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Abstract: 
 
Most glasses are often exposed to impact loading during their service life, which may lead to the 
failure of the structure. While in situ experimental studies on impact-induced damage are 
challenging due to the short timescales involved, continuum-based computational studies are 
complicated by the discontinuity in the displacement field arising from the propagation of cracks. 
Here, using peridynamics simulations, we investigate the role of the mechanical properties and 
geometry in determining the overall damage on a glass plate subjected to ballistic impact. In 
particular, we analyze the role of bullet velocity, bullet material, and elastic modulus, fracture 
energy, and radius of the plate. Interestingly, we observe an power-law dependence between 
the total damage and the fracture energy of the glass plate. Through an auto-regressive analysis 
of the evolution of cracks, we demonstrate that the self-affine growth of cracks leads to this 
power-law dependence. Overall, the present study illustrates how peridynamics simulations can 
offer new insights into the fracture mechanics of glasses subjected to ballistic impacts. This 
improved understanding can pave way to the design and development of glasses with improved 
impact-resistance for applications ranging from wind-shields and smart-phone screens to 
ballistics. 
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1. Introduction: 
 
Glass, an archetypical brittle material, is ubiquitously used in everyday life from car wind shields 
to smart phone screens (Mauro, 2014; Mauro et al., 2014; Mauro and Zanotto, 2014; Wang et 
al., 2017a). One of the major causes of failure in glass is the sudden load, such as impact, to which 
they are exposed to during the service period. These impact loads could vary from small stone 
pellets to bullets, resulting in a minor crack to a catastrophic failure of the glass structure, 
respectively (Bobaru et al., 2012; Hu et al., 2013). Understanding the role of material and 
geometric properties of the structure on impact-induced damage is crucial to design next 
generation glassware with improved impact-tolerance.  
 
Extensive studies have been carried out in the past decades using experimental techniques on 
the impact-induced damage in brittle materials (Ball and McKenzie, 1994; Barefoot et al., 2013; 
Bless and Chen, 2010; Bourne et al., 1995; Chaudhri and Walley, 1978; Field, 1988; Je et al., 1989; 
Knight et al., 1977). These studies focused both on the dynamic aspects and post-mortem of 
cracks in typical glass-based structures subjected to impact. However, the experimental studies 
were limited by two major aspects. Firstly, the crack propagation and associated dynamic 
phenomena during impact occur at timescales barely accessible to the experiments, even with 
the fastest available recording devices (Tang et al., 2014). As such, most of the experimental 
measurements do not have a direct access to the crack propagation and energy releasing 
mechanisms. Secondly, a parametric study, analyzing the effect of a single material property 
while keeping others constant, is next to impossible using experiments. This is because, even in 
materials where continuous variation of compositions are possible, such as glasses or cement, 
properties do not vary uniformly and continuously (Bauchy et al., 2017; Krishnan et al., 2016, 
2017; Li et al., 2017). This poses a fundamental challenge in analyzing critically the role of material 
and geometric properties on impact-induced failure through experiments. 
 
On the other hand, in silico “numerical experiments” provide a unique means to control the initial 
and boundary conditions and material properties with high fidelity. Further, it provides complete 
access to the spatio-temporal evolution of displacement and stress fields, and energy in the 
structure. To study the impact-induced damage in materials, numerical simulations across the 
length-scales—from molecular dynamics (MD) (Anders et al., 2012; Holmström et al., 2011; Saiz 
and Gamero-Castaño, 2012; Samela and Nordlund, 2010) to finite element (FE) (Doner et al., 
2019; Krishnan et al., 2010; Peng et al., 2013; Pyttel et al., 2011; Timmel et al., 2007)—have been 
carried out in the past. Although MD simulations can provide insight into the atomistic 
mechanisms of crack propagation (Buehler et al., 2003; Wang et al., 2016), they cannot be used 
to study the damage occurring at the macroscale, e.g., bullet impact. This is attributed to the fact 
that the system size, in MD simulations, is restricted to a few hundred nanometers, and the 
timescale to a few nanoseconds. In order to simulate failure at larger length scales, FE simulations 
are preferred. While traditional FE methods are notorious for their inability to simulate crack, 
advanced techniques such as extended FE methods (XFEM) (Belytschko et al., 2003; Zi and 
Belytschko, 2003), FE with element deletion method (Ismail et al., 2012), and cohesive-zone 
model (Elices et al., 2002) have been proposed as an alternative to investigate macroscopic 



 

 

failure in brittle materials. Each of these models carry their own deficiencies in modeling realistic 
crack propagations (Agwai et al., 2011; Nayak et al., 2019). The major reason for the inability of 
FE-based methods to predict realistic crack propagation is that the mathematical basis for these 
methods rely on the classical continuum mechanics. The basic assumption in continuum theory 
that the body remains continuous when it undergoes deformation is violated during crack 
initiation and propagation. This discontinuity in the displacement field, due to crack formation, 
renders the governing differential equations meaningless. As such, although these methods can 
be used to study various aspects of impact-induced failure, a start-to-end simulation of impact-
induced crack propagation and failure in glasses is impeded due to the aforementioned reasons. 
 
