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Abstract 25 

 26 

The southernmost Mariana forearc stretched to accommodate opening of the Mariana Trough 27 

backarc basin in late Neogene time, erupting basalts now exposed in the SE Mariana Forearc Rift 28 

(SEMFR) 3.7 – 2.7 Ma ago. Today, SEMFR is a broad zone of extension that formed on 29 

hydrated, forearc lithosphere and overlies the shallow subducting slab (slab depth ≤ 30 – 50 km). 30 

It comprises NW-SE trending subparallel deeps, 3 - 16 km wide, that can be traced ≥ ~ 30 km 31 

from the trench almost to the backarc spreading center, the Malaguana-Gadao Ridge (MGR). 32 

While forearcs are usually underlain by serpentinized harzburgites too cold to melt, SEMFR crust 33 

is mostly composed of Pliocene, low-K basaltic to basaltic andesite lavas that are compositionally 34 

similar to arc lavas and backarc basin (BAB) lavas, and thus defines a forearc region that recently 35 

witnessed abundant igneous activity in the form of seafloor spreading. SEMFR igneous rocks 36 

have low Na8, Ti8, and Fe8, consistent with extensive melting, at ~ 23 ± 6.6 km depth and 1239 ± 37 

40oC, by adiabatic decompression of depleted asthenospheric mantle metasomatized by slab-38 

derived fluids. Stretching of pre-existing forearc lithosphere allowed BAB-like mantle to flow 39 

along SEMFR and melt, forming new oceanic crust. Melts interacted with preexisting forearc 40 

lithosphere during ascent. SEMFR is no longer magmatically active and post-magmatic tectonic 41 

activity dominates the rift. 42 

 43 

KEYWORDS: forearc rift, seafloor spreading, Mariana arc, subduction zone  44 

 45 



1. Introduction 46 

Forearcs are cold regions above subduction zones that lie between the trench and the magmatic 47 

arc. They can be accretionary or non-accretionary depending on the amount of sediments carried 48 

into the trench (Lallemand, 2001, Stern, 2002). Non-accretionary forearcs, such as that of the 49 

Marianas, are of special interest as they preserve a record of the first lavas erupted in association 50 

with subduction initiation (Ishizuka et al., 2011, Reagan et al., 2010, Stern & Bloomer, 1992). 51 

Forearc lithosphere is underlain by the cold, subducting plate that releases its hydrous fluids into 52 

the upper mantle wedge, resulting in exceptionally cold (< 400oC; Hulme et al., 2010) and 53 

serpentinized mantle lithosphere that rarely melts (Hyndman & Peacock, 2003, Van Keken et al., 54 

2002, Wada et al., 2011). The occurrence of cold, serpentinized forearc mantle beneath the 55 

Mariana forearc is demonstrated by eruption of serpentinite mud volcanoes (Hulme et al., 2010, 56 

Mottl et al., 2004, Savov et al., 2007, Savov et al., 2005, Wheat et al., 2008) and serpentinized 57 

peridotite outcroppings on the inner trench slope (Bloomer & Hawkins, 1983, Ohara & Ishii, 58 

1998). Serpentinized mantle beneath the forearc has also been imaged by geophysical surveys 59 

(Tibi et al., 2008). Ultramafic rocks from the upper mantle wedge found as clasts in mud 60 

volcanoes and on the inner trench slope mostly consist of harzburgite, residues of mantle melting 61 

(Parkinson & Pearce, 1998, Savov et al., 2007, Savov et al., 2005) that are chemically distinct 62 

from the more fertile, backarc basin (BAB) peridotites (Ohara et al., 2002). Such highly depleted, 63 

forearc mantle can melt in association with early-arc volcanism to generate boninites (Reagan et 64 

al., 2010, Stern & Bloomer, 1992). Decompression melting of more fertile mantle to form 65 

tholeiitic basalts near the trench also has been documented during the first stage of subduction 66 

initiation. These lavas have MORB-like compositions and have been termed forearc basalts 67 



(FABs) reflecting their subduction-related origin and location in modern forearcs (Reagan et al., 68 

2010).  69 

 70 

In the Izu-Bonin-Mariana (IBM) intraoceanic system, most forearc lavas are Eocene - Oligocene 71 

in age and younger forearc lavas are unusual (Ishizuka et al., 2011, Reagan et al., 2010, Stern & 72 

Bloomer, 1992). Here, we document the first record of Pliocene forearc lavas from the 73 

southernmost Mariana convergent margin, indicating that the mantle can melt beneath forearcs 74 

long after subduction initiation. These low-K lavas are tholeiitic basalts generated from BAB-like 75 

asthenospheric mantle during seafloor spreading in the Southeast Mariana Forearc Rift (SEMFR), 76 

which is a broad zone of deformation (~ 40 km wide and ~ 60 km long), extending from the 77 

trench to the Fina-Nagu arc Volcanic Chain (FNVC). SEMFR today overlies a shallow 78 

subducting Pacific slab (≤ 50 – 100 km deep; Becker, 2005).  79 

 80 

This paper presents a first report on the geology and tectonic evolution of the SEMFR. We 81 

present bathymetry, summarize the results of bottom traverses, and provide petrologic, major 82 

element geochemical data and 40Ar/39Ar ages of igneous rocks sampled during two JAMSTEC 83 

research cruises. These data are used to characterize SEMFR lavas and to address when, where, 84 

and how SEMFR lavas were generated, and to determine sources of the magmas, and conditions 85 

of melting. Addressing these issues helps us better understand how such melts were produced in a 86 

cold forearc, and allows us to develop a geodynamic model to constrain the geodynamic 87 

evolution of the S. Mariana forearc. In this manuscript, we show that SEMFR lavas have BAB-88 

like geochemical and petrographic features; and opening of the Southernmost Mariana Trough 89 

allowed adiabatic decompression melting of BAB-like asthenospheric mantle in the forearc to 90 

produce SEMFR lavas 3.7 – 2.7 Ma ago.  91 



 92 

2. Geodynamic setting  93 

The Mariana intraoceanic arc system is the southern third of the IBM convergent margin. It is 94 

generally associated with a sediment-starved forearc ~ 200 km wide (Fryer et al., 2003, Kato et 95 

al., 2003), submarine and subaerial volcanoes of the active magmatic arc (Baker et al., 2008), and 96 

a BAB with a spreading axis that generally lies ~ 250 – 300 km from the trench (Stern et al., 97 

2003). Mariana geodynamic evolution was influenced by collisions with buoyant oceanic 98 

plateaus (Ogasawara Plateau in the north and Caroline Ridge in the south). These resisted 99 

subduction, stimulating backarc extension to open the Mariana Trough between the collisions 100 

(Wallace et al., 2005). 101 

 102 

IBM mostly trends N-S but the southernmost Mariana convergent margin (13o10’N – 11oN) 103 

bends to E-W (Fig. 1A ; Bird, 2003). This region is deforming rapidly (Kato et al., 2003, 104 

Martinez et al., 2000), accompanied by abundant igneous activity. Here, the Mariana Trench 105 

reaches the deepest point on Earth at the Challenger Deep (10994 m; Gardner & Armstrong, 106 

2011), and Pacific-Philippine Sea plate convergence is approximately orthogonal to the trench 107 

(Bird, 2003). The tectonic evolution of the southernmost Mariana arc began with the Late 108 

