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We prove fixed point theorems for mixed-monotone mappings in partially ordered complete
metric spaces which satisfy a weaker contraction condition than the classical Banach contraction
condition for all points that are related by given ordering. We also give a global attractivity result
for all solutions of the difference equation zn+1 = F(zn, zn−1), n = 2, 3, . . . , where F satisfies mixed-
monotone conditions with respect to the given ordering.

Copyright q 2009 Dž. Burgić et al. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
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1. Introduction and Preliminaries

The following results were obtained first in [1] and were extended to the case of higher-
order difference equations and systems in [2–6]. For the sake of completeness and the readers
convenience, we are including short proofs.

Theorem 1.1. Let [a, b] be a compact interval of real numbers, and assume that

f : [a, b] × [a, b] −→ [a, b] (1.1)

is a continuous function satisfying the following properties:
(a)f(x, y) is nondecreasing in x ∈ [a, b] for each y ∈ [a, b], and f(x, y) is nonincreasing in

y ∈ [a, b] for each x ∈ [a, b];
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(b) If (m,M) ∈ [a, b] × [a, b] is a solution of the system

f(m,M) = m, f(M,m) = M, (1.2)

thenm = M.
Then

xn+1 = f
(
xn, xn−1

)
, n = 0, 1, . . . (1.3)

has a unique equilibrium x ∈ [a, b] and every solution of (1.3) converges to x.

Proof. Set

m0 = a, M0 = b, (1.4)

and for i = 1, 2, . . . set

Mi = f
(
Mi−1, mi−1

)
, mi = f

(
mi−1,Mi−1

)
. (1.5)

Now observe that for each i ≥ 0,

m0 ≤ m1 ≤ · · · ≤ mi ≤ · · · ≤ Mi ≤ · · · ≤ M1 ≤ M0,

mi ≤ xk ≤ Mi, for k ≥ 2i + 1.
(1.6)

Set

m = lim
i→∞

mi, M = lim
i→∞

Mi. (1.7)

Then

M ≥ lim sup
i→∞

xi ≥ lim inf
i→∞

xi ≥ m (1.8)

and by the continuity of f ,

m = f(m,M), M = f(M,m). (1.9)

Therefore in view of (b),

m = M (1.10)

from which the result follows.
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Theorem 1.2. Let [a, b] be an interval of real numbers and assume that

f : [a, b] × [a, b] −→ [a, b] (1.11)

is a continuous function satisfying the following properties:

(a) f(x, y) is nonincreasing in x ∈ [a, b] for each y ∈ [a, b], and f(x, y) is nondecreasing in
y ∈ [a, b] for each x ∈ [a, b];

(b) the difference equation (1.3) has no solutions of minimal period two in [a, b]. Then (1.3)
has a unique equilibrium x ∈ [a, b] and every solution of (1.3) converges to x.

Proof. Set

m0 = a, M0 = b (1.12)

and for i = 1, 2, . . . set

Mi = f
(
mi−1,Mi−1

)
, mi = f

(
Mi−1, mi−1

)
. (1.13)

Now observe that for each i ≥ 0,

m0 ≤ m1 ≤ · · · ≤ mi ≤ · · · ≤ Mi ≤ · · · ≤ M1 ≤ M0,

mi ≤ xk ≤ Mi, for k ≥ 2i + 1.
(1.14)

Set

m = lim
i→∞

mi, M = lim
i→∞

Mi. (1.15)

Then clearly (1.8) holds and by the continuity of f ,

m = f(M,m), M = f(m,M). (1.16)

In view of (b),

m = M (1.17)

from which the result follows.

These results have been very useful in proving attractivity results for equilibrium or
periodic solutions of (1.3) as well as for higher-order difference equations and systems of
difference equations; see [2, 7–12]. Theorems 1.1 and 1.2 have attracted considerable attention
of the leading specialists in difference equations and discrete dynamical systems and have
been generalized and extended to the case of maps in Rn, see [3], and maps in Banach space
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with the cone see [4–6]. In this paper, we will extend Theorems 1.1 and 1.2 to the case of
monotone mappings in partially ordered complete metric spaces.

