University of Rhode Island DigitalCommons@URI

PHY 204: Elementary Physics II -- Slides

PHY 204: Elementary Physics II (2021)

2020

19. LC and RLC oscillators. Electric vs magnetic energy

Gerhard Müller University of Rhode Island, gmuller@uri.edu

Robert Coyne University of Rhode Island, robcoyne@uri.edu

Follow this and additional works at: https://digitalcommons.uri.edu/phy204-slides

Recommended Citation

Müller, Gerhard and Coyne, Robert, "19. LC and RLC oscillators. Electric vs magnetic energy" (2020). *PHY 204: Elementary Physics II -- Slides.* Paper 44. https://digitalcommons.uri.edu/phy204-slides/44

This Course Material is brought to you by the University of Rhode Island. It has been accepted for inclusion in PHY 204: Elementary Physics II -- Slides by an authorized administrator of DigitalCommons@URI. For more information, please contact digitalcommons-group@uri.edu. For permission to reuse copyrighted content, contact the author directly.

• • •

•

•

law of motion:
$$F = ma$$
, $a = \frac{d^2x}{dt^2}$
law of force: $F = -kx$
equation of motion: $\frac{d^2x}{dt^2} = -\frac{k}{m}x$
displacement: $x(t) = x_{max}\cos(\omega t)$
velocity: $v(t) = -\omega x_{max}\sin(\omega t)$
angular frequency: $\omega = \sqrt{\frac{k}{m}}$
kinetic energy: $K = \frac{1}{2}mv^2$

• potential energy:
$$U = \frac{1}{2}kx^2$$

• total energy: E = K + U = const.

Electromagnetic Oscillator (LC Circuit)

- loop rule: $\frac{Q}{C} + L\frac{dI}{dt} = 0, I = \frac{dQ}{dt}$ • equation of motion: $\frac{d^2Q}{dt^2} = -\frac{1}{LC}Q$ • charge on capacitor: $O(t) = O_{max} \cos(\omega t)$ • current through inductor: $I(t) = -\omega Q_{max} \sin(\omega t)$ • angular frequency: $\omega = \frac{1}{\sqrt{LC}}$ • magnetic energy: $U_B = \frac{1}{2}LI^2$ (stored on inductor) • electric energy: $U_E = \frac{Q^2}{2C}$ (stored on capacitor)
- total energy: $E = U_B + U_E = \text{const.}$

Mechanical vs Electromagnetic Oscillations

mechanical oscillations

- position: $x(t) = A\cos(\omega t)$ [red]
- velocity: $v(t) = -A\sin(\omega t)$ [green]
- period: $\tau = \frac{2\pi}{\omega}$, $\omega = \sqrt{\frac{k}{m}}$

electromagnetic oscillations

- charge: $Q(t) = A\cos(\omega t)$ [red]
- current: $I(t) = -A\sin(\omega t)$ [green]

• period:
$$\tau = \frac{2\pi}{\omega}$$
, $\omega = \frac{1}{\sqrt{LC}}$

- potential energy: $U(t) = \frac{1}{2}kx^2(t)$ [r]
- kinetic energy: $K(t) = \frac{1}{2}mv^2(t)$ [g]
- total energy: E = U(t) + K(t) = const

- electric energy: $U_E(t) = \frac{1}{2C}Q^2(t)$ [r]
- magnetic energy: $U_B(t) = \frac{1}{2}LI^2(t)$ [g]
- total energy: $E = U_E(t) + U_B(t) = \text{const}$

Mechanical Oscillator with Damping

Solution for initial conditions
$$x(0) = A$$
, $v(0) = 0$:

(a) underdamped motion: $b^2 < 4km$

$$x(t) = Ae^{-bt/2m} \left[\cos(\omega' t) + \frac{b}{2m\omega'} \sin(\omega' t) \right] \quad \text{with} \quad \omega' = \sqrt{\frac{k}{m} - \frac{b^2}{4m^2}}$$

x(t)

(b) overdamped motion: $b^2 > 4km$

$$x(t) = Ae^{-bt/2m} \left[\cosh(\Omega' t) + \frac{b}{2m\Omega'} \sinh(\Omega' t) \right] \quad \text{with} \quad \Omega' = \sqrt{\frac{b^2}{4m^2} - \frac{k}{m}}$$

$$Q(t) = Q_{max} e^{-Rt/2L} \left[\cosh(\Omega' t) + \frac{R}{2L\Omega'} \sinh(\Omega' t) \right] \quad \text{with} \quad \Omega' = \sqrt{\frac{R^2}{4L^2} - \frac{1}{LC}}$$

Oscillator with Two Modes

Electromagnetic:

mode #1:
$$L\frac{dI}{dt} + \frac{Q}{C} + \frac{Q}{C} + L\frac{dI}{dt} = 0$$
, $I = \frac{dQ}{dt}$
 $\Rightarrow \frac{dI}{dt} = -\frac{Q}{LC} \Rightarrow \frac{d^2Q}{dt^2} = -\omega^2 Q$, $\omega = \frac{1}{\sqrt{LC}}$

mode #2:
$$L\frac{dI}{dt} + \frac{Q}{C} + \frac{2Q}{C} = 0$$
, $I = \frac{dQ}{dt}$
 $\Rightarrow \frac{dI}{dt} = -\frac{3Q}{LC} \Rightarrow \frac{d^2Q}{dt^2} = -\omega^2 Q$, $\omega = \sqrt{\frac{3}{LC}}$

Mechanical:

tsl498

RLC Circuit: Application (1)

In the circuit shown the capacitor is without charge. When the switch is closed to position *a*...

(a) find the initial rate dI/dt at which the current increases from zero,

(b) find the charge Q on the capacitor after a long time. Then, when the switch is thrown from a to b...

(c) find the time t_1 it takes the capacitor to fully discharge,

(d) find the maximum current I_{max} in the process of discharging.

RLC Circuit: Application (2)

In the circuit shown the capacitor is without charge and the switch is in position *a*.

(i) When the switch is moved to position b we have an RL circuit with the current building up gradually: $I(t) = (\mathcal{E}/R)[1 - e^{-t/\tau}].$

Find the time constant τ and the current I_{max} after a long time.

(ii) Then we reset the clock and move the switch from b to c with no interruption of the current through the inductor. We now have a an LC circuit: $I(t) = I_{max} \cos(\omega t)$.

Find the angular frequency of oscillation ω and the maximum charge Q_{max} that goes onto the capacitor periodically.

RLC Circuit: Application (3)

In the circuit shown the capacitor is without charge and the switch is in position *a*.

(i) When the switch is moved to position b we have an RC circuit with the capacitor being charged up gradually: $Q(t) = \mathcal{E}C[1 - e^{-t/\tau}]$.

Find the time constant τ and the charge Q_{max} after a long time.

(ii) Then we reset the clock and move the switch from b to c.

We now have a an *LC* circuit: $Q(t) = Q_{max} \cos(\omega t)$.

Find the angular frequency of oscillation ω and the maximum current I_{max} that flows through the inductor periodically.

LC Circuit: Application (1)

Name the LC circuit with the highest and the lowest angular frequency of oscillation.

LC Circuit: Application (2)

At time t = 0 a charge Q = 2C is on each capacitor and all currents are zero.

- (a) What is the energy stored in the circuit?
- (b) At what time t_1 are the capacitors discharged for the first time?
- (c) What is the current through each inductor at time t_1 ?

In these LC circuits all capacitors have equal capacitance C and all inductors have equal inductance L. Sort the circuits into groups that are equivalent.