To address this inherent limitation in continuum mechanics, Silling et al. proposed a non-local 
formulation of continuum mechanics (Silling, 2000). This method, inspired from the MD-based 
methods (Seleson et al., 2009), proposes an alternate approach to formulate the continuum 
equations of motion (see the section Methodology). Thanks to the non-local integral-based 
formulation of peridynamics, the method has been extremely successful to simulate 
discontinuous phenomena such as crack propagation (Ha and Bobaru, 2011), failure phase 
separated glasses (Tang et al., 2018), impact (Bobaru et al., 2012; Parks et al., 2008), blast (Fan 
and Li, 2017; Wang et al., 2017b), and other forms of extreme failures such as landslides (Lai et 
al., 2015) and earthquakes.  
 
In the present work, we use peridynamics simulations to analyze the damage in glasses subjected 
to a projectile impact. We investigate the role of mechanical and geometric properties such as 
elastic modulus, fracture energy, and plate radius in determining the overall damage in the glass 
structure. An interesting power-law dependence is observed between the overall damage and 
the fracture energy of the glass plate. Through a detailed analysis on the initiation and 
propagation of cracks, we show that the power-law dependence is closely related to the crack-
branching instability during dynamic crack propagation.  
 

2. Methodology: 
 

2.1 Peridynamics: 
Peridynamics is a reformulation of continuum mechanics into integral equations of motion (Le 
and Bobaru, 2017; Silling, 2000; Silling et al., 2007; Silling and Lehoucq, 2008). This allows 
peridynamics to handle cracks and discontinuities inherently, as the differentiability of 
displacement field is not a necessary condition for the equations of motion to be valid (Agwai et 
al., 2011; Foster, 2009; Ha and Bobaru, 2011; Silling and Askari, 2004). In peridynamics, the 
continuum domain is discretized using particles or lattice points which interact with each other 
based on a pair-wise force. A more generalized version of peridynamics with state-based 
variables has also been proposed to simulate complex material response including plasticity and 
viscoelasticity (Mitchell, 2011b, 2011a; Silling et al., 2007). In peridynamics, the classical 
assumption of “local force” is replaced by “force acting at a distance” through the introduction 
of a characteristic length scale. This characteristic length scale, known as the horizon, gives the 
subdomain within which all particles interact with the central particle. Based on this, the 
peridynamics equation of motion is given by 



 

 

 
ρü(x;  t) = ∫ f(u(x’ , t)  −  u(x, t), x’  −  x) dx’  +  b(x, t)

 

𝐻𝑥
            Equation (1) 

 
where ρ is the mass density, ü is the acceleration vector field, f(.) is the pairwise force function 
for particles at locations x and x’, b is the body force intensity, and Hx defines the subdomain in 
the body, i.e., the horizon. The form of the pairwise force function depends on the material model 
used in the peridynamic formulation. Here, we restrict our discussion to bond-based material 
model, as this model has been shown to reproduce the characteristics of fracture in brittle 
materials successfully (Bobaru et al., 2012; Ha and Bobaru, 2011; Hu et al., 2013). For a detailed 
overview on peridynamics and different material models, please refer to Refs. (Mitchell, 2011b, 
2011a; Silling, 2000; Silling et al., 2007). 
 
For a bond-based material namely, prototype microelastic brittle (PMB) material (Parks et al., 
2008), the pairwise force is given by 

𝑓(η, ξ ) = {

ξ +  η

║ξ + η║
cs, ║ξ║ ≤  δ

       0,        ║ξ║ >   δ
                                          Equation (2) 

where ξ = x’−x is the relative position of the particle, η = u(x’,t) − u(x,t) is its relative displacement, 

c(ξ) is the micromodulus function, and 𝑠 =
║𝛈 + 𝛏║ – ║𝛏║

║𝛏║
 gives the relative bond elongation. Using 

a condition for the equivalency of elastic strain energy density, the micromodulus can be derived 
from the bulk modulus K, and horizon 𝛿 as (Ha and Bobaru, 2011)  

𝑐 =
18𝐾

π δ
4                                                            Equation (3) 