Miocene collision of the Caroline Ridge, which pinned the Yap arc and allowed the southern 109 

Mariana Trough to open, sculpting the southern termination of the arc (Miller et al., 2006b). The 110 

southernmost Mariana magmatic arc is poorly developed and entirely submarine, contrasting with 111 

the large, often subaerial, arc volcanoes to the north. The arc magmatic front almost intersects the 112 

southern end of the BAB spreading center south of 13oN (Fig. 1B; Fryer et al., 2003). These 113 

features are about 100 – 150 km from the trench, whereas to the north the BAB spreading axis 114 



lies ~250 – 300 km from the trench and is separated from the magmatic arc by 50 - 100 km (Fryer 115 

et al., 1998, Stern et al., 2003). The magmatic arc appears to have been reorganized recently, as 116 

evidenced by a complex bathymetric high with multiple nested calderas – an inferred paleo-arc 117 

(the Fina-Nagu Volcanic Chain in Fig. 1B) where no hydrothermal activity was observed (Baker 118 

et al., 2008) and calderas are covered with sediments (Fig. 1C) - SE of and parallel to the modern 119 

magmatic arc (e.g. Toto caldera). The southern Mariana Trough has a well-defined spreading 120 

ridge, the Malaguana-Gadao Ridge (MGR), with a well-developed magma chamber and several 121 

hydrothermal vents (Baker et al., 2008, Becker et al., 2010, Kakegawa et al., 2008). Because the 122 

subducted Pacific plate lies ~ 100 km beneath it, the MGR melt source region captures hydrous 123 

fluids usually released beneath arc volcanoes, enhancing mantle melting and resulting in an 124 

inflated ridge morphology that is unusually robust for the Mariana Trough backarc basin, in spite 125 

of an intermediate spreading rate (< 65 mm/yr; Becker et al., 2010, Fryer et al., 1998, Martinez et 126 

al., 2000). More rapid extension along the MGR might also enhance decompression melting 127 

(Becker et al., 2010).  128 

 129 

The southernmost Mariana convergent margin is underthrust by a narrow slab of Pacific plate 130 

(traceable to ~ 250 km depth; Gvirtzman & Stern, 2004), torn N-S at ~ 144o15’E (Fryer et al., 131 

1998, Gvirtzman & Stern, 2004). Analogue experiments show that short, narrow subducted slabs 132 

trigger toroidal (around the slab edge) and poloidal (underneath the slab tip) asthenospheric 133 

mantle flows that generate rapid slab rollback and trench retreat relative to the upper plate 134 

(Funiciello et al., 2003, Funiciello et al., 2006, Schellart et al., 2007). These conditions lead to 135 

weak coupling of the subducting plate with the overriding plate, stimulating rapid deformation of 136 

the overriding plate (i.e., the southern Mariana Trough) and may be responsible for the very 137 



narrow forearc that defines the southern Mariana margin west of the W. Santa Rosa Bank Fault 138 

(Fig. 1B, Gvirtzman & Stern, 2004). The unusual tectonic situation of the southernmost Mariana 139 

convergent margin has also affected magmagenesis. Sub-forearc mantle usually is too cold to 140 

melt (Van Keken et al., 2002), so that slab-derived fluids only lead to serpentinization (Hyndman 141 

& Peacock, 2003, Wada et al., 2011). Instead, the dynamic tectonic setting of the southern 142 

Marianas results in mantle melting much closer to the trench than is normally observed.  143 

 144 

3.  Geology and morphology of the Southeast Mariana Forearc Rift  145 

Most of the IBM convergent margin is underlain by lithosphere that formed after subduction 146 

began ~52 Ma (Ishizuka et al., 2011, Reagan et al., 2010). In the southernmost Marianas, Eocene 147 

forearc lithosphere was stretched in late Neogene time to accommodate opening of the Mariana 148 

Trough BAB; part of this extension is localized along the SEMFR (Martinez & Stern, 2009). The 149 

morphological expression of the SEMFR is apparent over a region ~ 40 km wide and at least 60 150 

km long (Supporting Information Table S1.2). SEMFR is composed of broad southeast-trending 151 

deeps and ridges (Fig. 1B), each 50 to 60 km long and 3 to 16 km wide, which opened nearly 152 

parallel to the trench axis. These rifts can be traced from the Mariana Trench almost to the FNVC 153 

(Fig. S1.1 in Supporting Information S1). Eastward, the SEMFR is bounded by a N-S fault, the 154 

W. Santa Rosa Bank fault (WSRBF, Fig. 1B; Fryer et al., 2003), which separates thick crust of 155 

the broad Eocene forearc to the north and east (including that beneath Santa Rosa Bank) from the 156 

deeper and narrower forearc of the S. Marianas - including SEMFR - to the west. WSRBF also 157 

appears to overlie a tear in the subducted slab (Fryer et al., 2003, Gvirtzman & Stern, 2004). The 158 

WSRBF is taken to be the eastern boundary of the SEMFR because it does not have the same 159 



NNE-SSW trend as the three SEMFR deeps (Fig. 1B), and the forearc is significantly older to the 160 

east (Reagan et al., 2010). SEMFR overlies the shallow part of the slab (≤ 30 - 100 km deep, 161 

Becker, 2005) and is situated in a region with numerous shallow (crustal) earthquakes, (Martinez 162 

& Stern, 2009) signifying active deformation.  163 

 164 

We studied SEMFR by interpreting swathmapped bathymetry and previously published HMR-1 165 

sonar backscatter imagery (Martinez et al., 2000). The region is characterized by high sonar 166 

backscatter, indicating little sedimentary cover (Fig. 1C). This was confirmed by Shinkai 6500 167 

manned submersible and YKDT deep-tow camera / dredge seafloor studies. Table S1.1 in 168 

Supporting Information S1 summarizes the position and lithologies encountered during these 169 

dives (Fig. 1B). Most dives recovered basalt. In addition, deeper crustal and upper mantle 170 

lithologies, e.g. diabase, fine-grained gabbros and deformed peridotites, were recovered near the 171 

WSRBF (Supporting Information Fig. S1.7 and S1.8). Similar lithologies are also reported by 172 

previous studies of the area (Bloomer & Hawkins, 1983, Fryer, 1993, Michibayashi et al., 2009, 173 

Sato & Ishii, 2011). Based on relief, the SEMFR can be subdivided along strike into NW, central, 174 

and SE sectors. SEMFR relief is ruggedest in the SE sector near the trench, where it is intensely 175 

faulted and affected by landsliding, with abundant talus slopes of fragmented basaltic lavas (Fig. 176 

2A, C, D and Fig. S1.5 to S1.8 in Supporting Information). The central SEMFR is less faulted, 177 

with more outcrops and less talus, but still has many steep talus slopes and faulted lava flows 178 

(Fig. S1.9 - S1.10 in Supporting Information). The NW SEMFR, nearest the MGR, has gentler 179 

relief, with better-preserved pillow lava outcrops (Fig. 2B, E and Fig. S1.11 - S1.13 in Supporting 180 

Information). We did not recover samples of Paleogene forearc crust in the SEMFR, although this 181 

is common to the NE and west, indicating that SEMFR is floored by young, tectonized oceanic 182 



crust. Our bottom observations along with the absence of parallel magnetic fabrics in the SEMFR 183 

(Martinez et al., 2000) suggest that the SEMFR is no longer a site of active volcanism.  184 

