University of Rhode Island [DigitalCommons@URI](https://digitalcommons.uri.edu/)

[PHY 204: Elementary Physics II -- Slides](https://digitalcommons.uri.edu/phy204-slides) PHY 204: Elementary Physics II (2021)

2020

19. LC and RLC oscillators. Electric vs magnetic energy

Gerhard Müller University of Rhode Island, gmuller@uri.edu

Robert Coyne University of Rhode Island, robcoyne@uri.edu

Follow this and additional works at: [https://digitalcommons.uri.edu/phy204-slides](https://digitalcommons.uri.edu/phy204-slides?utm_source=digitalcommons.uri.edu%2Fphy204-slides%2F44&utm_medium=PDF&utm_campaign=PDFCoverPages)

Recommended Citation

Müller, Gerhard and Coyne, Robert, "19. LC and RLC oscillators. Electric vs magnetic energy" (2020). PHY 204: Elementary Physics II -- Slides. Paper 44. [https://digitalcommons.uri.edu/phy204-slides/44](https://digitalcommons.uri.edu/phy204-slides/44?utm_source=digitalcommons.uri.edu%2Fphy204-slides%2F44&utm_medium=PDF&utm_campaign=PDFCoverPages)

This Course Material is brought to you by the University of Rhode Island. It has been accepted for inclusion in PHY 204: Elementary Physics II -- Slides by an authorized administrator of DigitalCommons@URI. For more information, please contact digitalcommons-group@uri.edu. For permission to reuse copyrighted content, contact the author directly.

\n- law of motion:
$$
F = ma
$$
, $a = \frac{d^2x}{dt^2}$
\n- law of force: $F = -kx$
\n- equation of motion: $\frac{d^2x}{dt^2} = -\frac{k}{m}x$
\n- displacement: $x(t) = x_{max} \cos(\omega t)$
\n- velocity: $v(t) = -\omega x_{max} \sin(\omega t)$
\n- angular frequency: $\omega = \sqrt{\frac{k}{m}}$
\n- kinetic energy: $K = \frac{1}{2}mv^2$
\n- potential energy: $U = \frac{1}{2}kx^2$
\n- total energy: $E = K + U = \text{const.}$
\n

$$
\bullet \quad \text{total energy:} \ \ E = K + U = \text{const.}
$$

Electromagnetic Oscillator (LC Circuit)

\n- loop rule:
$$
\frac{Q}{C} + L\frac{dI}{dt} = 0
$$
, $I = \frac{dQ}{dt}$
\n- equation of motion: $\frac{d^2Q}{dt^2} = -\frac{1}{LC}Q$
\n- charge on capacitor: $Q(t) = Q_{max} \cos(\omega t)$
\n- current through inductor: $I(t) = -\omega Q_{max} \sin(\omega t)$
\n- angular frequency: $\omega = \frac{1}{\sqrt{LC}}$
\n- magnetic energy: $U_B = \frac{1}{2}LI^2$ (stored on inductor)
\n- electric energy: $U_E = \frac{Q^2}{2C}$ (stored on capacitor)
\n- total energy: $E = U_B + U_E = \text{const.}$
\n

Mechanical vs Electromagnetic Oscillations

mechanical oscillations

- position: $x(t) = A \cos(\omega t)$ [red]
- velocity: $v(t) = -A \sin(\omega t)$ [green]
- **•** period: $\tau = \frac{2\pi}{\omega}$ $\frac{2\pi}{\omega}$, $\omega = \sqrt{\frac{k}{m}}$ *m*

electromagnetic oscillations

- charge: $Q(t) = A \cos(\omega t)$ [red]
- current: $I(t) = -A \sin(\omega t)$ [green]

• period:
$$
\tau = \frac{2\pi}{\omega}, \quad \omega = \frac{1}{\sqrt{LC}}
$$

- potential energy: $U(t) = \frac{1}{2}kx^2(t)$ [r]
- kinetic energy: $K(t) = \frac{1}{2}mv^2(t)$ [g]
- total energy: $E = U(t) + K(t) =$ const

