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The s = 1/2 Ising chain with uniform nearest-neighbor and next-nearest-neighbor coupling is used to construct

a system of floating particles characterized by motifs of up to six consecutive local spins. The spin couplings

cause the assembly of particles which, in turn, remain free of interaction energies even at high density. All mi-

crostates are configurations of particles from one of three different sets, excited from pseudo-vacua associated

with ground states of periodicities one, two, and four. The motifs of particles and elements of pseudo-vacuum

interlink in two shared site variables. The statistical interaction between particles is encoded in a generalized

Pauli principle, describing how the placement of one particle modifies the options for placing further particles.

In the statistical mechanical analysis arbitrary energies can be assigned to all particle species. The entropy is

a function of the particle populations. The statistical interaction specifications are transparently built into that

expression. The energies and structures of the particles alone govern the ordering at low temperature. Under

special circumstances the particles can be replaced by more fundamental particles with shorter motifs that in-

terlink in only one shared site variable. Structures emerge from interactions on two levels: particles with shapes

from coupled spins and long-range ordering tendencies from statistically interacting particles with shapes.

Key words: Pauli principle, particles with shapes, fractional statistics, Ising model, solitons

PACS: 05.50.+q, 75.10.-b

1. Introduction

Condensed matter is an aggregate of interacting particles. The interactions operate in hierarchies

regarding strength and range. Atomic nuclei are composed of strongly coupled protons and neutrons.

Electrons are bound to atomic nuclei by electromagnetic interactions of widely varying strength. Inner

electrons are tightly bound to the nucleus and form ion cores. Some outer electrons may be traded or

shared between neighboring ion cores in ionic or valence bonds, respectively. In metallic bonds some

outer electrons are mobilized.

Sorting out the diverse, complex, and interrelated phenomena is challenging. The common strategy of

many approaches is to transform specific aspects of the strongly interacting ion cores and electrons into

more weakly interacting collective modes. The latter share many attributes with fundamental particles

including energy-momentum relations, spin, and exclusion statistics. They scatter off each other elasti-

cally or inelastically, form bound states, or decay into other modes. The goal of transforming the strongly

coupled constituent particles of condensed matter into collective modes that behave like free particles is

elusive except under idealized circumstances related to dynamic or kinematic restrictions.

Harmonic lattice vibrations have linear equations of motion. The collective modes exist in superpo-

sitions of infinite lifetimes without scattering. Phonons have bosonic statistics. Linear combinations of

atomic orbitals produce fermionic counterparts: band electrons [1]. In a model that constrains the kine-

matics of collective modes to one dimension and limits their dynamics to elastic two-body scattering,

the momenta and energies are conserved individually. The collective modes are particles with exclu-

sion statistics determined by the (factorizing) S-matrix, analyzed via Bethe ansatz [2–5]. Lattice degrees
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of freedom that are coupled by commuting operators are static. They can be assembled into particles

that are free and floating. These particles have definite energies independent of the neighborhood. Their

mutual exclusion statistics are exotic [6–8].

This project imposes the kinematic constraint of one dimension and the dynamic constraint of com-

muting operators. It aims at shedding light on the assembly of structures from interactions and on the

emergence of order from these structures within that limited realm. We expect that the results will open

doors for situations where the kinematic or dynamic constraints are relaxed. The Ising chain for commut-

ing spin operators Sz
l
=± 1

2 with nearest-neighbor (nn) coupling J , next-nearest-neighbor (nnn) coupling

L, magnetic field h, and periodic boundary conditions [9],

H =
N
∑

l=1

[

JSz
l Sz

l+1 +LSz
l Sz

l+2 −hSz
l

]

, (1)

is a suitable starting point from which it is possible to develop the methodology. The spectrum consists

of product states, |σ1 · · ·σN 〉 with σl =↑,↓. The notation |σ1 · · ·σN 〉p refers to sets of p product states (of

periodicity p) that transform into each other via translations.

The zero-temperature phase diagram at h = 0 features three phases with periodicities p = 1,2,4 (see

figure 1). This includes phaseΦ1 with nn spins aligned, phaseΦ2 with nn spins anti-aligned, and phaseΦ4

(at L > 1
2 |J |) with nn spins alternatingly aligned and anti-aligned. The nnn spins are uniformly aligned in

phasesΦ1,Φ2 and uniformly anti-aligned in phaseΦ4. At h , 0 and J > 0, phasesΦ2 andΦ4 persist, phase

Φ1 is split up into two phasesΦ1±, and two new plateau phasesΦ3± with periodicity p = 3 are stabilized.1

The h , 0 phase diagram at L = 0 features phases Φ2 in the sector J > |h| and Φ1± at h ≷ 0 in the other

sectors.

..
3

.

...
3

...
42

...

. ..
1

.. .
1

. ..
1

.. .
1

2
...

...
4

. ..
1

.. .
1

2
...Φ3+

L/J

+1

−1

0.5

Φ

Φ

Φ

Φ3−

2

1+

1−

Φ4

h/J
(a)  J > 0

Φ
J

h
(c)  L = 0

Φ

Φ
1−

1+

2

Φ4

Φ

L

Φ1

2

J

(b)  h = 0

Figure 1. T = 0 phase diagram (a) for positive nn coupling J and nnn coupling L of either sign in the

parameter plane of scaled nnn-coupling L/J and scaled magnetic field h/J , (b) for h = 0 in the (J ,L)-

plane, and (c) for L = 0 in the (J ,h)-plane. The text refers to phases and regions in parameter space by the

same names.

In section 2we configure the physical vacuaΦ1+,Φ2, andΦ4 as the pseudo-vacua of sets of statistically

interacting particles. Salient features of the statistical mechanics of these particles are highlighted in

section 3 (entropy, ordering tendencies) and section 4 (populations in competition). The emergence of

structures from interactions on two levels is further discussed in section 5.

1The h , 0 phase diagram is much simpler at J < 0. Only three of the phases exist: Φ4 in the sector L/|J | > |h/J |+1/2 and Φ1± at

h ≷ 0 in the remaining sector of the (L/|J |,h/|J |)-plane.
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2. Motifs, species, categories

Motif is a term borrowed frommusic, literature, and visual arts, where it refers to fragments, themes,

or patterns. Now well established in the natural sciences, it is used in biochemistry, for example, to de-

scribe patterns of nucleotides (codons) in DNA sequences. Motifs as a representation of particles in many-

body systems are common in statistical mechanics [3, 7, 10]. In the present context, motifs are patterns of

consecutive site variables σl in Ising product states. Each motif characterizes either a particle of a partic-

ular species or an element of pseudo-vacuum. Our goal is to find motifs representing particles that have

a definite energy irrespective of their location on the lattice relative to other particles. This requirement

limits the number of ways particles can be identified. Every product eigenstate |σ1 · · ·σN 〉 thus becomes

a string of motifs.

