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Asymptoti c convergenc e rates of Fourie r path integra l methods
Maria Eleftheriou and J. D. Doll
Department of Chemistry, Brown University, Providence, Rhode Island 02912

E. Curottoa) and David L. Freemanb)

Department of Chemistry, University of Rhode Island, Kingston, Rhode Island 02881

~Received 13 October 1998; accepted 13 January 1999!

The asymptotic rates of convergence of thermodynamic properties with respect to the number of
Fourier coefficients, kmax, included in Fourier path integral calculations are derived. The
convergence rates are developed both with and without partial averaging for operators diagonal in
coordinate representation and for the energy. Properties in the primitive Fourier method are shown
to convergeasymptotically as1/kmax whereas theasymptotic convergence rate isshown to be1/kmax

2

when partial averaging is included. Properties are shown to converge at the same rate whether full
partial averaging or gradient partial averaging is used. The importance of using the proper operator
to optimize convergence rates in partial averaging calculations is emphasized. © 1999 American
Institute of Physics. @S0021-9606~99!51414-1#

I. INTRODUCTION

Path integrals1 are perhaps the most widely used ap-
proaches to include quantum contributions in equilibrium
statistical mechanical simulations of many-particle systems.
In a path integral simulation the system is described by a set
of classical variables along with a set of auxiliary variables
used to include the quantum fluctuations. Typical auxiliary
degrees of freedom are the set of intermediate time points in
discretized path integral approaches2,3 and the set of Fourier
coefficients in Fourier path integral simulations.4,5 Indepen-
dent of which method is used to evaluate the path integrals, a
major practical concern is how to limi t the number of auxil-
iary degrees of freedom included. The computational work
grows with the numbers of these auxiliary variables, and
practical considerations deem it useful to make the number
of variables as small as possible.

The number of auxiliary degrees of freedom included in
a path integral simulation cannot be truncated arbitrarily. It is
necessary to includesufficient variables so that thecalculated
thermodynamic properties converge to within the statistical
uncertainty of a calculation or to the accuracy needed for a
particular application. An important consideration is the de-
termination of the size of the set of auxiliary variables
needed for the application at hand. There has been previous
formal work6–8 on the convergence rate of the action with
respect to the number of auxiliary variables included. Deter-
minations of the convergence rates of properties have been
made by running a series of calculations with increasing
numbers of auxiliary variables until the values of the calcu-
lated quantities stop changing to within statistical uncertain-
ties. As we shall demonstrate in this work by numerical ex-
ample, such an approach to truncation is dangerous, because
the convergence of properties with respect to the number of
auxiliary variables is often not monotonic. A useful approach
is to understand the asymptotic convergence characteristics

of properties analytically, and truncate only when properties
obey the proper asymptotic convergence law. In this work
we derive and illustrate numerically such asymptotic conver-
gence rates for thermodynamic properties using the Fourier
path integral method.

The contents of the remainder of this paper are as fol-
lows. In the next section to establish the notation we review
the Fourier path integral method both with and without par-
tial averaging. We also review expressions for the energy
estimators used in the Fourier method. In Sec. II I we analyze
the convergence rates of the errors for properties diagonal in
coordinate representation and for the energy both with and
without partial averaging. We illustrate the derived
asymptotic convergence rates with some model one-
dimensional potentials in Sec. IV, and in Sec. V we summa-
rize and discuss our results.

II. THE FOURIER PATH INTEGRAL METHOD

The Fourier path integral method has been developed
and reviewed in previous publications.4,5 However, the deri-
vations to follow require careful notation, and we develop
the Fourier method here in sufficient detail to establish the
necessary notation. For simplicity we restrict the discussion
that follows to one-dimensional systems, the extension to
many particles in three dimensions being straightforward.

A. The primitiv e Fourie r algorithm

In path integral simulations for quantum statistical me-
chanics, the starting point is the Feynman path integral ex-
pression for the matrix elements of the density operator at
inverse temperatureb51/kBT where kB is the Boltzmann
constant
r~x,x8;b!5^x8ue2bĤux& ~1!

5E Dx~t!

3expS 2
1

\E0

b\

dtH 1

2
mẋ2~t!1V@x~t!#J D .

~2!
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In Eq. ~1! Ĥ is the quantum Hamiltonian operator for the
system, and in Eq. ~2! *Dx(t) denotes a summation over all
paths connecting the points x to x8 in the time variablet. It
is useful to define a reduced time variable u defined by u
5t/b\ that ranges from 0 to 1. In any path integral method
useful for simulations, the integration over all paths must be
transformed into a Riemann integration that can be evaluated
on a computer. In the Fourier method the paths are expressed
in a Fourier series about some reference path, and the path
integral is replaced by Riemann integrals over all the Fourier
coefficients. The usual reference path is a straight line path
connecting x to x8 so that the expansion can be represented
in aFourier sine series. An alternative approach9 expands the
paths about the centroid of the path resulting in an expansion
in both sines and cosines. However, Fourier sine series with
vanishing end points are known to converge more rapidly
than a series containing sines and cosines with no restrictions
on the end points,10,11 and in this work we restrict attention
to expansions about straight line paths. Using the reduced
time variable u we write

x~u!5x1~x82x!u1 (
k51

`

ak sinkpu. ~3!

In any practical calculation the infinite sum is truncated to
include kmax Fourier coefficients. We write

xkmax
~u!5x1~x82x!u1 (

k51

kmax

ak sinkpu ~4!

and

x~u!5xkmax
~u!1dx~u!, ~5!

with dx(u) representing the summation over the Fourier co-
efficients whose index exceeds kmax; i.e.,

dx~u!5 (
k5kmax11

`

ak sinkpu. ~6!

The primitive Fourier expression for the density matrix is
obtained by substituting Eq. ~4! into Eq. ~2!. The resulting
expression for the density matrix rkmax

(x,x8;b) can be writ-
ten conveniently with reference to the free particle density
matrix, r f p(x,x8;b) as

rkmax
~x,x8;b!

r f p~x,x8;b!
5

*daexp@2(k51
kmaxak

2/2sk
22bV̄kmax

#

*daexp@2(k51
kmaxak

2/2sk
2#

, ~7!

where

a5a1 ,a2 , . . . ,akmax
, ~8!

r f p~x,x8;b!5S m

2pb\2D 1/2

expF2S m

2b\2D ~x2x8!2G ,

~9!

sk
25

2b\2

m~kp!2
, ~10!

and the notation ḡkmax
represents a path average

ḡkmax
5E

0

1

dug@xkmax
~u!# , ~11!

so that

V̄kmax
5E

0

1

duV@xkmax
~u!#. ~12!

Using Eq. ~7!, expectation values of any operator f (x) that is
diagonal in coordinate representation can be obtained

^ f ~x!&kmax
5

*dxdaexp@2(k51
kmaxak

2/2sk
22bV̄kmax

# f ~x!

*dxdaexp[ 2(k51
kmaxak

2/2sk
22bV̄kmax

]
.

~13!

The true quantum expectation value is given in the limi t of
infinite kmax so that

lim
kmax→`

^ f ~x!&kmax
5^ f ~x!&, ~14!

which we write alternatively as ^ f (x)&` later in this paper.
Expressions for the expectation value of the energy are given
in Sec. II D.

B. Limitation s and notation

In the remainder of this paper we limi t considerations to
potential functions that are continuous with derivatives that
are continuous at least through second order. By limiting
consideration to such potentials we exclude important sys-
tems like hard spheres or sophisticated potentials having
conical intersections. The analysis of the convergence rates
is also not sufficiently general to include the Coulomb po-
tential even though partial averaging is known12 to correct
difficulties in path integral treatments that arise from the sin-
gular behavior of Coulombic forces at small distances. While
these excluded potentials are clearly important, the analysis
of their convergence rates requires a development beyond
what is presented here. Included in the current analysis are
the vast majority of potentials used in modern simulations
studies.

