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ABSTRACT

Code phase GNSS receivers convert the measured satellite pseudoranges into estimates of the position and clock offset
of the receiver, typically via an iterative, linearized least squares method. Since the pseudoranges themselves are
noisy, the resulting estimates of position and time are random variables. To describe the accuracy of this solution,
it is common to describe it statistically via the error covariance matrix. Rather than considering the individual
elements of this covariance matrix, users frequently reduce it to a scalar performance indicator; the most common
of these is the Geometric Dilution of Precision (GDOP).

It is well known that the GDOP is a function of the satellite geometry; with only a few visible satellites in poor
locations, the GDOP can become quite large. However, for a future with multiple, fully occupied GNSS constellations
it is expected that receivers would select those satellites to track so as to achieve the best possible performance.
Hence, an understanding of both how small the GDOP can be as a function of the number of satellites visible and
the characteristics of the constellations that meet that bound are of value. Further, once identified, a receiver could
exploit those constellation characteristics in selecting a subset of satellites.

Investigating the best possible GNSS satellite constellation with respect to the GDOP is not a new problem. Recently,
these authors developed achievable lower bounds to the GDOP as a function of the number of satellites; the bounds
were also extended to non-zero mask angle and to multiple GNSS constellations. Further, using actual GPS satellite
ephemeris data, it was shown by example that good GDOP performance resulted from constellations similar to the
“best” constellations resulting from the bounds.

This paper examines augmentation of the GNSS pseudoragnes with data from non-GNSS sensors; specifically, ranges.
While integration of GNSS and non-GNSS sensors is not novel, the perspective in the paper is how such external
sensors impact potential receiver performance (i.e. minimum GDOP) and what role they play in satellite selection.
Specifically, tight lower bounds to GDOP when the GNSS is augmented by this additional measurement (barometric
altimeter or a DME slant range) are presented; achievability of the bounds is also examined.



Introduction

Code phase GNSS receivers convert the measured satellite pseudoranges into estimates of the position and clock
offset of the receiver. The typical implementation of the solution algorithm is an iterative, linearized least squares
method. Assuming that pseudoranges from non-coplanar satellites are measured, the direction cosines matrix G is
formed and used to solve an over-determined set of equations to solve for receiver position and time offset.

Since the pseudoranges themselves are noisy, the resulting estimates of position and time are random variables. To
examine the accuracy of this solution it is common to describe it statistically via the error covariance matrix, equal
to the inverse of GTG scaled by the User Range Error, URE [1]. Rather than considering the individual elements of
this covariance matrix, users frequently reduce it to a scalar performance indicator. The most common of these is

the Geometric Dilution of Precision (GDOP), equal to

√
trace

{
(GTG)

−1
}

; equivalently, this is the square root of

the sum of the variances of the estimates without the URE scaling. Other possible measures of performance are the
Position (PDOP), Horizontal (HDOP), Vertical (VDOP), and Time (TDOP) portions of GDOP.

It is known that the GDOP is a function of the satellites’ geometry; with only a few visible satellites in poor locations,
the GDOP can become quite large. However, for a future with multiple, fully occupied GNSS constellations it is
expected that receivers would select those satellites to track so as to achieve the best possible performance; see, for
example, [2, 3]. Hence, we think that an understanding of both how small the GDOP can be as a function of the
number of satellites visible and the characteristics of the constellations that meet that bound are of value. Further,
once identified, a receiver could exploit those constellation characteristics in selecting a subset of satellites [4,5].

