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Asymptoti ¢ convergenc e rates of Fourier path integra | methods

Maria Eleftheriou and J. D. Doll
Departmei of Chemistry Brown University, Providence Rhoce Island 02912

E. Curotto® and David L. Freeman®
Departmei of Chemistry University of Rhoce Island Kingston Rhoce Island 02881

(Receive 13 Octobe 1998 acceptd 13 Januay 1999

The asymptott rates of convergene of thermodynant properties with respet to the numbe of
Fourig coefficients k. included in Fourier path integrd calculatiors are derived The
convergene rates are developé both with and without partid averagilg for operatos diagona in
coordinae representatio and for the energy Properties in the primitive Fouriee methal are shown
to converg asymptoticaly as 1/k,,,, wherea the asymptott convergenerate is shown to be 1/k2max
when partid averagimg is included Propertis are shown to converg at the sane rate whethe full
partid averagimg or gradien partid averagim is used The importane of using the prope operator

to optimize convergene rates in partid averagimg calculatiors is emphasized © 199 American

Institute of Physics [S0021-960809)51414-1
I. INTRODUCTION

Pah integrald are perhap the mog widely usel ap-
proachs to include quantun contributiors in equilibrium
statistich mechanichsimulatiors of many-partick systems.
In apah integrd simulation the systenm is describe by a set
of classicé variables along with a se of auxiliary variables
usel to include the quantum fluctuations Typicd auxiliary
degres of freedan are the se of intermediat time pointsin
discretizel pah integrd approaches® and the set of Fourier
coefficiens in Fourig path integrd simulations*® Indepen-
dert of which methal is usel to evaluag the pah integrals a
majar practicd concen is how to limit the numbe of auxil-
iary degres of freedon included The computationawork
grows with the numbes of the® auxiliary variables and
practica consideratioa deam it usefu to make the number
of variables as smal as possible.

The numbe of auxiliary degres of freedam included in
apah integrd simulaticn canna be truncatel arbitrarily. It is
necessarto include sufficiert variables so tha the calculated
thermodynant properties converg to within the statistical
uncertaing of a calculation or to the accurag neede for a
particula application An importan consideratia is the de-
termination of the size of the sa of auxiliary variables
needd for the application at hand Therre has been previous
forma work®~® on the convergene rate of the action with
respet to the numbe of auxiliary variables included Deter-
minatiors of the convergene rates of properties have been
mack by running a series of calculatiors with increasing
numbes of auxiliary variables until the values of the calcu-
lated quantities stgp changirg to within statistich uncertain-
ties As we shal demonstrat in this work by numericé ex-
ample suc an approat to truncatian is dangerousbecause
the convergene of properties with respet to the numbe of
auxiliary variablesis often not monotonic A usefd approach
is to understad the asymptott convergene characteristics
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of properties analytically, and truncag only when properties
obey the prope asymptott convergene law. In this work
we derive ard illustrate numericaly suc asymptott conver-
gene rates for thermodynant properties using the Fourier
pah integrd method.

The contens of the remainde of this pape are as fol-
lows. In the next sectian to establi the notation we review
the Fourig pah integrd methal both with and without par-
tial averaging We also revien expressioa for the energy
estimatos usal in the Fourie method In Sec Il we analyze
the convergene rates of the errors for properties diagond in
coordinae representatio and for the energ both with and
without partid averaging We illustrate the derived
asymptott convergene rates with sone modd one-
dimensionapotentiak in Sec IV, ard in Sec V we summa-
rize and discus our results.

Il. THE FOURIER PATH INTEGRAL METHOD

The Fourig pah integrd methal has been developed
ard reviewa in previows publications*® However the deri-
vatiors to follow require carefd notation and we develop
the Fourie methal here in sufficiert detal to establis the
necessar notation For simplicity we restrid the discussion
tha follows to one-dimensiorlasystems the extensia to
mary particles in three dimensiors being straightforward.

A. The primitiv e Fourie r algorithm

In pah integrd simulatiors for quantum statistich me-
chanics the starting point is the Feynma path integrd ex-
pressim for the matrix elemens of the densiy operato at
invere temperatureB=1/kgT whete kg is the Boltzmann
constant

p(x,x';B)=(x'|e”Af|x) (1)

:f Dx(7)
R 1 .
xex;{—%fo dT{EmXZ(T)—i-V[X(T)]]).
()
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In Eq. (1) A is the quantum Hamiltonian operato for the

systemand in Eq. (2) fDx(7) denotes a summation over all

paths connectirg the points x to X’ in the time variable 7. It
is usefd to define areducel time variabk u definad by u

= 7/ B# that ranges from 0 to 1. In any path integral method

usefd for simulations the integration over all paths mug be
transforme into a Riemam integratio tha can be evaluated
on a computer In the Fourie methal the patts are expressed
in a Fourig series abou sone referene path and the path
integrd is replace by Riemam integrak over all the Fourier
coefficients The usua referene pat is a straigh line path
connectilg x to x’ so that the expansia can be represented
in aFourieg sine series An alternative approacf expand the
paths abou the centrod of the path resultirg in an expansion
in both sines and cosines However Fouria sine series with
vanishirg end points are known to converg more rapidly
than a series containirg sines and cosines with no restrictions
on the end points!®* ard in this work we restria attention
to expansios abou straigh line paths Using the reduced
time variabk u we write

x(u)=x+(x’—x)u+2 ay sinkru. 3
k=1

In ary practicd calculation the infinite sum is truncatel to

include k., Fourig coefficients We write

kmax

X (U)=X+ (X' =x)u+ 2, a,sinkmu
max &1

(4)

and

x(u)=kaax(u)+ ox(u), (5)

Eleftheriou et al.

Yk (11

max

1
- | dugx w1,
so that
1
= fo duMx,__(u)]. 12

Using Eq. (7), expectatio values of any operato f(x) tha is
diagona in coordinaé representatio can be obtained

~ Jdxdaexi{ - S meal2ot— AV 1f(x)

(F(X))k

max

Jdxdaexd — = ™a/20t— V]
(13

The true quantum expectatio value is given in the limit of
infinite k5, SO that

Jm_(F00)k,, = (F0),

which we write alternativey as (f(x)).. later in this paper.
Expression for the expectatia value of the energy are given
in Sec I D.

(14)

B. Limitation s and notation

In the remainde of this pape we limit consideratioato
potentid functiors tha are continuows with derivatives that
are continuos at leag throudh secom order By limiting
consideratiao to sud potentiat we excluce importart sys-
tems like had sphers or sophisticatd potentiat having
conicd intersectionsThe analyss of the convergene rates
is aloo nat sufficienty gener& to include the Coulonb po-
tentid even thoudh partid averagimy is known'? to correct
difficulties in pah integrd treatmens tha arise from the sin-

with &x(u) representing the summation over the Fourier co-gular behavio of Coulombt forces at smal distancesWhile

efficients whose index exceed K,,; i.€.,

©

>

k=Kmaxc 1

ox(u)= ay sinkru. (6)
The primitive Fourie expressia for the densiy matrix is
obtainal by substitutig Eq. (4) into Eq. (2). The resulting
expressia for the densiy matrix pkmax(x,x’ ; B) can be writ-
ten convenienyy with referene to the free particle density
matrix, pg,(X,x"; 8) as

pkmax(x,x’;ﬂ) Jdaexd - "@aZ202— BV ]

, , (1)
pip(X.X";B) Jdaexd — 3 ma2/202]
where
a= a11a2= CRE) 'akmax' (8)
m 1/2 m
’. — _ _v’\2
Prpxx'if) (zwﬁz) exp[ (2ﬁh2>(x X)]'
)
,  2Bh?
= , 10
7 m(km)? (10

ard the notatian a(max represerd a pah average

thes excludel potentias are clearly important the analysis
of therr convergene rates requires a developmeh beyond
what is presentd here Includal in the current analyss are
the vad majority of potentiab usel in moden simulations
studies.