Successive motifs interlink in a characteristic manner that depends on the range of interaction. (i)

The h-term in Hamiltonian (1) has zero range. It permits the use of motifs that interlink by sharing no

site variables (e.g. ↑+↑=↑↑). All on-site energies are additive. (ii) The J -term has range one. It demands the

use of motifs that interlink in one shared site variable (e.g. ↑↑̄+↑̄↑=↑↑̄↑). This makes all nn-bond energies

additive and the additivity of on-site energies can be maintained by specific rules. (iii) The L-term has

range two, which requires that motifs interlink in two shared site variables (e.g. ↑ ↑̄ ↑̄+↑̄ ↑̄↑=↑↑̄ ↑̄↑). This
guarantees that all nnn-bond energies are additive without jeopardizing the additivity of nn-bond and

on-site energies. Longer-range couplings demand a more extensive overlap of motifs and more elaborate

rules for ensuring additivity of energy contributions from all Hamiltonian terms.

The search for motifs of a set of free particles that are excited from a given pseudo-vacuum is guided

by the additional optimization criteria that aim for the fewest and shortest motifs. In the context of a spin-

1 Ising chain with nn-coupling we identified sets of six particles excited from twofold pseudo-vacua and

sets of seven particles from non-degenerate pseudo-vacua [8]. Here we use the same strategy to identify

three sets of particles that generate the full spectrum of (1) from pseudo-vacua | ↑↑ · · · 〉1, | ↑↓↑↓ · · · 〉2,

| ↑↑↓↓↑↑↓↓ · · · 〉4, associated with the ground states at h = 0.

The taxonomy of particles defined by their motifs involves structures as sorted into species and func-

tions as emerging from categories. These features were the focus of reference [8]. In the present context

the species will be very different but the categories will remain the same. We shall again encounter

compacts, hosts, tags, hybrids, and no further categories. Compacts and hosts float in segments of pseudo-

vacuum, tags are located inside hosts, and hybrids are tags with hosting capability. Particles from the

same category but with different structures may collectively allow the emergence of new functions.

The number of product eigenstates that contain specific numbers {Nm} of particles from all species

of a given set is expressible by a multiplicity function W ({Nm }). Its general structure, developed in the

context of reference [8], remains operational without modification:

W ({Nm}) =
npv N

N −N (α)

M
∏

m=1

(

dm +Nm −1

Nm

)

, N (α) =
M
∑

m=1

αm Nm , (2a)

dm = Am −
M
∑

m′=1

gmm′(Nm′ −δmm′ ), (2b)

where npv is the multiplicity of the pseudo-vacuum, the Am are capacity constants, the αm are size con-

stants, and the gmm′ are statistical interaction coefficients. The generalized Pauli principle proposed by

Haldane [11] is encoded in (2b) with dm counting the number of open slots for particles of species m in the

presence of Nm′ particles from any species m′, thus encapsulating the essence of statistical interaction.

All product states with particle content {Nm} have energy

E
(

{Nm}
)

= Epv +
M
∑

m=1

Nmǫm , (3)

where ǫm is the energy of particles from species m relative to the pseudo-vacuum, which has (absolute)

energy Epv .
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2.1. Particles generated from | ↑↓↑↓ · · · 〉2

The physical vacuum in region Φ2 is the twofold Néel state | ↑↓↑ · · · 〉2, here selected as the pseudo-

vacuum for M = 4 species of particles with specifications as compiled in table 1 . The permissible con-

figurations of particles from these species generate the complete spectrum of H . The motifs interlink as

illustrated in figure 2. Particles m = 3,4 are hosts and particles m = 1,2 tags. Hosts can be placed into

segments of pseudo-vacuum and tags inside hosts. In this instance, hosts 3 accommodate tags 1 only and

hosts 4 tags 2 only.

Table 1. Specifications of M = 4 species of particles excited from the Néel state (npv = 2) | ↑↓↑ · · · 〉2: motif,

category, species, energy (relative to pseudo-vacuum), spin, capacity constants, size constants (left), and

statistical interaction coefficients (right). Segments of ℓ vacuumelements, ↑↓↑,↓↑↓, have energy ℓ(L−J )/4.

At h , 0 the entries of ǫm must be amended by −sm h.

motif category m ǫm sm Am αm

↑↑↑ tag 1 1
2

J + 1
2

0 1

↓↓↓ tag 2 1
2

J − 1
2

0 1

↓↑↑↓ host 3 1
2 J −L + 1

2
N−1

2 1

↑↓↓↑ host 4 1
2

J −L − 1
2

N−1
2

1

gmm′ 1 2 3 4

1 0 0 −1 0

2 0 0 0 −1

3 1
2

1
2

3
2

1
2

4 1
2

1
2

1
2

3
2

The energies of hosts and tags are calculated differently. In hosts (or elements of vacuum) we count

interior nn bonds fully but the outermost nn bonds only half. In tags we do not count the nn bond on the

left but do count the one on the right fully. All nnn bonds are counted fully in each particle (or element

of vacuum). These rules are implemented in the entries for ǫm . In analogous manner a spin sm can be

assigned to particles from each species.

Tags have vanishing Am [8]. Open slots for tags are created by the placement of hosts. The number

of tags that can latch on to a given host is only limited by the space to which the latter can expand in the

process. In one product state tags (of one species) are lined up around the chain with no need of a host.

The gmm′ from table 1 as used in (2b) may be interpreted as follows: (i) Adding a tag does not change

the capacity for further tags. Any slot taken by a tag opens up exactly one slot for a tag of the same kind.

(ii) In the process of adding a tag its host must expand, which reduces the capacity for further hosts of

either kind in the same manner. (iii) Adding a host increases the capacity for tags that it can host and has

no effect on the capacity for tags it cannot host. (iv) Adding a host of any kind diminishes the capacity

for further hosts of the same kind more strongly than for hosts of the other kind. Different hosts can be

interlinked directly, whereas identical hosts must be spaced by at least one element of vacuum.