On the other hand, there has been recent interest in establishing fixed point theorems
in partially ordered complete metric spaces with a contractivity condition which holds for
all points that are related by partial ordering; see [13–20]. These fixed point results have
been applied mainly to the existence of solutions of boundary value problems for differential
equations and one of them, namely [20], has been applied to the problem of solving matrix
equations. See also [21], where the application to the boundary value problems for integro-
differential equations is given and [22] for application to some classes of nonexpansive
mappings and [23] for the application of the Leray-Schauder theory to the problems of
an impulsive boundary value problem under the condition of non-well-ordered upper and
lower solutions. None of these results is global result, but they are rather existence results. In
this paper, we combine the existence results with the results of the type of Theorems 1.1 and
1.2 to obtain global attractivity results.

2. Main Results: Mixed Monotone Case I

LetX be a partially ordered set and let d be a metric onX such that (X, d) is a complete metric
space. Consider X ×X.We will use the following partial ordering.

For (x, y), (u, v) ∈ X ×X, we have

(x, y) � (u, v) ⇐⇒ {x ≤ u, y ≥ v}. (2.1)

This partial ordering is well known as “south-east ordering” in competitive systems in the
plane; see [5, 6, 12, 24, 25].

Let d1 be a metric on X ×X defined as follows:

d1((x, y), (u, v)) = d(x, u) + d(y, v). (2.2)

Clearly

d1((x, y), (u, v)) = d1((y, x), (v, u)). (2.3)

We prove the following theorem.

Theorem 2.1. Let F : X × X → X be a map such that F(x, y) is nonincreasing in x for all y ∈ X,
and nondecreasing in y for all x ∈ X. Suppose that the following conditions hold.

(i) There exists k ∈ [0, 1) with

d(F(x, y), F(u, v)) ≤ k

2
d1((x, y), (u, v)) ∀(x, y) � (u, v). (2.4)

(ii) There exists x0, y0 ∈ X such that the following condition holds:

x0 ≤ F
(
y0, x0

)
, y0 ≥ F

(
x0, y0

)
. (2.5)
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(iii) If {xn} ∈ X is a nondecreasing convergent sequence such that limn→∞ xn = x, then
xn ≤ x, for all n ∈ N and if {yn} ∈ Y is a nonincreasing convergent sequence such
that limn→∞ yn = y, then yn ≥ y, for all n ∈ N; if xn ≤ yn for every n, then
limn→∞ xn ≤ limn→∞ yn.

Then we have the following.

(a) For every initial point (x0, y0) ∈ X × X such that condition (2.5) holds, Fn(x0, y0) →
x, Fn(y0, x0) → y, n → ∞, where x, y satisfy

x = F(y, x), y = F(x, y). (2.6)

If x0 ≤ y0 in condition (2.5), then x ≤ y. If in addition x = y, then {xn}, {yn} converge to
the equilibrium of the equation

xn+1 = F
(
yn, xn

)
, yn+1 = F

(
xn, yn

)
, n = 1, 2, . . . . (2.7)

(b) In particular, every solution {zn} of

zn+1 = F
(
zn, zn−1

)
, n = 2, 3, . . . (2.8)

such that x0 ≤ z0, z1 ≤ y0 converges to the equilibrium of (2.8).

(c) The following estimates hold:

d
(
Fn(y0, x0

)
, x

) ≤ 1
2

kn

1 − k

[
d
(
F
(
x0, y0

)
, y0

)
+ d

(
F
(
y0, x0

)
, x0

)]
, (2.9)

d
(
Fn(x0, y0

)
, y

) ≤ 1
2

kn

1 − k

[
d
(
F
(
y0, x0

)
, x0

)
+ d

(
F
(
x0, y0

)
, y0

)]
. (2.10)

Proof. Let x1 = F(y0, x0) and y1 = F(x0, y0). Since x0 ≤ F(y0, x0) = x1 and y0 ≥ F(x0, y0) = y1,
for x2 = F(y1, x1), y2 = F(x1, y1),we have

F2(y0, x0
)
:= F

(
F
(
x0, y0

)
, F

(
y0, x0

))
= F

(
y1, x1

)
= x2,

F2(x0, y0
)
:= F

(
F
(
y0, x0

)
, F

(
x0, y0

))
= F

(
x1, y1

)
= y2.