 185 

Toto caldera and part of the MGR near the NW limit of the SEMFR were studied during ROV 186 

Kaiko Dives 163 and 164 (R/V Kairei cruise KR00-03 Leg 2, Fig. 1B). Toto caldera, which may 187 

be part of the immature magmatic arc, is mostly covered by talus of fresh lava fragments with a 188 

whitish coating, perhaps bacteria or sulfur-rich precipitate (Supporting Information Fig. S1.14), 189 

derived from the active Nakayama hydrothermal site (Gamo et al., 2004, Kakegawa et al., 2008). 190 

The MGR seafloor is mostly composed of fresh, well-preserved pillow lavas alternating with aa 191 

and solidified lava lake (Becker et al., 2010), along with active hydrothermal vents (Supporting 192 

Information Fig. S1.15) indicating ongoing magmatic activity. Fig. 1C shows high sonar 193 

backscatter for Toto caldera and around the MGR, indicating hard rock (fresh lava) exposures and 194 

thin sediments, consistent with seafloor seen in dive videos.  195 

 196 

4. Methods 197 

Igneous rock samples were collected during two cruises YK08-08 Leg 2 (Shinkai 6500 manned 198 

submersible dive 1096) in 2008 and YK10-12 (Shinkai 6500 dives 1230, 1235 and Yokosuka 199 

deep-tow camera dredge (YKDT) 85, 86, and 88) in 2010. Representative, fresh samples were 200 

selected onboard for petrographic and geochemical studies. Information from Kaiko ROV dives 201 

163 and 164 (R/V Kairei cruise KR00-03 Leg 2 in 2000) is also included. High-resolution videos 202 

of the seafloor generated during dives were reviewed during and after the cruises (see Supporting 203 

Information S1 for more details). GMT (Smith & Wessel, 1990, Wessel & Smith, 1995b, Wessel 204 

& Smith, 1998, Wessel & Smith, 1995a) was used to compile SEMFR bathymetric data, 205 



including swathmapping results from these cruises and those of Gardner (2006), Gardner (2007) 206 

and Gardner (2010). Maps were imported into ArcGIS to generate bathymetric cross sections 207 

perpendicular to the strike of SEMFR (Fig. S1.1 in Supporting Information).  208 

 209 

Igneous rock samples were analyzed, using procedures reported in Supporting Information S2. 210 

For major element analyses, fresh sample chips containing as few phenocrysts as possible were 211 

hand-picked and powdered in an alumina ball mill. Whole rock chemical analyses for Shinkai 212 

dive 1096 samples were carried out on Philips PW1404 X-Ray fluorescence (XRF) spectrometer 213 

at the Geological Survey of Japan/AIST. External errors and accuracy are < 2%. Whole rock 214 

chemical analyses for other samples were performed at University of Rhode Island by fusion – 215 

dissolution of glass beads; and analyses were conducted using a Ultima-C Jobin Yvon Horiba 216 

Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES) at Boston University. 217 

Glass beads were generated by melting 400 ± 5 mg of lithium metaborate (LiBO4) flux with 100 218 

± 5 mg of ignited sample powder at 1050oC for 10 min. Molten beads were dissolved in 5% nitric 219 

acid to achieve a final dilution factor of ~ 4000 (Kelley et al., 2003). Calibration curves for ICP-220 

AES data yield r2 ≥ 0.999, reproducibility of replicate analyses are ≤ 3% rsd for each element, 221 

and major element oxides sum to 99 ± 1 wt%. Replicates of samples analyzed by ICP-AES and 222 

XRF yield averaged reproducibility < 4% rsd for each element. Results are reported in Table 1. 223 

For mineralogical chemistry analyses, polished thin sections were prepared for 16 samples. These 224 

were analyzed using the Cameca SX-50 electron microprobe at University of Texas at El Paso. 225 

Multiple point analyses give a mean value with 1σ precision ≤ 1 wt% for each selected mineral. 226 

 227 



Four samples were dated by step-heating 40Ar-39Ar at the Geological Survey of Japan/AIST on a 228 

VG Isotech VG3600 noble gas mass spectrometer fitted with a BALZERS electron multiplier. 229 

Further details of procedures are reported in Supporting Information S2. 230 

 231 

5. Results 232 

5.1.Rock description: 233 

Here we outline the principal petrographic and mineralogical features of igneous rocks sampled 234 

from the SEMFR, Toto caldera and MGR. Method for sample description is reported in 235 

Supporting Information S3 and detailed sample descriptions are in Supporting Information S4. 236 

SEMFR lavas are mostly aphyric (< 1% phenocrysts) and sparsely phyric (1 – 5% phenocrysts) 237 

basalts and basaltic andesites, indicating eruption at near-liquidus temperatures. These are 238 

microporphyritic pillows or massive flows, with thin, microcrystallite-rich glassy rims (1 – 11mm 239 

of fresh, translucent to dark brown glass), thin (≤ 1 mm) Mn coat, and negligible alteration (Fig. 240 

3). Pillow lavas are vesicular despite being collected at ~ 6000 – 3000 m, indicating that these 241 

magmas contained significant volatiles. In contrast, basalt massive lava flows are more crystalline 242 

and less vesicular. Embayed phenocrysts indicate disequilibrium, perhaps due to magma mixing. 243 

Pillowed lavas sampled in the NW (YKDT-88) contain larger crystals (≥ 0.5 mm) of 244 

clinopyroxene and olivine set in a finely microcrystalline olivine-rich groundmass (Fig. 3C). 245 

Similar olivine-rich lavas were not sampled elsewhere in the SEMFR. Diabase and fine-grained 246 

gabbros were also recovered near the WSRB fault (Shinkai 6500 dive 1235; Fig. 3B, D). These 247 

might represent the lower crust of SEMFR (dike complex and gabbro layer). Pillow lavas from 248 

MGR are very fresh, with translucent glassy rinds. Lavas are vesicular, cryptocrystalline 249 

andesites with a glassy groundmass and <1% plagioclase microlites. Lava flows from Toto 250 



caldera are vesicular, sparsely phyric to aphyric, fine-grained to cryptocrystalline basaltic 251 

andesites. 252 

 253 

5.2.Major element and mineral compositions: 254 

SEMFR lavas are fresh basalts and basaltic andesites, with 50.4 to 57.0 wt% SiO2 (data reported 255 

are adjusted to 100% total on an anhydrous basis, Fig. 4A). In terms of normative compositions, 256 

all lavas are quartz tholeiites. These define a low-K to medium-K suite, with K2O < 1 wt%. Lava 257 

compositions cluster along the tholeiitic – calc-alkaline boundary on a plot of FeO*/MgO vs. 258 

SiO2 (Fig. 4B; Miyashiro, 1974), or along the medium-Fe / low-Fe boundary (Arculus, 2003). 259 

Lavas recovered during Shinkai 6500 dive 1096 and 1230 and YKDT-86 and -88 are relatively 260 

primitive, with whole-rock Mg# (= atomic Mg * 100 / (Mg + Fe)) > 60, Fig. 4C). Other SEMFR 261 

samples are significantly more fractionated, with Mg# = 41 - 60. Composition of SEMFR lavas is 262 

reported in Table 1. MGR and Toto caldera lavas are mostly andesites (SiO2 = 55.1 – 61.7 wt%, 263 

with K2O < 0.5 wt% and Mg# = 33 – 53). None of the studied lavas are boninitic (MgO > 8 wt%, 264 