For use in the sections that follow, we introduce the
notation

$a%5a1 ,a2 , . . . ,akmax
,akmax11 , . . .  ~15!

and

$$a%%5akmax11 ,akmax12 , . . . .  ~16!

In other words, a represents the first kmax Fourier coeffi-
cients, $a% collectively represents all Fourier coefficients,
whereas $$a%% represents those Fourier coefficients whose
indices exceed kmax.

C. Partia l averaging

Contributions from the portion of the Fourier expansion
with Fourier indices greater than kmax can be included in an
approximate way using the partial average ~pa! method in-
troduced some time ago.5,13,14To develop partial averaging,
we express the exact density matrix as aFourier path integral
and separate the integration over the Fourier coefficients into
the lower-order a and higher-order $$a%% contributions. As
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shown elsewhere,5,14 the integration over the higher-order
coefficients results in the average of an exponential that can
be expanded in a series of cumulants, the first term of which
is the partial averaged potential. We write the resulting ex-
pression for the density matrix by

rpa,kmax
~x,x8;b!

r f p~x,x8;b!
5

*daexp@2(k51
kmaxak

2/2sk
22bV̄pa,kmax

#

*daexp@2(k51
kmaxak

2/2sk
2#

,

~17!

where the partial averaged potential is given by the Gaussian
transform of the bare potential

Vpa~x,u!5
1

A2ps2~u!
E

2`

`

dpe2p2/2s2~u!V~x1p!, ~18!

with s2(u) the free particle second-order moments of the
contribution to the path of the Fourier coefficients that ex-
ceed kmax; i.e., defined by

s2~u!5
*d$$a%% exp@2(k5kmax11

` ak
2/2sk

2#~(k5kmax11
` ak sinkpu!2

*d$$a%%exp@2(k5kmax11
` ak

2/2sk
2#

. ~19!

The second-order moments can be evaluated analytically so
that

s2~u!5
b\2

m
u~12u!2 (

k51

kmax

sk
2 sin2 kpu. ~20!

Using the Euler–MacLaurin summation formula,15 it can be
shown thats2(u) vanishes with increasing kmax as 1/kmax so
that

lim
kmax→`

~V̄pa,kmax
2V̄kmax

!50. ~21!

Expectation values obtained using either the partial averaged
potential or the bare potential in the action converge to the
same result. As shown in Sec. III , the rate of convergence of
the two methods is considerably different.

For some applications, the Gaussian transform of the
interaction potential may be either too difficult to evaluate
analytically or even be undefined. In such cases the potential
in Eq. ~18! can be expanded in a power series in p prior to
integration resulting in the expression

Vpa~x,u!5V~x!1
1

2
s2~u!V9~x!1

1

4!
s4~u!V-8~x!1•••.

~22!

If Eq. ~22! is truncated at second order, the result is called
the gradient partial average ~gpa! potential

Vgpa~x,u!5V~x!1 1
2 s2~u!V9~x!. ~23!

Becauses2(u) vanishes for large kmax, simulations that use
the gradient partial average potential in the action converge
to the correct limit . In Sec. II I we show the asymptotic rates
of convergence of the gradient partial average method and
the partial average method are the same.

D. Energ y estimators

The central quantity needed for the determination of
thermodynamic properties is the total energy. If the total en-
ergy is known as a function of temperature, the partition
function can be obtained by state integration thereby deter-
mining all equilibrium thermodynamic properties. Because

the Hamiltonian operator is not diagonal in coordinate rep-
resentation, the construction of energy estimators requires a
separate treatment. Here we review the three principal esti-
mators that have been used in the Fourier method.5 Although
the Hamiltonian is not diagonal in coordinate representation,
the estimators can be expressed so that only the diagonal
elements of the density matrix are needed in the determina-
tion of the expectation values. The last approach discussed in
this section, the virial estimator, has not been examined ad-
equately in previous work, and we give the virial estimator a
fuller derivation.

1. The H-method

The H-method estimator is derived by direct operation of
the Hamiltonian operator on the density matrix

^E&5
*dxĤr~x,x8;b!ux5x8

*dxr~x,x;b!
, ~24!

which for a finite set of Fourier coefficients leads to the
expression5

^E&kmax
5K V1

1

2b
2

~b\!2

2m S E
0

1

du~12u!V8@xkmax
~u!# D 2

1
b\2

2m E
0

1

du~12u!2V9@xkmax
~u!#L

kmax

. ~25!

While the H-method has been found to be useful in many
applications, Eq. ~25! requires two additional u-integrations
to be evaluated, and the approach can be computationally
demanding. Equation ~25! is expressed explicitly for the
primitive Fourier method. If partial averaging is used, the
first and second derivatives of the potential in the last two
terms on the right hand side of the equation should be re-
placed by the first and second derivatives of the effective
partial averaged potential.

2. The T-method

The T-method expression for the energy is obtained by
temperature differentiation of the canonical partition func-
tion

6659J. Chem. Phys., Vol. 110, No. 14, 8 April 1999 Eleftheriou et al.
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^E&52S ] lnQ

]b D , ~26!

where

Q~b!5E dxr~x,x;b!. ~27!

In the primitive Fourier method the resulting expression is

^E&kmax
5

kmax11

2b
1K V̄kmax

2 (
k51

kmax

ak
2/2bsk

2L
kmax

, ~28!

and when partial averaging is included we obtain

^E&kmax
5

kmax11

2b
1K 2V̄pa,kmax

2V̄kmax
2 (

k51

kmax

ak
2/2bsk

2L
kmax

.

~29!

The virtue of both Eqs. ~28! and ~29! is that the average is
taken for quantities that have already been calculated in de-
termining the action. Unlike Eq. ~25! where new quantities
must be determined at each Monte Carlo point, the T-method
expressions require no additional overhead. As shown
elsewhere,5 the statistical error associated with the expres-
sions evaluated using the T-method estimator grows as
Akmax. The origin of the variance difficulties in Eqs. ~28! and
~29! is the term kmax/2b whose contribution is canceled by
the average over the quadratic form in the Fourier coeffi-
cients. As shown in Sec. II D 3, the cancelations are explic-
itly removed in the virial estimator resulting in a well-
behaved expression for the energy. Applications using the
T-method can be problematic for calculations requiring many
Fourier coefficients.

3. The virial estimator

In previous work16 we have discussed an energy estima-
tor based on the quantum virial theorem. This estimator has
required the evaluation of the gradient of the potential at a
point, and as discussed elsewhere16 the estimator has proved
to be ill-behaved for potentials with strongly repulsive walls.
Here we derive an alternate virial estimator that works well
for such potentials, and is closely related to virial estimators
found to be useful in discretized path integral treatments.2,17

The convergence characteristics with respect to kmax of this
estimator are identical to the T-method estimator but with
cancelation of the ill-behaved terms made explicit. The deri-
vation that follows includes partial averaging. We discuss the
modifications necessary for the primitive Fourier method af-
ter the derivation is complete.

We begin with the expression

K S x
]

]x
1 (

k51

kmax

ak

]

]ak
D S (

k51

kmax

ak
2/2sk

21bV̄pa,kmaxD L
kmax

5kmax11, ~30!

which can be proved using integration by parts. When inte-
grating by parts, the surface terms resulting from integrations
with respect to the Fourier coefficients vanish automatically,
but Eq. ~30! follows only for potentials where

x exp(2bV̄pa,kmax
) vanishes at the end-points of the integra-

tion. If the derivatives in Eq. ~30! are performed explicitly,
on rearrangement we obtain

kmax11

2b
2K (

k51

kmax

ak
2/2bsk

2L
kmax

5K 1

2
x

]V̄pa,kmax

]x
1

1

2(k
ak

]V̄pa,kmax

]ak
L

kmax

. ~31!

On substitution of Eq. ~31! into Eq. ~29!, the resulting ex-
pression for the virial estimator is obtained

^E&kmax
5^ 1

2 x~u!Vpa,kmax
8 @x~u!#12V̄pa,kmax

2V̄kmax
&kmax

.

~32!