(2.11)

Now, we have

x2 = F2(y0, x0
)
= F

(
y1, x1

) ≥ F
(
y0, x0

)
= x1,

y2 = F2(x0, y0
)
= F

(
x1, y1

) ≤ F
(
x0, y0

)
= y1.

(2.12)
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For n = 1, 2, . . . ,we let

xn+1 = Fn+1(y0, x0
)
= F

(
Fn(x0, y0

)
, Fn(y0, x0

))
,

yn+1 = Fn+1(x0, y0
)
= F

(
Fn(y0, x0

)
, Fn(x0, y0

))
.

(2.13)

By using the monotonicity of F, we obtain

x0 ≤ F
(
y0, x0

)
= x1 ≤ F2(y0, x0

)
= x2 ≤ · · · ≤ Fn+1(y0, x0

) ≤ · · · ,

y0 ≥ F
(
x0, y0

)
= y1 ≥ F2(x0, y0

)
= y2 ≥ · · · ≥ Fn+1(x0, y0

) ≥ · · ·
(2.14)

that is

x0 ≤ x1 ≤ x2 ≤ · · ·

y0 ≥ y1 ≥ y2 ≥ · · · .
(2.15)

We claim that for all n ∈ N the following inequalities hold:

d
(
xn+1, xn

)
= d

(
Fn+1(y0, x0

)
, Fn(y0, x0

)) ≤ kn

2
d1
((
x1, y1

)
,
(
x0, y0

))
, (2.16)

d
(
yn+1, yn

)
= d

(
Fn+1(x0, y0

)
, Fn(x0, y0

)) ≤ kn

2
d1
((
x1, y1

)
,
(
x0, y0

))
. (2.17)

Indeed, for n = 1, using x0 ≤ F(y0, x0), y0 ≥ F(x0, y0), and (2.3), we obtain

d
(
x2, x1

)
= d

(
F
(
y1, x1

)
, F

(
y0, x0

)) ≤ k

2
d1
((
y1, x1

)
,
(
y0, x0

))
=

k

2
d1
((
x1, y1

)
,
(
x0, y0

))
,

d
(
y2, y1

)
= d

(
F(x1, y1

)
, F

(
x0, y0

)) ≤ k

2
d1
((
x1, y1

)
,
(
x0, y0

))
.

(2.18)

Assume that (2.16) holds. Using the inequalities

Fn+1(y0, x0
) ≥ Fn(y0, x0

)
,

Fn+1(x0, y0
) ≤ Fn(x0, y0

)
,

(2.19)
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and the contraction condition (2.4), we have

d
(
xn+2, xn+1

)
= d

(
Fn+2(y0, x0

)
, Fn+1(y0, x0

))

= d
(
F
(
Fn+1(x0, y0

)
, Fn+1(y0, x0

))
, F

(
Fn(x0, y0

)
, Fn(y0, x0

)))

≤ k

2
[
d
(
Fn+1(x0, y0

)
, Fn(x0, y0

))
+ d

(
Fn+1(y0, x0

)
, Fn(y0, x0

))]

≤ k

2

[
kn

2
(
d
(
F
(
x0, y0

)
, y0

)
+ d

(
F
(
y0, x0

)
, x0

)
+ d

(
F
(
y0, x0

)
, x0

)

+ d
(
F
(
x0, y0

)
, y0

))
]

=
kn+1

2
d1
((
x1, y1

)
,
(
x0, y0

))
.