For use in the sectiors that follow, we introdue the
notation

{a}=a,,a,, ..
and
{at=ay

In othe words a represert the first k., Fourig coeffi-
cients {a} collectively represertt all Fourig coefficients,
wherea {{a}} represert thos Fourig coefficiens whose
indices exce@ K,,y-

(15

B N L=V I

max max

b 118K 42 (16)

C. Partial averaging

Contributiors from the portion of the Fouria expansion
with Fourig indices greate than k5 can be included in an
approximag¢ way using the partid averag (pa metha in-
troducel sone time ago>'*!4To develp partid averaging,
we expres the exad densiy matrix as aFouria pah integral
ard separag the integration over the Fourie coefficiens into
the lower-orde a and higher-orde {{a}} contributions As

Copyright ©2001. All Rights Reserved.
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shown elsewhere;'* the integrati;n over the higher-order
coefficiens resuls in the avera@ of an exponentiatha can
be expandd in a series of cumulantsthe first tem of which
is the partid averagd potential We write the resulting ex-
pressia for the densiyy matrix by

Ppak, (XX';B)  [daexd — 3 (mea2/25 2~ BVpak ]
pip(X,X";B) Jdaexd — Ekmalxak/Zcrk]

Eleftheriou et al. 6659
where the partid averagd potentia is given by the Gaussian
transfom of the bare potential

dpe p*120%( (18

Vpd X,U) = YV(x+p),

1
V2mad(u)) -

with o?(u) the free particle second-orde momens of the
contributian to the path of the Fourig coefficiens tha ex-

a7 ced Kpax; i-€., definel by
|
Jd{{a}} EXF[_EOkLk 1ak/20k](2k Kyt 18K SIN karu)?
o?(u)= (19
fd{{a}}exﬂ: —Z- KiacH 1ak/2ffk]

The second-ordemomens can be evaluatée analyticalyy so
that

th Kmax
az(u)=?u(1—u)—2 o2 sir? karu. (20)
Using the Euler—=MacLaurin summatiom formulal® it can be

shown that o(u) vanishe with increasin Kpay 8 1/Kmay SO
that

im _ (Vpak., (21)

max—»oc ax_ Vkma) = 0-

Expectatio values obtaineal using eithe the partid averaged
potentid or the bare potentid in the action converg to the

same result As shown in Sec Il , the rate of convergene of

the two method is consideraly different.

For some applications the Gaussia transfom of the
interaction potentid may be eithe too difficult to evaluate
analytically or even be undefinedIn suc case the potential
in Eqg. (18) can be expandd in a powe series in p prior to
integration resulting in the expression

1 1
Vpd X,U) = V(X) + Eaz(u)v"( )+ —0-4(u)V’”’(x)+
(22)

If Eq. (22) istruncate at secom order, the resut is called
the gradien partid averag (gpa potential

Vgpd X,U) = V(X) + 5 02(u)V"(X). (23

Becauser?(u) vanishe for large kpay, Simulatiors that use
the gradien partid avera@ potentid in the action converge
to the corred limit. In Sec Il we shav the asymptott rates
of convergene of the gradien partid averag methal and
the partid averag@ methal are the same.

D. Energy estimators

The centrd quantiy needd for the determinatio of
thermodynamg properties is the totd energy If the totd en-
ergy is known as a function of temperaturgthe partition
function can be obtainal by stae integration therely deter-
mining all equilibrium thermodynamd properties Because

the Hamiltonian operato is not diagond in coordinaé rep-
resentationthe constructiom of energy estimatos requires a
separat treatment Here we review the three principd esti-
matos tha have been usel in the Fourig method® Although
the Hamiltonian is nat diagon& in coordinaé representation,
the estimatos can be expresse so tha only the diagonal
elemens of the densiy matrix are needé in the determina-
tion of the expectatio values The las approab discussd in
this section the virial estimator has nat been examinel ad-
equatey in previows work, and we give the virial estimato a
fuller derivation.

1. The H-method
The H-methal estimato is derived by dired operatia of
the Hamiltonian operato on the densiy matrix
(Ey— JdxHp(x,X"; B) |x—x
Jdxp(x,x;8)

which for a finite sa of Fourig coefficiens leads to the
expression

(B~ < V+

(29)

1 (Bh)?
28 2m

2
(f du(1—uV'[x, <u>])

B2 (1
+ 'g—mfo du(1- u)ZV”[kaaX(u)]> (25)

kmax

While the H-methal has been found to be usefd in many
applications Eq. (25) requires two additiond u-integrations
to be evaluated and the approab can be computationally
demanding Equation (25 is expressé explicitly for the
primitive Fourie method If partid averagilg is used the
first and secom derivatives of the potentid in the lag two
terms on the right hard side of the equation shoul be re-
placal by the first and secoml derivatives of the effective
partid averagd potential.

2. The T-method

The T-methal expressia for the enery is obtainel by
temperatue differentiation of the canonicé partition func-
tion

Copyright ©2001. All Rights Reserved.
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al
®=-"3) (26
where
Q(B)=f dxp(X,X;B). 27

In the primitive Fourie methal the resultirg expressia is

E —kmaX+l+ V, —kﬁm 212B02 28
(B 28 kmax & a/2Boy ) . (28
and when partid averagig is included we obtain
max+ e kmax 2 2
<E>kmax_ 253 vaakmax Vkmax_ kzl ai/2B o )
(29)

The virtue of both Eqs (28) ard (29) is tha the averag is
taken for quantities tha hawe alread been calculatel in de-
termining the action Unlike Eg. (25 where new quantities
mug be determine at ead Monte Carlo point, the T-method
expression require no additiond overhead As shown
elsewherg, the statistich errar associaté with the expres-
siors evaluatd using the T-methal estimato grows as
Vkmaxe The origin of the variane difficulties in Egs (28) and
(29) is the tem k.,5/28 whose contribution is canceled by
the averag over the quadratt form in the Fourig coeffi-
cients As shown in Sec 11D 3, the cancelatios are explic-
ity removel in the virial estimato resultirg in a well-
behave expressia for the energy Applicatiors using the
T-methal can be problematt for calculatiors requiring many
Fourig coefficients.

3. The virial estimator

In previows work'® we have discussd an energ estima-
tor basel on the quantum virial theorem This estimato has
requiral the evaluatian of the gradien of the potentiad at a
point, ard as discussd elsewher& the estimato has proved
to be ill-behaved for potentias with strongl repulsive walls.
Here we derive an alternae virial estimato that works well
for sudh potentials ard is closel related to virial estimators
found to be usefu in discretizel pah integrd treatmentg:*’
The convergene characteristis with respet to K, Of this
estimato are identicd to the T-methal estimato but with
cancelatio of the ill-behavel terms mack explicit. The deri-
vation tha follows includes partid averagingWe discus the
modificatiors necessar for the primitive Fourie methal af-
ter the derivation is complete.

We beghn with the expression

(9 kmax s ) _
a k§=‘,l 207+ BVpak_ k

max

=Kmaxt 1, (30

which can be proved using integration by parts When inte-
grating by parts the surfae terms resultirg from integrations
with respetto the Fourig coefficiens vanidh automatically,
but Eq. (30) follows only for potentials where

Eleftheriou et al.

