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a b s t r a c t

In this paper, we survey several recent results that highlight an interplay between a
relatively new class of quasiseparablematrices and univariate polynomials. Quasiseparable
matrices generalize two classical matrix classes, Jacobi (tridiagonal) matrices and unitary
Hessenberg matrices that are known to correspond to real orthogonal polynomials and
Szegö polynomials, respectively. The latter two polynomial families arise in a wide variety
of applications, and their short recurrence relations are the basis for a number of efficient
algorithms. For historical reasons, algorithm development is more advanced for real
orthogonal polynomials. Recent variations of these algorithms tend to be valid only for the
Szegö polynomials; they are analogues and not generalizations of the original algorithms.
Herein,we survey several recent results for the ‘‘superclass’’ of quasiseparablematrices,

which includes both Jacobi and unitary Hessenberg matrices as special cases. The
interplay between quasiseparable matrices and their associated polynomial sequences
(which contain both real orthogonal and Szegö polynomials) allows one to obtain
true generalizations of several algorithms. Specifically, we discuss the Björck–Pereyra
algorithm, the Traub algorithm, certain newdigital filter structures, aswell asQR anddivide
and conquer eigenvalue algorithms.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

An interplay between polynomials and structured matrices is a well-studied topic, see, e.g., [48,44–46] and many
references therein. In the context of polynomial computations, typically matrices with Toeplitz, Hankel, Vandemonde, and
related structures were of interest.
Recently, a rather different class of quasiseparable matrices has been receiving a lot of attention.1 The problems giving

rise to quasiseparable matrices as well as the methods for attacking them are somewhat different from those for Toeplitz
and Hankel matrices. We start by indicating (in Sections 1.1–1.3) one of the differences between these familiar classes of
structured matrices and the new one.

∗ Corresponding author.
E-mail address: tombella@math.uri.edu (T. Bella).
1 Quasiseparable and semiseparable matrices are currently among the chief topics of research of several groups in Belgium (Van Barel et al.), Israel

(Eidelman, Gohberg), Italy (Bini, Gemignani, Fasino, Mastronardi), the USA (Pan, Gu, Chandrasekaran, Olshevsky), etc. It is virtually impossible to survey in
one paper all aspects of their research, and we refer to [19,20,9,23,17,56] among others as well as many references therein. In this survey paper we limit
our scope to the interplay between this quasiseparable class of matrices and associated sequences of univariate polynomials.

0304-3975/$ – see front matter© 2008 Elsevier B.V. All rights reserved.
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1.1. Classical polynomial families and their moment matrices

Real orthogonal polynomials (including, for instance, Chebyshev, Legendre, Hermite, Laguerre polynomials) are
polynomials that are orthogonal with respect to an inner product 〈·, ·〉 defined on a real interval [a, b], of the form

〈p(x), q(x)〉 =
∫ b

a
p(x)q(x)w2(x)dx, wherew2(x) is some weight function, (1.1)

and such polynomials are classical [50,30]. They arise in a variety of problems in scientific computing such as numerical
integration/Gaussian quadrature [51], discrete sine/cosine transforms [34], systems and control [18], and solving differential
equations [33].
Numerous applications in signal processing [47], system theory and control [36], inverse scattering [37] give rise to other

orthogonal polynomial sequences called the Szegö polynomials. Szegö polynomial sequences are orthogonal with respect
to the inner product 〈·, ·〉 defined via integration on the unit circle, i.e.,

〈p(x), q(x)〉 =
∫ π

−π

p(eiθ )q(eiθ )w2(θ)dθ. (1.2)

It is well known that themomentmatrices H corresponding to real orthogonal polynomials have a Hankel structure (constant
values along anti-diagonals), and the moment matrices T of Szegö polynomials have a Toeplitz structure (constant values
along diagonals), displayed in

H =


h0 h1 h2 · · · hn
h1 h2 hn hn+1

h2 . .
.
hn+1

...
... . .

.
. .
. ...

hn hn+1 · · · · · · h2n−1

 , T =



t0 t−1 t−2 · · · t−n

t1 t0 t−1
. . .

...

t2 t1 t0
. . . t−2

...
. . .

. . .
. . . t−1

tn · · · t2 t1 t0

 . (1.3)

Both of these moment matrices H and T are shift–invariant (i.e., they have constant values along their antidiagonals and
diagonals, respectively). This can be immediately deduced from the definition of their corresponding inner product 〈·, ·〉
above, along with the definition mkj = 〈xk, xj〉 for the moments (i.e., for the entries of the corresponding moment matrix
M = [mkj]). Indeed, in the real line case it follows from (1.1) thatmkj =

∫ b
a x
k+jw2(x)dx depends on the sum of the row and

column indices. Hence thematrixM has a Hankel structure.2 The shift–invariant structure ofH and T implies that these two
square arrays are structured, i.e., they are defined by only O(n) parameters each.

1.2. Classical polynomial families and their recurrence matrices

Besides Hankel and Toeplitz, there are two more classes of matrices associated with real orthogonal and Szegö
polynomials, namely tridiagonal and unitary Hessenberg matrices, respectively, displayed next:

Tn =



δ1 γ2 0 · · · 0

γ2 δ2 γ3
. . .

...

0 γ3 δ3
. . . 0

...
. . .

. . .
. . . γn

0 · · · 0 γn δn

 , Un =


−ρ∗0ρ1 −ρ

∗

0µ1ρ2 −ρ
∗

0µ1,2ρ3 · · · −ρ∗0µ1,n−1ρn
µ1 −ρ∗1ρ2 −ρ∗1µ2ρ3 · · · −ρ∗1µ2,n−1ρn
0 µ2 −ρ∗2ρ3 · · · −ρ∗2µ3,n−1ρn
...