(2.20)

Similarly,

d
(
yn+2, yn+1

)
= d

(
Fn+2(x0, y0

)
, Fn+1(x0, y0

)) ≤ kn+1

2
d1
((
x1, y1

)
,
(
x0, y0

))
. (2.21)

This implies that {xn} = {Fn(y0, x0)} and {yn} = {Fn(x0, y0)} are Cauchy sequences in X.
Indeed,

d
(
Fn(y0, x0

)
, Fn+p(y0, x0

)) ≤ d
(
Fn(y0, x0

)
, Fn+1(y0, x0

))
+ · · ·

+ d
(
Fn+p−1(y0, x0

)
, Fn+p(y0, x0

))

≤ kn

2
[d

(
F
(
x0, y0

)
, y0

)
+ d

(
F
(
y0, x0

)
, x0

)
] + · · ·+

+
kn+p−1

2
[
d
(
F
(
x0y0

)
, y0

)
+ d

(
F
(
y0, x0

)
, x0

)]

=
kn

2
(
1 + k + k2 + · · · + kp−1)[d

(
F
(
x0, y0

)
, y0

)
+ d(F

(
y0, x0

)
, x0

)]

=
kn

2
1 − kp

1 − k

[
d
(
F
(
x0, y0

)
, y0

)
+ d

(
F
(
y0, x0

)
, x0

)
].

(2.22)

Since k ∈ [0, 1), we have

d
(
xn, xn+p

)
= d

(
Fn(y0, x0

)
, Fn+p(y0, x0

)) ≤ kn

2(1 − k)
d1
((
x1, y1

)
,
(
x0, y0

))
. (2.23)
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Using (2.23), we conclude that {xn} = {Fn(y0, x0)} is a Cauchy sequence. Similarly, we
conclude that {yn} = {Fn(x0, y0)} is a Cauchy sequence. Since X is a complete metric space,
then there exist x, y ∈ X such that

lim
n→∞

xn = lim
n→∞

Fn(y0, x0
)
= x , lim

n→∞
yn = lim

m→∞
Fm(x0, y0

)
= y. (2.24)

Using the continuity of F,which follows from contraction condition (2.4), the equations

xn+1 = F
(
yn, xn

)
, yn+1 = F

(
xn, yn

)
(2.25)

imply (2.6).
Assume that x0 ≤ y0. Then, in view of the monotonicity of F

x1 = F
(
y0, x0

) ≤ F
(
x0, y0

)
= y1,

x2 = F
(
y1, x1

) ≤ F
(
x1, y1

)
= y2,

x3 = F
(
y2, x2

) ≤ F
(
x2, y2

)
= y3.

(2.26)

By using induction, we can show that xn ≤ yn for all n. Assume that x0 ≤ z0, z1 ≤ y0. Then,
in view of the monotonicity of F, we have

x1 = F
(
y0, x0

) ≤ F
(
z1, z0

)
= z2 ≤ F

(
x0, y0

)
= y1,

x1 = F
(
y0, x0

) ≤ F
(
z2, z1

)
= z3 ≤ F

(
x0, y0

)
= y1.

(2.27)

Continuing in a similar waywe can prove that xi ≤ zk ≤ yi for all k ≥ 2i+1. By using condition
(iii)we conclude that whenever limn→∞ zk exists we must have

x ≤ lim
k→∞

zk ≤ y (2.28)

which in the case when x = y implies limk→∞ zk = x.
By letting p → ∞ in (2.23), we obtain the estimate (2.9).

Remark 2.2. Property (iii) is usually called closedness of the partial ordering, see [6], and is
an important ingredient of the definition of an ordered L-space; see [17, 19].

Theorem 2.3. Assume that along with conditions (i) and (ii) of Theorem 2.1, the following condition
is satisfied:

(iv) every pair of elements has either a lower or an upper bound.
Then, the fixed point (x, y) is unique and x = y.

Proof. First, we prove that the fixed point (x, y) is unique. Condition (iv) is equivalent to the
following. For every (x, y), (x∗, y∗) ∈ X × X, there exists (z1, z2) ∈ X × X that is comparable
to (x, y), (x∗, y∗). See [16].