Investigating the best possible GNSS satellite constellation with respect to GDOP is not a new problem. The case
of m = 4 satellites, with reference to optimizing the tetrahedron formed by their locations, has been considered by
multiple authors, see e.g. [6]. The best constellations of 4, 5, and 6 satellites are described in [7]; the case of 5 satellites
from two GNSS constellations is considered in [8]. A general lower bound for m satellites from one constellation is
known [4], but does not restrict the satellites elevations to be above the horizon or above any fixed mask angle and,
hence, is not achievable in terrestrial applications. In a recent paper [9], these authors were able to improve on this
result, developing an achievable lower bound to GDOP for terrestrial applications

GDOP ≥

√
2
√

6 + 7

m
=

3.45√
m

The constellations that achieve this bound consist of approximately 29% of the satellites at zenith and the remaining
71% “balanced” around the horizon (balance having a specific mathematical definition, see [9]). In that same work
the bounds were extended to PDOP, to non-zero mask angle, and to multiple GNSS constellations. Further, using
actual GPS satellite ephemeris data, in [5] we showed by example that good GDOP/PDOP performance resulted
from constellations similar to the “best” constellations resulting from the bounds.

In this paper we examine augmentation of the GNSS measurements with data from non-GNSS sensors, specifically
range data, under the assumption that the data is integrated with the GNSS pseudoranges in the position solution.
While integration of GNSS and non-GNSS sensors is not novel, here we show (from an optimal GDOP perspective)
how such an external sensor impacts potential receiver performance and what role it plays in satellite selection.
Specifically, we extend our results from [9], providing tight lower bounds to the GDOP when the GNSS is augmented
by a single such measurement and present satellite constellations that achieve these bounds.

Some notes on the presented development and results include:

• While we do assume that the individual satellite errors are statistically equivalent (unbiased with common
variance), we assume that the additional range measurement is of different accuracy; hence, the appropriate
performance metric is a weighted GDOP.

• With no external sensor augmentation, the minimum GDOP constellations for GNSS alone are a 29%-71%
split of satellites at zenith and balanced satellites at the horizon, respectively. The results for GDOP with
augmentation by a range sensor are similar; the constellations that achieve the bounds are still a mix of horizon
and zenith (or off-zenith, see below) satellites, but with modifications to the ratio and balance conditions based
upon the direction and accuracy of the additional measurement source.



• In our minds the case of an altimeter is an important application of these results. Specifically, we examine the
required quality of the altitude measurement for the sensor to have a significant impact on GDOP and how an
altimeter alters our view of satellite selection.

• If the relative accuracy of the additional measurement is much better than that of the GNSS satellites, we
observe that diminishing returns result. Specifically, if the external sensor is nearly perfect, it still cannot drive
the performance of the entire system beyond a point.

GDOP with Range Augmentation

Adding a single range measurement to the solution, the direction cosines matrix for m satellites in three dimensions
using an East, North, and Up coordinate frame is

G =


e0 n0 u0 0
e1 n1 u1 1
e2 n2 u2 1
...

...
em nm um 1


in which (e0, n0, u0) is the unit vector pointing toward the ranging source and (ek, nk, uk), k = 1, 2 . . .m, are the unit
vectors pointing toward the m satellites, all from the receiver’s location. (For notational convenience we have listed
the range sensor first in this formulation; additional ranges could result in the occurrence of multiple such rows.)
Further, let Γ be the matrix of variances of these measurements

Γ = diag

σ2
r , σ

2, . . . σ2︸ ︷︷ ︸
m terms

 = σ2diag

σ2
r

σ2
, 1, . . . 1︸ ︷︷ ︸
m terms


with the ratio

σ2
r

σ2 accounting for the different accuracies of the systems (σ and σr being the standard deviations of
the GNSS pseudoranges and the augmentation range, respectively). Ignoring the leading σ2 term, the “weighted”
geometric dilution of precision is defined as

WGDOP =

√
trace

{(
GTΓ−1G

)−1}
with

GTΓ−1G =



σ2

σ2
r

e20 +

m∑
k=1

e2k
σ2

σ2
r

e0n0 +

m∑
k=1

eknk
σ2

σ2
r

e0u0 +

m∑
k=1

ekuk

m∑
k=1

ek

σ2

σ2
r

e0n0 +

m∑
k=1

eknk
σ2

σ2
r

n20 +

m∑
k=1

n2k
σ2

σ2
r

n0u0 +

m∑
k=1

nkuk

m∑
k=1

nk

σ2

σ2
r

e0u0 +

m∑
k=1

ekuk
σ2

σ2
r

n0u0 +

m∑
k=1

nkuk
σ2

σ2
r

u20 +

m∑
k=1

u2k

m∑
k=1

uk

m∑
k=1

ek

m∑
k=1

nk

m∑
k=1

uk m


With this formulation a number of the DOP bound results in [9] generalize. Our use of color in this matrix will
become obvious below.