Equation ~32! can be transformed into the appropriate ex-
pression for the primitive Fourier method by replacing
V̄pa,kmax

by V̄kmax
everywhere it appears.

For a system having N particles, care must be taken in
applying Eq. ~32! if the potential energy is independent of
the coordinate of the center of mass. Examples of systems
where the potential energy is independent of the center of
mass include clusters defined using a constraining potential
placed about the center of mass.4,18 Clusters have been the
subject of many simulation studies using path integral
methods.4 In such cases the surface term arising from the
center of mass motion does not vanish, and as shown in
Appendix A the virial estimator gives akinetic energy con-
tribution that is too small by 1/(2b) in one-dimension and
3/(2b) in three dimensions. In other words, the virial esti-
mator for such systems gives the total energy less the kinetic
energy of the center of mass.

III. ASYMPTOTIC CONVERGENCE RATES

In this section we derive the asymptotic rates of conver-
gence of thermodynamic properties with respect to the num-
ber of Fourier coefficients included in the calculation. The
detailed convergence rates can depend on the property, the
estimator used, and whether partial averaging is included. To
clarify our ultimate conclusions, we begin with an analysis
of properties using the primitive Fourier method. We follow
with an analysis of partial averaging. In each case we first
discuss expectation values of properties that are diagonal in
coordinate representation, followed by path averaged proper-
ties as discussed in the context of the energy estimators.

A. The primitiv e Fourie r method

1. Properties diagonal in coordinate representation

We begin with the expression for the density @Eq. ~7!#
and the expression for the expectation value of an operator
diagonal in coordinate representation f (x) @Eq. ~13!# when
kmax Fourier coefficients are included. We define

Skmax
~x,$a%!5 (

k51

`

ak
2/2sk

21bV̄kmax
, ~33!

and write
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^ f ~x!&kmax
5

*dxd$a%exp@2Skmax
~x,$a%!# f ~x!

*dxd$a%exp@2Skmax
~x,$a%!#

. ~34!

It is important to recognize that the action defined in Eq. ~33!
formally depends on the entire infinite set of Fourier coeffi-
cients. However, the integration in Eq. ~34! over the Fourier
coefficients with indices greater than kmax cancel in numera-
tor and denominator, and the expression for the expectation
value in Eq. ~34! is formally identical to Eq. ~13!. We next
define

DS~x,$a%!5S`~x,$a%!2Skmax
~x,$a%!, ~35!

where S`(x,$a%) denotes the full action; i.e., the action with
the full infinite set of Fourier coefficients included. Using
Eqs. ~34! and ~35!, we obtain an expression for the expecta-
tion value of f at the limi t of an infinite set of Fourier coef-
ficients

^ f ~x!&`5
*dxd$a%exp@2Skmax

~x,$a%!#e2DSf ~x!

*dxd$a%exp@2Skmax
~x,$a%!#e2DS

~36!

5
^e2DSf ~x!&kmax

^e2DS&kmax

. ~37!

As kmax increases, DS becomes small, and it makes sense to
expand the exponentials in Eq. ~37! in power series

^ f ~x!&`5
^ f ~x!~12DS11/2~DS!21•••&kmax

^12DS11/2~DS!21•••&kmax

. ~38!

For DS small the denominator can be expanded in ageomet-
ric series. After grouping terms of like powers in DS we
obtain

^ f ~x!&`5^ f ~x!&kmax
1e, ~39!

where the error e is given by a series in increasing fluctua-
tions of f (x) and DS

e5f11f21•••, ~40!

with

f15^DS&kmax̂
f ~x!&kmax

2^DSf ~x!&kmax
, ~41!

f25 1
2 @^~DS!2f ~x!&kmax

2^ f ~x!&kmax̂
~DS!2&kmax

#

2^DS&kmax
@^DSf ~x!&kmax

2^DS&kmax̂
f ~x!&kmax

#, ~42!

and so on. The leading term that decays with kmax in theerror
can be obtained by examining the kmax dependence of f1.
We begin with the expectation value of DS averaged with
respect to the kmax dependent distribution

^DS&kmax
5b^V̄`2V̄kmax

&kmax
~43!

5bE
0

1

du^V@x~u!#2V@xkmax
~u!#&kmax

~44!

5bE
0

1

du^V@xkmax
~u!1dx~u!#

2V@xkmax
~u!#&kmax

. ~45!

We next expand the potential in powers of dx(u) to obtain

^DS&kmax
5bE

0

1

du^dx~u!V8@xkmax
~u!#

1 1
2~dx~u!!2V9@xkmax

~u!#1•••&kmax
. ~46!

The linear term in dx(u) vanishes when the$$a%% integra-
tions are performed @as do all odd-ordered powers in dx(u)],
and the remaining terms give

^DS&kmax
5

b

2E0

1

du
*dxdaexp@2(k51

kmaxak
2/2sk

22bV̄kmax
#V9@xkmax

~u!#

*dxdaexp@2(k51
kmaxak

2/2sk
22bV̄kmax

#

3
*d$$a%%exp@2(k5kmax11

` ak
2/2sk

2#~(k5kmax11
` ak sinkpu!2

*d$$a%%exp@2(k5kmax11
` ak

2/2sk
2#

1•••. ~47!

The integration with respect to $$a%% in Eq. ~47! has been evaluated previously in Eq. ~19!. Then

^DS&kmax
5

b

2E0

1

du
*dxdaexp@2(k51

kmaxak
2/2sk

22bV̄kmax
#V9@xkmax

~u!#s2~u!

*dxdaexp[ 2(k51
kmaxak

2/2sk
22bV̄kmax

]
1•••. ~48!

As discussed in Sec. II C, s2(u) decays as 1/kmax for large kmax, and to leading order in kmax,^DS&kmax
also decays as 1/kmax.

A similar analysis of ^ f (x)DS&kmax
gives

^ f ~x!DS&kmax
5

b

2E0

1

du
*dxdaexp@2(k51

kmaxak
2/2sk

22bV̄kmax
#V9@xkmax

~u!# f ~x!s2~u!

*dxdaexp@2(k51
kmaxak

2/2sk
22bV̄kmax

#
1•••, ~49!

which also decays to zero as 1/kmax. The leading order contribution to the errore then decays as 1/kmax in the primitive Fourier
method for operators diagonal in coordinate representation.
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2. Path averaged properties

Expectation values of path averaged properties like those
that occur in the energy estimators require additional analy-
sis beyond that given in Sec. II I A 1. For a path averaged
property f̄ kmax

we begin with an expression analogous to Eq.
~37! in the limi t that kmax→`

^ f̄ `&`5
^e2DSf̄ `&kmax

^e2DS&kmax

. ~50!

5^ f̄ `&kmax
1^DS&kmax̂

f̄ `&kmax
2^DS f̄`&kmax

1•••.
~51!

We examine the first term on the right hand side of Eq. ~51!
explicitly

^ f̄ `&kmax
5E

0

1

du^ f @xkmax
~u!#1dx~u! f 8@xkmax

~u!#

1 1
2~dx~u!!2f 9@xkmax

~u!#1•••&kmax
~52!

5^ f̄ kmax
&kmax

1E
0

1

dus2~u!^ f 9@xkmax
~u!#&kmax

1•••.

~53!

In obtaining Eq. ~53! we have explicitly ignored the odd-
order terms in dx(u), because they vanish exactly. Then the
error e5^ f̄ `&`2^ f̄ kmax

&kmax
is given by

e5E
0

1

dus2~u!^ f 9@xkmax
~u!#&kmax

1^DS&kmax̂
f̄ `&kmax

2^DS f̄`&kmax
1•••. ~54!

As shown in Sec. II C the first term on the right hand side of
Eq. ~54! decays as 1/kmax. By expanding f̄ ` that appears in
the fluctuation terms in Eq. ~51! in a similar manner to Eq.
~52!, it can be shown that the leading order terms in the
fluctuations in Eq. ~54! also decay as 1/kmax. Consequently,
for path averaged operators, the convergence of the primitive
Fourier method is 1/kmax.