SiO2 > 52 wt%, TiO2 < 0.5 wt%; Le Bas, 2000). Toto caldera lavas plot within the compositional 265 

field of southernmost Mariana volcanic arc lavas (SMA: 13o10’N – 11oN, Kakegawa et al., 2008, 266 

Stern et al., 2013), suggesting that Toto caldera belongs to the S. Mariana arc volcanoes (SMA). 267 

Toto caldera samples also cluster along the tholeiitic – calc-alkaline boundary. In contrast, MGR 268 

lavas are tholeiitic (medium-Fe to high-Fe) basaltic andesites and andesites (Kakegawa et al., 269 

2008, Pearce et al., 2005 ; Fig. 4A, B). The Fe enrichment of the MGR lavas (Fig. 4B) suggests 270 

that their parental magmas contain less water, inhibiting early crystallization of Fe-oxides. In Fig. 271 

4A, MGR lavas do not plot along the SEMFR fractionation trend, and their similar K2O content 272 

suggests that MGR and SEMFR lavas interacted with similar arc-like slab-derived fluids. FABs 273 



(Reagan et al., 2010) are low-K to medium-K basalt to basaltic andesites that plot within the 274 

tholeiitic and calc-alkaline fields (Fig. 4B, C); and SEMFR plot along the FAB fractional trend 275 

(Fig. 4C, D). All lavas from the southernmost Marianas suggest fractionation controlled by 276 

plagioclase, clinopyroxene ± olivine crystallization trend (Fig. 4C, F).  277 

 278 

SEMFR basalts and basaltic andesites contain olivine, clinopyroxene, and plagioclase. Results for 279 

representative mineral composition are listed in Supporting Information Tables S4.1 to S4.4 and 280 

summarized in Table 2. Mineral compositions correlate with whole rock chemical compositions 281 

(Fig. 5A, B and Supporting Information S5). Near-primitive (Mg# > 60), olivine-rich SEMFR 282 

lavas (Shinkai dive 1096, upper series and YKDT-88) contain Mg-rich olivines (Fo86-88) in 283 

equilibrium with Mg-rich clinopyroxene (Mg# = 83 – 91) and anorthitic plagioclase (An ≥ 80). In 284 

contrast, fractionated (Mg# ≤ 60) lavas have Fe-rich olivine (Fo75-84) coexisting with two kinds of 285 

clinopyroxene (endiopside – diopside with Mg # ≥ 80 and augite with Mg# < 80) and plagioclase 286 

(An ≥ 80 and An < 80). Reverse and oscillatory zoning is only observed in more fractionated 287 

plagioclase (An < 80 in the core), suggesting magma mixing perhaps in a magmatic reservoir. 288 

Fine-grained gabbro and diabase have Mg-rich clinopyroxenes (Mg# ≥ 60) coexisting with more 289 

albitic plagioclase (An ≤ 70). The mineral composition of Toto caldera lavas and MGR lavas are 290 

within the compositional range of SEMFR lavas. Occurrence of two mineral compositional 291 

groups in Toto and MGR lavas, without significant compositional overlap, strongly suggests 292 

magma mixing (Supporting Information S4.2 and Fig. S4.1).  293 

 294 

Olivine xenocrysts (≥ 0.5 mm) enclosing chromium spinel are common in primitive lavas (Fig. 295 

3C, 5E). Olivine xenocrysts have higher Fo contents (Fo89-92 core and Fo87-97 rim) than do the 296 

olivine phenocrysts (Fo86-88, Table S4.3 and Fig. S4.1 in Supporting Information) in their host 297 



basalts. Olivine xenocrysts host chromium spinel with Cr# (= 100 x Cr / (Cr+Al)) = 47 – 73. The 298 

olivine – spinel assemblages plot in the mantle array of Arai (1994) and they are similar to those 299 

of the SE Mariana forearc mantle peridotite (Cr# > 50 and Fo90-92, Ohara & Ishii, 1998), 300 

suggesting that these xenocrysts are samples of forearc mantle (Fig. 5C). 301 

 302 

5.3.
 40

Ar-
39

Ar ages:  303 

Four SEMFR samples (2 samples from Shinkai 6500 dive 1096, 1 sample each from Shinkai 304 

6500 dive 1230 and YKDT-88) were dated by step-heating 40Ar-39Ar (Fig. 6 and Table 1). Initial 305 

40Ar/36Ar for these samples (290 - 295) is nearly atmospheric (40Ar/36Ar atmosphere = 298.6), 306 

indicating that negligible radiogenic 40Ar was inherited. Dated samples from dive 1096 samples 307 

include one from each of the lower (1096-R2) and upper series (1096-R16) lavas. These gave 308 

indistinguishable plateau ages of 3.5 ± 0.4 Ma (lower series 1096-R2) and 3.7 ± 0.3 Ma (upper 309 

series 1096-R16). Shinkai dive 1230 and YKDT-88 gave slightly younger ages, respectively of 310 

2.8 ± 0.5 Ma and 2.7 ± 0.3 Ma. SEMFR 40Ar-39Ar ages indicate that seafloor spreading occurred 311 

in Pliocene time (Fig. 1B), and suggests that SEMFR seafloor youngs toward the MGR.  312 

 313 

6. Discussion 314 

6.1.Genesis of SEMFR lavas: 315 

Compositions of lavas and their minerals record the conditions of magma genesis and evolution; 316 

and from this, important tectonic information can be gleaned (e.g. Klein & Langmuir, 1987). 317 

Incompatible elements such as K2O, Na2O and TiO2 are concentrated in the melt as mantle 318 

melting or crystal fractionation proceeds. The first melt fraction is enriched in these elements and 319 



so concentrations anti-corrrelate with fraction of melting, or “F” (Kelley et al., 2006, Kelley et 320 

al., 2010, Klein & Langmuir, 1987, Taylor & Martinez, 2003). In addition, K2O contents in 321 

convergent margin magma sources are strongly affected by subduction-related metasomatism 322 

(e.g. K-h relationship, Dickinson, 1975, Kimura & Stern, 2008), therefore this element is 323 

generally not used to monitor F. FeO contents in basalts also contain petrogenetic information. In 324 

basaltic systems, deeper melts are progressively enriched in iron (Klein & Langmuir, 1987). 325 

Therefore, the Na2O, TiO2 and FeO contents of lavas are good proxies for the degree and depth of 326 

melting. However, estimating the extent and depth of partial melting requires primitive lavas with 327 

compositions in equilibrium with their mantle source; consequently, Na2O, TiO2 and FeO 328 

contents are commonly corrected for olivine fractionation in order to infer their Na8, Ti8 and Fe8 329 

contents (Na2O, TiO2 and FeO contents calculated at MgO = 8 wt%).The Na8 of N-MORBs anti-330 

correlates with Fe8, indicating that melting is greater if it begins deeper (Fig. 7A; Arevalo Jr. & 331 

McDonough, 2010, Klein & Langmuir, 1987). Subduction-related melting is somewhat different 332 

because melting extents are enhanced by water (Gribble et al., 1996, Kelley et al., 2006, Taylor & 333 

Martinez, 2003). BAB magma sources often are affected by subducted water and are 334 

characterized by more melting at shallower depth than MORBs, so that Na8 increases with Fe8 335 

