum value Q_{max} .

AC Circuit Application (7)

Consider the two ac circuits shown.

- (a) In the circuit on the left, determine the current amplitude I_1 and the voltage amplitudes V_1 and V_2 .
- (b) In the circuit on the right, determine the current amplitudes I_2 , I_3 , and I_4 .

AC Circuit Application (8)

Consider the two ac circuits shown.

- (a) In the circuit on the left, determine the maximum value of current I_1 and the maximum value of voltages V_1 and V_2 .
- (b) In the circuit on the right, determine the maximum value of currents *I*2, *I*3, and *I*4.

AC Circuit Application (9)

In the two ac circuits shown the ammeter and voltmeter readings are rms values.

- (a) In the circuit on the left, find the resistance *R* of the resistor, the capacitance *C* of the capacitor, the impedance *Z* of the two devices combined, and the voltage \mathcal{E}_{rms} of the power source.
- (b) In the circuit on the right, find the capacitance *C* of the capacitor, the inductance *L* of the inductor, the impedance *Z* of the two devices combined, and the rms value of the current *I*4.

AC Circuit Application (10)

In the two ac circuits shown the ammeter and voltmeter readings are rms values.

- (a) In the circuit on the left, find the capacitance *C* of the capacitor, the inductance *L* of the inductor, the impedance *Z* of the two devices combined, and the voltage \mathcal{E}_{rms} of the power source.
- (b) In the circuit on the right, find the capacitance *C* of the capacitor, the resistance *R* of the resistor, the impedance *Z* of the two devices combined, and the rms value of the current *I*4.

AC Circuit Application (5)

Find the current amplitudes I_1 , I_2 , I_3 , I_4 in the four *RLC* circuits shown.