A Brief Review of [9]

Following [9] the GDOP under GNSS alone is determined by the elements of the symmetric matrix GTΓ−1G with
σr →∞ to account for no range sensor

lim
σr→∞

GTΓ−1G =



m∑
k=1

e2k

m∑
k=1

eknk

m∑
k=1

ekuk

m∑
k=1

ek

m∑
k=1

eknk

m∑
k=1

n2k

m∑
k=1

nkuk

m∑
k=1

nk

m∑
k=1

ekuk

m∑
k=1

nkuk

m∑
k=1

u2k

m∑
k=1

uk

m∑
k=1

ek

m∑
k=1

nk

m∑
k=1

uk m


Finding the minimum of GDOP was a four step procedure:

1. Set the off-diagonal terms to zero. Strictly we cannot do this for all of these terms; however, setting the ones
shown in red (all but the

∑
k uk since each uk ≥ 0) is desired. Hence, we want

m∑
k=1

ekuk = 0

m∑
k=1

ek = 0

m∑
k=1

nkuk = 0

m∑
k=1

nk = 0

m∑
k=1

eknk = 0

Effectively, these are conditions that the satellite constellation exhibit symmetry in multiple directions. In [9]
these conditions, along with next one below, are used to define a “balanced” satellite constellation. See [5] for
a more detailed discussion of balance.

2. Set the first two diagonal terms (in blue) to be equal to one another

m∑
k=1

e2k =

m∑
k=1

n2k

We note that it is possible to satisfy all 6 of these conditions for any m greater than 3 [5].

3. The impact of the remaining off-diagonal term on WGDOP (in black) is minimized by forcing all of the satellites
to be at either zenith or on the horizon (elevations 90◦ and 0◦, respectively); let β represent the fraction of the
m satellites at zenith, then the GDOP bound reduces to

GDOP ≥

√
1 + 5β

mβ (1− β)

4. Finally, standard calculus provides the optimum value for β is
√
6−1
5 ≈ 0.29 which yields the GNSS-only bound

mentioned above.

To develop a lower bound for WGDOP that includes the range measurement, we intend to follow this same optimiza-
tion process as much as possible with the modified matrix GTΓ−1G. Since the direction to this range complicates
the situation, we first consider two simple, yet important examples before examining the general case.



A Range to Nadir/Zenith

Imagine that the ranging source is directly below or above the receiver so that e0 = n0 = 0, u0 = ±1; an altimeter
meets this definition with u0 = −1. With this restriction the matrix is

GTΓ−1G =



m∑
k=1

e2k

m∑
k=1

eknk

m∑
k=1

ekuk

m∑
k=1

ek

m∑
k=1

eknk

m∑
k=1

n2k

m∑
k=1

nkuk

m∑
k=1

nk

m∑
k=1

ekuk

m∑
k=1

nkuk
σ2

σ2
r

+

m∑
k=1

u2k

m∑
k=1

uk

m∑
k=1

ek

m∑
k=1

nk

m∑
k=1

uk m


and the optimization is as follows:

1. Set the red, off-diagonal terms to zero

m∑
k=1

eknk = 0

m∑
k=1

ekuk = 0

m∑
k=1

ek = 0

m∑
k=1

nkuk = 0

m∑
k=1

nk = 0 (1)

Constellations meeting these conditions exist for all m ≥ 4 as described in [9].

2. Set the first two diagonal terms (in blue) equal to one another

m∑
k=1

e2k =

m∑
k=1

n2k

This, too, can always be satisfied.