B. Partia l averaging

1. Properties diagonal in coordinate representation

We begin this section with a discussion of the gradient
partial average method, and then generalize the results to the
full partial average method. We demonstrate that the
asymptotic convergence rates are the same in both the gra-
dient and full partial average methods for properties diagonal
in coordinate representation.

The treatment for the errors in the gradient partial aver-
age method for a property f (x) diagonal in coordinate rep-
resentation follows the same development as in the primitive
Fourier method. The resulting expressions for the error are
easily shown to be

^ f ~x!&`5^ f ~x!&gpa,kmax
1e, ~55!

with

e5f1
gpa1f2

gpa1•••, ~56!

f1
gpa5^DSgpa&gpa,kmax̂

f ~x!&gpa,kmax
2^DSgpaf ~x!&gpa,kmax

,

~57!

f2
gpa5 1

2@^~DSgpa!2f ~x!&gpa,kmax

2^ f ~x!&gpa,kmax̂
~DSgpa!2&gpa,kmax

#

2^DSgpa&gpa,kmax
@^DSgpaf ~x!&gpa,kmax

2^DSgpa&gpa,kmax̂
f ~x!&gpa,kmax

#, ~58!

and so on. In Eqs. ~55!–~58! we have put

Skmax

gpa ~x,$a%!5 (
k51

`

ak
2/2sk

21bV̄gpa,kmax
, ~59!

^ f ~x!&gpa,kmax
5

*dxd$a%exp@2Skmax

gpa ~x,$a%!# f ~x!

*dxd$a%exp@2Skmax

gpa ~x,$a%!#
, ~60!

and

DSgpa~x,$a%!5S`~x,$a%!2Skmax

gpa ~x,$a%!. ~61!

As in the primitive Fourier method we determine the conver-
gence rate by examining the expectation value of DSgpa with
respect to the kmax-dependent gradient partial averaged dis-
tribution

^DSgpa&gpa,kmax
5b^V̄`2V̄gpa,kmax

&gpa,kmax
~62!

5bE
0

1

du^V@x~u!#2Vgpa@xkmax
~u!#&gpa,kmax

~63!

5bE
0

1

du^V@xkmax
~u!1dx~u!#2V@xkmax

~u!#

2 1
2 s2~u!V9@xkmax

~u!#&gpa,kmax
. ~64!

As in the primitive Fourier method, we expand the first term
on the right hand side of Eq. ~64! in powers of dx(u) to
obtain

^DSgpa&gpa,kmax
5bE

0

1

du^V@xkmax
~u!#1dx~u!V8@xkmax

~u!#11/2~dx~u!!2V9@xkmax
~u!#11/3! ~dx~u!!3V-@xkmax

~u!#

11/4! ~dx~u!!4V-8@xkmax
~u!#1•••2V@xkmax

~u!#21/2s2~u!V9@xkmax
~u!#&gpa,kmax

. ~65!

The odd-order terms in dx(u) in Eq. ~65! average to zero. The quadratic term indx(u) on the right hand side of Eq.~65!
exactly cancels the last term and the leading order term in ^DSgpa&gpa,kmax

is
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^DSgpa&gpa,kmax
5bE

0

1

du
1

4! K S (
k5kmax11

`

ak sinkpuD 4

V-8@xkmax
~u!#L

gpa,kmax

~66!

5
b

4!E0

1

du
*dxdaexp@2(k51

kmaxak
2/2sk

22bV̄gpa,kmax
#V-8@xkmax

~u!#

*dxdaexp@2(k51
kmaxak

2/2sk
22bV̄gpa,kmax

#

3
*d$$a%%exp@2(k5kmax11

` ak
2/2sk

2#~(k5kmax11
` ak sinkpu!4

*d$$a%%exp@2(k5kmax11
` ak

2/2sk
2#

1••• ~67!

5
b

192E0

1

du
*dxdaexp@2(k51

kmaxak
2/2sk

22bV̄gpa,kmax
#V-8@xkmax

~u!#s4~u!

*dxdaexp[ 2(k51
kmaxak

2/2sk
22bV̄gpa,kmax

]
. ~68!

Using the Euler–MacLaurin summation formula it can be
shown thats4(u) decays as 1/kmax

2 as does ^DSgpa&gpa,kmax
. In

a similar fashion ^ f (x)DSgpa&gpa,kmax
also can be shown to

decay as 1/kmax
2 . Then in the gradient partial average

method, the leading term in the error decays as 1/kmax
2 .

It is worth noting how the gradient partial average
method improves the convergence rate of the Fourier method
for coordinate diagonal properties. In the primitive Fourier
method Eqs. ~46!–~48! provide the leading order term in the
error in inverse powers of kmax. By seeking a modified po-
tential that cancels the leading order terms in the error, we
find an alternative route to the gradient partial average result;
i.e., Eq. ~23!.

If the Gaussian transform of the system potential is both
possible and practical, the full partial average effective po-
tential can be used. In such cases we define

Skmax

pa ~x,$a%!5 (
k51

`

ak
2/2sk

21bV̄pa,kmax
, ~69!

and

DSpa~x,$a%!5S`~x,$a%!2Skmax

pa ~x,$a%!. ~70!

As in the case of gradient partial averaging, the expression
for the error is given by the series of equations

^ f ~x!&`5^ f ~x!&pa,kmax
1e, ~71!

with

e5f1
pa1f2

pa1•••, ~72!

f1
pa5^DSpa&pa,kmax̂

f ~x!&pa,kmax
2^DSpaf ~x!&pa,kmax

, ~73!

f2
pa5 1

2@^~DSpa!2f ~x!&pa,kmax

2^ f ~x!&pa,kmax̂
~DSpa!2&pa,kmax

#

2^DSpa&pa,kmax
@^DSpaf ~x!&pa,kmax

2^DSpa&pa,kmax̂
f ~x!&#pa,kmax

, ~74!

and so on. The expectation value of DSpa needed in the ex-
pression for f1

pa is obtained by using Eq. ~22!

^DSpa&pa,kmax

5bE
0

1

duK V@xkmax
~u!#1dx~u!V8@xkmax

~u!#

1
1

2
~dx~u!!2V9@xkmax

~u!#1
1

3!
~dx~u!!3V-@xkmax

~u!#

1
1

4!
~dx~u!!4V99@xkmax

~u!#1•••2V@xkmax
~u!#

2
1

2
s2~u!V9@xkmax

~u!#2
1

4!
s4~u!

3V-8@xkmax
~u!#2••• L

pa,kmax

. ~75!

As previously the odd-order terms in dx(u) in Eq. ~75! av-
erage to zero. The terms in dx(u) of even ordern average to
sn(u), so that all such even-order terms cancel exactly. Con-
sequently, in the partial average method ^DSpa&pa,kmax

50,
and the leading term in the error in the full partial average
method is found in the second-order fluctuation term f2

pa.
The partial averaged effective potential introduces no

special cancelations in the expression for ^(DSpa)2&pa,kmax
,

and it is sufficient to examine the leading order decay terms
for the second-order fluctuations using the primitive Fourier
method. The asymptotic decay rate of the second-order fluc-
tuations is the same in both the primitive Fourier and partial
average methods. We then examine

^~DS!2&kmax
5b2^~V̄`2V̄kmax

!2&kmax
, ~76!

which we expand in the usual way

^~DS!2&kmax
5b2K S E

0

1

duH dx~u!V8@xkmax
~u!#

1
1

2
~dx~u!!2V9@xkmax

~u!#

1
1

3!
~dx~u!!3V-@xkmax

~u!#
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1
1

4!
~dx~u!!4V-8@xkmax

~u!#1•••J D 2L
kmax

~77!

5b2K S E
0

1

dudx~u!V8@xkmax
~u!# D 2

1S 1

2E0

1

du~dx~u!!2V9@xkmax
~u!# D 2

1•••L
kmax

,~78!

where in Eq. ~78! we explicitly display only the two terms
that we examine in detail. We begin with the first term

T15K S E
0

1

dudx~u!V8@xkmax
~u!# D 2L

kmax

~79!