(Fig. 7A; Kelley et al., 2006, Taylor & Martinez, 2003). BAB and arc lavas have distinct 336 

geochemical signatures (Fig. 7), resulting from elements dissolved in fluids derived from the 337 

subducting slab that are involved in magma genesis. Arc lavas have lower Na8 and Ti8 contents at 338 

higher K2O/TiO2 and Fe8 content because they formed by high degrees of melting at greater 339 

depths in the presence of slab-derived fluids. In contrast, BAB lavas have higher Na8 and  Ti8 340 

contents at lower K2O/TiO2 and Fe8 content, as they were generated at shallower depth by 341 

adiabatic mantle decompression, with less involvement of slab-derived fluids.  342 

 343 



To investigate SEMFR magmagenesis (i.e. whether SEMFR lavas were produced in a BAB-like 344 

and / or in a arc-like magmagenetic settings), we calculated Na8, Ti8 and Fe8 contents for these 345 

lavas. Plots of Al2O3, CaO and FeO* against MgO (Fig. 4D-F) show that the kinks in Al2O3 and 346 

CaO, indicating the beginning of plagioclase and clinopyroxene crystallization, are respectively 347 

observed at MgO = 6 wt% and at MgO ~ 7 wt%. Therefore, data were filtered to exclude highly 348 

fractionated samples with MgO < 7 wt% that crystallized olivine, clinopyroxene and plagioclase 349 

on their LLD (Fig. 4D-F), following the method described in Kelley et al. (2006) and Kelley et al. 350 

(2010). The least fractionated samples with 7 - 8 wt% MgO, which fractionated olivine only (Fig. 351 

4D-F), were then corrected to MgO = 8 wt% using the equations of Klein and Langmuir (1987) 352 

for Na8 and Fe8, and Taylor and Martinez (2003) for Ti8 . These are listed in Table 1 (mean 353 

SEMFR Na8 = 1.99 ± 0.40 wt% (1 std. dev.); mean Ti8 = 0.60 ± 0.11 wt%;. mean Fe8 = 6.91 ± 354 

0.54 wt%).  The Na8 , Fe8 and Ti8 contents of SEMFR lavas are slightly lower than those 355 

observed for N-MORBs (Arevalo Jr. & McDonough, 2010), indicating higher degrees of mantle 356 

melting produced shallower. SEMFR lavas have similar Ti8 and Na8 contents at lower Fe8 than 357 

FABs; and they plot in the compositional overlap between Mariana arc lavas and the Mariana 358 

BAB lavas, with homogeneous, low Na8 and Ti8 contents varying little with Fe8 content (Fig. 7A 359 

- B), suggesting a roughly constant degree and depth of mantle melting. These lavas were 360 

produced by extensive melting (≥ 15%) of shallow mantle (~ 25 ± 6.6 km, see section 6.2). The 361 

K2O/TiO2 (proxy for the total subduction input; Shen & Forsyth, 1995) of SEMFR lavas is higher 362 

that of FABs and plot between the arc – BAB compositional fields (Fig. 7C - D), well above N-363 

MORBs, further demonstrating a subduction component in SEMFR magma genesis. Only lavas 364 

from YKDT-88, collected closest to the FNVC (Fig. 1B), do not plot on the SEMFR 365 

compositional field (Fig. 7A-C), with lower Na8 and Ti8 at similar Fe8 contents. Their Ti8 and Na8 366 

values are lower than those of Mariana arc lavas (Fig. 7A-C), suggesting that YKDT-88 lavas 367 



were produced by more mantle melting and / or melting of a more depleted mantle source at 368 

similar depth compared to other SEMFR magmas. 369 

 370 

The above inference that SEMFR lavas are similar to back-arc basin basalts (BABB) can be 371 

checked by examining mineral compositions, because arc basalts and BABBs have distinct An-Fo 372 

relationships (Stern, 2010). Arc basalts contain more Fe-rich olivine with more An-rich 373 

plagioclase compared to BABB, MORB, and OIB (Ocean Island Basalt, Fig. 8A) because higher 374 

water contents in arc magmas delay plagioclase but not olivine crystallization (Kelley et al., 2010, 375 

Stern, 2010), resulting in higher CaO and FeO contents in the melt when plagioclase starts 376 

crystallizing. In contrast, BABBs, formed largely by adiabatic decompression mantle melting, 377 

have Fo-An relationships essentially indistinguishable from those of MORB and OIB (Fig. 8A). 378 

Accordingly, we can discriminate arc basalts from BABBs based on An and Fo contents of the 379 

plagioclase – olivine assemblages. Fig. 8A shows that most SEMFR lavas plot within the BABB 380 

compositional field, consistent with observations from Na8, Ti8, and Fe8 discussed in the previous 381 

section. Some samples also plot within the arc compositional field, strongly suggesting that BAB-382 

like (i.e. adiabatic decompression melting) and arc-like (i.e. wet mantle melting) conditions of 383 

magmagenesis coexisted beneath SEMFR. We propose that SEMFR magmas formed by adiabatic 384 

decompression of fertile asthenospheric mantle (BAB-like mantle) metasomatized by slab-385 

derived fluids, enriching the melt in water and sometimes delaying plagioclase fractionation. 386 

 387 

6.2.Pressure and temperature of mantle melting: 388 

The P-T conditions of mantle melting, recorded by primary melts in equilibrium with the mantle 389 

beneath SEMFR, were calculated from major element compositions of primitive basalts with 390 



MgO ≥ 7 wt% (Kelley et al., 2010; Fig. 4D-F) by using the geothermobarometer of Lee et al. 391 

(2009), based on Si, Mg and water contents of primitive magmas. The estimated P-T conditions 392 

are those of the last melt in equilibrium with the mantle or a mean value of the P-T conditions of 393 

polybaric, fractional pooled melts recorded along a melting column (Kelley et al., 2010). SEMFR 394 

lavas are compositionally similar to BABBs, we therefore used BAB-like oxidation state 395 

(Fe3+/FeT = 0.17) and averaged Mariana BAB water content (1.31 wt%; Gribble et al., 1996, 396 

Kelley & Cottrell, 2009) for SEMFR lavas, Fe3+/FeT = 0.17 for Mariana Trough lavas and 397 

Fe3+/FeT = 0.25 for Mariana arc magmas (Kelley & Cottrell, 2009). We also used lherzolitic 398 

BAB-like mantle source (Fo90; Kelley et al., 2006) to estimate the P-T conditions of SEMFR 399 

mantle melting. Primitive lavas of the Mariana Trough and the Mariana arc with analyzed water 400 

were filtered for MgO ≥ 7 wt % as SEMFR lavas for consistency. SEMFR whole rock 401 

compositions indicate melting pressures of 0.5 – 0.9 GPa (± 0.2 GPa) and temperatures of 1217 – 402 

1269oC (± 40oC), with a mean of 0.7 ± 0.2 GPa (~ 23 ± 6.6 km) and 1239 ± 40oC (Fig. 8B). This 403 

is consistent with melting just above the present subducting slab (≤ 30 – 100 km depth), although 404 

we do not know the position of the subducting slab at 2.7 – 3.7 Ma, when SEMFR melts were 405 

generated. Mariana Trough BABBs (Gribble et al., 1996, Kelley & Cottrell, 2009) have similar P-406 