Bonds between the lattice points in PMB are purely elastic with a critical stretch s0, after which 
they will break. The broken bond corresponds to a local material damage and allows for the 
initiation and propagation of cracks in the material. The critical bond stretch s0 is derived from 
the fracture energy of the material so as to represent a realistic strain-energy release rate as (Ha 
and Bobaru, 2011) 

𝑠0 = √
5𝐺𝑐

9Kδ
                                                          Equation (4) 

where 𝐺𝑐is the fracture energy of the material. It should be noted that a material particle is 
connected to multiple particles within the horizon. To account for this while computing damage 
of a point, a Boolean function 𝜇(𝑡, 𝜂, 𝜉) is defined which has a value of 0 corresponding to a 
broken bond, and 1 otherwise. Thus, the damage at a material point x is defined as  

𝜑(𝑥, 𝑡) = 1 −
∫ 𝜇(𝑡,𝜂,𝜉)𝑑𝑉𝑥′𝐻𝑥

∫ 𝑑𝑉𝑥′𝐻𝑥

                                           Equation (5) 

Thus, a material point with all the bonds intact will have a damage of 0, while the one with all 
the bonds broken have a damage of 1. 
 

2.2 Simulation details: 
  



 

 

 

 
Figure 1. (a) Front and (b) top view of the plate-bullet simulation setup. Note that the glass 

plate and bullet are colored in blue and red, respectively. 
 
Peridynamics simulations of impact damage on a glass plate are carried out using the open-
source LAMMPS package (Parks et al., 2008, 2011; Plimpton, 1995). To this extent, a well-
established methodology (Bobaru et al., 2012; Ha and Bobaru, 2011; Hu et al., 2013; Parks et al., 
2008, 2011) which is validated against several experimental studies is used. Figure 1 shows the 
geometry of the plate and the bullet setup. The plate has a radius of 37 mm and thickness of 2.5 
mm. The domain is discretized using a simple cubic lattice with lattice parameter of 0.5 mm. The 
horizon is kept constant with a value of 2.0 mm, four times the lattice parameter. The value is 
chosen based on a convergence study considering three different horizons (see Supplementary 
Material) and is in agreement with an earlier study (Bobaru and Hu, 2012). The material 
properties of the plate are taken equivalent to that of a soda-lime silicate glass with an elastic 
modulus of 94.5 GPa and fracture energy of 4.3 J/m2 (Wang et al., 2016). Note that the material 
properties and geometry mentioned here are chosen as the standard simulation. In other words, 
while investigating the effect of material properties and geometry on impact-induced damage, 
the constant parameters are set to the values as in the standard simulation. The values taken by 
the variable parameter is detailed in the relevant sections later.  
 
A spherical bullet with a radius of 3 mm is used in the present study. Further, to ensure the 
generality of results, two different bullets are considered. Both the bullets are modelled as linear-
elastic materials. The first one, named as copper, has notably higher stiffness of 115 GPa and 
fracture energy of 2665 J/m2 than the target glass plate. This ensures that the bullet suffers close 
to zero damage upon impact. The second bullet has the same material properties as that of the 
target plate, and is named as a glass bullet. It should be noted that the behavior of the first bullet 

(a) 

(b) 



 

 

may not correspond to that of a real copper bullet. This is because the effects of plasticity are not 
included in the model. However, the aim of the study is to ensure that the results presented 
herein are valid irrespective of the stiffness or fracture energy of the bullet. Both copper and 
glass bullets are projected with a velocity of 100 m/s in the standard case. Initially, the bullet is 
separated from the glass plate by a distance two times the horizon. This is to avoid any interaction 
between the bullet and the glass plate at the initiation of the simulation. Peridynamic equations 
of motion are integrated using a timestep of 10-7 s (Parks et al., 2008). 
 

2.3 Computation of crack velocity 
To compute the velocity with which cracks propagate, we focus on the major radial cracks. To 
this extent, we first plot histograms of damage with respect to angular position of all the lattice 
points at every timestep. In the histogram, peaks correspond to the major radial cracks and the 
angles at which these peaks occur correspond to the angular position of the radial crack. In other 
words, the cracks propagate radially outward at this angle on the glass plate. Now, around these 
angles at which cracks propagate, we compute the damage in the lattice points along the radial 
direction. Note that propagation of cracks manifests as increased damage in the lattice points. 
Based on previous studies, we assume that a point with damage close to 0.5 forms part of a 
cracked surface (Agwai et al., 2011; Bobaru and Hu, 2012; Foster, 2009). This is based on the 
assumption that since the “bonds” of a lattice point are uniformly distributed in three 
dimensions, a failure of 50% of the bonds correspond to an exposed surface. Thus, at each 
timestep, we compute the radial position of the cracked lattice point to obtain the crack velocity 
as 