. . .
. . .

. . .
...

0 · · · 0 µn−1 −ρ∗n−1ρn

 , (1.4)

where µk,j = µk · µk+1 · · · · · µj. Similar to the matrices in (1.3), the two square arrays in (1.4) are also structured, i.e., they
are defined by onlyO(n) parameters each. For example, the parameters {δk, γk}nk=1 defining Tn are taken from the three-term
recurrence relations,

rk(x) = (x− δk)rk−1(x)− γ 2k rk−2(x), (1.5)

that real orthogonal polynomials {rk(x)} are known to satisfy [51]. Similarly, the parameters {ρk, µk}nk=0 defining Un are
taken from the so-called two-term recurrence relations (to be provided later in (2.4)) satisfied by Szegö polynomials. This
justifies the nomenclature recurrence matrices used for Tn and Un.

2 The structure of the Toeplitz matrix is deduced similarly from (1.2) and the fact that on the unit circle we have xj = eijθ = e−ijθ = x−j , so that each
momentmkj now depends only on the difference of indices, which yields the Toeplitz structure.
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Table 1
Polynomial families and their recurrence and moment matrices
Polynomials Moment matrices Recurrence matrices
Real–orthogonal Hankel Tridiagonal

Szegö Toeplitz Unitary Hessenberg
⇓ ⇓

Generalizations Matrices with Quasiseparabledisplacement structure

1.3. Generalizations. Displacement structure matrices, quasiseparable matrices, and related polynomials

Many nice results originally derived only for Hankel and Toeplitz moment matrices (e.g., fast Levinson and Schur
algorithms, fast multiplication algorithms, explicit inversion formulas, etc.) have been generalized to the more general
classes of Toeplitz-like and Hankel-like matrices and to the even more general class of displacement structure matrices (that
includes not only Toeplitz and Hankel, but also Vandermonde and Cauchy matrices as special cases). We refer to [38,32,14,
35,46,43,42] and many references therein for the displacement structure theory and the list of applications. Here we only
mention the following fact that will be relevant in a moment. While, say, Toeplitz structure is immediately lost under either
inversion or matrix multiplication, its displacement structure is preserved [38], a very useful property in the design of fast
algorithms. The point is that displacement structure allows one to compress information about the n2 matrix entries into
only O(n) entries of the so-called generators, which leads to savings in storage and eventually to computational savings of
at least an order of magnitude.
One can observe that, similar tomomentmatrices, the classes of tridiagonal and unitary Hessenbergmatrices are also not

closed under either inversion or matrix multiplication. So, it looks natural to ask about a ‘‘superclass’’ of matrices (i.e., about
a counterpart of displacement structurematrices) that would be closed under both inversion andmatrixmultiplication, and
would include both tridiagonal and unitary Hessenberg matrices as special cases.
Surprisingly, such a ‘‘moment matrices’’ pattern of generalizations was never mimicked in the study of recurrence

matrices. In fact, the ‘‘superclass’’ in question, namely, the class of quasiseparable structure, indeed exists, but its study
was originally motivated by applications in the theory of time-varying systems [19,20]. To sum up, a fresh classification
shown in Table 1 seems to suggest a new direction for attacking problems for quasiseparable matrices.
Specifically, since quasiseparable matrices are of the ‘‘recurrence type’’, it is of interest to study their so-called

quasiseparable polynomials.3 The point is that historically, algorithm development is more advanced for real orthogonal
polynomials. Recently, several important algorithms originally derived for real orthogonal polynomials have been carried
over to the class of Szegö polynomials (however, such new algorithms tend to be valid only for the Szegö polynomials; they
are analogues and not generalizations of the original algorithms).
Considering quasiseparable polynomials leads, in many cases, to true generalizations of many known results. In this

survey paper we describe such generalizations for several areas displayed in the following figure.
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3 Polynomials corresponding to semiseparable matrices (which is, along with tridiagonal and unitary Hessenberg matrices, another subclass of
quasiseparable matrices) were recently studied in [24].
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1.4. Example: Divide and conquer eigenvalue problem

As an example, we consider the problem of finding the roots of the n-th polynomial of a sequence of real orthogonal
polynomials {rk(x)} satisfying the recurrence relations (1.5). As was mentioned in Section 1.2, the polynomials {rk(x)}
correspond to tridiagonal matrices of the form Tn shown in (1.4). The eigenvalues of Tn are the desired roots of rn(x) (see
Section 2.1 for details).
Known algorithm: Real orthogonal polynomials.One standardmethod for finding the eigenvalues of a tridiagonalmethod
is a divide and conquer method, due to Cuppen [15,12,13]. The basic idea of this method is that (i) a problem of size n can be
subdivided into problems with the same structure, but of smaller size (the divide step), and (ii) if we know the solution of
the smaller problems, we can construct the solution to the problem of size n (the conquer step). Then the original problem
can be reduced recursively, until several sufficiently small problems can be very rapidly solved, and a solution of the original
problem of size n can be built upwards from them.
In the tridiagonal case, such an algorithm is based on the observation that a rank-one modification of four of the entries

of the tridiagonal structure yields two smaller tridiagonal matrices, as in

(1.6)
where rank(A) = 1. This observation leads to the divide step. In the conquer step, one obtains the eigendecomposition of
T given A and the eigendecompositions of T1 and T2. Together these steps allow calculation of the eigendecomposition of a
tridiagonal matrix, and thus the roots of real orthogonal polynomials.