The two vectors of phaseΦ2 are the pseudo-vacuum of the particles considered here. The two vectors

of phase Φ1 are each a solid of N close-packed tags of one kind. By contrast, the four vectors of phase Φ4

are each a solid of 1
2

N hosts in an alternating pattern.

+

+

+

+

=

=

=

+ =

3 + vac.

3 + 1

3 + 4

3 + vac. + 3

Figure 2. Interlinking elements of pseudo-vacuum and particles from table 1. Some nn bonds (∪) are

counted half, others (∨) full. All nnn bonds (∧) are counted fully.
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For the case of vanishing nnn-coupling (L = 0) the four species of particles from table 1 can be replaced

by the two species in table 2. Themotifs are shorter and interlink in one shared site variable. All nn bonds

are now counted fully and all sites half in each motif. The new particles (named solitons) are well known

from previous work [6, 12]. Their statistical interaction is semionic, an attribute shared with the spinons

identified in the X X Z and Haldane-Shastry models [13, 14]. In the taxonomy of reference [8] they are

compacts. In figure 1 (c) phase Φ2 is the pseudo-vacuum of solitons whereas phase Φ1+ (Φ1−) is a solid of

N spin-up (spin-down) solitons.

Table 2. Specifications of M = 2 species of particles excited from the Néel state for L = 0 (npv = 2)

| ↑↓↑↓ · · · 〉2. Segments of ℓ vacuum elements, ↑↓,↓↑, have energy −ℓJ /4. At h , 0 the entries of ǫm must

be amended by −sm h.

motif cat. m ǫm sm Am αm

↑↑ comp. + J
2

+ 1
2

N−1
2

1

↓↓ comp. − J
2 − 1

2
N−1

2 1

gmm′ + −

+ 1
2

1
2

− 1
2

1
2

The motifs of solitons are not fragments of the original motifs. They interlink differently. At L , 0 we

have two spin-up particles (tag 1 and host 3) and two spin-down particles (tag 2 and host 4). At L = 0

the energies of both spin-up (or spin-down) particles become equal. In this case we can get away more

economically with one spin-up and one spin-down soliton. Returning to L , 0, the energy of a soliton

depends on its position relative to other solitons. The interaction energy is eliminated by switching back

to the extended set of four species.

2.2. Particles generated from | ↑↑ · · · 〉1

Phase Φ1 comprises the twofold spin-polarized state | ↑↑↑ · · · 〉1, | ↓↓↓ · · · 〉1. Here we adopt the first

vector as the pseudo-vacuum for M = 5 species of particles with specifications compiled in table 3. Three

categories are represented. Host 2 accommodates only tag 4 whereas host 1 accommodates both tags

and the hybrid. The hybrid, in turn, is capable of hosting both tags. The energies of hosts and tags are

Table 3. Specifications of M = 5 species of particles excited from the spin-polarized state (npv = 1)

| ↑↑ · · · 〉1. Segments of ℓ vacuum elements, ↑↑↑, have energy ℓ(L+ J )/4. At h , 0 the entries of ǫm must be

amended by −sm h.

motif category m ǫm sm Am αm

↑↑↓↓↑↑ host 1 −J −2L −2 N −3 3

↑↑↓↑↑ host 2 −J −L −1 N −2 2

↓↓↓ tag 3 0 −1 0 1

↑↓↑↓,↓↑↓↑ tag 4 −J −1 0 2

↓↓↑↓↓ hybrid 5 −J −L −2 0 3

gmm′ 1 2 3 4 5

1 4 3 1 2 3

2 3 3 1 2 3

3 −1 0 0 0 −1

4 −2 −1 0 0 −1

5 −1 0 0 0 0

13001-5
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calculated as in section 2.1. The rules for hybrids are the same as those for tags. The pseudo-vacuum is

spin-polarized and sm is not a spin in the usual sense. It enables us to write the magnetic-field contribu-

tion to ǫm in the form −smh.

Various combinations of hosts, tags, and hybrids are illustrated in figure 3. In the search for particles

that are free of interaction energies, attention had to be paid to the requirement that the implantation of

a tag or hybrid into a host (or a tag into hybrid) leaves the sums of aligned and anti-aligned nnn bonds

invariant.

^ ^

+
=

=

+ =

+
=

=

2 + 4

5 + 3

5 + 4

^ ^
^ ^

^ ^ ^

^
^ ^

^
^ ^

+ =

+ =

+
=

=

+ =

1 + 2

1 + 3

1 + 4

1 + 5

^ ^

^

^

^

^

^ ^

^ ^ ^

^ ^

^
^

Figure 3. Interlinking particles from table 3. The number of nnn bonds is preserved and the number of

nn bonds is reduced by one. The shared bond is marked by ∧ or ∨.

The hosting capabilities of particles m′ = 1,2,5 are encoded in negative statistical interaction coeffi-

cients gmm′ . In all instances except one, we have gmm′ =−1. The fact that host 1 has two interior slots to

accommodate tag 4 requires that g41 =−2. Tag 3 has zero energy, a consequence of our choice of pseudo-

vacuum. The physical vacuum in region Φ1 comprises the pseudo-vacuum | ↑↑ · · · 〉1 and a solid of tags 3,

| ↓↓ · · · 〉1. In regionΦ2 the physical vacuum is a solid of negative-energy tags 4 (two vectors) and in region

Φ4 a solid of negative-energy hosts 1 (four vectors).

For the case L = 0 we can again get away with fewer particles that have shorter motifs and interlink

with shorter overlap: one host and one tag as listed in table 4. In figure 1 (c) phase Φ1+ is the pseudo-

vacuum, phaseΦ1− is a solid of tags, and phase Φ2 is a solid of hosts. The two species of table 4 are free of

nn interaction energies. The nnn interaction energies between them can be eliminated if we allow them

to assemble into the five species of table 3.

Table 4. Specifications of M = 2 species of particles excited from the spin-polarized state for L = 0 (npv = 1)

| ↑↑ · · · 〉1. Segments of ℓ vacuum elements, ↑↑, have energy ℓJ /4. At h , 0 the entries of ǫm must be

amended by −sm h.

motif cat. m ǫm sm Am αm

↑↓↑ host H −J −1 N −1 1

↓↓ tag T 0 −1 0 1

gmm′ H T

H 2 1

T −1 0

2.3. Particles generated from | ↑↑↓↓↑↑ · · · 〉4

In region Φ4 the fourfold state | ↑↑↓↓↑↑ · · · 〉4 is the physical vacuum. Our search for free particles that

generate the entire spectrum from this state configured as pseudo-vacuum has produced M = 4 compacts

with motifs and specifications compiled in table 5. All particles or elements of pseudo-vacuum comprise

two nn bonds and one nnn bond. They again interlink by sharing one nn bond. Their energy content

consists of one half of each nn bond energy plus the full nnn bond energy.