𝑣 =
𝑟(𝑡)−𝑟(𝑡−∆𝑡)

∆𝑡
     Equation (6)  

 
where 𝑟(𝑡) corresponds to the position to the maximum radial position of a lattice point with 
damage greater than or equal to 0.5, and ∆𝑡 is the timestep. It should be noted that these regions 
with damage greater 0.5 may not correspond to fully separated crack surfaces. It is possible that 
the damaged regions may still have bridging bonds left across a crack that is yet to break (Xu et 
al., 2018). However, we observe that the velocity of the crack is not sensitive to the cutoff 0.5 
and is consistent with slightly lower and cutoffs (see Supplementary Material).  
  

2.4 Autoregressive modeling of damage evolution 
To understand the nature of crack-branching and growth upon bullet impact, we model the 
damage evolution as a recursive time-series, namely, first order auto-regressive (AR) model 
(Ljung, 1998). Note that the auto-regressive model inherently suggests an exponential growth, 
as the value at any time t depends on the value at t-1. Thus, the values are compounded at every 
instant following the growth rate of the AR model. Here, the damage at any time instant t, D(t) is 
modeled auto-regressively, that is, evolving with respect to damage the previous time instant, 
D(t-1), as 
 

𝐷(𝑡) = 𝛼(𝑡)𝐷(𝑡 − 1) + 𝜀(𝑡 − 1)    Equation (7) 
 



 

 

where, 𝜀 is the unmodeled dynamics or the noise, which follows a Gaussian distribution with zero 
mean and non-zero variance, and 𝛼(𝑡) is the term governing time evolution, called as the damage 
growth rate. We use data sets that correspond to 5 different fracture energy levels, namely, 4.3, 
15, 50, 100, 150 kJ/m2 for both glass and copper bullets for performing the modeling. To exclude 
the effects of boundary conditions and other dynamics, we perform the fitting considering the 
damage evolution in the initial region. 
 

3. Results: 
 
3.1 Comparison with experiment: 
 

 
 

Figure 2. (a) Simulated coefficient of restitution (filled triangles) of the impact compared with 
the previous experiments by Knight et al. (Knight et al., 1977) (empty squares). The dotted 

line is a guide to eye. (b) Impact of steel sphere on soda-lime glass with an impact velocity of 
200 m/s by Knight et al. (Knight et al., 1977). (c) Simulation of the impact experiment by 

Knight et al. (Knight et al., 1977) using peridynamics. Red color represents damaged particles.  
 
In order to ensure realistic simulation of impact, we compare our simulation with experiments 
conducted by Knight et al. (Knight et al., 1977) on the impact of steel balls on soda-lime glass. 
Here, all the properties and parameters are chosen to match exactly with the ones in the 
experiment. As such, a spherical ball of radius 0.5 cm is projected towards a soda-lime glass plate 
with dimensions 10 cm x 10 cm x 5 cm, with different initial velocities varying from 30 m/s to 300 
m/s, namely 30, 40, 60, 80, 100, 110, 150, 200, and 300 m/s. The Young’s modulus and fracture 
energy of the steel ball are considered to be 200 GPa and 10000 J/m2, respectively, and that of 
the glass plate are 72 GPa, and 7 J/m2, respectively. For the peridynamics simulations, the 
discretization of the glass plate and ball is carried out with lattice units of 0.1 mm and a constant 
horizon of 0.4 mm is maintained. The micromodulus and critical stretch are computed using 
Equations (3) and (4). Note that both the steel ball and the glass plate are considered to isotropic.  
 

1 mm

1 mm

(a) (b) 

(c) 



 

 