‘‘Carried over’’ algorithm: Szegö polynomials. It was noticed by Gragg and Reichel in [29] that a similar algorithm was
possible for computing the roots of Szegö polynomials. Szegö polynomials are known to be related to (almost) unitary
Hessenberg matrices Un shown in (1.4) (see Section 2.1 for further details). As above, the eigenvalues of this matrix Un
are the roots of the nth Szegö polynomial, and thus we seek an eigendecomposition of Un. The divide and conquer algorithm
of [29] uses the fact that such matrices admit the well-known Schur factorization, which is an expression of H as a product
of n− 1 Givens rotations Gk(ρk),

Un = G1(ρ1)G2(ρ2) · · ·Gn−1(ρn−1)Gn(ρn), where Gj(ρj) = diag
{
Ij−1,

[
ρj µj
µj −ρ

∗

j

]
, In−j−1

}
, (1.7)

see, e.g., [25]. The algorithm due to Gragg and Reichel reduces the eigendecomposition of Un of (1.7), to the ones for the
matrices U1 and U2, where (assuming n is even for convenience)

U1 = G1(ρ1)G2(ρ2) · · ·Gn/2−1(ρn/2−1)Gn/2(̃ρn/2)
U2 = Gn/2+1(ρn/2+1)Gn/2+2(ρn/2+2) · · ·Gn−1(ρn−1)Gn(ρn).

In other words, by modifying one of the parameters to ρ̃n/2 (corresponding to the rank-onemodification A in the tridiagonal
case), they divide the unitary Hessenberg matrix into two smaller ones, which gives a divide step. This leads to a divide and
conquer algorithm for such matrices, and allows one to compute the desired roots of Szegö polynomials.
In general, however, tridiagonal matrices do not admit factorizations (1.7), so this algorithm is not valid for tridiagonal

matrices, as it is not a generalization of the previous algorithm.

Generalized algorithm: Quasiseparable polynomials. We consider instead the concept of an order-one quasiseparable
matrix, defined as a matrix such that

max rankA12 = max rankA21 = 1
for all symmetric partitions of the form

A =
[
∗ A12
A21 ∗

]
.

It is shown in Section 7 that a rank-one modification (generalizing the one in (1.6)) can be made to such a quasiseparable
matrix that results in two smaller quasiseparable matrices as in the previous two divide and conquer algorithms above.
We next show why the new scheme generalizes Cuppen’s and Gragg-Reichel divide and conquer algorithms. By

considering typical partitions A21 of tridiagonal matrices and unitary Hessenberg matrices, we note that as both are upper
Hessenberg, all such partitions have the form

A21 =

0 · · · 0 ?
0 · · · 0 0
0 · · · 0 0
0 · · · 0 0
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for both tridiagonal and unitary Hessenberg matrices, which are all rank one. Similarly, considering typical partitions A12
for tridiagonal and unitary Hessenberg matrices, we have

A12 =

0 0 · · · 0
0 0 · · · 0
0 0 · · · 0
? 0 · · · 0


and

A12 =

[
−ρkµk−1 · · ·µ3µ2µ1ρ

∗

0 −ρk−1µk−2 · · ·µ3µ2µ1ρ
∗

0 · · · −ρnµn−1 · · ·µ3µ2µ1ρ
∗

0
−ρkµk−1 · · ·µ3µ2ρ

∗

1 −ρk−1µk−2 · · ·µ3µ2ρ
∗

1 · · · −ρnµn−1 · · ·µ3µ2ρ
∗

1
−ρkµk−1 · · ·µ3ρ

∗

2 −ρk−1µk−2 · · ·µ3ρ
∗

2 · · · −ρnµn−1 · · ·µ3ρ
∗

2

]
, (1.8)

respectively. We can observe that both are rank one (each row of the latter are scalar multiples of the others). Hence both
tridiagonal and unitary Hessenberg matrices are (1, 1)-quasiseparable (or (H, 1)-quasiseparable, to emphasize that the
lower part is not only order-one quasiseparable, but zeros below the subdiagonal; i.e. upper Hessenberg).
Since the class of quasiseparable matrices contains as subclasses the classes of tridiagonal and unitary Hessenberg

matrices, an algorithm formulated in terms of quasiseparable structure results in a generalization of the previous work,
as opposed to carrying algorithms over for the new case only.

1.5. Main results

The previous example demonstrates our main point of the paper: the interplay between polynomials and structured
matrices allows one to generalize algorithms (instead of carrying them over) by considering the superclass of
quasiseparable matrices/polynomials. This general theme is repeated several times, such as

• Szegö polynomials lead to the so-called lattice digital filter structures. We describe more general semiseparable and
quasiseparable filter structures (Section 3).
• Björck–Pereyra algorithms were carried over from three-term-Vandermonde matrices to Szegö–Vandermonde matrices
[2]. We generalize these algorithms to the quasiseparable case. (Section 4).
• Traub algorithms were carried over from three-term-Vandermonde matrices to Szegö–Vandermonde matrices [40,41].
We generalize these algorithms to the quasiseparable case (Section 5).
• Many eigenvalue algorithms involve exploiting the tridiagonal/Hessenberg structure of the problem (often after creating
that very structure by means of Householder reflections). As illustrated in the example of this section, generalizations to
the quasiseparable case are possible here as well (Sections 6 and 7).