X exp(=BVpak ) vanishe at the end-poins of the integra-

tion. If the derivatives in Eq. (30) are performal explicitly,
on rearrangemenwe obtain

Kmax
2
k=1 K

Kimaxt 1

/2,80'§>

k

(31)

On substitution of Eq. (31) into Eq. (29), the resulting ex-
pressim for the virial estimato is obtained

(BN, = (3 X(U)Vpai  [X(W)]+ 2V~

Vkma)kmax'

(32)
Equatian (32) can be transformd into the appropria¢ ex-
pressim for the primitive Fourie methal by replacing
V, by Vi _ everywhee it appears.

pakmax

For a systen having N particles care mug be taken in
applying Eq. (32) if the potentid enery is independenof
the coordinaé of the cente of mass Examples of systems
where the potentid enery is independenof the cente of
mas include clustes defined using a constrainiig potential
placal abou the cente of mass*!® Clustes hawe been the
subje¢ of mary simulation studies using path integral
methods! In such cases the surfa@ tem arising from the
cente of mas motion does not vanish and as shown in
Appendk A the virial estimateo gives akinetic enery con-
tribution tha is too smal by 1/(28) in one-dimension and
3/(2B) in three dimensions. In other words, the virial esti-
mata for suc systens gives the totd energy less the kinetic
enery of the cente of mass.

. ASYMPTOTIC CONVERGENCE RATES

In this section we derive the asymptott rates of conver-
gene of thermodynard properties with respet to the num-
ber of Fourig coefficiens included in the calculation The
detailed convergene rates can depem on the property the
estimato used and whethe partid averagig isincluded To
clarify our ultimate conclusionswe begin with an analysis
of properties using the primitive Fourie method We follow
with an analyss of partid averaging In eah cag we first
discus expectatio values of properties tha are diagona in
coordinae representatiorfollowed by pah averagd proper-
ties as discussd in the contest of the enery estimators.

A. The primitiv e Fourie r method

1. Properties diagonal in coordinate representation

We begih with the expressia for the densiy [Eq. (7)]
ard the expressia for the expectatio value of an operator
diagoné in coordinaé representatio f(x) [Eq. (13)] when
kmax Fourig coefficiens are included We define

o

St (Xid) = 2, ali20(t BV, (33

ard write

Copyright ©2001. All Rights Reserved.
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 Jdxd{alexit ~ S, (x{ah]f(x)
o dxc{ajexd — S _(x{ah]

It isimportart to recogniz tha the action defined in Eq. (33)

formally depend on the entire infinite se of Fouria coeffi-

cients However the integration in Eq. (34) over the Fourier
coefficiens with indices greate than k.5, cancé in numera-
tor and denominatorard the expressia for the expectation
value in Eq. (34) is formally identicd to Eq. (13). We next
define

AS(x.{a}) =S.(x.{a}) =S (x{a}),

wher S.(x,{a}) denote the full action i.e., the action with

the full infinite se of Fourig coefficiens included Using
Eqgs (34) ard (35), we obtan an expressia for the expecta-
tion value of f at the limit of an infinite se of Fouria coef-
ficients

(F(¥))k

(35

Jdxd{aexd —S,__(x,{a})]e”5f(x)
Jdxd{alexd —S, _(x,{a})]e *®

G (e3P

= (37)

(€749

As K.y increasesA S becoms small ard it makes seng to
expam the exponentiad in Eq. (37) in powe series

(F(X) (1= AS+1/2(AS)2+ -+ ),
(1= AS+1/2(AS)%+ -+ )y

(%)= (36)

max

max

(F(X))ee= (38)

max

For AS smal the denominato can be expandd in ageomet-
ric series After groupirg terms of like powess in AS we
obtain

(FO0)e=(F ), ¥ € (39)

Eleftheriou et al. 6661

where the error € is given by a series in increasing fluctua-

tions of f(x) and AS

€=+t (40)
with
$1=(AS) (F(X))  —(ASFX))k (41)
b2=3[{(AS)*F (%)) — (T, (A9 ]
—(AS), J(ASF () —(AS) (FOO) 1 (42

ard so on. The leadirg tem tha decay with k4« in the error
can be obtainel by examinirg the k. dependene of ¢;.
We begh with the expectatio value of AS averagd with
respet to the k., dependendistribution

<A S> kmax= ﬁ<voo o Vkma)} kmax (43)

1
=B | duvi Vi W, @

1
= Bf du(V[xe _(u)+ox(u)]
0
=Vx¢ (W1 (45

We next expard the potentid in powers of 6x(u) to obtain

max

1
a8y~ duoxuvin ]

+H XUV (WT+ ) . (46)
The linear tem in 8x(u) vanishes when thé{a}} integra-
tions are performeal [as do all odd-orderd powessin §x(u)],
ard the remainirg terms give

Jdxdaexd — 3 Mad20t— BVi V(% ()]

1
<As>kmax: §fo du

Jdxdaexd — =™ aZ/202— BVy ]

Jd{{altexd — S 1ad2001(Siy i qacsinkmu)?

Jd{{attexd — =\ Kemaxt 18¢/207¢]

+oe (47)

The integratio with respetto {{a}} in Eq. (47) has bee evaluate previousy in Eq. (19). Then

Jdxdaex] — 3 Ma2202— AV, V'[x, _(w)]o%(u)
+

ﬂ 1
<As>kmax: Efo du

Jdxdaex — = ™ai/20t— V]

(48)

Asdiscussd in Sec |1 C, 0%(u) deca as 1/ for large kpax, ard to leadirg orde in krn(,ﬂ,(AS)kmax also decays as 1/Kpax-

A similar analyss of (f(x)AS)kmax gives

Jdxdaexd — = Mad20t— AV, IV'[xc _(W]f(X)o?(u)

1
(fx)AS) = §fo du

Jdxdaex — = m@a2/202 BV ]

which also decay to zero as 1/k,,4«. Theleadirg orde contributian to the error e then decays as Ry, in the primitive Fourier

methal for operatos diagona in coordinaé representation.

Copyright ©2001. All Rights Reserved.
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2. Path averaged properties

Expectatio values of pah averagd properties like those
tha occu in the enery estimatos require additiond analy-
sis beyord tha given in Sec Il A1l. For a pah averaged
propery f_kmax we begh with an expressia analogos to Eq.
(37) in the limit that Ka—

J— <e_ASf°°>kmax
o 50
= <f_00>kma><+ (AS) kmax<f_°0>kma><_ <As_f°°>kmax+ o
(52)

We examire the first term on the right hard side of Eq. (51)
explicitly

1
T fod““[kaax(“)]* SX(W)f'[x(u)]

+ HX(W)AH Txi,_(W)]+ e (52

max

J— 1
=i, kot fodUUz(u)<f”[kaax(u)])kmax+---.
(53
In obtainirg Eq. (53) we hawe explicitly ignored the odd-

orde terms in 6x(u), because they vanish exactly. Then the

errore=(f..)..—(f, ) __isgiven by
1 J—
€= JO duc?(u)(f"Ix (Wi +(AS) (fuy

_<AS?°°>kmax+"'- (54)

As shown in Sec Il C the first term on the right hard side of

Eq. (54) decayg as 1/k .. By expandingy f., tha appeasin

the fluctuatian terns in Eq. (51) in a similar manne to Eq.

(52), it can be shown tha the leadirg orde terms in the

fluctuatiors in Eq. (54) also decy as 1/, Consequently,
for path averagd operatorsthe convergene of the primitive

Fourier methal is 1/K -

B. Partial averaging
1. Properties diagonal in coordinate representation

We begn this sectio with a discussio of the gradient
partid averag@ method ard then generalie the resuls to the
full partid averag@ method We demonstra tha the
asymptott convergene rates are the sare in both the gra-
dient ard full partid averag@ method for properties diagonal
in coordinaé representation.

Eleftheriou et al.