First, we focus on the coefficient of restitution (CR) of the bullet. Note that CR, being a ratio of 
approaching velocities to separating velocities, essentially captures the energy dissipated in the 
impact process. Thus, CR ranges from 0 to 1, the former representing a perfectly plastic collision 
with complete energy dissipated in crack formation and the latter representing a perfectly elastic 
collision with no energy dissipation. Figure 2(a) shows the variation of CR with respect to initial 
velocity of the bullet. For low velocities of the bullet (< 100 m/s), CR remains constant and close 
to 1, suggesting an elastic collision for this velocity range. For higher velocities (> 100 m/s), CR 
reduces drastically suggesting energy dissipation in the collision, almost following a power-law 
with respect to the initial velocity. This is consistent with the experiments (Knight et al., 1977) 
where CR is observed to be close to 1 for velocities lower than 100 m/s with little damage on the 
glass plate. Figures 2(b) and 2(c) show the cross-sectional view of the glass plate subjected to 
impact in experiment (Knight et al., 1977) and simulation, respectively, at the same time (4 μs). 
We note that the depth of the damage observed in both the simulation and experiment is similar. 
Further, both the simulation and experiment produce debris upon impact, which is flying away 
from the surface. However, we observe that the peridynamics simulation over-estimate the 
pulverization behavior in the glass plate in comparison to the experiment. This could be due to 
the inherent deficiency of particle-based methods, which exhibits an increased tendency for 
particle separation. Note that the damage pattern simulated by peridynamics exhibits an 
asymmetry (see Fig. 2(c)), which could be ascribed to the following reasons. (i) The bullet atom is 
not perfectly spherical due to the discretization used in peridynamics. (ii) A slight perturbation is 
provided for the lattice points used in the discretization to avoid the formation of perfectly 
symmetric crack patterns. As such, the impact on the glass plate may result in an asymmetrical 
damage pattern. Overall, we observe that the peridynamic simulations exhibit a reasonable 
match with respect to experiments in predicting impact induced damage.  
 
3.2 Crack formation under ballistic impact: 
 

 
 

Figure 3. (a) Average damage per particle (left axis, red) and total mechanical energy (right 
axis, blue) of the glass plate, subjected to an impact by a copper bullet, with respect to time. 
Note that the results correspond to that of a glass plate with a radius of 37 mm, thickness of 
0.0025 m, elastic modulus of 94.5 GPa, and fracture energy of 4.3 J/m2. (b) Damage map in 

(a) (b) 



 

 

the glass plate subjected to impact at four different times, namely, 0, 15, 17, and 30 0 μs. The 
coloring scale, representing the local damage, varies from 0% (blue) to 100% (red). 

 
Now, we focus on the crack formation behavior when a bullet impact occurs on a brittle glass 
plate. The glass plate has a radius of 0.037 mm, thickness of 0.0025 m, elastic modulus of 94.5 
GPa, and fracture energy of 4.3 J/m2 and is subjected to the impact of a copper bullet with a 
velocity of 100 m/s. The overall fraction of cracks present in the material can be quantitatively 
represented in the peridynamics framework by the average damage per particle. An average 
damage of 100% corresponds to all the lattice points broken and separated away from each other 
and 0% correspond to all the points intact. 
 
Figure 3(a) shows the evolution of the average damage per particle and total mechanical energy 
in the glass plate. We observe that the average damage increases quickly upon impact and then 
eventually becomes constant, close to 48%, representing a saturated state. Note that the 
saturation of damage occurs very quickly—around 40 𝜇s after the bullet comes into contact with 
the plate. Now, we focus on the evolution of the total mechanical energy gained by the plate 
upon impact. Note that this energy includes both the elastic energy and kinetic energy of the 
plate. From Fig. 3(a), we note that the energy initially increases, which is attributed to the elastic 
potential energy of the plate due to deformation and kinetic energy due to the transverse and 
longitudinal waves produced. Subsequently, the energy reaches a peak value, and then reduces 
slightly before reaching saturation. The slight decrease in energy before saturation is attributed 
to the release of elastic energy by the formation of a network of cracks. Note that the saturation 
of energy occurs concurrent to the saturation of damage. A visual representation of the bullet 
impact on the glass plate, followed by the crack formation, is shown in Fig. 3(b). The crack pattern 
observed is qualitatively similar to the ones observed in earlier experimental studies (Chaudhri 
and Walley, 1978; Knight et al., 1977), confirming the realistic nature of the simulations. We note 
that, upon impact, the cracks are first formed in the plate at the point where the bullet strikes 
(see Fig. 3(b)). Major radial cracks then form which, while spreading outward, branch to form 
minor cracks. These cracks then spread to the entire glass plate forming a network of cracks in 
the form of radial and tangential cracks. Overall, we observe that the energy gained by glass plate 
upon impact is released through the formation of cracks and debris. 
 
3.3 Effect of bullet material and velocity: 
 



 

 

  

Figure 4. (a) Average damage per particle of the glass plate with respect to time upon impact 
with copper and glass bullets having a velocity of 100 m/s. (b) Average damage per particle, 

after saturation, of the glass plate with respect to bullet velocity for copper and glass bullets. 
Note that the results correspond to that of a glass plate with a radius of 37 mm, thickness of 

2.5 mm, elastic modulus of 94.5 GPa, and fracture energy of 4.3 J/m2. 
 