5E dxdaexpF2 (
k51

kmax

ak
2/2sk

22bV̄kmaxG
3E d$$a%%expF2 (

k5kmax11

`

ak
2/2sk

2G
3E

0

1

duE
0

1

du8V8@xkmax
~u!#V8@xkmax

~u8!#

3 (
k5kmax11

`

(
k85kmax11

`

akak8 sinkpu sink8pu8Y
E dxd$a%expF2 (

k51

`

ak
2/2sk

22bV̄kmaxG ~80!

5E dxdaexpF2 (
k51

kmax

ak
2/2sk

22bV̄kmaxG
3E d$$a%%expF2 (

k5kmax11

`

ak
2/2sk

2G
3 (

k5kmax11

`

(
k85kmax11

`

akak8gkk8~a!Y
E dxd$a%expF2 (

k51

`

ak
2/2sk

22bV̄kmaxG , ~81!

where

gkk8~a!5E
0

1

du sinkpuV8@xkmax
~u!#

3E
0

1

du8 sink8pu8V8@xkmax
~u8!#. ~82!

The integration with respect to $$a%% in Eq. ~81! can be
evaluated analytically to obtain

T1

5
*dxdaexp@2(k51

kmaxak
2/2sk

22bV̄kmax
#(k5kmax11

` gkk~a!sk
2

*dxdaexp@2(k51
kmaxak

2/2sk
22bV̄kmax

#
.

~83!

The decay of T1 with respect to kmax can be obtained from
the expression

(
k5kmax11

`

gkk~a!sk
25 (

k5kmax11

`

sk
2

3E
0

1

du sinkpuV8@xkmax
~u!#

3E
0

1

du8 sinkpu8V8@xkmax
~u8!# . ~84!

Each u-integration in Eq. ~84! is recognized as the k’th Fou-
rier sine coefficient of the expansion of V8@xkmax

(u)# and
each sine coefficient must converge asymptotically at least as
fast as 1/k. The argument of the sum in Eq. ~84! then decays
as 1/k4 so that, by the Euler–MacLaurin summation formula,
T1 itself must decay like 1/kmax

3 .
We next examine the second term in Eq. ~78!

T25 1
4^@~dx~u!!2V9@xkmax

~u!##2&kmax
~85!

5
1

4E dxdaexpF2 (
k51

kmax

ak
2/2sk

22bV̄kmaxG E d$$a%%expF2 (
k5kmax11

`

ak
2/2sk

2G E
0

1

duE
0

1

du8V9@xkmax
~u!#V9@xkmax

~u8!#

3S (
k5kmax11

`

ak sinkpuD 2S (
k85kmax11

`

ak8sink8pu8D 2Y E dxd$a%expF2 (
k51

`

ak
2/2sk

22bV̄kmaxG ~86!

5
1

4E dxdaexpF2 (
k51

kmax

ak
2/2sk

22bV̄kmaxG (
k5kmax11

`

sk
2 (

k85kmax11

`

sk8
2

3E
0

1

duE
0

1

du8V9@xkmax
~u!#V9@xkmax

~u8!#sin2kpu sin2k8pu8Y E dxdaexpF2 (
k51

kmax

ak
2/2sk

22bV̄kmaxG ~87!
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5
1

4

*dxdaexp@2(k51
kmaxak

2/2sk
22bV̄kmax

#*0
1du*0

1du8s2~u!s2~u8!V9@xkmax
~u!#V9@xkmax

~u8!#

*dxdaexp@2(k51
kmaxak

2/2sk
22bV̄kmax

#
. ~88!

Each factor of s2(u) in Eq. ~88! decays as 1/kmax so that T2

itself decays as 1/kmax
2 . The remaining terms in Eq. ~78!

decay faster than 1/kmax
2 so that ^(DS)2&kmax

and the error
contribution from the second-order fluctuation term decay as
1/kmax

2 . This result implies that for properties diagonal in
coordinate representation, the convergence of the property to
the exact answer is 1/kmax

2 with the full partial average po-
tential used in the action. This convergence rate is identical
to the gradient partial average result. In the gradient partial
average method we find a modified potential that exactly
cancels the leading term in the error in the primitive Fourier
method in orders of inverse powers of kmax. In the full par-
tial average method we find a potential that exactly cancels
the leading order fluctuation term in the primitive Fourier
method expression for ^DS&kmax

; i.e., that removes the con-
tribution of f1 in Eq. ~40!. Both approaches lead to a result
with the same convergence rate in inverse powers of kmax.

2. The energy

In the primitive Fourier method the convergence rate of
the energy is examined by studying the convergence rate of
any path averaged operator. With partial averaging, the situ-
ation is more complex, and each specific energy estimator
must be investigated separately. As is made clear in this
section, we obtain 1/kmax

2 convergence for the energy only if
the estimator is carefully chosen.

To understand the problem, we first examine the evalu-
ation of the average potential energy of the system. Using a
theorem proved in Appendix B, the average potential energy
can be evaluated using either V(x), V̄kmax

, V̄pa,kmax
, or

V̄gpa,kmax
as the estimator. Averages with respect to any of

these four operators converge to the correct answer. How-
ever, we now show that the rates of convergence are differ-
ent. In what follows the derivations are given for the gradient
partial average method. The terms in Eq. ~22! higher than
second order in s(u) do not change the leading order terms
in the convergence rate.

From the results of Sec. II I B 1 we know the rate of
convergence when V(x) is used as the operator is 1/kmax

2 .
We now analyze the error if a path averaged estimator is
used as the operator instead. As in previous sections we be-
gin the analysis with

^V̄`&`5
^V̄`e2DSgpa

&gpa,kmax

^e2DSgpa
&gpa,kmax

~89!

5^V̄`&gpa,kmax
1^DSgpa&gpa,kmax̂

V̄`&gpa,kmax

2^DSgpaV̄`&gpa,kmax
1•••. ~90!

From Sec. II I B 1 we know the fluctuation terms decay as
1/kmax

2 . We then focus on the first term on the right hand side
of Eq. ~90!, expand it in the usual way and integrate with
respect to the $$a%% coefficients to obtain

^V̄`&`5E
0

1

du^V@xkmax
~u!#1 1

2 s2~u!V9@xkmax
~u!#

1•••&gpa,kmax
1•••. ~91!

We can now give two separate expressions for the error. The
first error expression is the difference between the exact av-
erage potential energy and the average using V̄kmax

as the
estimator; i.e., by moving the first term on the right hand side
of Eq. ~91! to the left to obtain

^V̄`&`2^V̄kmax
&gpa,kmax

5K 1

2 E0

1

dus2~u!V9@xkmax
~u!#L

gpa,kmax

1^DSgpa&gpa,kmax̂
V̄`&gpa,kmax

2^DSgpaV̄`&gpa,kmax
1•••.

~92!

Alternatively, the second error expression involves the aver-
age using V̄gpa,kmax

as the estimator by moving the first two
terms on the right hand side of Eq. ~91! to the left @see Eq.
~23!# to obtain

^V̄`&`2^V̄gpa,kmax
&gpa,kmax

5^DSgpa&gpa,kmax̂
V̄`&gpa,kmax

2^DSgpaV̄`&gpa,kmax
1•••.

~93!

While the errors in both equations vanish with increasing
kmax, the decay of Eq. ~92! is 1/kmax whereas the decay of
Eq. ~93! is 1/kmax

2 . Consequently, to obtain the optimal
asymptotic convergence of the error in the potential energy
using the partial average method, it is essential to use the
optimal estimator.

We now examine the asymptotic convergence rates of
the total energy. Because the convergence rates of the
T-method and the virial estimator are identical, we focus on
the virial estimator as well as the convergence rate of the
H-method. We begin with the virial estimator and focus on
the expression in the gradient partial average method directly
taken from Eq. ~32!
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1

2 K E
0

1

dux~u!V8@x~u!#L
`

5
1

2E0

1

du
^x~u!V8@x~u!#e2DSgpa

&gpa,kmax

^e2DSgpa
&gpa,kmax

5
1

2E0

1

du^x~u!V8@x~u!#&gpa,kmax

~94!