The assignment of a spin ± 1
2
to the four particles is based on the following reasoning. Take two inter-

linked elements of pseudo-vacuum with zero spin, ↑↑↓↓ or ↓↓↑↑, add one of the four particles, and check

the spin of the resulting entity. For example, ↑↑↓↓ + ↑↑↑ =̂ ↑↑↑↓↓ and ↑↑↓↓ + ↑↓↑ =̂ ↑↑↓↑↓ produce entities

with spin + 1
2
.
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Table 5. Specifications of M = 4 species of particles excited from the state (npv = 4) | ↑↑↓↓↑↑ · · · 〉4. Seg-

ments of ℓ vacuum elements ↑↑↓,↑↓↓,↓↓↑,↓↑↑ have energy −ℓL/4. At h , 0 the entries of ǫm must be

amended by −sm h.

motif category m ǫm sm Am αm

↑↑↑ compact 1 1
4

(2L + J ) + 1
2

N−1
4

1

↓↓↓ compact 2 1
4

(2L + J ) − 1
2

N−1
4

1

↑↓↑ compact 3 1
4

(2L − J ) + 1
2

N+1
4

1

↓↑↓ compact 4 1
4

(2L − J ) − 1
2

N+1
4

1

gmm′ 1 2 3 4

1 1
4

1
4

− 1
4

3
4

2 1
4

1
4

3
4 − 1

4

3 1
4

1
4

3
4 − 1

4

4 1
4

1
4

− 1
4

3
4

Four coefficients gmm′ are negative. Here we do not have the standard host-tag scenario described

previously. To understand the variant scenarios we note that each motif (four elements of vacuum and

four particle species) can be followed only by two out of eight motifs. Only the motifs of particles 1,2

can follow themselves. Thus adding a particle m′ = 1 or m′ = 2 merely reduces the total number of open

slots for further particles of any species. This explains that all coefficients in the first two columns are

equal and positive. The coefficients in columns m′ = 3,4 reflect stronger exclusion in some instances and

accommodation in others, involving two distinct mechanisms.

(i) We note that particles 3,4 accommodate each other mutually. The addition of a particle m′ = 3

opens up a slot for a particle m = 4 and vice versa. This mutual accommodation is reflected in the

coefficients g34 = g43 = −1/4. At the same time the addition of a particle m′ = 3 or m′ = 4 closes

down a slot for further particles of the same species. This accounts for the more strongly positive

coefficients g33 = g44 = 3/4.

(ii) The sequence between any motif and the motif of particle m = 1 can always be shortened by the in-

sertion of a particle m′ = 3 wherever it fits. By contrast, the insertion of a particle m′ = 4 wherever

it fits will lengthen that sequence. The presence of a particle m′ = 3 thus increases the capacity of

the system for particles m = 1 and the presence of a particle m′ = 4 has the opposite effect. This

is reflected in the coefficients g13 = −1/4, g14 = 3/4. Analogous reasoning explains the tabulated

values of g24 and g23.

The ferromagnetic (FM) phase Φ1 consists of two states with broken spin-flip symmetry, one being a

solid of particles 1, the other a solid of particles 2. The antiferromagnetic (AFM) phase Φ2 also consists

of two states, each solid composed of particles 3,4 in an alternating sequence with broken translational

symmetry. FM particles 1,2 and AFM particles 3,4 both have spin sm =± 1
2 . By interlinking differently, the

former produce a uniform magnetization in phase Φ1 and the latter a staggered magnetization in phase

Φ2.

3. Entropy landscapes

The statistically interacting particles from the three sets identified in section 2 have definite shapes

and energies. These floating objects are assembled from localized spins by the nn and nnn couplings of

Hamiltonian (1). The Ising chain is an open system of particles with energies ǫm depending on J ,L,h.

Here we abandon the Ising context and focus entirely on particles with interlinking motifs.

The statistical interaction between the particles depends on their shapes and on the nature of the

pseudo-vacuum, but not on the particle energies ǫm . It is instructive to explore the effects of statistical

interactions produced by particular shapes in a setting where particle energies do not factor in. To this

end we consider the configurational entropy as derived from the multiplicity expression (2) for N , Nm ≫
1 via S = kB lnW :

S({Nm}) = kB

M
∑

m=1

[

(

Nm +Ym

)

ln
(

Nm +Ym

)

−Nm ln Nm −Ym lnYm

]

, (4a)
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Ym � Am −
M
∑

m′=1

gmm′ Nm′ . (4b)

The functional dependence of S on the populations Nm of particle species from a given set determines an

entropy landscape shaped by the statistical interactions alone.

If only one species is present, the statistical interaction reduces to an exclusion principle. The function

S(Nm) vanishes identically for any species of tags or hybrids, which have Am = 0 and gmm = 0. These

particles can only exist inside hosts. Compacts and hosts exist in segments of pseudo-vacuum. They have

Am ∝ N and gmm > 0. The entropy S(Nm) of a single species of hosts or compacts is nonzero for 0 <
Nm < Am/gmm and zero at the endpoints.

The signature of the statistical interaction between any two species m,m′ is best visualized in a re-

duced entropy landscape, in contour plots of the entropy per site, S̄(N̄m, N̄m′ ) = S(Nm/N , Nm′/N )/N with

the populations of all other species suppressed. All thermodynamic processes described in the following

are understood to be quasi-static and to be implemented in an open system.2 Equilibration would be

problematic in closed, one-dimensional systems of particles from more than one species.

3.1. Hosts, tags, hybrids

Beginning with the four species from section 2.1 we consider the entropy landscapes pertaining to the

two hosts, a host and the tag it does or does not accommodate, and the two tags. In each instance we vary

the population densities of two species over the permissible range while keeping the population densities

of the other two species constant at very low values.

The entropy landscape of the two hosts as shown in figure 4 (a) has borders of quadrilateral shape.