The treatmenm for the errors in the gradien partid aver-
age methal for a propery f(x) diagona in coordinag rep-
resentatia follows the sane developmenas in the primitive
Fouriee method The resulting expression for the errar are
easily shown to be

<f(x)>w:<f(x)>gpakmax+ €,
with
€= ¢gpa+ ¢gpa+ el

= <Asgpa>gpak (F(X)) gpak ™ <Asgpaf(x)>9pak

(59

(56)

(57
3= %[((Asgpa)zf(x»gpakmax
_<f(X)>gpakmax<(ASgpa)2>gpakmax]
_<Asgpa)gpakmai<ASgpaf(X)>gpakmax
—(AS®) gpak . LT (X)) gpak,,, ] (58
ard so on. In Egs (55)—(58) we hawe put
S (x{a})= kgl a2k + BVgpak (59)
Jdxd{ajexd — S (x,{ah)]f(x)
<f(x)>gpakmaxz pa )
Jdxd{atexy — S (x,{a})]
and
ASPx,{a}) = S.(x,{ah) — 2 (x.{a}). (61)

Asin the primitive Fourie methal we determire the conver-
gene rate by examinirg the expectatio value of A S2with
respet to the k,,-dependengradien partid average dis-
tribution

<Asgpé>gpakmaxz ﬁ<voe_Vgpakma))gpakma)< (62)

max max

(63)

1
:'Bfo du(V[x(u)]=Vgpd X (U)])gpak

1
= ,BJO du(V[x, _(u)+ox(u)]=V[xy_ (u)]

- %Uz(u)v”[kaax(u)pgpak

As in the primitive Fourie method we expar the first term
on the right hard side of Eq. (64) in powes of dx(u) to
obtain

(64)

max’

1
(ASP 0y =B fo du(V[xe (W]+ XUV [x ()]+L2(8%(U)2V" i, (U)]+L/3H(Ax(U) V"% (W)]

1AWV [ W]+ = VX (1] =120 (WV Xy (W)])goa

(65

max "

The odd-orde terns in 8x(u) in Eq. (65) average to zero. The quadratic termdr(u) on the right hand side of Eq65)
exacty cances the last tem and the leadirg order tem in (AS%9,.,  is
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o0 4

(ASY ook =B f Oldu%< ( -~ > | sinkmu V””[kaax(u)]> (66)

. —

B (1 Jdxdaexq- S mea2/2g2 — ngpakmax]vw [xi (W]
“at, [dxdaexi] — 22821202~ BV gpar. ]

Fa{{altexd — Sy L 1ail201(Sicy L acsinkau)®
[d{{attexd — S 1aF/207] o o
g [t Jdxdaexq- EE";al"aE/Zcrﬁ— ngpakmmJV”” [Xi,_(W)]o(u) 8

:EZ OdU

Using the Eulee—MacLaurh summatio formula it can be

shown thata*(u) deca)sas1/kr2naxasdoes(Asgpa)gpakmax. In

a similar fashia (f(x)AS%9) g, also can be shown to

decy as l/kzmax. Then in the gradien partid average
method the leadirg temn in the errar decay as 1/k2,,.

It is worth noting how the gradien partid average
methal improves the convergene rate of the Fourie method
for coordinaé diagon# properties In the primitive Fourier
methal Eqgs (46)—(48) provide the leadirg orde term in the
errar in inverse powes of K. By seekirg a modified po-
tentid tha cance$ the leadirg orde terms in the error, we
find an alternati\e route to the gradien partid avera@ result;
i.e, Eq. (23).

If the Gaussia transfom of the systen potentid is both
possibe and practical the full partid avera@ effective po-
tentid can be used In sut casa we define

Sop (i) = 2, 8208+ BVpa, (69)

and
ASP(x,{a}) =S.(x.{ah) — S (x.{a}). (70

As in the ca® of gradien partid averaging the expression
for the errar is given by the series of equations

<f(x)>°°: <f(x)>pakmax+ €,

with

(71

€=+ ph%+- -+, (72

B= (AP (F(X)pak,.,— (APF(X)par, ., (73

max

#9= (AP0 ) pak
_<f(x)>pakmax<(ASpa)2>pakmaJ
—(AS)pak, J(ASPH (X)) pak, .,
(A pak ol X)) Ipak

]
max max

(74

and so on. The expectatio value of ASP? needd in the ex-
pressim for ¢}?is obtainel by using Eq. (22)

Sdxdaexd — Etﬂa{‘aﬁ/zg k- :ngpakmax]

<A Sp'3> PakKmax

1
-5] du<V[kaax<u>]+ XUV %, ()]
1 2\ /1 1 3\/m
+5 (X(W) VX (W]F37 (aX(U)* VX (W]

1

7 (XU Ixe (W] = VX ()]
1, 1,

—5 T WV Ix (W] =77 o%(u)

XV""[kaaX(u)]—---> (75

P& Kax

As previousy the odd-orde terms in 6x(u) in Eq. (75) av-
erage to zera Thetermsin 6x(u) of even orden average to
o"(u), so tha all suc even-ordeterms cancé exactly. Con-
sequently in the partid avera@ methal (ASpa)pakmaxzo,
ard the leadirg temm in the errar in the full partid average
methdl is found in the second-ordefluctuatian term ¢52.

The partid averagd effective potentid introduces no
specia cancelatios in the expressia for ((ASpa)2>pakmax,
ard it is sufficiert to examire the leadirg orde decy terms
for the second-ordefluctuatiors using the primitive Fourier
method The asymptott decd rate of the second-ordefluc-
tuatiors is the sane in both the primitive Fourig ard partial
avera@ methods We then examine

((A8)%)y = BH (V= Vi )k (76)

which we expar in the usua way
1
<<AS)2>kmaX=BZ< ( JO du[ SX(V'[xy(U)]
1
+5 (x(W)Vx (W]

1
7 (OX(U)PV Xy (W]
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I,

1
o7 (XD X (W]

max

) (77)
1
=,82<( f du5x<u>V’[kaax<u>])
0
11 2
35 f du(Sx(WyV'Ix (W] +> 78)
0 kmax

where in Eq. (78) we explicitly display only the two terms
that we examire in detail We begn with the first term

T1:<
= f dxdaex;{ -
k=1

(79

2
fldU&(U)V’[Xk (U)]) >
O max kmax
kmaX
ST

©

X f d{{a}}ex;{ —k=k2 »

1 1
X JO dufO du’V’[kaax(u)]V’[kaax(u’)]

aZl2o?

o [

>

k=Kmaxt1 g’ = Kmaxt 1

J dxd{a}ex;{ -
k=1

E aE/zaE_ﬁvkmax:|
= f dxdaex;{
>

xf d{{a}}ex;{—k p

=Kmaxt
o]

akak")’kk’(a)/
ded{a}ex;{—
k=1

X a,ay sinkmu sink’wu’/

(80)

kmax

215 2 ons
— z, ap /20— BV
= Ao BV o

aﬁ/ 20'&

o [

>

k=Kmaxt1 k' = Kmaxt 1

X

> afl2oi—BVy_. (81)

x| !
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where

1
ykk,(a)=f dusinkmuV'[x,  (u)]
0 max
1
xj du’ sink’ ru’V'[ %, (u”)]. (82
0 max

The integratiom with respet to {{a}} in Eq. (81 can be
evaluate analyticaly to obtain

—

1

k N7 ©
Jdxdaexd — = "ap20g— BVi 1Ziok 17k @) o
Jdxdaexd — 3 Mail20i— Vi ]

(83

The decay of T, with respet to k. can be obtainal from
the expression

o0 o0
2 2
> yvl@oi= X of
K=K+ 1 K=Kt 1

1
xf dusinkzuV'[x,  (u)]
O max
1
xf du’ sink@u'V'[x, (u’)]. (84)
O max

Ead u-integration in Eq. (84) isrecognize as the k'th Fou-
rier sine coefficiert of the expansio of V’[kaax(u)] and

ead sine coefficiert mug converg asymptoticaly at leag as
fag as 1/k. The argumen of the sumin Eq. (84) then decays
as 1/k* so that, by the Euler—MacLaurih summatim formula,
T, itsef mug decy like 1/k3 ..