2. Interplay between polynomials and classes of structured matrices

2.1. Relationship between polynomials and matrices. Classical cases

In this section, we establish a bijection between Hessenbergmatrices and certain sequences of polynomials. LetH be the
set of all upper strongly Hessenbergmatrices (‘‘strongly’’ means that ai+1,i 6= 0 for i = 1, . . . , n−1 and ai,j = 0 for i > j+1),
and P be the set of all polynomial sequences {rk(x)} satisfying deg rk = k (with r0(x) an arbitrary constant function). For
any upper strongly Hessenberg n× nmatrix A ∈ H , define the function f via the relation

f (A) = P, P = {rk}nk=0, rk(x) =
1

a2,1a3,2 · · · ak,k−1
det(xI − A)k×k; (2.1)

that is, associate with each upper strongly Hessenberg matrix H the polynomial sequence consisting of the (scaled)
characteristic polynomials of the principal submatrices of H . It is clear that this provides a mapping from matrices to
polynomial sequences, i.e. f : H → P . It is further true that (except for the freedom in scaling the first and the last
polynomials) this function is a bijection, as stated in the next proposition. For the proof and discussion, see [4,1].

Proposition 2.1. The function f : H → P defined in (2.1) is a bijection up to scaling polynomials r0 and rn.

In what followswewill need the following remark thatmakes themotivating examples of polynomials considered above
more explicit. Both of its relations are well-known, see for instance [4,1] for details.

Remark 2.2. (i) The class of real orthogonal polynomials in (1.5) is related via (2.1) to the class of irreducible triadiagonal
matrices in (1.4).
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(ii) The class of Szegö polynomials (to be formally defined by (2.4)) is related via (2.1) to the class of (almost4) unitary
Hessenberg matrices; that is, those of the form

H =


−ρ∗0ρ1 −ρ

∗

0µ1ρ2 −ρ
∗

0µ1µ2ρ3 · · · −ρ∗0µ1µ2µ3 · · ·µn−1ρn
µ1 −ρ∗1ρ2 −ρ∗1µ2ρ3 · · · −ρ∗1µ2µ3 · · ·µn−1ρn
0 µ2 −ρ∗2ρ3 · · · −ρ∗2µ3 · · ·µn−1ρn
...

. . .
. . .

. . .
...

0 · · · 0 µn−1 −ρ∗n−1ρn

 (2.2)

with ρ0 = −1, |ρk| < 1, k = 1, . . . , n− 1, |ρn| ≤ 1; µk =

{√
1− |ρk|2 |ρk| < 1
1 |ρk| = 1.

Remark 2.3. As was mentioned above, a topic of recent interest has been to create analogues of results valid for real
orthogonal polynomials that are valid for Szegö polynomials. Another class of polynomials for which results valid for real
orthogonal polynomials have been extended (see [24]) is the class of semiseparable polynomials (to be formally introduced
in Section 2.3), currently understood as those related via (2.1) to matrices of the form given in the next definition.

Definition 2.4 ((H, 1)-Semiseparable Matrices). A matrix A is called (H, 1)-semiseparable if (i) it is upper strongly
Hessenberg (i.e. upper Hessenberg with nonzero subdiagonal entries), and (ii) it is of the form A = B+striu(AU)where AU is
rank-one and B is lower bidiagonal (striu(AU) denotes the strictly upper triangular portion of thematrix AU , and corresponds
to the MATLAB command triu(AU , 1)).

2.2. (H, 1)-quasiseparable matrices and their subclasses

A main theme of this survey paper is to provide an alternative method of extending results valid for real orthogonal
polynomials. Instead of deriving analogous algorithms, we consider a superclass of polynomials containing real orthogonal,
Szegö, semiseparable, and other classes of polynomials, and derive algorithms valid for this class. To this end we will need
to introduce first the following ‘‘superclass’’ of matrices.

Definition 2.5 ((H, 1)-Quasiseparable Matrices). A matrix A = [aij] is called (H, 1)-quasiseparable (i.e., the lower part is
sparse because A is upper Hessenberg, and the upper part is order 1 quasiseparable) if (i) it is upper strongly Hessenberg
(ai+1,i 6= 0 for i = 1, . . . , n− 1 and ai,j = 0 for i > j+ 1), and (ii)max(rankA12) = 1 where the maximum is taken over all
symmetric partitions of the form

A =
[
∗ A12
∗ ∗

]
.

In Section 2.3 we will introduce the class of (H, 1)-quasiseparable polynomials as those related to (H, 1)-quasiseparable
matrices via (2.1).
While both involve rank structure, the quasiseparable and semiseparable structures are quite different; in fact,

semiseparability implies quasiseparability, but not conversely. Indeed, if from Definition 2.4,

A = B+ striu(AU), rank(AU) = 1,

then any symmetric partition of the form in Definition 2.5 will have an A12 element of rank one because AU (fromwhich A12
is entirely formed) has rank one. Thus an (H, 1)-semiseparable matrix is (H, 1)-quasiseparable.
Conversely, however, consider a tridiagonal matrix. Any symmetric partition A12 of a tridiagonal matrix as in

Definition 2.5 will have at most one nonzero entry, and thus be rank one. Thus, tridiagonal matrices are (H, 1)-
quasiseparable. However, they are not necessarily (H, 1)-semiseparable. In order to be (H, 1)-semiseparable, we must be
able to complete the strictly upper triangular portion to a rank one matrix. That is, one must specify the ‘‘?’’ entries of

? ? 0 . . . 0

? ? ?
. . .

...