In order to ensure the generality of the crack formation, we consider two different bullets—
copper and glass. The copper bullet is significantly stiffer and has a fracture energy which is four 
orders of magnitude higher than that of the glass plate. Thus, upon impact, the copper bullet 
remains perfectly intact. On the contrary, the glass bullet shares the same material properties as 
the glass plate. During the impact, the glass bullet shatters along with the glass plate. From Fig. 
4(a), we note that the evolution of the average damage per particle exhibits similar trend in the 
case of both copper and glass bullets. Overall, we note that, given the geometry and material 
properties of the plate remain constant, the crack formation behavior in the glass plate is similar 
irrespective of the bullet material. 
 
Now, we focus on the effect of the bullet velocity on the overall damage on the glass plate. Figure 
4(b) shows the maximum percentage damage of the glass plate when impacted by bullets of 
different velocities. To this extent, six different bullet velocities are considered, viz., 5 m/s, 10 
m/s, 15 m/s, 25 m/s, 50 m/s, and 100 m/s. Note that the maximum percentage damage in each 
case corresponds to the saturated value of the damage after impact. We observe that the overall 
damage increases with the bullet velocity. While the increase is minor for lower velocities (< 25 
m/s), it is notable higher for higher velocities. Realistically, a velocity of 5 m/s would be similar to 
that of a stone striking the wind shield, while 100 m/s would be closer to that of a bullet impact. 
Further, we note that the velocity of 100 m/s creates maximum damage, among the selected 
velocities, due to high energy during impact. Therefore, we fix the bullet velocity as 100 m/s for 
the following studies. 

(a) (b) 



 

 

 
3.4 Effect of plate radius: 
 

 
Figure 5. Cumulative damage (left axis) and average damage per particle (right axis) of the 

glass plate with respect to plate radius for both copper (square symbol) and glass (circle 
symbol) bullets. 

 
To investigate the effect of plate geometry, we vary the plate radius. We focus on the effect of 
plate radius by considering four different radii, viz., 20 mm, 37 mm, 50 mm, 100 mm. The 
projectile is modeled using both glass and copper bullets. Figure 5 shows the final cumulative 
damage (left axis) and average damage per particle (right axis) with respect to the plate radius. 
The cumulative damage initially increases with increasing plate radius up to 0.05 m, after which 
it tends to plateau. Note that a slight decrease in the cumulative damage is observed in the case 
of both glass and copper bullets for a radius of 0.1 m in comparison to 0.05 m. The corresponding 
average damage per particle is also shown in Fig. 5. For a plate radius of 20 mm, ~80% final 
average damage is observed. Further, the average damage per particle decreases monotonically 
with increasing plate radius, eventually reaching ~8% for a radius of 0.1 m. The results are 
comparable in the case of both copper and glass bullets, although copper bullets cause slightly 
increased damage. 
 
Reconciling the cumulative and percentage damage, we note that for plate with smaller radii, the 
energy gained during impact is not completely dissipated by crack formation due to its smaller 
size. With increasing plate radius, the overall size increases, ultimately leading to the formation 
of more cracks, as suggested by the increasing cumulative damage. The saturated state of 
cumulative damage corresponds to the state wherein the maximum area of cracks that can be 
formed with the impact energy has formed. In the present case, this occurs for a radius of 0.05 
m. Further, with increasing plate radius, increasing kinetic energy is absorbed by the plate for 
dynamic motion leaving lower energies for crack formation. As such, the cumulative damage 
decreases slightly after the radius of 0.05 m. 



 

 

 
3.5 Effect of material properties: 

 
Figure 6. Average damage per particle of the glass plate with respect to the elastic modulus 

of the plate. 
 
To understand the effect of the material properties, we focus on the elastic modulus and fracture 
energy of the plate. First, we investigate the effect of elastic modulus by considering eight moduli 
values spanning over two orders of magnitude, viz., 1 GPa, 5 GPa, 10 GPa, 25 GPa, 50 GPa, 75 
GPa, 100 GPa, and 150 GPa. Figure 6 shows the average damage per particle in the glass plate 
with respect to the elastic modulus when impacted by glass and copper bullets. Note that all 
other parameters including the plate geometry, fracture energy, and bullet velocity are kept 
constant during the study. We observe that the average damage per particle remains fairly 
constant over the entire range of elastic moduli in the case of the copper bullet. In the case of 
the glass bullet, there is a slight increase in damage of the plate with increasing elastic modulus. 
However, the percentage damage is restricted within a range of 43% to 49% for an increase in 
the elastic modulus by two orders of magnitude. It should be noted that the elastic modulus is 
related to the fracture toughness of the material. An increase in elastic modulus would result in 
an increase in the fracture toughness of the material as well. This suggests that the stress 
required for the initiation of damage would increase with increasing elastic modulus. However, 
since the fracture energy of the plate—that is, the energy released upon the formation of 
cracks—is constant, the overall damage is not significantly affected by the variation in the elastic 
modulus.  
 