- electric energy: $U_E(t) = \frac{1}{2C}Q^2(t)$ [r]
- magnetic energy: $U_B(t) = \frac{1}{2}LI^2(t)$ [g]
- total energy: $E = U_F(t) + U_B(t) = \text{const}$

Mechanical Oscillator with Damping

• law of force:
$$
F = -kx - bv
$$
, $v = \frac{dx}{dt}$

• equation of motion:
$$
\frac{d^2x}{dt^2} + \frac{b}{m}\frac{dx}{dt} + \frac{k}{m}x = 0
$$

Solution for initial conditions $x(0) = A$, $v(0) = 0$:

(a) **underdamped motion**: *b* ² < 4*km*

$$
x(t) = Ae^{-bt/2m} \left[\cos(\omega' t) + \frac{b}{2m\omega'} \sin(\omega' t) \right] \quad \text{with} \quad \omega' = \sqrt{\frac{k}{m} - \frac{b^2}{4m^2}}
$$

(b) **overdamped motion**: *b* ² > 4*km*

$$
x(t) = Ae^{-bt/2m} \left[\cosh(\Omega' t) + \frac{b}{2m\Omega'} \sinh(\Omega' t) \right] \quad \text{with} \quad \Omega' = \sqrt{\frac{b^2}{4m^2} - \frac{k}{m}}
$$

Oscillator with Two Modes

Electromagnetic:

mode #2:
$$
L\frac{dI}{dt} + \frac{Q}{C} + \frac{2Q}{C} = 0
$$
, $I = \frac{dQ}{dt}$
\n $\Rightarrow \frac{dI}{dt} = -\frac{3Q}{LC} \Rightarrow \frac{d^2Q}{dt^2} = -\omega^2 Q$, $\omega = \sqrt{\frac{3}{LC}}$

Mechanical:

tsl498

RLC Circuit: Application (1)

In the circuit shown the capacitor is without charge. When the switch is closed to position *a*...

(a) find the initial rate *dI*/*dt* at which the current increases from zero,

(b) find the charge *Q* on the capacitor after a long time. Then, when the switch is thrown from *a* to *b*...

(c) find the time t_1 it takes the capacitor to fully discharge,

(d) find the maximum current *Imax* in the process of discharging.

RLC Circuit: Application (2)

In the circuit shown the capacitor is without charge and the switch is in position *a*.

(i) When the switch is moved to position *b* we have an *RL* circuit with the current building up gradually: $I(t) = (\mathcal{E}/R)[1 - e^{-t/\tau}].$

Find the time constant *τ* and the current *Imax* after a long time.

(ii) Then we reset the clock and move the switch from *b* to *c* with no interruption of the current through the inductor. We now have a an *LC* circuit: $I(t) = I_{max} \cos(\omega t)$.

Find the angular frequency of oscillation *ω* and the maximum charge *Qmax* that goes onto the capacitor periodically.

RLC Circuit: Application (3)

In the circuit shown the capacitor is without charge and the switch is in position *a*.

(i) When the switch is moved to position *b* we have an *RC* circuit with the capacitor being charged up gradually: $Q(t) = \mathcal{E}C[1 - e^{-t/\tau}].$

Find the time constant τ and the charge Q_{max} after a long time.

(ii) Then we reset the clock and move the switch from *b* to *c*.

We now have a an *LC* circuit: $Q(t) = Q_{max} \cos(\omega t)$.

Find the angular frequency of oscillation *ω* and the maximum current *Imax* that flows through the inductor periodically.

LC Circuit: Application (1)

Name the *LC* circuit with the highest and the lowest angular frequency of oscillation.

LC Circuit: Application (2)

At time $t = 0$ a charge $Q = 2C$ is on each capacitor and all currents are zero.

- (a) What is the energy stored in the circuit?
- (b) At what time t_1 are the capacitors discharged for the first time?
- (c) What is the current through each inductor at time *t*1?

In these *LC* circuits all capacitors have equal capacitance *C* and all inductors have equal inductance *L*. Sort the circuits into groups that are equivalent.