3. Restrict the satellites to zenith or horizon. Let β represent the fraction (a total of βm satellites) at zenith and
define the quality ratio γ by

γ2 =
σ2

mσ2
r

(γ is effectively the ratio of the GNSS-alone accuracy, σ/
√
m, and the range accuracy, σr), the bound becomes

WGDOP |zenith ≥

√(
4

1− β
+

1 + β + γ2

β(1− β) + γ2

)
1

m

4. Setting a derivative to zero, the necessary condition on β is

5β4 +
(
2γ2 − 8

)
β3 − 12γ2β2 +

(
10γ2 + 4

)
β + 4γ4 − 1 = 0

We show in Appendix A that this quartic polynomial has exactly one positive real root if γ ≤ 1√
2
; otherwise it

has no positive roots so we use β = 0 to minimize the lower bound.

Figure 1 shows the results versus the sensor standard deviation ratio, γ:

• The top subplot shows that fraction of satellites that should be at zenith, β. As expected, for vanishingly
small γ this ratio approaches 29%, the fraction found in [9] for GNSS alone. Also, once γ2 exceeds one-half
(indicated by the vertical black dotted line), the ranging sensor obviates the need for zenith satellites and all
m should be balanced about the horizon for minimum WGDOP.
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Figure 1: Results for a ranging source at nadir/zenith versus standard deviation ratio γ: (top) the fraction of satellites
at zenith, β, and (bottom) the coefficient in the expression for the WGDOP,

√
m×WGDOP .

• The bottom subplot shows the corresponding WGDOP performance; specifically, the coefficient of 1√
m

. For

tiny γ this coefficient approaches 3.45 (equivalent to GNSS alone), decreases with growing γ, and experiences
diminishing returns once γ2 exceeds one-half. Considering large γ, a very high quality ranging sensor at zenith

reduces the WGDOP from 3.45√
m

to
√

5
m = 2.24√

m
, a drop of about one-third.

One value of this theoretical analysis is that it provides a way to quantify the impact on GDOP of a high quality
altimeter in aircraft applications. To validate the analysis, Figure 2 compares theory to actual computation for the
case of m = 20 satellites for selected variance ratios. For each circle, the number of satellites is rounded to the
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Figure 2: Performance versus standard deviation ratio γ for m = 20 total satellites: (top) the count of satellites at
zenith (rounded to the best integer) and (bottom) the resulting WGDOP.



nearest integer. The WGDOP is effectively on top of the bound.

From these curves we see that the most bang for the buck is achieved if γ is near unity

γ =
σ√
mσr

= 1 or σr =
σ√
m

If the GNSS pseudorange accuracy is σ = 1 meter and we have 9-12 satellites then to be useful the altimeter should
have accuracy of σr ≈ 0.3 meters (1 foot). An altimeter with σr = 10 feet is essentially useless (γ = 0.1).

A Range to the Horizon

As a second example, imagine that the ranging source is at the horizon relative to the receiver; without loss of
generality, assume that the direction to the source is due north so that e0 = 0, n0 = 1, and u0 = 0. With this
restriction the matrix GTΓ−1G is

GTΓ−1G =



m∑
k=1

e2k

m∑
k=1

eknk

m∑
k=1

ekuk

m∑
k=1

ek

m∑
k=1

eknk
σ2

σ2
r

+

m∑
k=1

n2k

m∑
k=1

nkuk

m∑
k=1

nk

m∑
k=1

ekuk

m∑
k=1

nkuk

m∑
k=1

u2k

m∑
k=1

uk

m∑
k=1

ek

m∑
k=1

nk

m∑
k=1

uk m


and the optimization is as follows:

1. Set the red, off-diagonal terms to zero – this is equivalent to Eq. (1) from the nadir/zenith example.

2. Set the first two diagonal terms (in blue) equal to one another

m∑
k=1

e2k =
σ2

σ2
r

+

m∑
k=1

n2k = mγ2 +

m∑
k=1

n2k (2)

For smaller γ this is possible, but as γ grows it clearly becomes problematic. We discuss it further below.