1^DSgpa&gpa,kmaxK 1

2
x

dV

dx`
L

gpa,kmax

2 K DSgpa
1

2
x

dV

dx`
L

gpa,kmax

1•••. ~95!

From Sec. II I B 1 we know the fluctuation terms vanish like
1/kmax

2 , and we concentrate on the first term on the right
hand side of Eq. ~95!. Then expanding in the usual way

1

2K E0

1

dux~u!V8@x~u!#L
`

5
1

2E0

1

du^@xkmax
~u!1dx~u!#@V8@xkmax

~u!#

1dx~u!V9@xkmax
~u!#11/2~dx~u!!2V-@xkmax

~u!#

1•••#&gpa,kmax
1•••. ~96!

We next combine terms to the same order in dx(u) and
analytically evaluate the integrals with respect to $$a%% to
obtain

1

2K E0

1

dux~u!V8@x~u!#L
`

5
1

2E0

1

du$^xkmax
~u!V8@xkmax

~u!#&gpa,kmax

1 1
2 s2~u!^xkmax

~u!V-@xkmax
~u!#&gpa,kmax

1s2~u!^V9@xkmax
~u!#&gpa,kmax

%1•••. ~97!

The first two terms on the right hand side of Eq. ~97! com-
bine to produce the gradient partial average expression for
the first term of the virial estimator. Moving the result to the
left hand side of Eq. ~97! we obtain

1
2^x~u!V8@x~u!#`&`2 1

2^x~u!V8@x~u!#gpa,kmax
&gpa,kmax

5E
0

1

duK 1

2
s2~u!V9@xkmax

~u!#L
gpa,kmax

1O~1/kmax
2 !, ~98!

whereO(1/kmax
2 ) represents the terms that decay like 1/kmax

2

that have not been displayed explicitly in Eq. ~98!. The first
term on the right hand side of Eq. ~98! decays like 1/kmax.
However, from Eq. ~23! we know that

Vgpa@xkmax
~u!#2V@xkmax

~u!#5 1
2 s2~u!V9@xkmax

~u!#.
~99!

We can then combine Eqs. ~98! and ~99! to obtain the ex-
pression for the error when the virial estimator is used to
calculate the total energy

^ 1
2 x~u)V8[x(u)] `1V̄`&`2^ 1

2 x~u!V8@x~u!#gpa,kmax

12V̄gpa,kmax
2V̄kmax

&kmax
5O~1/kmax

2 !. ~100!

The 1/kmax
2 decay in the error using the virial estimator is

found only for the estimator given in Eq. ~32!. Related esti-

mators like ^ 1
2x(u)Vgpa,kmax

8 @x(u)#1V̄kmax
& converge to the

correct result but only as 1/kmax. If the full partial average
potential rather than the gradient partial average potential is
used in the analysis, the result is identical.

We next consider the asymptotic rate of convergence of
the energy when the H-estimator is used. The first term on
the right hand side of Eq. ~25! is the point potential energy
estimator, and the error in the potential energy decays like
1/kmax

2 from the discussion given in Sec. II I B 1. Because the
second term on the right hand side of Eq. ~25! is aconstant,
we need examine the decay of the errors in the last two terms
on the right hand side of Eq. ~25!. We begin with the last
term and again limi t the discussion to the gradient partial
average method. The analysis using the full partial average
method is the same, because the terms beyond second-order
in s(u) in Eq. ~22! do not contribute to the leading order
terms in the convergence rate. We write

K E
0

1

du~12u!2V9@x~u!#L
`

5E
0

1

du
^~12u!2V9@x~u!#e2DSgpa

&gpa,kmax

^e2DSgpa
&gpa,kmax

~101!

5E
0

1

du~12u!2^V9@x~u!#&gpa,kmax
1O~1/kmax

2 !, ~102!

whereO(1/kmax
2 ) represents the fluctuation terms that we al-

ready have shown converge like 1/kmax
2 . We next expand Eq.

~102! in the usual way followed by an integration with re-
spect to the $$a%% variables to obtain

K E
0

1

du~12u!2V9@x~u!#L
`

5E
0

1

du~12u!2^V9@xkmax
~u!#1dx~u!V-@xkmax

~u!#

1 1
2~dx~u!!2V-8@xkmax

~u!#1•••&gpa,kmax
1O~1/kmax

2 !

~103!

5E
0

1

du~12u!2^V9@xkmax
~u!#1 1

2s
2~u!V-8@xkmax

~u!#

1•••&gpa,kmax
1O~1/kmax

2 !. ~104!
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The first two terms in the average on the right hand side of
Eq. ~104! combine to give the gradient partial average poten-
tial, and we obtain

K E
0

1

du~12u!2V9@x~u!#L
`

2K E
0

1

du~12u!2Vgpa9 @xkmax
~u!#L

gpa,kmax

5O~1/kmax
2 !.

~105!

The error in the third term on the right hand side of Eq.
~25! can be obtained from

K S E
0

1

du~12u!V8@x~u!# D 2L
`

5
^~*0

1du~12u!V8@x~u!# !2e2DSgpa
&gpa,kmax

^e2DSgpa
&gpa,kmax

~106!

5K S E
0

1

du~12u!V8@x~u!# D 2L
gpa,kmax

1•••, ~107!

where the terms not explicitly displayed in Eq. ~107! are
fluctuation terms and decay at least as rapidly as 1/kmax

2 .
Expanding Eq. ~107! in the usual way, we obtain

K S E
0

1

du~12u!V8@x~u!# D 2L
`

5K E
0

1

duE
0

1

du8~12u!~12u8!$V8@xkmax
~u!#1dx~u!V9@xkmax

~u!#

1 1
2~dx~u!!2V-@xkmax

~u!#1•••%$V8@xkmax
~u8!#1dx~u8!V9@xkmax

~u8!#

1 1
2~dx~u8!!2V-@xkmax

~u8!#1•••%L
gpa,kmax

1•••. ~108!

We next combine like powers in dx(u) and integrate analyti-
cally with respect to $$a%% to obtain

K S E
0

1

du~12u!V8@x~u!# D 2L
`

5K E
0

1

du~12u!E
0

1

du8(12u8)

3$V8[xkmax
(u)] 1 1

2 s2(u)V-@xkmax
~u!#%

3$V8@xkmax
~u8!#1 1

2 s2~u8!V-@xkmax
~u8!#%L

gpa,kmax

1K (
k5kmax11

`

Gkk~a!sk
2L

gpa,kmax

1•••, ~109!

where

Gkk8~a!5E
0

1

du~12u!sinkpuV9@xkmax
~u!#

3E
0

1

du8~12u8!sink8pu8V9@xkmax
~u8!#.

~110!

As discussed in reference to Eq. ~84!, each factor in the
definition of Gkk8(a) is the Fourier sine coefficient of (1
2u)V9@xkmax

(u)# and decays asymptotically at least as fast
as 1/k. Consequently, the last term displayed on the right
hand side of Eq. ~109! decays at least as fast as 1/kmax

3 and
the error term

K S E
0

1

du~12u!V8@x~u!# D 2L
`

2K S E
0

1

du~12u!Vgpa8 @x~u!# D 2L
gpa,kmax

,

decays at least as fast as 1/kmax
2 . Finally, we conclude the

error in the H-method estimate of the energy also converges
as 1/kmax

2 .

IV. NUMERICAL EXAMPLES

In this section we illustrate the results of the derivations
in Sec. II I with some example calculations on one-
dimensional systems. We choose to examine one-
dimensional systems, because for such simple systems it is
possible to determine the exact result for comparisons, and it
is possible to include many Monte Carlo points to insure
good statistics.