T conditions of mantle melting (0.7 – 1.5 ± 0.2 GPa, 1214 – 1359 ± 40oC; mean melting depth ~ 407 

33 ± 6.6 km). In contrast, Mariana arc lavas (Kelley et al., 2010, Shaw et al., 2008) show higher 408 

P-T conditions of mantle melting (1.1 – 3.0 ± 0.2 GPa, 1240 - 1522 ± 40oC). These results 409 

suggest that SEMFR lavas and Mariana Trough BABBs were similarly generated by adiabatic 410 

decompression of shallow asthenospheric mantle (~ 25 – 30 ± 6.6 km). In contrast, arc lavas 411 

(Kelley & Cottrell, 2009, Kelley et al., 2010, Shaw et al., 2008) recorded deeper (mean melting 412 

depth ~ 51 ± 6.6 km).and hotter mantle melting conditions (Kelley et al., 2010). This leads to the 413 

further deduction that SEMFR lavas formed by BABB-like seafloor spreading at 2.7 to 3.7 Ma. 414 



 415 

6.3.Geodynamic evolution of the Southeastern Mariana Forearc Rift:  416 

Investigations of the petrography and geochemistry of SEMFR lavas reveal that i) SEMFR lavas 417 

are petrographically and compositionally similar to Mariana Trough BABBs; ii) SEMFR melts 418 

interacted with the pre-existing forearc lithosphere and picked up some forearc mantle olivines, 419 

indicating rapid ascent; iii) magmatic activity (2.7 – 3.7 Ma) formed SEMFR oceanic crust by 420 

seafloor spreading (no Eocene forearc basement has been recovered from the SEMFR); iv) 421 

SEMFR primitive basalts formed by decompression melting at ~ 23 km depth and 1239oC, like 422 

that associated with the Mariana Trough backarc basin, suggesting similar formation; and v) lack 423 

of evidence for recent igneous and hydrothermal activity, except near MGR and Toto caldera, 424 

indicates that the presently-observed NNW-SSE trending relief formed during post-magmatic 425 

rifting (< 2.7 Ma).  426 

 427 

SEMFR is a rift with no morphological expression of large arc-like volcanoes, like those of the 428 

Mariana arc. SEMFR lavas are vesicular with K2O contents (Fig. 4A) and K2O/TiO2 ratios that 429 

are similar to MGR and other Mariana Trough BAB lavas (Fig. 7C, D). They also have similar P-430 

T conditions of magma genesis, demonstrating that they formed by adiabatic decompression of 431 

BAB-like mantle metasomatized by slab-derived fluids. These observations raise a fundamental 432 

question: were SEMFR lavas produced by seafloor spreading in the backarc basin or in the 433 

forearc? The southernmost Mariana convergent margin has reorganized rapidly since its collision 434 

with the Caroline Ridge, suggesting that SEMFR lavas were produced by different geological 435 

settings that what exists today. From the location of SEMFR adjacent to the trench, it is clear that 436 

these lavas formed in the forearc. We propose a geodynamic model for the southernmost Mariana 437 



arc, in which SEMFR formed to accommodate opening of the southernmost Mariana Trough 438 

(Fig. 9A, B and Fig. 10A-C). Rupturing the forearc lithosphere allowed asthenospheric mantle to 439 

flow into the forearc and to melt by adiabatic decompression under hydrous conditions 2.7 – 3.7 440 

Ma ago; and origin of SEMFR mantle (i.e. from the backarc basin, the arc or a slab window) is 441 

still under investigation. Some SEMFR melts picked up fragments of pre-existing forearc mantle 442 

during ascent, demonstrating that SEMFR lavas formed long after subduction initiation. Post-443 

magmatic activity (< 2.7 Ma ago) shapes the S. Mariana forearc lithosphere (Fig. 9C) and formed 444 

the NNW-SSE trending rifts of SEMFR, as we know it today (Fig. 9D and Fig. 10D).  445 

 446 

7. Conclusions 447 

Two important conclusions can be drawn from this study: i) SEMFR magmas formed by 448 

adiabatic decompression in the southernmost IBM forearc, usually underlain by cold, 449 

serpentinized harzburgitic mantle that rarely melts (Reagan et al., 2010); and ii) SEMFR lavas 450 

were produced by melting of fertile asthenospheric mantle metasomatized by slab-derived fluids, 451 

long after subduction initiation, allowing development of a forearc lithosphere. Our results show 452 

that the southernmost Mariana forearc stretched to accommodate opening of the Mariana Trough 453 

to form the SEMFR, allowing hydrated, asthenospheric mantle to flow into the forearc and to 454 

produce new oceanic crust ~ 2.7 – 3.7 Ma ago. SEMFR lavas formed by adiabatic decompression 455 

of depleted backarc mantle at ~ 30 ± 6.6 km depth and 1224 ± 40oC. SEMFR at 2.7-3.7 Ma was 456 

likely a ridge-like spreading center, where the slab-derived fluids enhanced mantle melting 457 

beneath the forearc. Today, SEMFR is no longer magmatically active and amagmatic extension 458 

shapes its morphology.  459 
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 694 

 Tables 695 

Table 1: Major (wt%) element compositions of SEMFR lavas. Mg# [= atomic (Mg2+ * 100) / 696 
(Mg2+ + Fe2+)] was calculated assuming all the iron is Fe2+ on anhydrous basis. Primitive samples 697 
with 7 wt% ≤ MgO < 8 wt% were corrected on anhydrous basis by using the equations of Klein 698 
and Langmuir (1987) for Na8 and Fe8, and Taylor and Martinez (2003) for Ti8. See text for 699 
details. Sample numbers with * have no major element data reported; minor element data will be 700 
reported elsewhere. fg: fine-grained, ol: olivine, pl: plagioclase, cpx: clinopyroxene. 701 
 702 
Table 2: Overview of mean mineral compositions in basalts from each dive in the SEMFR. n: is 703 
the total number of analyses performed in one sample, s: is the number of minerals analyzed in 704 
each sample, c: core, m : mantle, st : sieve texture, r : rim, gr: groundmass, * : minerals in 1235-705 
R12 observed in the microcrystallized basalt, while the other 1235-R12 analyses refer to minerals 706 
in the diabasic xenolith. Numbers in italics represent reverse zoning. Bold numbers represent 707 
minerals with oscillatory zoning. NA: Not analyzed. MGR: Malaguana-Gadao Ridge, SEMFR: 708 
S.E. Mariana Forearc Rift. 709 