3. Restrict the satellites to zenith or horizon, letting β represent the number at zenith. In this case, using
n2k = 1− e2k for horizon satellites, the condition of Eq. (2) can be written as

(1−β)m∑
k=1

e2k =
m

2

(
γ2 + 1− β

)
Since each e2k is at most equal to one, the left hand side has maximum value of (1 − β)m, so the condition
cannot be satisfied if

mγ2 > (1− β)m

For example, let (1 − β)m = 8 (multiples of 4 provide simple examples to work with for this situation) and

consider several values for mγ2 (0.1, 1, 4, and 7.8) and their corresponding needed
∑8
k=1 e

2
k values (4.05, 4.5,

6, and 7.9, respectively). The four subfigures in Figure 3 show sample satellite configurations (the horizon
locations only, other configurations are possible) that would satisfy the balance equations for these four cases,
respectively. For a very poor range sensor, the first case, the satellite locations are effectively equally distributed
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Figure 3: Horizon locations to satisfy balance for different quality ratios.

about the horizon (spacing of almost 45◦). For an improving range sensor to the north (marked by the arrow),
the horizon satellites maintain balance, but tend to be biased in the east-west direction (more generally,
perpendicular to the direction to the range sensor). Finally, as mγ2 approaches (1−β)m the satellites converge
to due east and west locations.

Assuming that we can meet the balance conditions, that mγ2 ≤ (1− β)m, then the WGDOP bound is

WGDOP |horizon ≥

√(
4

γ2 + 1− β
+

1 + β

β(1− β)

)
1

m

If mγ2 > (1 − β)m so that the configuration on the horizon collapses to all satellites being east/west, the
WGDOP bound is then

WGDOP |horizon ≥

√(
1

1− β
+

1

γ2
+

1 + β

β(1− β)

)
1

m

4. Optimizing the two expressions above yield several results:

• The dividing point in terms of γ for the two solutions is γ ≈
√

3−
√
3

2 ≈ 0.796 (see Appendix B).

• For γ > 0.796 the expression above is easily optimized, yielding β =
√
3−1
2 ≈ 0.37 for larger γ.

• For γ < 0.796 the optimum choice for β is the single positive root of

5β4 − 2
(
γ2 + 4

)
β3 + γ2

(
γ2 − 2

)
β2 + 2

(
γ4 + 3γ2 + 2

)
β −

(
γ4 + 2γ2 + 1

)
= 0

(see Appendix B for details).

Figure 4 shows the results versus the sensor standard deviation ratio, γ:

• The top subplot shows that fraction of satellites that should be at zenith, β. As expected, for vanishingly small
γ this ratio approaches 29%, the fraction found in [9] for GNSS alone. As γ increases, so does β until γ ≈ 0.796
for which the ranging sensor obviates the need for satellites in the same direction as the ranging source and all
m should be perpendicular to that direction (either directly overhead or east-west).

• The bottom subplot shows the corresponding WGDOP performance; specifically, the coefficient of 1√
m

. For

tiny γ this again approaches 3.45, decreases with growing γ, and experiences diminishing returns once γ exceeds
0.796. A good quality ranging sensor at the horizon reduces the GDOP from 3.45√

m
to 2.73√

m
, not quite as much of

a reduction as was observed with a zenith/nadir ranging sensor (shown as the red dashed line).

As an example, Figure 5 compares theory to actual computation for the case of m = 20 satellites for selected standard
deviation ratios. For each circle, the number of satellites is rounded to the nearest integer. Again we see the step-like
characteristic in the top subplot (and making even jumps due to the required symmetry – we could get examples with
odd numbers of satellites at zenith by putting a satellite due south on the horizon and then balancing the northern
components of the others), the WGDOP is effectively on top of the bound.
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Figure 4: Results for a ranging source at the horizon versus variance ratio γ: (top) the fraction of satellites at zenith,
β, and (bottom) the coefficient in the expression for the WGDOP,

√
m ×WGDOP . The red dashed line

is the performance of a range to zenith/nadir.
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Figure 5: Performance versus variance ratio γ for m = 20 total satellites: (top) the count of satellites at zenith
(rounded to the best integer) and (bottom) the resulting WGDOP.