The first system is the double-well potential used and
described previously to demonstrate the j-walking method.19

We choose the potential parameters so that the higher energy
well is 90% the depth of the lower energy well. Because this
potential is a polynomial through fourth-order, exact results
are obtained by matrix diagonalization in a harmonic oscil-
lator basis set. The system mass is taken to be 1% the mass
of a proton. With this mass the system has two sets of nearly
degenerate eigenvalues below the top of the barrier that sepa-
rates the two potential minima. The temperature is taken to
be bDE0155 where DE01 is the energy separating the
ground and first excited state of the system. Figure 1 is a plot
of the total energy of this system as determined with the
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virial estimator @Eq. ~32!#. In the left hand panel both the
primitive Fourier path integral method ~labeled FPI! and the
partial averaged results ~labeled PA! are displayed as afunc-
tion of 1/kmax. The primitive Fourier results approach the
exact energy ~represented by the horizontal line! linearly.
The partial average results approach the exact result with a
vanishing slope. Such behavior is consistent with the
asymptotic convergence rate expected from the analysis. In
the right hand panel, the partial average results are plotted as
a function of 1/kmax

2 , and the linear approach to the correct
result is consistent with the expected asymptotic conver-
gence of the virial estimator with partial averaging.

A second example of the asymptotic convergence char-
acteristics of the total energy is displayed in Fig. 2. The
potential energy for the model problem is given by

V~x!5VLJ~x1a!1VLJ~x2a!, ~111!

where VLJ(x) is the standard Lennard-Jones interaction

VLJ~x!54eF S s

x D 12

2S s

x D 6G , ~112!

and a is taken to be 1.2s. The parameterse and s are,
respectively, the standard Lennard-Jones energy and length
parameters. This potential has been used previously as a one-
dimensional representation for a fluid.20 The Lennard-Jones
parameters and mass have been taken from arecent study by
Chakravarty, Gordillo and Ceperley21 on clusters of hydro-
gen molecules. In Fig. 2 we display the average energy in
units of e determined using the virial estimator as a function

of 1/kmax
2 both with and without partial averaging. The linear

convergence of the partial averaged results with 1/kmax
2 is

evident, as is the less rapid convergence of the primitive
Fourier method.

The data in Fig. 1 do not converge to the exact result
monotonically prior to the asymptotic region. In some cases
such nonmonotonic convergence can lead to incorrect con-
clusions about the ultimate convergence of a calculation. The
analysis of this work can help prevent such incorrect conclu-
sions. To illustrate this point, in Fig. 3 we plot the average

FIG. 1. The left panel compares the total energy of the double-well potential
as a function of 1/kmax determined using the virial estimator. The line la-
beled FPI represents the primitive Fourier method and the line labeled PA
represents the results with partial averaging. The linear approach of the
primitive Fourier results to the exact energy is characteristic of 1/kmax con-
vergence, and the approach with zero slope of the partial averaged results to
the exact energy is characteristic of convergence that is more rapid than
1/kmax. In the right panel the partial averaged results are plotted as afunc-
tion of 1/kmax

2 , and the linear behavior provides numerical verification of the
asymptotic 1/kmax

2 convergence rates of the partial average method. The
error bars displayed in this and subsequent figures represent one standard
deviation of the mean.

FIG. 2. Theaverageenergy of theLennard-Jones cagepotential discussed in
the text as afunction of 1/kmax

2 . The energy has been determined using the
virial estimator. The linear convergence of the partial averaged results ~la-
beled PA on the graph! with 1/kmax

2 and the less rapid convergence of the
primitive Fourier method results ~labeled FPI! on the graph are evident. The
exact results have been obtained using numerical matrix multiplication
methods.

FIG. 3. The average potential energy as afunction of 1/kmax ~left panel! and
1/kmax

2 ~right panel! for the quartic oscillator using the primitive Fourier
method. As discussed in the text, the parameters for the quartic potential are
chosen to fit the potential discussed in Fig. 2, and the average potential
energy is given in units of the e parameter used in the Lennard-Jones cage
potential. The asymptotic linear convergence to the exact result is evident.
The plateau near kmax510 provides an example of false convergence, be-
cause the convergence is not linear in 1/kmax. Such behavior is evidence that
more Fourier coefficients are needed in a calculation. The convergence ap-
pears to be linear in 1/kmax

2 for small kmax, but becomes linear in 1/kmax only
in the asymptotic region. The horizontal line in each panel represents the
exact result.
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potential energy of a quantum simulation using a one-
dimensional quartic potential of the form

V~x!5a01a4x4, ~113!

as a function of 1/kmax determined with the primitive Fourier
method. The coefficients a0 and a4 are chosen to fit the
potential function given in Eq. ~111!. From the analysis pre-
sented in this work, we know the convergence is linear in the
asymptotic region, and the linear approach to the exact result
is evident for large kmax. However, at intermediate values of
kmax near kmax58 –16, the average potential energy changes
littl e and appears to be converged. In practice, if the exact
result is not known, truncation of the calculation at some
value of kmax between 8 and 16 appears to be natural. How-
ever, in the region of intermediate values of kmax the
asymptotic behavior is not 1/kmax as is required by the analy-
sis of this work. Consequently, we have clear evidence the
calculation is not converged prior to including more Fourier
coefficients in the calculation.

V. DISCUSSION

There is the case of one physical system where the con-
vergence rates for calculated thermodynamic properties are
more rapid than the rates derived in this work. For the one-
dimensional harmonic oscillator partial averaging introduces
a modification to the density matrix that is dependent on
temperature but independent of coordinates.4 Many expecta-
tion values derived from the partial averaged density matrix
for the one-dimensional oscillator are identical to those de-
rived from the primitive Fourier method. Additionally, ex-
pectation values of coordinate dependent properties for the
one-dimensional oscillator converge as 1/kmax

3 in the primi-
tive Fourier method.4 This increased convergence can be un-
derstood by noting that the second derivative of the potential
energy with respect to its coordinate is a constant, and the
first fluctuation term defined in Eq. ~41! vanishes. The lead-
ing contributions to the second fluctuation term defined in
Eq. ~42! can be shown to converge as 1/kmax

3 for the oscilla-
tor. While the oscillator is an uncommon example of a sys-
tem whose properties converge more rapidly than others with
respect to the number of Fourier coefficients included, we
include the qualification ‘‘a t least’’ to the following state-
ments that summarize our findings:

1. The errors in the expectation values of all properties
calculated using the primitive Fourier method converge as-
ymptotically at least as rapidly as 1/kmax.

2. The errors in the expectation values of all properties
diagonal in coordinate representation using either the full
partial average method or the gradient partial average
method convergeasymptotically at least as rapidly as 1/kmax

2 .

3. The errors in the expectation values of any of the
energy estimators developed in Sec. II D using either the full
partial average method or the gradient partial average
method convergeasymptotically at least as rapidly as 1/kmax

2 .
Alternate estimators of the energy can converge less rapidly
than 1/kmax

2 , so that the choice of optimal estimator is im-
portant to achieve optimal convergence.

In addition to the results outlined above the formal meth-
ods have provided new insight into the partial average
method. A formal demonstration has been given that the gra-
dient partial average and the full partial average methods
provide identical levels of enhancement of the asymptotic
convergence rates. Furthermore, we have made clear that the
gradient partial average method works by introducing exact
cancelation of the leading terms in the error incurred by in-
clusion of a finite set of Fourier coefficients.

With analytic asymptotic convergence rates, a signature
is available that indicates when a calculation has converged
with respect to the number of Fourier coefficients included.
Erroneous truncations of path integral simulations that arise
from nonmonotonic convergence characteristics can be
avoided. Furthermore, once it has been determined that the
number of Fourier coefficients included is in the asymptotic
region, extrapolation methods to the exact result can be in-
troduced with some confidence.