Let (x, y) and (x∗, y∗) be two fixed points of the map F.
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We consider two cases.

Case 1. If (x, y) is comparable to (x∗, y∗), then for all n = 0, 1, 2, . . . (Fn(y, x), Fn(x, y)) is
comparable to (Fn(y∗, x∗), Fn(x∗, y∗)) = (x∗, y∗).We have to prove that

d1
(
(x, y),

(
x∗, y∗)) = 0. (2.29)

Indeed, using (2.2), we obtain

d1
(
(x, y),

(
x∗, y∗)) = d

(
x, x∗) + d

(
y, y∗)

= d
(
Fn(y, x), Fn(y∗, x∗)) + d

(
Fn(x, y), Fn(x∗, y∗)).

(2.30)

We estimate d(Fn(y, x), Fn(y∗, x∗)), and d(Fn(x, y), Fn(x∗, y∗)).
First, by using contraction condition (2.4), we have

d
(
F(y, x), F

(
y∗, x∗)) ≤ k

2
[
d
(
y, y∗) + d

(
x, x∗)] =

k

2
d1
(
(x, y),

(
x∗, y∗)),

d
(
F(x, y), F

(
x∗, y∗)) ≤ k

2
[
d
(
x, x∗) + d

(
y, y∗)] =

k

2
d1
(
(x, y),

(
x∗, y∗)).

(2.31)

Now, by using (2.31) and (2.30), we have

d1
(
(x, y),

(
x∗, y∗)) ≤ kd1

(
(x, y),

(
x∗, y∗)) < d1

(
(x, y),

(
x∗, y∗)), (2.32)

which implies that

d1
(
(x, y),

(
x∗, y∗)) = 0. (2.33)

Case 2. If (x, y) is not comparable to (x∗, y∗), then there exists an upper bound or a
lower bound (z1, z2) of (x, y) and (x∗, y∗). Then, (Fn(z2, z1), Fn(z1, z2)) is comparable to
(Fn(y, x), Fn(x, y)) and (Fn(y∗, x∗), Fn(x∗, y∗)).

Therefore, we have

d1
(
(x, y),

(
x∗, y∗)) = d1

((
Fn(y, x), Fn(x, y)

)
,
(
Fn(y∗, x∗), Fn(x∗, y∗)))

≤ d1
((
Fn(y, x), Fn(x, y)

)
,
(
Fn(z2, z1

)
, Fn(z1, z2

)))

+ d1
((
Fn(z2, z1

)
, Fn(z1, z2

))
,
(
Fn(y∗, x∗), Fn(x∗, y∗)))

= d
((
Fn(y, x), Fn(z2, z1

)))
+ d

(
Fn(z2, z1

)
, Fn(y∗, x∗))

+ d
(
Fn(z1, z2

)
, Fn(x∗, y∗)) + d

(
Fn(z2, z1), Fn(y∗, x∗)).

(2.34)
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Now, we obtain

d1
(
(x, y),

(
x∗, y∗)) = d

((
Fn(y, x), Fn(z2, z1

)))
+ d

(
Fn(z2, z1

)
, Fn(y∗, x∗))

+ d
(
Fn(z1, z2

)
, Fn(x∗, y∗)) + d

(
Fn(z2, z1

)
, Fn(y∗, x∗)).

(2.35)

We now estimate the right-hand side of (2.35).
First, by using

d
(
F(y, x), F

(
z2, z1

)) ≤ k

2
(
d
(
y, z2

)
+ d

(
x, z1

))
, (2.36)

we have

d
(
F2(y, x), F2(z2, z1

))
= d

(
F(F(x, y), F(y, x)), F

(
F
(
z1, z2

)
, F

(
z2, z1

)))

≤ k

2
[d

(
F(x, y), F

(
z1, z2

))
+ d

(
F(y, x), F

(
z2, z1

))
]

≤ k

2

[
k

2
(
d
(
x, z1

)
+ d

(
y, z2

))
+
k

2
(
d
(
y, z2

)
+ d

(
x, z1

))
]

=
k2

2
(
d
(
x, z1

)
+ d(y, z2

))
.