The General Case – A Slant Range

Without loss of generality, let’s assume that the ranging source is in the northerly direction (i.e. set e0 = 0) and
parameterize its unit vector by elevation angle θ so that

n0 = cos θ u0 = sin θ



(i.e. negative θ for a ranging source below the receiver as in DME; an altimeter would have θ = −90◦). The GTΓ−1G
matrix is

GTΓ−1G =



m∑
k=1

e2k

m∑
k=1

eknk

m∑
k=1

ekuk

m∑
k=1

ek

m∑
k=1

eknk γ2m cos2 θ +

m∑
k=1

n2k γ2m sin θ cos θ +

m∑
k=1

nkuk

m∑
k=1

nk

m∑
k=1

ekuk γ2m sin θ cos θ +

m∑
k=1

nkuk γ2m sin2 θ +

m∑
k=1

u2k

m∑
k=1

uk

m∑
k=1

ek

m∑
k=1

nk

m∑
k=1

uk m


Immediately we see problems with invoking the 4 step optimization above; specifically, the red off-diagonal term
(second row, third column)

γ2m sin θ cos θ +

m∑
k=1

nkuk

cannot be made equal to zero if the satellites are limited to zenith and horizon. Clearly some modifications are
needed. Toward this end, below we consider a simple constellation which is described by four parameters (and is
optimum for the cases of GNSS alone, range to nadir/zenith, and range to the horizon), optimize its performance
for the given slant angle θ and standard deviation ratio γ, and conjecture that its best performance is an achievable
“bound”.

Consider Figure 6. The left subfigure shows an optimum GNSS-only configuration [5]:

• Some fraction, βm, of the satellites are at zenith, (ek, nk, uk) = (0, 0, 1); these are represented by the blue
square in this conceptual diagram.

• The remaining (1−β)m satellites are on the horizon evenly spaced with 120◦ separation. Each location consists

of (1−β)m
3 satellites and they appear as the red circles.

In contrast, the right subfigure shows the situation (possibly exaggerated) with a slant range to the north and down
(the black line representing the range direction). To balance the configuration the satellite locations have been
perturbed:

Figure 6: Conjectured slant range satellite configuration.



• The satellites near zenith have been tilted northward to location (ek, nk, uk) = (0, cosφ, sinφ) for some elevation
angle φ. If the range direction was up, we would tilt these satellites toward the south.

• Some of the horizon satellites are rotated toward the south to locations, (± sinψ, cosψ1, 0); the others remain
at azimuth 180◦, (ek, nk, uk) = (0,−1, 0).

• We use different colors to indicate that there could be different numbers of satellites at these locations, βm
near zenith, δ(1− β)m on the horizon at azimuth 180◦, and (1− δ)(1− β)m/2 each on the horizon toward the
east and west.

For this perturbed constellation we have

GTΓ−1G =



(1− δ)(1− β)m sin2 ψ 0 0 0

0
γ2m cos2 θ + δ(1− β)m
+(1− δ)(1− β)m cos2 ψ

γ2m sin θ cos θ
+βm sinφ cosφ

βm cosφ
+(1− δ)(1− β)m cosψ

−δ(1− β)m

0
γ2m sin θ cos θ

+βm sinφ cosφ
γ2m sin2 θ
+βm sin2 φ

βm sinφ

0
βm cosφ

+(1− δ)(1− β)m cosψ
−δ(1− β)m

βm sinφ m


Numerical optimization over the choice of β, δ, φ, and ψ is quite direct. Figure 7 shows the resulting WGDOP for
selected slant angles. We note that a range to zenith/nadir yields the most improvement while a range to the horizon
provides the least. Further, the performance at θ and −θ are identical. As an example, Figure 8 shows the resulting
parameter values for the case of θ = −15◦ for γ ranging from 0.01 to 100:

• The top subfigure shows β increasing from 0.29 for a poor sensor (effectively GNSS alone) and increasing to
0.35 as the sensor becomes excellent; this characteristic directly mimics what we saw for the horizon case in
Figure 4 (although converging to a different fraction).