In the derivations it is assumed that averages of increas-
ing powers of DS decay with increasing powers of 1/kmax.
While we have no formal proof of this assertion, detailed
examination has always proved the assumption to be valid.
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APPENDIX A: THE N-PARTICLE VIRIAL ESTIMATOR

In this appendix we show that for N-particle systems if
the potential energy is independent of the coordinate of the
center of mass, the virial estimator results in an energy from
the internal coordinates only; i.e., an energy that does not
include the constant contribution from the motion of the cen-
ter of mass. It is easiest to understand this result in terms of
the classical virial first. A derivation is then sketched for the
quantum virial. We limi t the discussion to N particles in one
dimension, and assume all particles have the same mass. The
extension to three dimensions with particles of mixed mass is
straight forward.

The expression for the classical virial is

a5K (
i 51

N

xi

]

]xi
VL ~A1!

5
*dx1dx2•••dxN( i 51

N xi ~]/]xi ! V~x1 ,x2 , . . . ,xN!exp@2bV~x1 ,x2 , . . . ,xN!#

*dx1dx2•••dxN exp@2bV~x1 ,x2 , . . . ,xN!#
.  ~A2!
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We next introduce the coordinate of the center of mass

x5
1

N (
i 51

N

xi , ~A3!

and the relative coordinates

xi85xi2x ~A4!

5
1

N F ~N21!xi2(
j Þ i

N

xj G . ~A5!

On substitution of the center of mass and relative coordinates
in Eq. ~A2! we obtain

a5K H (
i 51

N21 xi81x

N F ~N21!
]

]xi8
2 (

j Þ i

N21
]

]xj8
1

]

]xG1
x2( j 51

N21xj8

N F2 (
j 51

N21
]

]xj8
1

]

]xG J VL ~A6!

5
*dx18dx28•••dxN218 dx( i 51

N21xi8~]/]xi8! V~x18 ,x28 , . . . ,xN218 !exp@2bV~x18 ,x28 , . . . ,xN218 !#

*dx18dx28•••dxN218 dx exp@2bV~x18 ,x28 , . . . ,xN218 !#

,  ~A7!

where we have explicitly used the independence of the po-
tential energy on the coordinate x. The contributions from
the x-integration cancel in the numerator and the denomina-
tor in Eq. ~A7!. After integration by parts and assuming the
surface terms vanish, we obtain the final result

1

2K (
i 51

N

xi

]V

]xi
L 5

N21

2b
, ~A8!

which is the total kinetic energy less the kinetic energy of the
center of mass of the system. This completes the proof of the
classical virial result.

The proof of the quantum virial result proceeds in a
similar fashion to the classical derivation. We begin with the
quantum expression using Fourier path integral partial aver-
age methods with kmax Fourier coefficients included

a5K S (
i 51

N

xi

]

]xi
1(

i 51

N

(
k51

kmax

ak,i

]

]ak,i
D

3S (
i 51

N

(
k51

kmax

ak,i
2 /2sk

21bV̄pa,kmaxD L
kmax

. ~A9!

In Eq. ~A9! we have included the required Nkmax Fourier
coefficients labeled by Fourier index k and particle index i ,
and for simplicity we have assumed all particle have the

same mass. The center of mass transformation in the quan-
tum case applies to the entire path so that we write

xcm,kmax
~u!5

1

N (
i 51

N

xi ,kmax
~u!, ~A10!

where

xi ,kmax
~u!5xi1 (

k51

kmax

ak,i sinkpu. ~A11!

We then define the relative coordinates for the entire path

xi ,kmax
8 ~u!5xi ,kmax

~u!2xcm,kmax
~u! ~A12!

5xi81 (
k51

kmax

ak,i8 sinkpu, ~A13!

where xi8 is defined as in Eq. ~A4!, and

ak,i8 5ak,i2Ak , ~A14!

with

Ak5
1

N (
i 51

N

ak,i . ~A15!

The center of mass transformation is then introduced into Eq.
~A9! resulting in the expression

a5K H (
i 51

N21 xi81x

N F ~N21!
]

]xi8
2(

j Þ i

N
]

]xj8
1

]

]xG1
x2( j 51

N21xj8

N F2 (
j 51

N21
]

]xj8
1

]

]xG
1 (

k51

kmax

(
i 51

N21 ak,i8 1Ak

N F ~N21!
]

]ak,i8
2 (

j Þ i

N21
]

]ak, j8
1

]

]Ak
G1 (

k51

kmax Ak2( j 51
N21ak, j8

N F2 (
j 51

N21
]

]ak, j8
1

]

]Ak
G J

3H (
i 51

N21

(
k51

kmax ~ak,i8 1Ak!
2

2sk
2

1 (
k51

kmax ~Ak2( j 51
N21ak, j8 !2

2sk
2

1E
0

1

duVpa@x1,kmax
8 ~u!,x2,kmax

8 ~u!, . . . ,xN21,kmax
8 ~u!#J L . ~A16!
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Equation ~A16! can be integrated by parts to give

a5Nkmax1N21, ~A17!

where the surface terms are assumed to vanish, and the in-
dependence of the potential energy V on the center of mass
coordinate x is used explicitly. Using the T-method expres-
sion for the total energy for an N-particle system in one
spatial dimension

^E&5
N~kmax11!

2b
1K 2V̄pa,kmax

2V̄kmax

2 (
k51

kmax

(
i 51

N

ak,i
2 /2bsk

2L
kmax

, ~A18!

Eqs. ~A17! and ~A18! can be combined to give

^E&5K 1

2(i 51

N

xi ,kmax
~u!Vpa,kmax8 @xi ,kmax

~u!#

12V̄pa,kmax
2V̄kmaxL

kmax

1
1

2b
, ~A19!

i.e., for systems whose potential energy is independent of the
coordinate of the center of mass, the virial estimator gives
the total energy less the energy of the free translational mo-
tion of the center of mass.

APPENDIX B: THE EQUIVALENCE OF POINT AND
PATH ESTIMATORS

In Sec. II I B 2 we discussed alternate estimators of the
potential energy that all converge to the correct result with
an infinite set of Fourier coefficients, but with different rates
of convergence. Here we prove a theorem and a lemma that
justifies that all the estimators must converge to the same
result.

Theorem: Let x(u) represent a path for 0<u<b\ and
let x(t) represent some point on the path. Let f (x) be a
function of x and write the expectation value of f (x) at point
t by

^ f @x~ t !#&5E dxE
x

x

Dx~u!e2S[x~u!]/\ f @x~ t !#, ~B1!

where S@x(u)# is the action associated with path x(u) and
the path integral is taken over all paths that start and end at
point x. Then

^ f @x~ t !#&5^ f ~x!&, ~B2!

i.e., the expectation value is independent of the time point t.
Proof: We write

E
x

x

Dx~u!e2S[x~u!]/\5E dx~ t !E
x~ t !

x~ t !
Dx~u!e2S[x~u!]/\,

~B3!

where the notation *x(t)
x(t)Dx(u) implies a sum over all paths

that are constrained to pass through the point x(t) at time t.
We can then write

^ f @x~ t !#&

5E dxE dx~ t !E
x~ t !

x~b\!

Dx~u!e2S[x~u!]/\ f @x~ t !#

3E
x~0!

x~ t !
Dx~u!e2S[x~u!]/\ ~B4!

5E dxE dx~ t !^xue2~b\2t !Ĥ/\ f @x~ t !#ux~ t !&

3^x~ t !ue2Ĥt/\ux& ~B5!

5Tr@e2~b\2t !Ĥ/\ f ~x!e2Ĥt/\#. ~B6!

Using cyclic trace invariance

^ f @x~ t !#&5Tr@e2bĤ/\ f ~x!# ~B7!

5^ f ~x!&, ~B8!

and the theorem is proved.
Lemma: ^ f̄ `&5^ f (x)&.
Proof:

^ f̄ `&5K E
0

1

duf @x~u!#L ~B9!

5E
0

1

du^ f @x~u!#&. ~B10!

Then from the theorem

^ f̄ `&5E
0

1

du^ f ~x!& ~B11!

5^ f ~x!&, ~B12!

which proves the lemma.
The equivalence expressed in the lemma is not valid for

finite kmax, but the result proves point and path estimators
provide the same result in the limi t that kmax→`.
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