? ? ?
. . . 0

...
. . .

. . . ?
? ? · · · ? ?

 ,

4 A matrix H is called a(n) almost unitary Hessenberg matrix provided H = UD for a unitary Hessenberg matrix U and diagonal matrix D =
diag{1, . . . , 1, ρn}. It is unitary except for possibly a scaling of the last column.
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where ? denotes a possibly nonzero entry, such that the entire matrix is rank one, which is not possible with nonzero values
of the ? elements. Thus, tridiagonal matrices are not necessarily (H, 1)-semiseparable, and so the inclusion of semiseparable
inside quasiseparable is proper.
It is easy to verify (see, for instance, (1.8) or [4,1] for more details) that the class of (H, 1)-quasiseparable matrices also

contains unitary Hessenberg matrices. In fact, more details of these and other inclusions are given in the following theorem
and definitions.

Theorem 2.6. The classes of matrices defined in this section interact (i.e., include, intersect, are disjoint) as in the following figure:
’

&

$

%

(H, 1)-Quasiseparable matrices
(Definition 2.5)

’

&

$

%

’

&

$

%

(H, 1)-well-free matrices
(Definition 2.7)

(H, 1)-semiseparable matrices
(Definition 2.4)

ffl

ffi

fi

fl

’

&

$

%

’

&

$

%Tridiagonal matrices

Bidiagonal-like matrices
(Definition 2.9)

Irreducible
tridiagonal matrices

unitary Hessenberg
m-truncated (m ∈ [3, n])

matrices. (Definition 2.8)

2-truncated UH

Not truncated ∀m
unitary Hessenberg
matrices. (Definition 2.8)

The proof of this theorem can be found in [4,1], andwe next present the details of the subclasses introduced in the figure.

Definition 2.7 ((H, 1)-Well-Free Matrices).

• An n× nmatrix A = (Ai,j) is said to have awell in column 1 < k < n if Ai,k = 0 for 1 ≤ i < k and there exists a pair (i, j)
with 1 ≤ i < k and k < j ≤ n such that Ai,j 6= 0.
In words, a matrix has a well in column k if all entries above the main diagonal in the k-th column are zero, except if

all entries in the upper-right block to the right of these zeros are also zeros, as shown in the following illustration:

@
@
@
@
@
@
@
@
@
@
@
@
@

@
@
@

@
@
@

@
@
@ 0

...

0

dk

something
nonzero

• A (H, 1)-quasiseparable matrix is said to be (H, 1)-well-free if none of its columns k = 2, . . . , n− 1 contain wells.

In Section 2.3 we will introduce the class of (H, 1)-well-free polynomials as those related to (H, 1)-well-free matrices via
(2.1).

Definition 2.8 (Truncated Unitary Hessenberg Matrices). A unitary Hessenbergmatrix of the form (2.2) is calledm-truncated
provided {ρk} satisfy ρ2 6= 0, . . . , ρm 6= 0, ρm+1 = · · · = ρn = 0.

Definition 2.9 (Bidiagonal-like Matrices). A matrix A is called bidiagonal-like if (i) it is upper strongly Hessenberg, and
(ii) it is of the form A = B + C , with B a lower bidiagonal matrix, and C a matrix with at most one nonzero entry, and
that entry is located in the first superdiagonal.

At the moment, new polynomial families have been introduced via association with particular matrix classes. In the next
section this association is exploited to provide efficient recurrence relations for each of the new polynomial classes.
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2.3. (H, 1)-quasiseparable polynomials and their subclasses

As was mentioned in Remark 2.2, real orthogonal polynomials and Szegö polynomials are known to be related via (2.1)
to tridiagonal and unitary Hessenberg matrices, respectively. These two facts imply that these polynomial classes satisfy
sparse (e.g., three-term or two-term) recurrence relations. Moreover, the sparseness of these relations is the chief reason
for the existence of a number of fast efficient algorithms.
In Sections 2.1 and 2.2, we defined several classes of matrices, e.g., (H, 1)-quasiseparable, (H, 1)-semiseparable, and

(H, 1)-well-free. One can expect that polynomials related to each of these classes via (2.1) should also satisfy some kind of
sparse relations. Indeed, in this section we provide equivalent definitions for these classes of polynomials in terms of the
recurrence relations satisfied.We beginwith brief recalling the classical examples of real orthogonal and Szegö polynomials.

Definition 2.10 (Real Orthogonal Polynomials and Three-term Recurrence Relations). A sequence of polynomials is real
orthogonal if it satisfies the three-term recurrence relations

rk(x) = (αkx− δk)rk−1(x)− γk · rk−2(x), αk 6= 0, γk > 0. (2.3)

Definition 2.11 (Szegö Polynomials and Two-term Recurrence Relations). A sequence of polynomials are Szegö polynomials
{φ#k } if they satisfy the two-term recurrence relations (with some auxiliary polynomials {φk})

[
φk(x)
φ#k (x)

]
=
1
µk

[
1 −ρ∗k
−ρk 1

] [
φk−1(x)
xφ#k−1(x)

]
, (2.4)

where the reflection coefficients ρk and complementary parameters µk satisfy

|ρk| ≤ 1, µk =

{√
1− |ρk|2 |ρk| < 1
1 |ρk| = 1.