• The top subfigure also shows δ starting at one-third for a poor sensor and decreasing to zero as the sensor
becomes excellent; this also mimics what we saw for the horizon case as the horizon satellites converged to due
east and west.
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Figure 7: Conjectured WGDOP lower bounds for different slant angles. The extremes of the provable lower bounds
for zenith/nadir and horizon are shown as dashed lines.
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Figure 8: Parameters of the constellation at slant angle θ = −15◦.

• The bottom subfigure shows that φ, the zenith tilt, starts at 90◦ and converges to 90 + θ as γ → ∞. This
convergence is expected as the constellation locates satellites in directions orthogonal to the range sensor.

• Finally, the bottom subfigure also shows that ψ, the east/west horizon locations, starts at ±60◦ and increases
with improving range sensor. To date we have been unable to complete an asymptotic analysis (in γ to
understand this increase.

Conclusions/Future

We have developed a tight (i.e. achievable) lower bound to GDOP for the integration of a vertical (e.g. altimeter)
or horizontal range measurement into a GNSS position solution. For a general slant range, we conjecture a bound
based on a possible constellation.

Future work could include multiple (i.e. two) ranges and/or bearing measurements.

Appendix A

For the zenith/nadir situation, the question to resolve is the number of positive real roots of the polynomial

5β4 + (2γ − 8)β3 − 12γβ2 + (10γ + 4)β + 4γ2 − 1 = 0

Toward this end we invoke Sturm’s theorem:



Let g(x) be a nth degree polynomial whose roots you are interested in. Define the finite sequence of
polynomials

p0(x) = g(x)

p1(x) =
dg(x)

dx

p2(x) = − rem

(
p0(x)

p1(x)

)
p3(x) = − rem

(
p1(x)

p2(x)

)
...

pn(x) = − rem

(
pn−2(x)

pn−1(x)

)
in which rem(·) is the remainder from the polynomial division (note that since we start with an
nth-order polynomial, then pn(x) is a constant). The count of real roots on an open interval (a, b)
of x is the difference in the number of sign changes in the sequence of polynomials at the endpoints
of the interval.

For the polynomial of interest, the sequence of polynomials (in the variable β) is

p0(β) = 5β4 + (2γ − 8)β3 − 12γβ2 + (10γ + 4)β + 4γ2 − 1

p1(β) = 20β3 + (6γ − 24)β2 − 24γβ + 10γ + 4

p2(β) = − rem

(
p0(f)

p1(f)

)
= . . .

p3(β) = − rem

(
p1(f)

p2(f)

)
= . . .

p4(β) = − rem

(
p2(f)

p3(f)

)
= K, a constant

where we have not supplied the details as the expressions are long, and not too insightful. Note that the constant
K is zero for γ = 0, otherwise negative for γ > 0.

Evaluating these polynomials at β = 0 yields

p0(0) = 4γ2 − 1

p1(0) = 10γ + 4, positive for all γ > 0

p2(0) = 0.6− 0.9γ − 3.75γ2

p3(0) = . . . , negative for all γ > 0

p4(0) = K, negative for all γ > 0

Notice that irregardless of the actual sign of p2(0), this sequence has one or two sign changes, one if p0(0) is positive
and two if p0(0) is negative. Similarly, evaluating at β = 1 yields

p0(1) = 4γ2 positive for all γ > 0

p1(1) = −8γ, negative for all γ > 0

p2(1) = −0.6γ (7γ + 2) , negative for all γ > 0

p3(1) = . . . , negative for all γ > 0

p4(1) = K, negative for all γ > 0

The result of taking the difference of these counts is that the polynomial of interest has exactly one positive real root
in the range (0, 1) if p0(0) is negative, or γ < 1

2 , and has no positive real root (i.e. we use β = 0 as the minimizer) if
γ > 1

2 .