 

 

 
Figure 7. Final average damage per particle in the glass plate with respect to fracture energy 
for copper and glass bullets. The lines represent a power-law fit in the least-squared sense. 

 
Now, we focus on the effect of the fracture energy of the glass plate. To this end, we consider 
five different fracture energies spanning over two orders of magnitude, viz., 4.3 J/m2, 15 J/m2, 50 
J/m2, 100 J/m2, and 150 J/m2. As in the case of the elastic modulus, other parameters are kept 
constant during the study. Figure 7 shows the final average damage per particle in the glass plate 
with respect to the fracture energy. Interestingly, we observe an power-law dependence of the 
average damage with respect to the fracture energy of the glass plate for both copper and glass 
bullets. It should be noted that, in peridynamics, the overall damage is proportional to the new 
surface area created by the cracks (Silling, 2000; Silling and Askari, 2004). Further, in the case of 
thin plates subjected to impact, the surface area is proportional to the overall length of the 
cracks, including all the major and minor crack branches. In other words, the overall damage is 
proportional to the total length of the cracks formed upon impact. This suggests the existence of 
a power-law relationship between the total crack length and the fracture energy of the material. 
In other words, the total crack length decreases exponentially with increase in fracture energy. 
To establish the power law, we apply a logarithmic fit (see Fig. 7), minimizing the least-squared 
error, of the form,  

𝐷 = 𝑎𝐺𝑐
−𝑘                                                Equation (1) 

where, 𝐷 represents the percentage damage (%), 𝑎 is a pre-factor, 𝐺𝑐 is the fracture energy 
(J/m2), and 𝑘 is the power-law exponent. The value of the power-law exponent is found to be the 
same, 0.526 in this case, for both glass and copper bullets. This suggests a universal nature for 
the relationship between total crack length and fracture energy in plates subjected to impact, 
which is similar to the self-affine nature of cracks in fracture (Borodich, 1997). 
 

4. Discussion: 
 



 

 

  
Figure 8. (a) Distribution of cracks in the glass plate in a polar coordinate system, (b) 

histogram of the distribution of cracks with respect to the angular position θ°. Note that the 
peaks indicate the major radial cracks. 

 
We now discuss the power-law relationship observed between the fracture energy and crack 
length in the glass plate. To this extent, we focus on the radial cracks that grow from the center 
outwards when the bullet impacts the plate (see Fig. 3(b)). Note that the velocity of a crack 
depends on the energy flowing to the crack tip and the fracture energy required to create surface. 
However, the maximum velocity with which the cracks can propagate is limited for any given 
material, which corresponds to the Rayleigh wave speed VR of the material (Sharon and Fineberg, 
1999). In brittle materials, a crack tip instability has been observed above a critical velocity vc, 
that is 0.36VR, which leads to local crack branching (Sharon et al., 1995). Such branching reduces 
the velocity of the cracks due to increased energy dissipation. However, as soon as one of these 
branches terminate, the major radial crack again accelerates leading to further branching. Thus, 
the crack tip velocity exhibits a cyclic behavior resulting in an increased energy dissipation(Sharon 
et al., 1995). Here, we suggest that two complementary mechanisms are at the origin of the 
power-law dependence. On the one hand, for low fracture energies, the radial cracks that 
propagate outwards undergo crack branching due to increased crack velocities leading to crack 
tip instability (Fineberg et al., 1991; Sharon et al., 1995; Sharon and Fineberg, 1999). This leads 
to multiplication of cracks resulting in an exponential growth of the damage with a high growth 
rate. On the other hand, increased fracture energy decreases the crack velocity. This reduces the 
crack branching and the growth rate resulting in a decreased cumulative damage.  
 
To establish the hypothesis, we first analyze whether the crack tip velocity exhibits a cyclic 
behavior representative of the crack tip instability or not. To this extent, we quantify the 
distribution of cracks throughout the glass plate using a polar plot as shown in Fig. 8(a). Figure 
8(b) shows the histogram of the angular distribution of cracks in one of the glass plates subjected 
to impact. The distribution of radial cracks can be obtained from the peaks of the histogram in 
the angular distribution. We note that the major radial cracks are represented by the taller peaks 

(a) (b) 



 