The four corners correspond to pure phases with vanishing entropy. Hosts interlink with elements of

pseudo-vacuum in multiple configurations. This explains the nonzero entropy along the two sides on the

axes. The other two sides represent states that are crowded with hosts of both species. If N̄3 = N̄4 the

state of maximum population density is unique. Hosts 3,4 interlink directly. Hosts 3,3 or 4,4 are spaced

by at least one element of pseudo-vacuum. The corner states Φ3± contain 1
3 N close-packed hosts from a

single species. The state Φ4 contains 1
2

N close-packed hosts from both species arrayed in an alternating

sequence. Heading from point Φ3+ toward point Φ4 involves the repeated replacement of one host 3 by

three hosts 4.

A qualitatively different entropy landscape pertains to host 3 and tag 1 (hosted by 3) as shown in

figure 4 (b). The borders are of triangular shape. Hosts 3 alone (vertical leg) generate entropy but tags 1

alone (horizontal leg) do not. All tags 1 are arrayed uniformly inside hosts 3. Only the expanded hosts of

multiple sizes have positional disorder, not the tags inside. As the hosts disappear, so does the entropy.

The tags contribute to the entropy only indirectly by expanding hosts to different sizes. Close-packed

configurations of hosts stuffed with tags are represented by points on the hypotenuse. Near the middle

the entropy is largest, generated by close-packed hosts expanded to many different sizes. Near one end,

we have many more hosts but with only few small sizes represented. Near the other end, we have few

hosts expanded to large sizes. Either trend reduces the entropy.

The entropy landscape is yet different for host 4 and tag 1 (not hosted by 4) as shown in figure 4 (c).

All tags 1 are confined to very few hosts 3, incapable of producing any significant entropy by themselves

(horizontal leg). Almost all hosts 4 have the minimal size due to the near absence of tags 2. These hosts

4 produce positional entropy along the vertical leg. The hypotenuse describes configurations of near

uniform segments of hosts 4 separated by rare hosts 3 filled to various sizes with uniform arrays of tags 1.

This arrangement has very low entropy. Startingwith any density of hosts 4, the entropy always decreases

when we add tags 1. All tags 1 added replace elements of pseudo-vacuum and thus reduce the options for

positioning hosts 4. The tags themselves are lumped together inside few hosts 3.

The two tags 1 and 2 have an entropy landscape (not shown) that is also triangular but very flat near

zero entropy. The two species of tags do not mix. They are arrayed uniformly in separate hosts, present

only in very low densities.

The entropy landscapes of the five species of hosts, tags, and hybrids from section 2.2 are all of trian-

gular shape. The hybrid 5 gives rise to one new feature, e.g. in combination with tag 3 as illustrated in

2The Ising model (1) is one particular realization with specific particle energies ǫm .
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Figure 4. (Color online) Entropy per site, S̄/kB, versus population densities, N̄m , N̄m′ , of two species from

(a)–(c) table 1 and (d) from table 3. The population densities of the other species are kept at 10−5. The

contours are at (a) 0.071ℓ, (b) 0.068ℓ, (c) 0.039ℓ, (d) 0.058ℓ, ℓ= 1,. . . ,6.

figure 4 (d). Both species exist inside hosts 1 or 2. Tags 3 alone or hybrids 5 alone produce no significant

entropy for reasons already stated. However, the two species can coexist inside the same host in many

different configurations. Almost all entropy is now generated inside the few hosts available.

In surveying the four panels of figure 4 we see that the entropy maximum is realized under diverse

circumstances, with both species or only one species present at intermediate density, or with two species

in close-packed configurations. As expected, maximum positional ordering of the particles (zero entropy)

occurs if no particles are present or if the system is close-packed with one species. Close-packing with two

species is also found to produce maximum positional order either through alternate stacking [panel (a)]

or through segregation [panel (c)].

3.2. Compacts

All four species of compacts from section 2.3 interlink with elements of pseudo-vacuum but only se-

lectively with themselves or each other. This produces two features in their entropy landscapes not seen

in the previous cases. Compacts 1 and 2, which interlink with themselves but not with each other or

with any other compact, generate a triangular entropy landscape as shown in figure 5 (a). The entropy is

nonzero along each leg, where compacts from one species mix with elements of pseudo-vacuum. The en-

tropy is zero along the hypotenuse, where compacts are close-packed. The system has the highest capacity

for compacts 1 and 2 if they are segregated.

The most remarkable entropy landscape pertains to compacts 3 and 4 as shown in figure 5 (b). These

two compacts interlink with each other but not with themselves or with any other compact. The border is

a quadrilateral as already seen in figure 4 (a) but with the sides away from the axes now slanted positively.

If we start filling the system with compacts 3, the entropy first increases from zero and then decreases

again down to zero when capacity is reached at N3 = 1
3

N in a uniformly stacked array. Interestingly, we
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Figure 5. (Color online) Entropy per site, S̄/kB, versus population densities, N̄m , N̄m′ , of two species from

table 5. The population densities of the other species are kept at 10−5. The contours are at (a) 0.070ℓ, (b)

0.071ℓ, ℓ= 1,. . . ,6.

do not have to remove any compacts 3 to make space for compacts 4. In fact, for every three compacts 4

added we can add one more compact 3. The entropy rises in the process and then returns to zero when

the numbers of both species have become equal and reached the value 1
2

N .

Consider a macroscopic system initially in the pseudo-vacuum of compacts. What happens to the

entropy if we add equal numbers of particles from two of the four species until capacity is reached? The

answer is shown in figure 6. At low density, the positional disorder is little affected by the different shapes

of the particles. The curves overlap close to perfectly. At higher densities the different shapes dictate the

presence or absence of ordering tendencies and the types of ordering realized. Particles 1,1 or 2,2 or 3,4

interlink directly. Two close-packed particles 1,2 or 3,3 or 4,4 have two vacuum elements in a particular

sequence between them.

With increasing (averaged) densities N̄1 = N̄2 or N̄3 = N̄4 the entropy varies along the same curve

even though the associated equilibrium states are very different. In the case of particles 1,2 the shapes

favor single-species clustering when the space becomes crowded. Mixed-species clustering is favored in

the case of particles 3,4. When capacity is reached, the entropy has returned to zero. The equilibrium

state is then fully phase separated in one case, consisting of two equal-size single-species clusters, or

homogeneous in the other case, consisting of one mixed-species cluster.
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Figure 6. Entropy S̄/kB per lattice site as function of the density N̄m = N̄m′ of two species of compacts

from table 5.
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Particles 1,4 (or 2,3) are close-packed with three vacuum elements between them. By contrast, close-

packed particles 1,1 interlink directly and close-packed particles 4,4 have two vacuum elements between

them. With increasing (averaged) densities N̄1 = N̄4, single-species clustering crowds out mixed-species

clustering. Capacity is reached earlier. The entropy returns to zero as before. The equilibrium is fully

phase-separated. The two clusters are of unequal size.