Definition 2.12 ((H, 1)-Semiseparable Polynomials and Szegö-type Two-term Recurrence Relations). A sequence of polyno-
mials {rk(x)} is called (H, 1)-semiseparable if it satisfies

[
Gk(x)
rk(x)

]
=

[
αk βk
γk 1

] [
Gk−1(x)

(δkx+ θk)rk−1(x)

]
, (2.5)

where {Gk} are a sequence of auxiliary polynomials. The relations (2.5) are called Szegö-type two-term recurrence relations
since they generalize the classical Szegö relations (2.4).

Definition 2.13 ((H, 1)-Quasiseparable Polynomials and [EGO05]-type Two-term Recurrence Relations). A sequence of poly-
nomials {rk(x)} is called (H, 1)-quasiseparable if it satisfies the following two-term recurrence relations,

[
Gk(x)
rk(x)

]
=

[
αk βk
γk δkx+ θk

] [
Gk−1(x)
rk−1(x)

]
, (2.6)

where {Gk} are a sequence of auxiliary polynomials. The relations (2.6) are called [EGO05]-type two-term recurrence
relations since they are a special case of another formula given in [22].

In order to provide a complete picture of the relationship between real orthogonal polynomials, Szegö polynomials, and
the new proposed class of (H, 1)-quasiseparable polynomials, we give the following theorem and definitions, in complete
agreement with the corresponding classes of matrices in Theorem 2.6.

Theorem 2.14 ([4,1]). The subsets of polynomials defined in this section interact (i.e., intersect, include, are disjoint) as in the
following figure.
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Almost factored polynomials

(3-term r.r. (2.9))

polynomials satisfying (2.10)

Real orthogonal polynomials
(3-term r.r. (2.3))

Szegö polynomials
(2-term r.r. (2.4))
(3-term r.r. (2.8))

Szegö polynomials
(2-term r.r. (2.4))
(no 3-term r.r.)

r.r. (2.4) & (2.9)

Remark 2.15. The detailed statement and proof of the above theorem can be found in [4,1], and it is based on the following
fact that seems to be of interest by itself: the shape and configuration shown in the two figures of Theorems 2.6 and 2.14
are identical. This is a reflection of the already mentioned fact, proven in [4,1], that for each pair of identical classes we
have the following: the polynomials described by any given rectangle in the figure of Theorem 2.14 are related via (2.1) to
the matrices described by the corresponding rectangle in the figure of Theorem 2.6. More details on this will be given in
Sections 2.4.2 and 2.4.3.

Similar to what was done after formulating Theorem 2.6 in Section 2.2, we provide complete definitions for all remaining
classes of polynomials mentioned in Theorem 2.14.

Definition 2.16 ((H, 1)-Well-free Polynomials). A sequence of polynomials is called (H, 1)-well-free if it satisfies the general
three-term recurrence relations

rk(x) = (αkx− δk) · rk−1(x)− (βkx+ γk) · rk−2(x). (2.7)

Definition 2.17 (Truncated Szegö Polynomials). A sequence of Szegö polynomials is called m-truncated if the sequence
satisfies the Geronimus-type three-term recurrence relations

φ#k (x) =



1
µ0

k = 0
1
µ1
(x · φ#0 (x)+ ρ1ρ

∗

0 · φ
#
0 (x)) k = 1

1
µ2
xφ#1 (x)−

ρ2µ1
µ2
φ#0 (x) k = 2, ρ1 = 0[

1
µ2
· x+ ρ2

ρ1

1
µ2

]
φ#1 (x)−

ρ2
ρ1

µ1
µ2
· x · φ#0 (x) k = 2, ρ1 6= 0[

1
µk
· x+ ρk

ρk−1

1
µk

]
φ#k−1(x)−

ρk
ρk−1

µk−1
µk
· x · φ#k−2(x) 2 < k ≤ m

x · φ#k−1(x) k > m.

(2.8)

Definition 2.18 (Almost Factored Polynomials). A sequence of polynomials is called almost factored if it satisfies the
bidiagonal-like three-term recurrence relations: for some j ∈ [1, n],

rk(x) =
{
(αkx− δk) · rk−1(x) k 6= j
((αk−1x− δk−1)(αkx− δk)− γk) · rk−2(x) k = j. (2.9)

We also consider polynomials satisfying unrestricted three-term recurrence relations of the form

rk(x) = (αkx− δk)rk−1(x)− γk · rk−2(x), αk 6= 0; (2.10)

that is, the same recurrence relations as satisfied by real orthogonal polynomials, but without the restriction of γk > 0.
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2.4. Sparse generators and an interplay between subclasses of (H, 1)-quasiseparable matrices and (H, 1)-quasiseparable
polynomials

2.4.1. Key concept. Sparse generators for (H, 1)-quasiseparable matrices
The sparse recurrence relations (2.6) allow us to ‘‘compress’’ the representation of (H, 1)-quasiseparable polynomials;

that is, instead of computations with theO(n2) coefficients of the polynomials themselves, one can carry out computations
with the O(n) recurrence relation coefficients.
The small ranks in off diagonal blocks of quasiseparable matrices allow one to compress the n2 entries of the matrices

into a linear array in a similar way. It is possible to use only O(n) parameters, which we will denote generators, in place of
the n2 entries of the matrix in algorithms.

Theorem 2.19. Let A be an n × n matrix. Then A is an (H, 1)-quasiseparable matrix if and only if there exists a set of 6n − 6
scalar parameters {pj, qi, dl, gi, bk, hj} for i = 1, . . . , n− 1, j = 2, . . . , n, k = 2, . . . , n− 1, and l = 1, . . . , n, such that

@
@
@
@
@
@
@
@
@
@
@

@
@

@
@
@

@
@d1

. . .