(2.37)

Similarly,

d
(
F2(x, y), F2(z1, z2

))
= d

(
F(F(y, x), F(x, y)), F

(
F
(
z2, z1

)
, F

(
z1, z2

)))

≤ k

2
[
d
(
F(y, x), F

(
z2, z1

))
+ d

(
F(x, y

)
, F

(
z1, z2

))]

≤ k

2

[
k

2
(
d
(
y, z2

)
+ d

(
x, z1

))
+
k

2
(
d
(
y, z2

)
+ d

(
x, z1

))
]

=
k2

2
(
d
(
x, z1

)
+ d

(
y, z2

))
.

(2.38)

So,

d
(
F2(y, x), F2(z2, z1

)) ≤ k2

2
(
d
(
x, z1

)
+ d

(
y, z2

))
,

d
(
F2(x, y), F2(z1, z2

)) ≤ k2

2
(
d
(
x, z1

)
+ d

(
y, z2

))
.

(2.39)
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Using induction, we obtain

d
(
Fn(y, x), Fn(z2, z1

)) ≤ kn

2
(
d
(
x, z1

)
+ d

(
y, z2

))
,

d
(
Fn(x, y), Fn(z1, z2

)) ≤ kn

2
(
d
(
x, z1

)
+ d(y, z2

))
,

d
(
Fn(z2, z1

)
, Fn(y∗, x∗)) ≤ kn

2
(
d
(
z1, x

∗), d
(
z2, y

∗)),

d
(
Fn(z1, z2

)
, Fn(x∗, y∗)) ≤ kn

2
(
d
(
z1, x

∗), d
(
z2, y

∗)).

(2.40)

Using (2.40), relation (2.35) becomes

d1
(
(x, y),

(
x∗, y∗)) ≤ kn

2
(
d
(
x, z1

)
+ d

(
y, z2

))
+
kn

2
(
d
(
x, z1

)
+ d

(
y, z2

))

+
kn

2
(
d
(
z1, x

∗) + d
(
z2, y

∗)) +
kn

2
(
d
(
z1, x

∗) + d
(
z2, y

∗))

= kn(d
(
x, z1

)
+ d

(
y, z2

)
+ d

(
z1, x

∗) + d
(
z2, y

∗)) −→ 0, n −→ ∞.

(2.41)

So,

d1
(
(x, y),

(
x∗, y∗)) = 0. (2.42)

Finally, we prove that x = y. We will consider two cases.

Case A. If x is comparable to y, then F(y, x) = x is comparable to F(x, y) = y.Now, we obtain

d(x, y) = d(F(y, x), F(x, y)) ≤ k

2
[d(x, y) + d(y, x)] = kd(x, y), (2.43)

since k ∈ [0, 1), this implies

d(x, y) = 0 ⇐⇒ x = y. (2.44)

Case B. If x is not comparable to y, then there exists an upper bound or alower bound of x
and y, that is, there exists z ∈ X such that x ≤ z, y ≤ z. Then by using monotonicity character
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of F,we have

F(x, y) ≤ F(x, z), F(y, x) ≤ F(y, z),

F(x, y) ≥ F(z, y), F(y, x) ≥ F(z, x).
(2.45)

Now,

F2(x, y) = F(F(y, x), F(x, y)) ≤ F(F(z, x), F(x, z)) = F2(x, z), (2.46)

that is

F2(x, y) ≤ F2(x, z). (2.47)

Furthermore,

F2(x, y) = F(F(y, x), F(x, y)) ≥ F(F(y, z), F(z, y)) = F2(y, z), (2.48)

that is

F2(x, y) ≥ F2(y, z). (2.49)

Similarly,

F2(y, x) = F(F(x, y), F(y, x)) ≤ F(F(z, y), F(y, z)) = F2(y, z), (2.50)

that is

F2(y, x) ≤ F2(y, z), (2.51)

and

F2(y, x) = F(F(x, y), F(y, x)) ≥ F(F(x, z), F(z, x)) = F2(z, x). (2.52)

By using induction, we have

Fn+1(x, y) ≤ Fn+1(x, z),

Fn+1(x, y) ≥ Fn+1(y, z),

Fn+1(y, x) ≤ Fn+1(y, z),

Fn+1(y, x) ≥ Fn+1(z, x).