Particles 1,3 (or 2,4) are separated by only one vacuum element when close-packed. The consequence

is that with increasing (averaged) densities N̄1 = N̄3 single-species and mixed-species clustering are

equally favorable (compared to loose particles). The system reaches capacity in an amorphous state. The

entropy stays nonzero. The higher rise of the entropy compared to the previous case is explained by the

smaller size of close-packed mixed-species pairs, which increases the positional disorder at equilibrium.

4. Statistical mechanics

The statistical mechanical analysis of the particles with shapes identified in section 2 can be per-

formed for open or closed systems. Here we consider an open system. Wu’s analysis [15] for a generic

situation starts from the expression

Z =
∑

{Nm }

W ({Nm})exp

(

−
∑

m

ǫm Nm

kBT

)

(5)

for the grandcanonical partition function, where ǫm are the particle energies and W ({Nm}) the multiplic-

ity function.3 That analysis produces the general result

Z =
∏

m

(

1+wm

wm

)Am

, (6)

where the (real, positive) wm are the solutions of the coupled nonlinear algebraic equations,

ǫm

kBT
= ln(1+wm )−

∑

m′
gm′m ln

(

1+wm′

wm′

)

. (7)

The capacity constants Am , and the mutual interaction coefficients gmm′ are tabulated in section 2. Arbi-

trary energies ǫm can be assigned to each particle species. With the wm from (7), the average numbers of

particles can be derived from (5) via

〈Nm〉 =−kBT
∂ ln Z

∂ǫm
, (8)

which, when carried out using (6) and (7), leads to the linear coupled equations4

wm〈Nm〉+
∑

m′
gmm′〈Nm′〉 = Am . (9)

In similar fashion we can derive from (6) and (7) correlations between particle populations, specifically

the covariances

〈〈Nm Nm′〉〉� 〈Nm Nm′〉−〈Nm〉〈Nm′〉 = (kBT )2 ∂
2 ln Z

∂ǫm∂ǫm′
. (10)

The entropy inferred from (6) can be expressed as a function of the 〈Nm〉 alone, namely by the function

S({〈Nm〉}) from (4).

It is instructive to compare this method with the transfer matrix method [16] in the context of the

Ising chain (1). The latter operates with coupled degrees of freedom of minimal structure whereas the

former operates with degrees of freedom that are no longer coupled but have more complex structures.

Ising spins are tied to lattice sites whereas particles are floating. The number N of Ising spins is fixed

whereas the numbers Nm of particles from each species are fluctuating. Ising spins at different sites are

3The chemical potential is zero for all species, a consequence of the energy scales chosen in section 2.
4The analysis assumes that N ≫ 1 and 〈Nm〉 ≫ 1. Any part of a nonzero Am that is of O(1) is irrelevant. Wu’s derivation of (6)

proceeds via (9). The calculation of (9) from (8) via (6) and (7) is merely a check of internal consistency.
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distinguishable whereas particles from the same species are not. The canonical partition function ZN

from the transfer matrix analysis is related to the grand partition function (6) via

Z = eEpv/kBT ZN , (11)

where Epv is the energy of the pseudo-vacuum in use.

For a brief demonstration of how particles with interlinking motifs and different energies compete

for space in the presence of thermal fluctuations and produce long-range ordering tendencies at low T

as a consequence, we assign the energies of (1) at h = 0 as tabulated. All thermodynamic quantities of

interest can then conveniently be expressed in terms of the function5

u(K J ,KL) = cosh K J +
√

sinh2 K J +e4KL , K J �
J

4kBT
, KL �

L

4kBT
. (12)

The familiar transfer matrix result then reads [16]

ZN =
[

u(K J ,KL)e−KL
]N

. (13)

4.1. Analysis from | ↑↓↑↓ · · · 〉2

The physically relevant solution of equations (7) for the four species of hosts and tags introduced in

section 2.1 is

w1 = w2 = u(K J ,KL)eK J −1, w3 = w4 = w1e−4KL . (14)

The grand partition function (6) becomes

Z =
[

u(K J ,KL)e−K J
]N

, (15)

consistent with (13) via (11). Equations (9) yield

〈N̄1〉 = 〈N̄2〉 = 〈N̄3〉
1

w1
, 〈N̄3〉 = 〈N̄4〉 =

1

2

w1

w1w3 +2w1 +1
. (16)

In figure 7 we show contour plots of the population densities of tags m = 1,2 (↑↑↑,↓↓↓) and hosts

m = 3,4 (↓↑↑↓,↑↓↓↑). Lowering T at fixed J ,L means moving from the center radially outward in a

given direction. Any particular population density either increases or decreases from the common value

〈N̄m〉 = 1
8
at T =∞. In region Φ2 all 〈N̄m〉 decrease and reach zero at T = 0. All particle energies ǫm are

positive. Throughout region Φ4 the host energies are negative. The host population densities 〈N̄3〉 = 〈N̄4〉
increase as T is lowered and reach the value 1

4
at T = 0. In part of this region, at J < 0, the tags have

negative energies as well, but their energy density is less negative than that of hosts. Hence tags are

crowded out by hosts. In region Φ1 the host population diminishes and the tag population proliferates

toward 〈N̄1〉 = 〈N̄2〉 = 1
2
as T is lowered. In part of this region, for L > 0, the hosts have lower (negative)

excitation energies than the tags. Nevertheless, the hosts are crowded out by the tags due to their larger

size.

On the Φ1 −Φ2 boundary (J = 0,L < 0) the hosts have ǫm > 0 and the tags ǫm = 0. As T is lowered the

host population decreases, leaving more room for tags and elements of pseudo-vacuum, whose motifs

do not interlink directly. At low T the few remaining hosts act as surfactants between segments of tags

inside and segments of pseudo-vacuum outside [8]. The ground state is fourfold degenerate. Two vectors

contain no particles. The other two are solids formed by tags of one or the other kind. The density of tags

averaged over the four vectors is 〈N̄1〉 = 〈N̄2〉 = 1
4
.