We next examire the secom term in Eq. (78)

To=H[(Sx(U)AV"Ix (WP (85)
Kmax *
1 _ 1 1
:Zf dxdaexp[—E aZl2c— BV, Ud{{a}}exp{— > a0l f duJ du'V'[x,  (W)IV' X (u")]
K=1 max =Kmax™ 0 0 max max
© 2 © 2 ®
x| > aksinkrru) ( > ak/sink’wu’) /fdxd{a}ex;{—E aZl20i— BV, (86)
k=Kmaxt1 k! = Kmaxt 1 k=1 max
1 Kmax . * *
== f dxdaexp{—z al202— BV, } > ot > o
4 k=1 max k=Kmaxt1 k" =Kmaxt 1
1 1 Kmax .
><J duf du’' V' [x  (W)IV"[%  (u’)]sirPkau sirPk’ 7ru’ dedaex — >, all202— BV (87
O O max max k:l max
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4 Jdxdaexd — = ™ad20t— V]

Ead factar of o(u) in Eq. (88) deca as 1/knay SO that T,
itseff decag as 1/k?,,. The remainirg terms in Eq. (78)
decy faste than 1/, so tha ((AS)Z),(max ard the error

contributian from the second-ordefluctuation term decy as
1/kﬁ1ax. This resut implies tha for properties diagona in

coordinae representatigrthe convergene of the propery to

the exad answe is 1/k2,, with the full partid averag po-
tentid usal in the action This convergene rate is identical
to the gradien partid averag result In the gradien partial
averag@ methal we find a modified potentid tha exactly
cances the leadirg tem in the errar in the primitive Fourier
methal in ordess of inverse powess of K. In the full par-
tial averag@ methal we find a potentid that exactly cancels
the leadirg orde fluctuation term in the primitive Fourier
methal expressia for (AS) - i.e. tha removes the con-
tribution of ¢, in Eq. (40). Both approachelead to a result
with the sane convergene rate in inverse powess of K-

2. The energy

In the primitive Fourie methal the convergene rate of
the enery is examinel by studyirg the convergene rate of
ary pah averagd operator With partid averagingthe situ-
ation is more complex and eat specifc enery estimator
mug be investigate separately As is mace clea in this
section we obtain 1/k2max convergene for the energy only if
the estimato is carefully chosen.

To understad the problem we first examire the evalu-
ation of the avera@ potentid energ of the system Using a
theoran proved in Appendk B, the averag potentid energy

can be evaluatd using eitha V(x), Vi Veakp,e OF

Vgpakmax as the estimator Averages with respet to ary of

thes four operatos converg to the corre¢ answer How-
ever, we now show tha the rates of convergene are differ-
ent In wha follows the derivatiors are given for the gradient
partid avera@ method The terns in Eq. (22) highea than

secoml orde in o(u) do not change the leading order terms

in the convergene rate.

From the resuls of Sec I11B1 we know the rate of
convergene when V(x) is usal as the operato is 1/k2,.
We now analyz the errar if a pah averagd estimato is
usel as the operato instead As in previols sectiors we be-

gin the analyss with

U o AP
(Ve %pakmax

(Vo= —— (89)
(e Asgp%pakmax
= <Vx>gpakmax+ <ASgpé>gpa1kmax<Vx>gpakmaX
—(ASPA ) goar Foee (90)

(88)

From Sec 111B 1 we know the fluctuation terms decy as
1/K2 .. We then focus on the first tem on the right hard side

of Eqg. (90), expar it in the usud way ard integrae with
respet to the {{a}} coefficiens to obtain

_ 1
(Vo) fo du(VDxg (W)]+ o2V X (U]

4+ .. >9pakmax+ (91)

We can now give two separat expressioafor the error. The
first errar expressia is the differene betwea the exad av-

erag potentid enery and the averag@ using Vkmax as the

estimatori.e., by moving the first term on the right hard side
of Eq. (91) to the left to obtain

(Vae)oo— <Vkma) 9PaKmax

1 (1
:<E JO dUO’Z(U)V [kaax(u)]

9Pakmax

+ <Asgpa>gpak <_w>gpakmax_ <Asgpa\70<>>gpakmax+ Tt

(92

Alternatively, the secoml errar expressia involves the aver-
ace using Vgpakmax as the estimato by moving the first two

terms on the right hard side of Eq. (91) to the left [see Eq.
(23)] to obtain

(Vee)oe = (Vgpak o gpak e

(Veogpak .~ (ASPA ooy +---.

=(ASPY gy
(93

While the errors in both equatios vanish with increasing
Kmax, the decy of Eq. (92) is 1/ Wherea the decy of
Eq (93 is 1/k?,,. Consequentlyto obtan the optimal
asymptott convergene of the errar in the potentid energy
using the partid averag method it is essentihto use the
optimd estimator.

We now examire the asymptott convergene rates of
the totd energy Becaus the convergene rates of the
T-methal ard the virial estimato are identical we focus on
the virial estimato as well as the convergene rate of the
H-method We begh with the virial estimate and focus on
the expressia in the gradien partid averag@ methal directly
taken from Eq. (32)
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fldux(u)V’[x(u)]>

0

111
_EJ'odu

11
- Efo du(X(U)V'[X(U)]>gDakmax

(x(u)V'[X(U)]eiASgpigpakmax
<e—AS€Jp$gpak (94)

max

<1 dv

+ <Asgpe>gpakmax EX R

> 9PaKmax

1 dv
—<Asgpa—x— T (95)

2°d xx>
9PaKmax

From Sec II1 B 1 we know the fluctuatian terms vanidh like
1Kk2 ., and we concentrat on the first temn on the right
hard side of Eq. (95). Then expandirg in the usuad way

1/ (1 )
§< fodux(u)v [x(u)]>m

1r1
=§J du([xx  ()+ XUV [x¢__(u)]
0
+EX(UVTx (W)]+12(8x(u)PV" X (U)]

+ .. ']>9pakmax+ oee (96

We nex combire ternms to the sane orde in éx(u) and
analyticaly evaluaé the integrak with respet to {{a}} to
obtain

1/ (1 )
§< Jodux(u)v [x(u)]>

[

max

1r1
=5 | a0V De g
502U (X (VDX (0T gk

+ a2V X (W )gpak J+7. 97)

The first two terms on the right hard side of Eq. (97) com-
bine to produe the gradien partid averag@ expressia for
the first tem of the virial estimator Moving the resut to the
left hard side of Eq. (97) we obtain

%<X(U)V,[X(u)]oc>oc_ %<X(U)VI[X(u):lgpakma))gpakma><

1 1
:f du<§o'2(u)V”[Xk (u)]>
0 max

9paKmax
+O(1K2 ., (98)

wher O(1/k2 ) represers the terms tha decy like 1/k2,,,
that hawe naot been displayel explicitly in Eq. (98). The first
temm on the right hard side of Eq. (98) deca like 1/Kay-

However from Eqg. (23) we know that

Eleftheriou et al.