(2.53)



Dž. Burgić et al. 13

Since (x, y) is a fixed point, we obtain

d(x, y) = d
(
Fn+1(y, x), Fn+1(x, y)

)

= d
(
F
(
Fn(x, y), Fn(y, x)

)
, F

(
Fn(y, x), Fn(x, y)

))

≤ d
(
F
(
Fn(x, y), Fn(y, x)

)
, F

(
Fn(x, z), Fn(z, x)

))

+ d
(
F
(
Fn(x, z), Fn(z, x)

)
, F

(
Fn(y, x), Fn(x, y)

))

≤ d
(
F
(
Fn(x, y), Fn(y, x)

)
, F

(
Fn(x, z), Fn(z, x)

))

+ d
(
F
(
Fn(z, x), Fn(x, z)

)
, F

(
Fn(x, z), Fn(z, x)

))

+ d
(
F
(
Fn(y, x), Fn(x, y)

)
, F

(
Fn(z, x), Fn(x, z)

))
.

(2.54)

Using the contractivity condition (2.4) on F,we have

d(x, y) ≤ k

2
[
d
(
Fn(x, y), Fn(x, z)

)
+ d

(
Fn(y, x), Fn(z, x)

)]

+
k

2
[
d
(
Fn(z, x), Fn(x, z)

)
+ d

(
Fn(x, z), Fn(z, x)

)]

+
k

2
[
d
(
Fn(y, x), Fn(z, x)

)
+ d

(
Fn(y, x), Fn(x, y)

)]

=
k

2
[
2d

(
Fn(x, y), Fn(x, z)

)
+ 2d

(
Fn(y, x), Fn(z, x)

)
+ 2d

(
Fn(x, z), Fn(z, x)

)]

= k
[
d
(
Fn(x, y), Fn(x, z)

)
+ d

(
Fn(y, x), Fn(z, x)

)
+ d

(
Fn(x, z), Fn(z, x)

)]
.

(2.55)

Now, we estimate the terms on the right-hand side

d
(
Fn(x, y), Fn(x, z)

)
= d

(
F
(
Fn−1(y, x), Fn−1(x, y)

)
, F

(
Fn−1(z, x), Fn−1(x, z)

))

≤ k

2
[
d
(
Fn−1(y, x), Fn−1(z, x)

)
+ d

(
Fn−1(x, y), Fn−1(x, z)

)]
,

d
(
Fn(y, x), Fn(z, x)

)
= d

(
F
(
Fn−1(x, y), Fn−1(y, x)

)
, F

(
Fn−1(x, z), Fn−1(z, x)

))

≤ k

2
[
d
(
Fn−1(x, y), Fn−1(x, z)

)
+ d

(
Fn−1(y, x), Fn−1(z, x)

)]
,

d
(
Fn(x, z), Fn(z, x)

)
= d

(
F
(
Fn−1(z, x), Fn−1(x, z)

)
, F

(
Fn−1(x, z), Fn−1(z, x)

))

≤ k

2
[
d
(
Fn−1(z, x), Fn−1(x, z)

)
+ d

(
Fn−1(x, z), Fn−1(z, x)

)]
.

(2.56)
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Now, we have

d(x, y) ≤ k2[d
(
Fn−1(y, x), Fn−1(z, x)

)
+ d

(
Fn−1(x, y), Fn−1(x, z)

)
+ d

(
Fn−1(z, x), Fn−1(x, z)

)]
.