On the Φ2−Φ4 boundary (L = J/2 > 0) the particles with ǫm > 0 are tags and the particles with ǫm = 0

are hosts – a switch with drastic consequences. As T is lowered the tag population decreases, surren-

dering the lattice to hosts and elements of pseudo-vacuum, whose motifs do interlink directly. A highly

5The mapping which relates the special cases h = 0 and L = 0 of Hamiltonian (1) with open boundary conditions by simple

parameter transcription J ↔−h, L ↔ J [20] is evident in the partition function but has no impact on what is demonstrated here.

13001-12



Motifs and entropy of statistically interacting particles

0.049

0.098

0.147

0.196

0.245

0.294

0.343

0.392

0.441

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

KJ

K
L

HaL

0.023

0.046
0.069

0.092

0.115

0.138

0.161
0.184

0.207

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

KJ

K
L

HbL

Figure 7. (Color online) Average number (per site) (a) 〈N̄1〉 = 〈N̄2〉 of tags and (b) 〈N̄3〉 = 〈N̄4〉 of hosts

versus K J ,KL . Plot (a) also represents the population density of FM particles discussed in section 4.2.

The population density of AFM particles from that same set is the left-right mirror image of plot (a). The

dashed lines indicate the T = 0 phase boundaries of figure 1 (b).

degenerate ground state ensues. The limiting host population densities (16) are 〈N̄3〉 = 〈N̄4〉 = (5+
p

5)−1 ≃
0.138.

Finally, on the Φ1 −Φ4 boundary (L =−J/2 > 0), all particles have ǫm < 0. Hosts and tags have equal

negative energy densities. All configurations of hosts and tags covering the lattice solidly have the same

energy. The resultant entropy is the same as that along theΦ2−Φ4 boundary. The host population density

remains the same, 〈N̄3〉 = 〈N̄4〉 = (5+
p

5)−1 ≃ 0.138. The tag population density, calculated from (16), is

〈N̄1〉 = 〈N̄2〉 = (2
p

5)−1 ≃ 0.224.

4.2. Analysis from | ↑↑↓↓↑↑ · · · 〉4

The grand partition function for the four compacts introduced in section 2.3 becomes

Z =
[

u(K J ,KL)e−2KL
]N

, (17)

again consistent with (13) via (11), and where

w1 = w2 = u(K J ,KL)eK J −1, w3 = w4 = (1+w1)e−2K J −1, (18)

are the solutions of equations (7), and equations (9) yield

〈N̄1〉 = 〈N̄2〉 =
1

2

w3

2w1w3 +w1 +w3
, 〈N̄3〉 = 〈N̄4〉 =

1

2

w1

2w1w3 +w1 +w3
. (19)

The population densities of the FM particles 1,2 (↑↑↑,↓↓↓) and the AFM particles 3,4 (↑↓↑,↓↑↓) have a

mirror-image relationship (figure 7).6 Lowering T from infinity either leads to a depletion of FM particles

(region Φ2) or to a depletion of AFM particles (region Φ1) or to a depletion of both kinds of particles

(region Φ4).

If T is lowered on the Φ1 −Φ2 border, all four particles have equal and negative energies. What mat-

ters for the nature of the ground state is that FM particles and AFM particles interlink among themselves

(albeit in different manner) but not with each other. The ground state thus consists of the four states that

are either packed with FM particles or with AFM particles.

6Tag 2 from table 1 and FM compact 2 from table 5 have identical motifs and, therefore, identical (absolute) energies. However,

they are different particles existing in different worlds. Nevertheless, their population densities are identical at h = 0.
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Along theΦ1−Φ4 border, FMparticles have zero energy and AFM particles have positive energies. The

lowest energy level is highly degenerate, comprising states populated by FM particles in all permissible

configurations. The average population density of these compacts is 〈N̄1〉 = 〈N̄2〉 = (2
p

5)−1 ≃ 0.224. The

role of the AFM particles along theΦ2−Φ4 border is the same as that of the FM particles along theΦ1−Φ4

border in all respects except the way the motifs interlink.

4.3. Analysis from | ↑↑ · · · 〉1

Equations (7) of the five species of hosts, tags, and hybrids introduced in section 2.2 have the solutions

w3 = u(K J ,KL)eK J −1,
1+w4

(1+w3)2
= e−4K J ,

1+w5

w3w4
= e−4KL , (20a)

w1 =
w4w5

1+w4
e−4KL , w2 =

1+w1

w1w3 −1
, (20b)

implying

Z =
[

u(K J ,KL)eK J
]N

. (21)

The solutions of equations (9) are again straightforward but, in this instance, unwieldy. Symmetries

dictate that 〈N̄2〉 = 〈N̄5〉. The population densities as presented graphically in figure 8 are more complex.

Two of the species play only minor parts in the statistical mechanics. Hosts 2 (↑↑↓↑↑) and hybrids 5 (↓↓↑↓↓)

are not abundantly present for any combination of coupling constants or any temperature. They barely

make it to an average of five particles per hundred lattice sites under the most favorable equilibrium

circumstances, whereas hosts 1 (↑↑↓↓↑↑) make it to an average of up to 25 and the tags 3 (↓↓↓), 4 (↑↓↑↓
,↓↑↓↑) to averages of up to 50.

At L > |J |/2, host 1 has the lowest energy of all by a considerable margin. Its population density is

dominant in that region. At J > 0,L < 0 the equilibrium state is dominated by tags 4 and at J < 0,L < 0 by

tags 3. In both regions these low-energy tags can only exist as attachments to higher-energy hosts. As T is

lowered fewer and fewer hosts have more and more tags attached to them. At T = 0 the last host particle

is replaced by a low-energy tag in a configuration where each tag is attached to its neighbor on the left

around the chain.

In the remaining two regions at 0 < L < |J |/2 two or three species of particles are in competition

for dominance with energy, size, and category all factoring in. The smallest size among the low-energy

particles happens to win in both regions as the temperature is turned down: tag 3 at J < 0 and tag 4 at

J > 0. There is no region where the total particle population is thinned out entirely as T → 0. Tags 3 have

zero energy. They only disappear if they are crowded out by particles with negative energy. Our choice

of a pseudo-vacuum that does not coincide with the physical vacuum.