. . .

dn

@
@
@
@
@
@

p2q1

. . .

pnqn−1
0

gib×ij hj

A = where b×ij = bi+1 · · · bj−1 for j > i+ 1
and b×ij = 1 for j = i+ 1

(2.11)

Remark 2.20. At first glance, there is a certain redundancy in the above definition, i.e., 2(n−1) parameters {pi, qi} are used
to define only n − 1 entries of the first subdiagonal of A. While it is correct (and one could just ‘‘drop’’ q’s), this notation is
consistent with the standard notation in [22] for themore general (non-Hessenberg) case where both p’s and q’s are needed.

Definition 2.21. A set of elements {pj, qi, dl, gi, bk, hj} in the previous theorem are called generators of the matrix A.
Generators of amatrix are not unique, and this nonuniqueness extends nontrivially past the noted redundancy in p’s and q’s.

2.4.2. Complete characterization in the (H, 1)-quasiseparable case
Wenext present two theorems from [4,1] that contain conversions formulas between the recurrence relation coefficients

of (2.6) of Definition 2.13 and the generators of the corresponding (H, 1)-quasiseparable matrices. These results will imply
that (H, 1)-quasiseparable matrices and (H, 1)-quasiseparable polynomials provide a complete characterization of each
other.

Theorem 2.22 (Quasiseparable Generators⇒ [EGO05]-Type Recurrence Relation Coefficients). Suppose an n × n (H, 1)-
quasiseparable matrix A has generators {pk, qk, dk, gk, bk, hk}. Then the polynomials R = {rk} associated with A via (2.1) satisfies
the recurrence relations[

Fk(x)
rk(x)

]
=

1
pk+1qk

[
qkpkbk −qkgk
pkhk x− dk

] [
Fk−1(x)
rk−1(x)

]
(2.12)

for some sequence of auxiliary polynomials {Fk}.

Theorem 2.23 ([EGO05]-type Recurrence Relation Coefficients⇒ Quasiseparable Generators). Suppose that a sequence of n+1
polynomials R satisfies the recurrence relations[

Gk(x)
rk(x)

]
=

[
αk βk
γk δkx+ θk

] [
Gk−1(x)
rk−1(x)

]
.

Then the (H, 1)-quasiseparable matrix with generators

pk = 1, k = 2, . . . , n, qk = 1/δk, k = 1, . . . , n− 1, dk = −
θk

δk
, k = 1, . . . , n

gk = βk, k = 1, . . . , n− 1, bk = αk, k = 2, . . . , n− 1, hk = −
γk

δk
, k = 2, . . . , n

corresponds to R via (2.1).
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Table 2
Characterizations of subclasses of (H, 1)-quasiseparable matrices via
related polynomials
Class of matrices Class of polynomials
Irreducible tridiagonal matrices Real orthogonal polynomails
(1.4) three-term (2.3)
Unitary Hessenberg matrices Szegö polynomails
(2.2) two-term (2.4)
(H, 1)-semiseparable matrices (H, 1)-semiseparable polynomails
Definition 2.4 Szegö-type 2-term (2.5)
(H, 1)-well-free matrices (H, 1)-well-free polynomails
Definition 2.7 general 3-term (2.7)
(H, 1)-quasiseparable matrices (H, 1)-quasiseparable polynomails
Definition 2.5 [EGO05]-type 2-term (2.6)

Table 3
Defining several important classes of matrices via their (H, 1)-quasiseparable
generators
Matrix class pj qi dl gi bk hj
Tridiagonal 1 1/αi δl/αl γi+1/αi+1 0 1
Unitary Hessenberg 1 µi −ρ∗l−1ρl −ρ∗i−1µi µk ρj
(H, 1)-semiseparable 6= 0 6= 0 ? ? 6= 0 ?

(H, 1)-well-free 6= 0 6= 0 ? ? ? 6= 0
Bidiagonal-like 6= 0 6= 0 ? 6= 0 at most once 0 6= 0

Table 4
Conversion formulas of the type ‘‘Recurrence relation coefficients⇒ quasiseparable generators’’
Polynomials pk qk dk gk bk hk
Monomials 1 1 0 0 0 1
Real orth. (2.3) 1 1/αk δk/αk γk/αk 0 1
Szegö (2.4) 1 µk −ρkρ

∗

k−1 ρ∗k−1 µk−1 −µk−1ρk

Gen. 3-term (2.7) 1 1/αk
δk
αk
+

βk
αk−1αk

dkβk+1+γk+1
αk+1

βk+1
αk+1

1

Szegö-type (2.5) 1 1/δk −
θk+γkβk−1

δk
βk−1 αk−1 − βk−1γk−1 −

γk
δk
(αk−1 − βk−1γk−1)

[EGO05]-type (2.6) 1 1/δk −
θk
δk

βk αk −
γk
δk

2.4.3. Complete characterization in the (H, 1)-semiseparable and (H, 1)-well-free cases
The two theorems of the previous section imply that (H, 1)-quasiseparable polynomials (2.6) and (H, 1)-quasiseparable

matrices (2.11) completely characterize each other, being related via (2.1). The results included in the Table 2 indicate that
similar complete characterizations exist for all other classes of matrices and polynomials of Theorems 2.6 and 2.14.
In the (H, 1)-quasiseparable case the complete characterization result was established in the previous subsection via

conversion formulas of the type ‘‘recurrence relation coefficients⇔ (H, 1)-quasiseparable generators’’. Similar results for
all other classes in Table 2 can be obtained via the following two-step procedure.