Figure Captions 710 

Fig. 1: Locality maps. A) Izu-Bonin-Mariana intraoceanic arc system. The IBM magmatic arc 711 
generally lies ~ 200 km from the trench and the Mariana Trough backarc basin spreading center 712 
generally lies ~ 300 km from the trench. The arrows represent Pacific-Mariana convergence 713 
vectors from Kato et al. (2003). Yellow box shows the area of B. B) Bathymetric map of the 714 
southernmost Mariana arc-backarc basin system. Southward, the magmatic arc (white line) 715 



approaches the Malaguana-Gadao spreading ridge, both of which lie unusually close (~ 110 km) 716 
to the trench. Location of the Malaguana-Gadao spreading ridge is from Martinez et al. (2000). 717 
Filled colored circles show locations of YK06-12, YK08-08 Leg 2 and YK10-12 Shinkai dives 718 
and YK08-08 Leg 2 YKDT deep-tow cameras; the small circles show the locations of dredge site 719 
D27 (Bloomer & Hawkins, 1983), Shinkai 6500 dives158 and 159 (Fryer, 1993) and dredge sites 720 
KH98-1D1 and KH98-1D2 (Sato & Ishii, 2011); triangles show the locations of KR00-03 Leg 2 721 
Kaiko dives in Toto caldera and Malaguana-Gadao Ridge. Note that Kaiko dive 164 is near the 722 
magma chamber (MC) identified by Becker et al. (2010). The white box shows the approximate 723 
region encompassed by SEMFR. The dashed white line shows the position of the W. Santa Rosa 724 
Bank (WSRB) Fault which separates older rocks of the Santa Rosa Bank (SRB) from the SEMFR 725 
younger rocks. The red numbers are 40Ar – 39Ar radiometric ages. Map generated with GMT 726 
(Smith & Wessel, 1990, Wessel & Smith, 1995b, Wessel & Smith, 1998, Wessel & Smith, 727 
1995a) by using a compilation from the University of New Hampshire / Center for Coastal and 728 
Ocean Mapping / Joint Hydrographic Center (Gardner, 2006, Gardner, 2007, Gardner, 2010). C) 729 
Sidescan sonar (HMR1) image of the S. Mariana convergent margin (Fryer et al., 2003) with the 730 
location of traverses by JAMSTEC submersibles during YK06-12, YK08-08 Leg 2, YK10-12 and 731 
KR00-03 Leg 2 cruises. Dark areas have high backscatter, whitish corresponds to low 732 
backscatter. The SEMFR, the Malaguana-Gadao Ridge (MGR) and Toto caldera are dominated 733 
by high backscatter, indicating that the oceanic crust or lightly sedimented basement is exposed. 734 
White dashed line denotes SEMFR axial deeps, ridges lie between the valleys. Black arrows 735 
show the opening of SEMFR (Martinez & Stern, 2009). FNVC (Fina-Nagu Volcanic Chain) 736 
represents extinct arc volcanoes. 737 
 738 
Fig. 2: Typical bottom profiles of SEMFR encountered during seafloor traverses. A) near the 739 
trench axis (Shinkai 6500 dive 1230) and B) near the Fina-Nagu Volcanic Chain (YKDT-87). 740 
Near the trench, SEMFR flanks are dominated by steep talus slopes of lava fragments with few 741 
exposures of tilted and faulted lava flows. Talus and outcrops are covered by thin pelagic 742 
sediment. Near the Fina-Nagu Volcanic Chain (FNVC), SEMFR relief is smoother with better-743 
preserved pillow lava outcrops covered by thin sediment. Photographs of the typical seafloor 744 
observed near the trench (C, D) and near the FNVC (E). Black star in B) shows the beginning of 745 
YKDT deep-tow camera dredging. 746 
 747 
 Fig. 3: Photomicrographs of SEMFR lavas and fine gabbro. A) Typical microporphyritic olivine 748 
– clinopyroxene basalt (sample 1230-R2) with microlitic groundmass and microphenocrysts of 749 
plagioclase (pl) and clinopyroxene (cpx). B) Fine-grained diabase xenolith (sample 1235-12) 750 
hosted by microcrystalline basalt (finer grained part to left). The diabase contains Mg-rich olivine 751 
(Fo89), Mg-rich clinopyroxene (Mg# ≥ 80) and normally zoned Ca-rich plagioclase (≥ 0.1 mm). 752 
In contrast, the basaltic host is more fractionated, with Fe-rich olivine (Fo85-86) and Mg-rich 753 
clinopyroxene microphenocrysts (≥ 0.1 mm). Clinopyroxene in the groundmass (< 0.1 mm) are 754 
Mg-poor and coexist with Ca-poor plagioclase microlites. Clinopyroxenes in the diabase exhibit 755 
oscillatory and reverse zoning. The boundary between the two textural realms is straight, 756 
suggesting that basalt magma picked up solidified diabase. See Supporting Information S4 for 757 
more details. C) Olivine – clinopyroxene basalt from YKDT-88 containing large olivine 758 
xenocrysts surrounded by olivine-rich groundmass. D) Photomicrograph of cryptocrystalline 759 
plagioclase basalt from Shinkai dive 1235 (sample 1235-R8) hosting an amphibole gabbro 760 
xenolith (chl: chlorite, amph: amphibole). The contact between gabbro and basalt is an irregular 761 
chilled margin, suggesting that the basalt picked up solid pieces of gabbro. A second chilled 762 



margin is observed inside the basalt, suggesting multiple magmatic injections in the basalt. E) 763 
Photomicrograph of plagioclase (pl) xenocryst observed in the Shinkai dive 1230 (sample 1230-764 
R17). The core of the plagioclase is well-preserved and exhibits An91-92 content. The mantle 765 
exhibits An80-89 and is mostly resorbed (sieve-texture) due to the interaction plagioclase – melt. 766 
The rim is well-preserved and is An83-88. Plagioclase microlites have lower An content (An < 80 767 
%). Larger, Mg-rich clinopyroxenes (cpx) occur near the An-rich plagioclase xenocrysts (Mg # = 768 
86 – 88), while the clinopyroxenes microlites exhibit higher range in Mg# (74 – 88). Such An-769 
rich plagioclases are observed in the arc crust. See Supporting Information S4 for details.  770 
 771 
Fig. 4: Major element compositional characteristics of SEMFR, MGR, Eocene forearc basalts 772 
(FABs; Reagan et al., 2010), S. Mariana Arc lavas (SMArc: 13o10’N – 11oN) which include Toto 773 
caldera lavas. All data recalculated to 100% anhydrous. A) Potash-silica diagram (Peccerillo & 774 
Taylor, 1976), showing that SEMFR lavas are low-K basalts to medium-K basaltic andesites. The 775 
grey field represents Mariana Trough BAB lavas (Gribble et al., 1996, Hawkins et al., 1990, 776 
Kelley & Cottrell, 2009, Pearce et al., 2005) and the hatched field represents Mariana Arc lavas 777 
(Kelley & Cottrell, 2009, Kelley et al., 2010, Pearce et al., 2005, Shaw et al., 2008, Stern et al., 778 
2006, Wade et al., 2005). The small grey triangles are Malaguana-Gadao Ridge (MGR) data from 779 
Kakegawa et al. (2008) and Pearce et al. (2005). The small black triangles are data from SMA 780 
volcanoes (Kakegawa et al., 2008, Stern et al., 2013). Larger grey triangles denote MGR and 781 
larger black triangles denote Toto samples reported in this manuscript. The field for boninites is 782 
from Reagan et al. (2010). Note that SEMFR lavas mostly plot in field of Mariana Trough BAB 783 
lavas. B) FeO*/MgO vs SiO2 diagram for medium-Fe, medium-Fe, high-Fe discrimination 784 
(Arculus, 2003); green line discriminates between tholeiitic and calk-alkaline lavas (Miyashiro, 785 
1974). C) Mg# vs SiO2 and D) CaO, E) Al2O3, F) FeO* plotted against MgO for SEMFR, MGR, 786 
and Toto caldera. When plagioclase starts crystallizing, it produces a hinge in the liquid line of 787 
descent (LLD) of Al2O3. The hinge in Al2O3 is observed at MgO = 6 wt%; and the kink in CaO 788 
and FeO* is observed at MgO ~ 7 wt%. Therefore. primitive lavas are identified with MgO ≥ 7 789 
wt%, following the method of Kelley et al. (2010). Arrows represent fractionation trends. Ol : 790 
olivine, pl : plagioclase, cpx : clinopyroxene. We used the same method as for SEMFR lavas 791 
(MgO ≥ 7 wt%) to filter the Mariana arc and Mariana Trough lavas. 792 
 793 
Fig. 5: Variation of A) olivine Fo and B) clinopyroxene Mg# composition with whole rock Mg#. 794 
C) Variation of An content of plagioclase core with whole rock CaO (wt%) content. Olivine, 795 
clinopyroxene and plagioclase are mostly in equilibrium with their host rock. Fractional 796 
crystallization (grey arrow) removes Mg-rich minerals from the residual melt which precipitates 797 
increasingly Fe-rich minerals. The olivine-liquid equilibrium line is calculated from experimental 798 
data of Roeder and Emslie (1970) with KD olivine – melt = 0.3 and Fe3+/FeT = 0.17 (Kelley & 799 
Cottrell, 2009). D) Olivine – Spinel Mantle Array (OSMA) diagram of Arai (1994). Cr# of spinel 800 
inclusions and Fo content of host olivine xenocrysts in Shinkai dive 1096 upper series (blue star) 801 
and in YKDT-88 lavas (pink stars) plot within OSMA. Cr# are means for each spinel inclusion 802 
and reported with the Fo content of their olivine host. Their Cr# ≥ 50 is similar to that of the 803 
southern Mariana forearc peridotite (Ohara & Ishii, 1998); whereas BAB peridotites have Cr# < 804 
30 (Ohara et al., 2002). SEMFR peridotites (Michibayashi et al., 2009, Sato & Ishii, 2011) have 805 
Cr# and Fo contents intermediate between southern Mariana forearc peridotites and Mariana 806 
Trough BAB peridotites (Ohara et al., 2002). E) Large xenocryst of anhedral olivine (ol) with 807 
Fo90-92 hosting chromium spinel (sp) and melt inclusions (MI) from sample YKDT88-R2.  808 
 809 