 

in the histogram, while the minor radial cracks and branches are represented by smaller peaks. 
The rest of the histogram with comparable peaks represent the axisymmetric crushing of the 
plate, along with some tangential cracks. Now, we compute the velocity of the major radial cracks 
formed during impact (see Methodology for details). Note that the intention here is to observe 
the relative variation in the crack tip velocity rather than the exact value itself. Therefore, we 
normalize the velocity values with the maximum value Vmax obtained during the simulation. 
Figure 9(a) shows the normalized velocity of propagation of one of the major radial cracks in the 
glass plate with a fracture energy 4.3 J/m2. We observe that the velocity of the crack tip exhibits 
an oscillatory behavior before finally going to zero, thereby confirming the existence of the 
microbranching instability. Moreover, the minimum value during the oscillation is fairly close to 
0.36Vmax. This suggests that the crack branching reduces the velocity of the crack up to 0.36Vmax, 
after which it starts accelerating again. Figure 9(b) shows the maximum velocity attained by a 
major radial crack during the impact with respect to the fracture energy of the glass plate. We 
observe that the maximum velocity attained by the major radial crack decreases monotonically, 
thereby further affirming our hypothesis. 
 

  
Figure 9. (a) Evolution of normalized crack velocity of a major radial crack in a glass plate with 
a fracture energy 4.3 J/m2 for a copper bullet. Note that the crack velocity is normalized with 

respect to the maximum crack velocity during the propagation of the crack. (b) Maximum 
crack velocity (left axis) and damage growth rate (right axis) with respect to the fracture 
energy of the glass plate. INSET shows the AR fit compared to the measured evolution of 

damage in peridynamics simulation of impact on a glass plate with fracture energy 4.3 J/m2.  
 
 
Now, we model the damage evolution in a glass plate using an AR-based model (see 
Methodology). Note that an AR-based model represents a self-affine transformation essentially 
leading to an exponential growth of the damage. The crack branching behavior is quantified using 
the damage growth rate 𝛼 (see Methodology). Figure 9(b) shows the damage growth rate with 
respect to the fracture energy of the glass plate. Inset shows the AR fit compared to the measured 
evolution of damage for a glass plate with a fracture energy of 4.3 J/m2. We observe that the AR 
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exhibits an excellent fit for the evolution of the damage confirming the exponential growth. 
Further, the damage growth rate monotonically decreases with increase in fracture energy. This 
is qualitatively in agreement with the trend exhibited by the maximum crack velocity, which 
decreases monotonically with increasing fracture energy of the material. This suggests that there 
is a decreased tendency for crack branching with increasing fracture energy, as evident from the 
growth rate. Finally, Fig. 10 shows the saturated damage map in the glass plates, with varying 
fracture energies, subjected to bullet impact. In agreement with the hypothesis, we observe 
visually that crack branching is increasingly suppressed with increase in fracture energy. Overall, 
through independent analysis of crack tip velocity, maximum crack velocity, and the AR growth 
rate, we corroborate that the crack branching and growth behavior is at the origin of the power-
law dependence. 
 

 
Figure 10. Damage map in the glass plates with different fracture energies, namely, (a) 4.3 
J/m2, (b) 15 J/m2, (c) 50 J/m2, (d) 100 J/m2, and (e) 250 J/m2, subjected to impact. (f) The 

coloring scheme used to denote the local damage in percent. Note that 100 corresponds to a 
particle with all the bonds broken, and 0 to a particle with all the bonds intact. 
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5. Conclusions: 
 
In the present study, based on peridynamics simulations, the roles of geometric and material 
properties on the impact-induced damage in a glass plate are explored. To this extend, 
approximately hundred high-throughput peridynamics simulations of bullet impact on a glass 
plate are performed. This methodology, validated against experimental results earlier (Bobaru et 
al., 2012; Ha and Bobaru, 2011; Hu et al., 2013), provides a unique way to analyze to the effect 
of each of the properties individually which is otherwise impossible using experiments. We 
observe that the plate geometry does not play a major role in the overall damage as long as the 
geometry is large enough to accommodate energy dissipation by the formation of cracks. 
Similarly, the elastic modulus of the material does not have a significant effect on the overall 
damage, although the damage tends to increase slightly with increasing values of modulus. On 
the contrary, the fracture energy of the glass plate directly controls the overall damage through 
a power-law relationship. Through a detailed analysis on crack evolution using auto-regressive 
model and crack-propagation velocity, we demonstrate that the power-law originates from a 
self-affine growth of the major radial cracks resulting from a crack tip instability. Overall, the 
present study suggests that peridynamics can offer new insights into the fracture behavior of 
glasses upon ballistic impact, which opens the door toward the development of high-
performance bullet-proof glasses for applications in next generation automobile windshields to 
armors in ballistic applications. 
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