Vood X (W= VX (W]=Ea?(WV'x (W],
(99)

We can then combire Eqs (98) ard (99) to obtan the ex-
pressim for the errar when the virial estimato is usel to
calculat the totd energy

(EXUVTX(U)] oo+ Vao)oo = (3X(WV'X(U) I gpak

max

+2Vgpak, o~ Vi ok = O(1Kna0). (100
The 1/k2,, decy in the erra usirg the virial estimato is
found only for the estimateo given in Eq. (32). Relatal esti-
matos like (%x(u)Vépakmmlx(u)]+Vkma) converg to the
corred resut but only as 1/k,a. If the full partid average
potentid rathe than the gradiernt partid avera@ potentia is
usa in the analysis the resut is identical.

We next conside the asymptott rate of convergene of
the enery when the H-estimato is used The first term on
the right hard side of Eq. (25) is the point potentid energy
estimator and the errar in the potentid enery decay like
1Kz, from the discussia given in Sec |11 B 1. Becaus the
secom term on the right hard side of Eq. (25) is aconstant,
we neal examire the decd of the errorsin the lag two terms
on the right hard side of Eqg. (25). We begn with the last
term and agan limit the discussio to the gradien partial
avera@ method The analyss using the full partid average
methal is the same becaus the terns beyord second-order
in o(u) in EQ. (22) do not contribute to the leading order
terms in the convergene rate We write

<Joldu(1—u)2V”[x(u)]>

max

1 (-2 x(u)]e 25 g
_ f U (101

_ &
0 (e As? 3gpak

max

~ | U= VD) D g + O, (102

where O(1/k2,.,) represert the fluctuatian terns tha we al-

read/ hawe shown converg like 1/kﬁ1ax. We next expard Eq.

(102 in the usua way followed by an integration with re-
sped to the {{a}} variables to obtain

<J01du(1—u)2V”[x(u)]>

1
= [ dua-wvbe,_ w1+ sxwveix

+3(OX(U) 2V [y (W]+ ) gpak T O(1kG)
(103

=Jldu(1—u)2<V"[Xk (W]+ 202UV X, (W]
0 max max

++ Vgpak, ot O(1Kag). (104
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The first two terms in the averag on the right hard side of
Eqg. (104 combire to give the gradien partid averag poten-
tial, and we obtain

<f01du(1—u)2V"[x(u)]>

1
—< f du(1—u)2vgpe[kaax(u)]> =O(1K2 ).
0 gpakmax
(105
The errar in the third tem on the right hard side of Eq.
(25 can be obtainal from
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1 2
<(f du(l—u)V’[x(u)]) >
0
((Jadu(1—wV'[x(u)])2e 4o
B <97A§p39pak 109
1 2
=<(f0 du(l—u)V’[x(u)]) > +-e (107

gpPakmax

wher the terns not explicitly displayel in Eq. (107) are
fluctuatinn terms ard deca a leag as rapidly as 1/kZ .
Expandig Eq. (107) in the usud way, we obtain

1 2 1 1
<(f du(l—u)V’[x(u)]) > =<f duf du’(l—u)(l—u’){V’[kaax(u)]+5x(u)v”[kaax(u)]
0 . 0 0

+ 3NV Tx W]+ HV [xi, (UD)]+ XUV x(U)]

+%<6x<u'))2vm[kaax<u')]+---}> e

We nex combire like powessin éx(u) and integrate analyti-

cally with respetto {{a}} to obtain

|

1 2
fodu(l—u)V’[x(u)]) >

=< Joldu(l—u)foldu’(l—u’)

XAV %, (W] + 502UV,

o
X{V'[kaax<u'>]+%oz<u'>vw[kaax(u'>]}>
gpakmax

(109

+<k_§

kmax+

1“kk(ﬁl)ffi> RERRR
gpakmax

where

M@= J'Oldu(l— u)sin kq-ruV”[kaaX(u)]

1
Xf du’(1—u")sink’ 7u’V"[x, _(u’)].
0 max

(110

As discussd in referene to Eq. (84), eath facta in the
definition of T'y,/(a) is the Fouria sine coefficient of (1
—u)V’[xc _(u)] and decap asymptoticaly at leag as fast
as 1/k. Consequentlythe lag temm displayel on the right
hard side of Eq. (109 decag at leag as fag as 1/, and
the errar term

(108
9PaKmax

1 2
<( Jo du(l—u)V’[x(u)]) >

1 2
_<(f du(l—u)Vépix(u)]) > ,
0 9PaKmax

decayp at leag as fag as 1kZ,,. Finally, we concluck the

errar in the H-methal estimae of the enery also converges
as 1Kk ax-

IV. NUMERICAL EXAMPLES

In this section we illustrate the resuls of the derivations
in Sec Il with some exampé calculatiors on one-
dimensional systems. We choose to examine one-
dimensionh systems becaus for sut simple systens it is
possibé to determire the exad resut for comparisonsand it
is possibé to include mary Monte Carlo points to insure
goad statistics.

The first system is the double-wel potentid used and
describe previousy to demonstrad the j-walking method!®
We choo# the potentid parametes so that the highe energy
well is 90% the deph of the lower enery well. Becaus this
potentid is a polynomid throuch fourth-order exad results
are obtaina by matrix diagonalizatio in a harmonc oscil-
lator bass set The systan mas is taken to be 1% the mass
of a proton With this mas the systen has two set of nearly
degenerateigenvalus below the top of the barrie that sepa-
rates the two potentid minima The temperatue is taken to
be BAEy;=5 wher AE,, is the enery separatig the
grourd ard first excited stae of the system Figure 1 is a plot
of the totd enery of this systen as determiné with the
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FIG. 1. Theleft pané compars the totd energ of the double-wel potential
as a function of 1/k,,,, determiné usirg the virial estimator The line la-
beled FP represerd the primitive Fourie methal and the line labeled PA
represert the resuls with partid averaging The linear approab of the
primitive Fourie resuls to the exad enery is characterist of 1/, CON-
vergenceard the approab with zero slope of the partid average resuls to
the exad enery is characteristi of convergene that is more rapid than
1/Kmax- In the right pané the partid averaged resuls are plotted as afunc-

tion of 1/k2,,, ard the linear behavia provides numerica verificatian of the

asymptott 1/kfnalx convergene rates of the partid averag method The

erra bars displayel in this and subsequenfigures represeh one standard
deviatian of the mean.

virial estimato [Eq. (32)]. In the left hard pané both the
primitive Fourie pah integrd methd (labela FPI) and the
partid averagd resuls (labelel PA) are displayel as afunc-
tion of 1Kk, The primitive Fourie resuls approabt the
exad enery (representg by the horizonta line) linearly.
The partid avera@ resuls approab the exad resut with a
vanishirg slope Sud behavio is consisteh with the
asymptott convergene rate expecté from the analysis In
the right hard pane| the partid avera@ resuls are plotted as
a function of 1/k?,,, and the linear approaé to the correct
resut is consisteh with the expecte asymptott conver-
gene of the virial estimato with partid averaging.

A secom exampe of the asymptott convergene char-
acteristic of the totd energy is displayal in Fig. 2. The
potentid energy for the modé problem is given by

V(X)=V (x+a)+V (x—a), (111

whet V| 5(x) is the standad Lennard-Jonginteraction

o 12 o 6

X X
and « is taken to be 1.2. The parameterg and o are,
respectively the standad Lennard-Jong enery and length
parametersThis potentid has bean usal previousy as aone-
dimensionh representatio for a fluid.2° The Lennard-Jones
parametes and mass hawe been taken from arecer study by

Chakravarty Gordillo ard Ceperley* on clustes of hydro-
gen molecules In Fig. 2 we display the averag@ enery in

Vii(x)=4e€ , (112

Eleftheriou et al.
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FIG. 2. The avera@ energy of the Lennard-Jongcage potentid discussd in
the text as afunction of 1/k%,,. The enery has been determine using the
virial estimator The linear convergene of the partid average resuls (la-
beled PA on the graph with llkﬁqalx ard the less rapid convergene of the
primitive Fouria methal resuls (labelal FPI) on the graph are evident The
exad resuls hawe bee obtaina using numericd matrix multiplication
methods.

of 1/k2,,, both with and without partid averaging The linear
convergene of the partid averaged resuls with 1/k§13X is
evident as is the less rapid convergene of the primitive
Fourie method.