Fig. 6: The 40Ar/39Ar age spectra with 36Ar/40Ar vs 39Ar/40Ar plot for samples from the SEMFR. 810 
Percentage of 39Ar released during analysis is also reported. 811 
 812 
Fig. 7: Diagrams showing variations in A) Na8, B) Ti8, D) K2O/TiO2 versus Fe8 and C) K2O/TiO2 813 
versus Ti8. Na8 and Ti8 are proxies for the fraction of mantle that is melted, Fe8 is a proxy for the 814 
depth of mantle melting (Klein & Langmuir, 1987, Pearce et al., 2005), and K2O/TiO2 is a proxy 815 
for the subduction input. The grey field represents Mariana Trough BAB lavas (Gribble et al., 816 
1996, Hawkins et al., 1990, Kelley & Cottrell, 2009, Pearce et al., 2005) and the hatched field 817 
represents Mariana arc lavas (Kelley & Cottrell, 2009, Kelley et al., 2010, Pearce et al., 2005, 818 
Shaw et al., 2008, Stern et al., 2006, Wade et al., 2005). Primitive lavas from the Mariana Trough 819 
and the Mariana arc were filtered as SEMFR lavas (MgO ≥ 7 wt%) for consistency. The FABs 820 
field is from Reagan et al. (2010). The negative correlation of Na8 with Fe8 of N-MORBs (grey 821 
arrow; Arevalo Jr. & McDonough, 2010) shows that more magma is produced when melting 822 
begins deeper; while in subduction-related lavas, more melting is produced shallower. SEMFR 823 
lavas have Na8 and Ti8 contents slightly varying with Fe8 content, indicating homogeneous 824 
degree of mantle melting.  825 
 826 
Fig. 8: A) Composition ranges for coexisting olivine Fo – plagioclase An in intraoceanic arc lavas 827 
(blue field) and BABB (red outline) after Stern et al. (2006). Arc basalts have more calcic 828 
plagioclase in equilibrium with more Fe-rich olivine compared to MORB (short dashed outline), 829 
OIB (long dashed outline), and BABB. The plagioclase-olivine relationships of SEMFR lavas 830 
generally plot in the overlap between the BABB and the arc composition fields. The black 831 
triangle denotes a Toto caldera sample. B) P-T conditions of mantle-melt equilibration estimated 832 
by using the procedure of Lee et al. (2009) for SEMFR primitive lavas with MgO ≥ 7 wt%. Also 833 
shown are Mariana Trough basaltic glasses (Gribble et al., 1996, Kelley & Cottrell, 2009), and 834 
the Mariana arc melt inclusions with analyzed water contents (Kelley et al., 2010, Shaw et al., 835 
2008). The solidus is from Katz et al. (2003). We used Fe3+/Fet = 0.17 for SEMFR and Mariana 836 
Trough BABBs, Fe3+/Fet = 0.25 for Mariana arc lavas (Kelley & Cottrell, 2009) and Fo90 for the 837 
equilibrium mantle. We used the same method as for SEMFR lavas (MgO ≥ 7 wt%) to filter the 838 
Mariana arc and Mariana Trough glass for consistency. The pink field represents the slab depth 839 
beneath SEMFR (≤ 30 km – 100 km depth; Becker et al., 2005). 840 
 841 
 Fig. 9: Geodynamic evolution of SEMFR. A) The Mariana Trough is opening ~ 5 Ma ago. B) 842 
Spreading of the Mariana Trough rifts the arc lithosphere (in orange) and forms SEMFR by 843 
stretching the forearc crust (in yellow) ~ 2.7 – 3.7 Ma ago. We speculate that SEMFR is a 844 
spreading center with intense magmatic activity. C) Post-magmatic deformation of SEMFR 845 
occurred < 2.7 Ma ago, and intensely deformed the Eocene forearc crust. D) Today, SEMFR is no 846 
longer magmatically active and amagmatic extension dominates the rift. Eocene forearc is eroded 847 
with opening of the S. Mariana Trough; and actual position of the forearc is based on R/V 848 
Yokosuka YK08-08 Leg 2 and YK10-12 cruise reports (Ohara et al., 2010, Ohara et al., 2008). 849 
The red box highlights the area of Fig. 10. 850 
 851 
Fig. 10: 3D model of geodynamic evolution of the SEMFR drawn after the SE Mariana 852 
lithospheric section of Gvirtzman & Stern (2004) and the tomographic images of Miller et al. 853 
(2006a). The cross section is drawn from the area highlighted by a red box in Fig. 9. BAB lithos.: 854 
backarc basin lithosphere. A) Opening of the S. MarianaTrough, the Malaguana-Gadao Ridge 855 
(MGR), strectches the pre-existing Eocene forearc lithosphere ~ 5 Ma ago. B) Rupturing of the 856 



forearc allow mantle melting, creating new SEMFR oceanic crust ~ 2.7 – 3.7 Ma ago. The red 857 
line shows the location of  the cross section of SEMFR shown in C. C) Continuous dehydration 858 
of the shallow downgoing slab controlled SEMFR magmatic activity, and SEMFR had ridge 859 
morphology ~ 2.7 – 3.7 Ma ago. D) Today, post-magmatic rifting dominates SEMFR.  860 
 861 
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