Along the Φ1 −Φ2 border tags 3,4 both have zero energy while all other particles have positive en-

ergies. Tags 3 do not interlink with tags 4. The ground-state degeneracy remains low (fourfold). On the

Φ1 −Φ4 border we have again two zero-energy species (hosts 1 and tags 3) and three positive-energy

species. However, the former two do interlink. The ground-state degeneracy is high. The population den-

sities are 〈N̄1〉 = (5+
p

5)−1 ≃ 0.138 for the hosts and 〈N̄3〉 = (2
p

5)−1 ≃ 0.224 for the tags.

A considerablymore complex scenario unfolds on theΦ2−Φ4 border. Four species of particles of three

different sizes andwith three different negative energies are in competition. Only tag 3 (with zero energy)

stands by. Of the four competing particles, 1,2,5 can host and 4,5 can be hosted. Hosts 2 and hybrids 5 are

absent at T = 0 except on the phase boundary. There we have 〈N̄1〉 = 〈N̄4〉 = 1
9 , 〈N̄2〉 = 〈N̄5〉 = 1

18 . At T > 0

the particles 2,5 maintain significant populations only near the phase boundary.

4.4. Entropy

The three sets of particles produce distinct entropy landscapes in the space of population densities as

discussed in section 3. This diversity is attributable to the different structures of the particle species and

theirmutual statistical interactions as encapsulated in the entropy expression (4). However, when applied

to a particular physical context, where all particle energies ǫm are functions of Hamiltonian parameters,
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the function S({〈Nm〉}) inferred from (4)7 encodes, at any given temperature, the same entropy landscape

for all three sets of particles in the space of these parameters. That landscape is shown in figure 8 (d) for

the situation at hand.
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Figure 8. (Color online) Average number (per site) (a) 〈N̄1〉, (b) 〈N̄2〉 = 〈N̄5〉, and (c) 〈N̄4〉 versus scaled

variables K J ,KL . The corresponding plot for 〈N̄3〉 is as shown in figure 7 (a). The graphs of 〈N̄3〉 and

〈N̄4〉 are not mirror images of each other. The graph of 〈N̄1〉+ 〈N̄2〉 is identical to the graph shown in

figure 7 (b). Panel (d) shows the entropy S̄/kB per lattice site as function of the scaled variables K J ,KL .

For given J and L the entropy is a smooth andmonotonously increasing function of T . Magnetic short-

range order (one of three kinds) establishes itself gradually and turns into long-range order at T = 0. The

thermal fluctuations are stronger at L > 0 than at L < 0 if J , 0 owing to competing nn and nnn couplings.

S̄/kB decreasing smoothly from ln2 ≃ 0.693 at T =∞ to zero at T = 0 for all parameter combinations

except |J | = 2L. Here S̄/kB approaches ln([1+
p

5]/2) ≃ 0.481 in the low-T limit. The implied ground-state

degeneracy has a natural yet different interpretation in the context of each set of statistically interacting

particles as shown.

7Alternatively derived from (13) via S = kBdT ln ZN /dT .
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5. Structures from interactions

In this work we have investigated structures caused by interactions in different ways. On a small

scale, particles of various shapes are assembled from building blocks withminimal structure (Ising spins)

by the nn and nnn couplings of Hamiltonian (1). These particles with structures over the range of a few

lattice sites are free of any inter-particle binding forces, not merely at low density but also at high density.

Nevertheless, by virtue of their specific shapes, these particles are apt to assemble further structures on

intermediate and large scales in the form of positional ordering of various kinds.

On an intermediate scale we have described the assembly of clusters of compacts, a process driven

entirely by shapes and limited space. We have also described host particles consisting of two amphiphilic

parts bracketing uniform arrays of tags or disordered mixtures of tags and hybrids, thus assuming the

role of a surfactant or a membrane. Host particles are akin to micelles in this context. On a larger scale we

have described the formation of macroscopically ordered patterns of particles from one or two species

in a crowded environment. The type of ordering is determined solely by the energies, shapes, and sizes

of the particles.

The structures stabilized on the smallest scale by the coupled Ising spins depend on our choice of

reference state (pseudo-vacuum), hence the three sets of particle species in tables 1, 3, 5. However, in

any given equilibrium state, the same large-scale ordering tendencies are produced by particles from

different sets, i.e. by particles with different shapes, sizes, and energies.

The methodology developed here and in reference [8] has natural applications in research areas of

strong current interest including jamming of granular matter in narrow channels [17] and DNA over-

stretching [18, 19].
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Взаємозв’язанi мотиви i ландшафти ентропiї статистично

взаємодiючих частинок

П. Лу1, Д. Лiу1, Г. Мюллер1, M. Карбах2

1 Фiзичний факультет, Унiверситет Род-Айленду, Кiнгстон Род-Айленд 02881, США
2 Фiзичний факультет, Гiрничий унiверситет Вупперталя, 42097 Вупперталь, Нiмеччина

Використовуючи s = 1/2 iзингiвський ланцюжок з однорiдною взаємодiєю найближчих i наступних за

найближчими сусiдiв, побудовано систему незафiксованих частинок, якi характеризуються мотивами ше-

сти послiдовних локальних спiнiв. Взаємодiя спiнiв спричиняє групування частинок, якi, в свою чергу,

не залежать вiд енергiй взаємодiї навiть при високiй густинi. Всi мiкростани утворенi конфiгурацiями

частинок з одного iз трьох рiзних наборiв, якi вiдповiдають збудженням псевдовакуумiв, що пов’язанi

iз основними станами перiодичностi один, два i чотири. Мотиви частинок i елементи псевдовакууму

об’єднуються в двох спiльних вузлових змiнних. Статистична взаємодiя мiж частинками є закодованою

в узагальненому принципi Паулi, що описує як розмiщення одної частинки змiнює можливостi для роз-

мiщення подальших частинок. В статистично механiчному аналiзi довiльнi енергiї можуть ставитись у

вiдповiднiсть всiм сортам частинок. Ентропiя є функцiєю заселеностi частинок. Особливостi статистичної

взаємодiї прозоро вбудованi в цей вираз. Енергiї i структури частинок виключно визначають впорядкува-

ння при низьких температурах. За особливих умов частинки можуть бути замiненi фундаментальнiшими

частинками з коротшими мотивами, що взаємозв’язуються однiєю спiльною вузловою змiнною. Зумов-

ленi взаємодiєю структури виникають на двох рiвнях: частинки з формами, якi утворенi взаємодiючими

спiнами, i тенденцiї до далекосяжного впорядкування частинок з формами, якi статистично взаємодiють.

Ключовi слова: принцип Паулi, частинки з формами, дробова статистика, модель Iзинга, солiтони
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