The data in Fig. 1 do not converg to the exad result
monotonicaly prior to the asymptott region In sone cases
sut nonmonotorg convergene can lead to incorre¢ con-
clusiors abou the ultimate convergene of a calculation The
analyss of thiswork can help prever sud incorre¢ conclu-
sions To illustrate this point, in Fig. 3 we plot the average

-1.40 . T T 1 ‘—

-1.45

<V>/e

-1.50 +

—1.55 1—.;| f . 4 L e 1 ' '
0.00 0.20 0.40 0.00 0.10 0.20
K 1k,

FIG. 3. The averag potentid enery as afunction of 1/k,, (left pane) and
1/k2max (right pane) for the quartc oscillata using the primitive Fourier
method As discussd in the text, the parametes for the quartc potentid are
chose to fit the potentid discussd in Fig. 2, ard the avera@ potential
enery is given in units of the e parameter used in the Lennard-Jones cage
potential The asymptott linear convergene to the exad resut is evident.
The plateal nea k.= 10 provides an exampe of false convergencebe-
cau® the convergeneisnat linear in 1/K,,,. Suc behavia is evidene that
more Fourig coefficiens are needd in a calculation The convergene ap-
peasto be linear in 1/k2,,, for smal K., but becoms linear in 1/kyq, only
in the asymptott region The horizonta line in eat pané represerg the

units of e determined using the virial estimator as a functionexad resulit.
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potentid enery of a quantum simulati:n using a one-
dimensionaquartc potentid of the form

V(x)=ap+asx* (113
as afunction of 1/k,,.x determine with the primitive Fourier
method The coefficiens a; ard a, are chosa to fit the
potentid function given in Eq. (111). From the analyss pre-
sentel in this work, we know the convergeneislinear in the
asymptott region ard the linear approad to the exad result
is evidert for large k;,,.x- However at intermediag values of
Kmax N€a Knax=8—16, the avera@ potentid energy changes
little and appeas to be convergedIn practice if the exact
resut is nat known, truncation of the calculation & some
value of ko« betwea 8 and 16 appeas to be natural How-
ever in the region of intermedia¢ values of k. the
asymptott behavia is not 1/k 4, 8s is requirel by the analy-
sis of this work. Consequentlywe hawe clea evidene the
calculatio is nat converge prior to including more Fourier
coefficiens in the calculation.

V. DISCUSSION

There is the ca® of one physica systen whete the con-
vergene rates for calculatel thermodynamnd properties are
more rapid than the rates derived in this work. For the one-
dimensionbharmonc oscillata partid averagimg introduces
a modificatin to the densiy matrix tha is dependenon
temperatue but independenof coordinate$.Many expecta-
tion values derived from the partid averagd densiy matrix
for the one-dimensionaoscillata are identicd to those de-
rived from the primitive Fourie method Additionally, ex-
pectatio values of coordinaé dependenproperties for the
one-dimensiorlaoscillata converg as 1/k3.., in the primi-
tive Fourie method? This increasd convergene can be un-
derstoal by noting that the seconl derivative of the potential
enery with respect to its coordinae is a constant ard the
first fluctuatian term defined in Eq. (41) vanishesThe lead-
ing contributiors to the secom fluctuation term defined in
Eq. (42) can be shown to converg as 1/, for the oscilla-
tor. While the oscillata is an uncomma exampe of a sys-
tem who<s properties converg more rapidly than otheis with
respet to the numbe of Fourie coefficiens included we
include the qualification “at least’ to the following state-
mens tha summariz our findings:

1. The errors in the expectatio values of all properties
calculate using the primitive Fourie methal converg as-
ymptotically at leag as rapidly as 1/K,a-

2. The errors in the expectatio values of all properties
diagona in coordinaé representatio using eithe the full
partid averag@ metha or the gradien partid average

methal converg asymptoticaly at leag asrapidly as 1/kﬁqax.

SR

Jdxpdxo - dxy =N 1 (919%) V(X1 ,Xa, . . ., Xn) X

—BV(X1,X2, .. ., XN)]
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3. The errors in the expectatio values of arny of the
enery estimatos developé in Sec Il D usirg eithe the full
partid avera@ methal or the gradien partid average
methal converg asymptoticaly at leas as rapidly as 1/kﬁ1ax.
Alternak estimatos of the energyy can converg less rapidly
than 1/k2,,, so tha the choice of optimd estimato is im-
portart to achiewe optimd convergence.

In addition to the resuls outlined abo\e the forma meth-
ods hawe provided new insight into the partid average
method A forma demonstratin has been given that the gra-
dient partid avera@ ard the full partid averag methods
provide identicd levels of enhancemenof the asymptotic
convergene rates Furthermorewe hawe mack clea that the
gradien partid averag@ methal works by introducirg exact
cancelatia of the leadirg terms in the errar incurred by in-
clusion of a finite se of Fourie coefficients.

With analytc asymptott convergene rates a signature
is availabk tha indicates when a calculation has converged
with respet to the numbe of Fourig coefficiens included.
Erroneos truncatiors of pat integrd simulatiors tha arise
from nonmonotord convergene characteristis can be
avoided Furthermoreonee it has been determine tha the
numbe of Fourig coefficiens included is in the asymptotic
region extrapolatim method to the exad resut can be in-
troducel with some confidence.

In the derivatiors it is assumd tha averags of increas-
ing powess of AS deca with increasig poweis of 1/K.y-
While we hawe no formd prod of this assertion detailed
examinatio has always provel the assumptia to be valid.
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APPENDIX A: THE N-PARTICLE VIRIAL ESTIMATOR

In this appendk we show tha for N-particle systens if
the potentid energ is independenof the coordinag of the
cente of mass the virial estimato resuls in an energ from
the internd coordinats only; i.e., an energy tha does not
include the constam contribution from the motion of the cen-
ter of mass It is easiesto understad this resut in terms of
the classicavirial first. A derivatio is then sketchd for the
guantum virial. We limit the discussio to N particlesin one
dimensionard assune all particles hawe the sane mass The
extensim to three dimensiors with particles of mixed masis
straigh forward.

The expressia for the classicé virial is

(A1)

Jdx.dx,- - -dxy exd — BV(Xq, Xz, . .

. 1XN)] (AZ)
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We nex introduce the coordinaé of the cente of mass

(N 1)x; —E X;

J#i

(A5)

1 N
=Ni§1 Xi , (A3)

ard the relative coordinates o ) ]
On substitutim of the cente of mas and relative coordinates

X/ =X —X (A4)  in Eq (A2) we obtain

N—-1 /s N—1 N—1,7 N—1
Xj +X Jd X—Z]=1x] P
Jaxidxg - -dxi_ dx=NTI% (0l ax) ) V(X) x5, . .. ,x,’\l_l)exp[—BV(xi,xé, coXN— D]

: (A7)
Jaxgdxg- - -dxy_dx exg — BV(X1,X5, . . ., XN_1)]

wherre we hawe explicitly usal the independene of the po-  sane mass The cente of mas transformatio in the quan-
tentid energy on the coordinaé x. The contributiors from  tum ca® applies to the entire path so tha we write
the x-integratio cancé in the numerato ard the denomina:

tor in Eq. (A7). After integrat.icn by parls ard assumig the Xemk 2 Xik (u) (A10)
surfae terms vanish we obtan the final result ma
1/ N ay N—1 where
2\ 2 M)~ 25 (#8) -
X« (U)=X+ 2 a,sinkamu. (A11)
which is the totd kinetic enery less the kinetic energ of the ma k=1

cente of mass of the system This completa the prod of the
classica virial result.