Appendix B

This appendix examines that case of a ranging source on the horizon (assumed, without loss of generality, to be due
north); specifically, the optimization over β for smaller values of γ.

The relevant WGDOP bound is

WGDOP 2 |horizon ≥
(

4

γ2 + 1− β
+

1 + β

β(1− β)

)
1

m
≡ g1(β) + g2(β)

m

which we desire to minimize over the choice of β. Ignoring the 1
m term, we decompose the bound into two functions,

g1 and g2, to allow for further examination:

• First, recall that the defined range for β is [0, 1]; the necessary condition for achievability restricts β to the
range [0, 1− γ2]. Further, this effectively limits our attention to variance ratio γ ≤ 1.

• For 0 ≤ β ≤ 1 the first component, g1(β), is positive, monotonically increasing, and convex as all three of the
following expressions are positive for γ > 0:

g1(β) =
4

γ2 + 1− β
> 0

∂g1(β)

∂β
=

4

(γ2 + 1− β)
2 > 0

∂2g1(β)

∂β2
=

8

(γ2 + 1− β)
3 > 0

• The second component, g2(β), requires a bit more examination. Looking at the function and its derivatives

g2(β) =
1 + β

β(1− β)

∂g2(β)

∂β
=
β2 + 2β − 1

β2 (1− β)
2

∂2g2(β)

∂β2
= 2

β3 + 3β2 − 3β + 1

β3 (1− β)
3

there are several observations:

– The term itself is positive (not too surprising).

– Based upon the quadratic in its numerator of the second of these expressions (the denominator being
positive), the slope of g2 is clearly negative for β <

√
2− 1 and positive for β >

√
2− 1. Combining this

with the fact that g1(β) is monotonically increasing, the obvious result is that the optimum choice for β
must fall in the range [0,

√
2 − 1]; hence, we would never want more than 41% of the satellites at zenth

(
√

2− 1 ≈ 0.41). Adding the necessary condition β ≤ 1−γ, the optimum β is restricted to the range [0, δ]
with

δ ≡ min
{√

2− 1, 1− γ2
}

– The second derivative is positive for 0 ≤ β ≤ 1 (the denominator being always positive, an application of
Sturm’s theorem to the numerator polynomial shows no roots in the interval) and the function is convex.



• On the range [0, δ] the slope of g1 is always positive and the slope of g2 is always negative; hence, a minimum
occurs whenever

∂g1(β)

∂β
= −∂g2(β)

∂β
(3)

The equivalent condition on β is that it is a root of the polynomial

h(β) ≡ 5β4 − 2
(
γ2 + 4

)
β3 + γ2

(
γ2 − 2

)
β2 + 2

(
γ4 + 3γ2 + 2

)
β −

(
γ4 + 2γ2 + 1

)
= 0

• Since the sum of convex functions is also convex, if g1(β) + g2(β) has a minimum at β∗ for 0 ≤ β∗ ≤ δ then the
minimum is unique; if there is no point of zero slope on this range, then we use β∗ = δ (with no point of zero
slope the minimum occurs at one of the interval’s endpoints, and since g2(β) is infinite at β = 0 the minimum
must occur at the right end point). The solution, then is

β∗ = min
{√

2− 1, 1− γ, arg h(x) = 0
}

Some detailed analysis using Sturm’s theorem (and well beyond the scope of this conference paper) shows that

h(x) has exactly one root on (0, 1) for γ2 ≤ 3−
√
3

2 ≈ 0.634 or γ ≤
√

3−
√
3

2 ≈ 0.796.
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