(2.57)

Continuing this process, we obtain

d(x, y) ≤ kn[d(F(y, x), F(z, x)) + d(F(x, y), F(x, z)) + d(F(z, x), F(x, z))]. (2.58)

Using the contractivity of F,we have

d(x, y) ≤ kn

[
k

2
(d(x, x) + d(y, z) + d(y, z) + d(x, x) + d(x, z) + d(z, x))

]

= kn+1(d(y, z) + d(z, x)).

(2.59)

That is

d(x, y) ≤ kn+1(d(y, z) + d(z, x)) −→ 0, n −→ ∞. (2.60)

So,

d(x, y) = 0 ⇐⇒ x = y. (2.61)

3. Main Results: Mixed Monotone Case II

LetX be a partially ordered set and let d be a metric onX such that (X, d) is a complete metric
space. Consider X ×X.We will use the following partial order.

For (x, y), (u, v) ∈ X ×X, we have

(x, y) � (u, v) ⇐⇒ {x ≥ u, y ≤ v}. (3.1)

Let d1 be a metric on X ×X defined as follows:

d1((x, y), (u, v)) = d(x, u) + d(y, v). (3.2)

The following two theorems have similar proofs to the proofs of Theorems 2.1 and 2.3,
respectively, and so their proofs will be skipped. Significant parts of these results have been
included in [14] and applied successfully to some boundary value problems in ordinary
differential equations.
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Theorem 3.1. Let F : X × X → X be a map such that F(x, y) is nondecreasing in x for all y ∈ X,
and nonincreasing in y for all x ∈ X. Suppose that the following conditions hold.

(i) There exists k ∈ [0, 1) with

d(F(x, y), F(u, v)) ≤ k

2
d1((x, y), (u, v)) ∀(x, y) � (u, v). (3.3)

(ii) There exists x0, y0 ∈ X such that the following condition holds:

x0 ≤ F
(
x0, y0

)
, y0 ≥ F

(
y0, x0

)
. (3.4)

(iii) If {xn} ∈ X is a nondecreasing convergent sequence such that limn→∞ xn = x, then
xn ≤ x, for all n ∈ N and if {yn} ∈ Y is a nonincreasing convergent sequence such
that limn→∞ yn = y, then yn ≥ y, for all n ∈ N; if xn ≤ yn for every n, then
limn→∞ xn ≤ limn→∞ yn.

Then we have the following.

(a) For every initial point (x0, y0) ∈ X ×X such that the condition (3.2) holds, Fn(x0, y0) →
x, Fn(y0, x0) → y, n → ∞, where x, y satisfy

x = F(x, y), y = F(y, x). (3.5)

If x0 ≤ y0 in condition (3.4), then x ≤ y. If in addition x = y, then {xn}, {yn} converge to
the equilibrium of the equation

xn+1 = F
(
xn, yn

)
, yn+1 = F

(
yn, xn

)
, n = 1, 2, . . . . (3.6)

(b) In particular, every solution {zn} of

zn+1 = F
(
zn, zn−1

)
, n = 2, 3, . . . (3.7)

such that x0 ≤ z0, z1 ≤ y0 converges to the equilibrium of (3.7).

(c) The following estimates hold:

d
(
Fn(x0, y0

)
, x

) ≤ 1
2

kn

1 − k

[
d
(
F
(
x0, y0

)
, x0

)
+ d

(
F
(
y0, x0

)
, y0

)]
,

d
(
Fn(y0, x0

)
, y

) ≤ 1
2

kn

1 − k

[
d
(
F
(
x0, y0

)
, x0

)
+ d

(
F
(
y0, x0

)
, y0

)]
.

(3.8)

Theorem 3.2. Assume that along with conditions (i) and (ii) of Theorem 3.1, the following condition
is satisfied:

(iv) every pair of elements has either a lower or an upper bound.
Then, the fixed point (x, y) is unique and x = y.
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Remark 3.3. Theorems 3.1 and 3.2 generalize and extend the results in [14]. The new feature
of our results is global attractivity part that extends Theorems 1.1 and 1.2. Most of presented
ideas were presented for the first time in [14].
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