The prod of the quantun virial resut proceed in a X (W=Xi e (W)= Xempk . (U) (A12)
similar fashim to the classicé derivation We begn with the

We then defire the relative coordinate for the entire path

kmax
guantum expressia using Fourig path integrd partid aver- .y '
age methoa with k. Fourie coefficiens included Xi +|(§=:1 3 sinku, (AL3)
9 N Kmax d where x| is defined asin Eq. (A4), and
2 X.(9—+E 2 akla ,
XI 1 k=1 a k,i ak’i = ak’i _Ak, (A14)
N Kmax with
Z Z 21208+ BVak, : (A9) .
Kmax A= 2 A (A15)
In Eg. (A9) we hawe included the required Nk, Fourier =1
coefficiens labelal by Fourie index k ard particle index i, The cente of mas transformatia isthen introducel into Eq.

ard for simplicity we hawe assumd all particle hawe the  (A9) resultirg in the expression

N7l X{ +X N-1) 9 % 9 N 9 X—EJN:_fX’ d N d

““\1& N axi {7 ax o N =1 9x{ ox
+"maXN 'ay; { n_1) 2 J +k§XAk—2}“;fa{” N p)
kk1i=1 N day,; 171 day T T E N =1 0ay; I

(“‘” (a+AY? T (AN ak,>2
X +

i=1 k=1 Za'k k=1 Zo'k

f duVpd Xy (U),Xzy _(U), .. -’Xll\l—l,kmax(u)]] > : (A16)
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Equatio (A16) can be integratel by pars to give

a=NKyat N—1, (A17)

whete the surfae terms are assumd to vanish and the in-

dependene of the potentid energy V on the cente of mass
coordinaé x is used explicitly. Using the T-methal expres-
sion for the totd energy for an N-particle systen in one
spatid dimension

N(kmax+ 1)
=2

max

+ < 2Vpak .~ Vi

max N

Z 2 2 |/230§> : (A18)
- B kmax

Eqgs (A17) and (A18) can be combinel to give

N

1 ’

(E)= < Ezl Xi K WV pakmad Xi ko, (U) ]
_ _ 1
+2Vpa .~ Vi, ., k + 25 (A19)

max

i.e. for systens whose potentid energ is independehof the
coordinae of the cente of mass the virial estimato gives
the totd enery less the energy of the free translationbmo-
tion of the cente of mass.

APPENDIX B: THE EQUIVALENCE OF POINT AND
PATH ESTIMATORS

In Sec Il B2 we discussd alternae estimatos of the
potentid energy tha all converg to the corred resut with
an infinite sa of Fourie coefficients but with differert rates
of convergenceHere we prove a theorem ard alemma that
justifies tha all the estimatos mug converg to the same
result.

Theorem: Let x(u) represeha pah for 0O<u<pg# and
let x(t) represeh some point on the path Let f(x) be a
function of x and write the expectatia value of f(x) at point
t by

X
(f[x(t)])=J de Dx(u)e™ SXWIafx(t)], (B1)
X
where S x(u)] is the action associaté with pat x(u) and
the pat integrd is taken over all patls tha stat and erd at
point x. Then

(fIx( 1) =(f(x)), (B2)

i.e. the expectatio value is independenof the time point t.
Proof. We write

fXDx(u)e*S[X(“)]’ﬁzf dx(t)jX(I)Dx(u)e*S[X(”)]’h,
X X(t)
(B3)

whete the notatin [X{§Dx(u) implies a sum over all paths
tha are constraind to pas through the point x(t) at timet.
We can then write
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(f[x(t)
fdxf dx(t)J x(u)ye™ STy ()]
X fX(t)Dx(u)e‘S[X(”)]’ﬁ (B4)
x(0)
= [ ax axctrie oo i)
X (x(1)|e™ | x) (85)
=Tr[e‘wﬁ“)mﬁf(x)e‘F‘”"]. (B6)
Using cyclic trace invariance
(FIx()])=Trle PVif(x)] (87)
=(f(x)), (B8)
ard the theoren is proved.
Lemma (f..)=(f(x)).
Proof.
J— 1
<fm>=<f duf[X(U)]> (B9)
0
=fldu<f[x(u)]>. (B10)
0
Then from the theorem
_ 1
)= autoo) (B1D
=(f(x)), (B12)

which proves the lemma.

The equivalene expressé in the lemma s nat valid for
finite k., but the resut proves point ard palh estimators
provide the sane resut in the limit tha Ka—

IR. P. Feynma and A. R. Hibbs, Quantum Mechanis and Path Integrals
(McGraw-Hill, New York, 1965.

2D. M. Ceperley Rev. Mod. Phys 67, 279 (1995.

3B. J. Berre ard D. Thirumalaj Annu. Rev. Phys Chem 37, 401 (1986.

4D. L. Freema ard J. D. Doll, Adv. Chem Phys 70B, 139 (1988.

5J. D. Doll, D. L. Freemanard T. L. Beck Adv. Chem Phys 78, 61
(1990.

6N. Makri ard W. H. Miller, Chem Phys Lett. 151, 1 (1985.

"N. Makri ard W. H. Miller, J. Chem Phys 90, 904 (1989.

8R. D. Coalson D. L. Freemanard J. D. Doll, J. Chem Phys 91, 4242
(1992.

9J. Lobaudh ard G. A. Voth, J. Chem Phys 97, 4206 (1992.

10C. Lanczos Applied Analysi (Dover, New York, 1988, Chap 4.

113, D. Doll, M. Eleftherioy S. A. Corcelli and D. L. Freemanin Quantum
Monte Carlo Methods in Physics and Chemistry edited by M. P. Night-
ingale ard C. J. Umrigar (Kluwer, Dordrechf 1999, p. 213.

12C. Alexandroy W. Fleischer and R. Rosenfelder Phys Rev. Lett. 65,
2615 (1990.

13J. D. Doll, R. D. Coalson ard D. L. Freeman Phys Rev. Lett. 55, 1
(1985.

1R. D. Coalson J. D. Doll, ard D. L. FreemanJ. Chem Phys 85, 4567
(1986.

I5M. Abramowitz ard I. A. Stegun Handbod of Mathematich Functions
(Dover, New York, 1965, Chap 23.

18D, L. Freema and J. D. Doll, J. Chem Phys 80, 5709 (1984.

M. F. Herman E. J. Bruskin ard B. J. Berne J. Chem Phys 76, 5150
(1982.

Copyright ©2001. All Rights Reserved.



6672 J. Chem. Phys., Vol. 110, No. 14, 8 April 1999 Eleftheriou et al.

18], K. Leg J. A. Barker, and F. F. Abraham J. Chem Phys 58, 3166  2°D. L. Freeman R. D. Coalson ard J. D. Doll, J. Stat Phys 43, 931

(1973. (1986.
19D, D. Frantz D. L. Freemanard J. D. Doll, J. Chem Phys 93, 2769  2!C. ChakravartyM. C. Gordillo, ard D. M. Ceperley J. Chem Phys 109,
(1990. 2123 (1998.

Copyright ©2001. All Rights Reserved.



	Asymptotic Convergence Rates of Fourier Path Integral Methods
	Citation/Publisher Attribution

	Asymptotic Convergence Rates of Fourier Path Integral Methods
	Publisher Statement
	Terms of Use


	33J;08APR99