• Recall that Theorem 2.6 asserts that all matrix classes in question are subclasses of (H, 1)-quasiseparable matrices.
Hence one should first obtain for each of these matrix classes full descriptions in terms of restrictions on their (H, 1)-
quasiseparable generators. These restrictions are given in Table 3, where a ? indicates that no restriction is placed on that
particular generator.
Inwhat follows,we present new feedforward digital filter structures based on (H, 1)-quasiseparable polynomials, and

in the following three sections we present generalizations to the class of (H, 1)-quasiseparable matrices of the classical
algorithms of Traub, Björck–Pereyra, and Cuppen. For each generalization, one can use the special restrictions of Table 3
to reduce the generalized version of the algorithm to the classical version. Thus (H, 1)-quasiseparable matrices provide
a unifying approach to solving all of the respective computational problems.
• Secondly, one needs to provide conversion formulas of the type ‘‘recurrence relation coefficients⇔ restricted (H, 1)-
quasiseparable generators’’. We provide next the desired conversions only in one direction (since it will be used in what
follows), and we refer to [4,1] for the conversion in another direction and all details.
Inwhat followswepresent algorithmsbased on (H, 1)-quasiseparable polynomials, and the input for these algorithms

will be the generators of the corresponding (H, 1)-quasiseparable matrix. If one would need to apply these algorithms
using not generators of the corresponding matrix but the recurrence relations coefficients as input, one way to do so is
to precede the algorithms with conversions specified in Table 4.

All of the results of this section were recently extended to the more general (H,m)-quasiseparable case in [8].
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Table 5
Building blocks of signal flow graphs

Adder Gain Delay

--?p(x)

r(x)

p(x)+ r(x) --qp(x)
α

αp(x) - x -p(x) xp(x)

Implements polynomial addition. Implements scalar multiplica-
tion.

Implements multiplication by x.

Splitter Label

--
6

p(x)

p(x)

p(x) -vp(x)
Allows a given signal to be used in
multiple places.

Identifies the current signal (just for
clarity, does not require an actual
device).

Fig. 1. Implementation of the polynomial (3.13) expressed by a signal flow graph.

Fig. 2.Markel-Grey filter structure: Signal flow graph to realize the Szegö polynomials using two-term recurrence relations (2.4).

3. New quasiseparable digital filter structures

3.1. Filter structures and the Markel–Grey filter structure

Complementing the algebraic descriptions of polynomials, particularly those determined by sparse recurrence relations,
one can consider the corresponding signal flow graphs. Briefly, the goal is to build a device to implement, or realize, a
polynomial, using devices that implement the algebraic operations of polynomial addition, multiplication by x, and scalar
multiplication. These building blocks are shown next in Table 5.
As an example, an easyway to implement a polynomial expressed in themonomial basis by the coefficients {P0, P1, P2, P3}

via

p(x) = P0 + P1x+ P2x2+ P3x3 (3.13)

by a signal flow graph is shown in Fig. 1.
An important result in signal processing is the Markel–Grey filter design, which realizes polynomials using the Szegö

polynomials as a basis. The filter design uses the two-term recurrence relations (2.4), which gives the ladder structure shown
in Fig. 2.
In view of Theorem 2.14, it is natural to consider the generalized filter structures of the next section.

3.2. New filter structures

We obtained the following generalizations of the important Markel–Grey filter structure. Specifically, the recurrence
relations (2.5) can be realized by the semiseparable filter structure depicted in Fig. 3, and the recurrence relations (2.6) lead
to the quasiseparable filter structure, depicted in Fig. 4.
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Fig. 3. Semiseparable filter structure: Signal flow graph to realize polynomials R satisfying Szegö-type recurrence relations (2.5).

Fig. 4. Quasiseparable filter structure: Signal flow graph for polynomials R using [EGO05]-type recurrence relations (2.6).

Remark 3.1. The quasiseparable filter structure is a single filter structure that can realize both real orthogonal polynomials
and Szegö polynomials, as well as the more general case of (H, 1)-quasiseparable sequences. Such a single implementation
allows, among other things, a device to be built that can realize both real orthogonal polynomials and Szegö polynomials
without the need for multiple devices.

The essential tools in deriving the results of the previous sections are (H, 1)-quasiseparable matrices and their
connections to (H, 1)-quasiseparable polynomials and the corresponding recurrence relations. In the next section, we give
more details about this relationship.

4. Fast Björck–Pereyra linear sequence solver

4.1. Classical Björck–Pereyra algorithm and its extensions

The problem of solving Vandermonde linear systems, systems V (x)a = f with

V (x) =

1 x1 x21 · · · x
n−1
1

...
...

...
...

1 xn x2n · · · x
n−1
n

 , (4.1)

is classical, with applications in interpolation, coding theory, etc. It is known that Vandermonde matrices are extremely
ill-conditioned [53], and hence solving linear systems involving V (x) using Gaussian elimination (GE) can result in (i) loss
of forward accuracy. Additionally, GE needs (ii) large n2 storage, and (iii) it is expensive, using O(n3) flops. In 1970, Björck
and Pereyra introduced a fast algorithm for solving Vandermonde linear systems which was better than GE in every sense.
(i) It often resulted in perfectly accurate solutions [10], (ii) it needs only O(n) storage, and (iii) it is fast, using only O(n2)
flops.5 The Björck–Pereyra algorithm is based on the following factorization of the inverse of a Vandermonde matrix:

V (x)−1 = U1 · · ·Un−1 · Ln−1 · · · L1, (4.2)

with certain bidiagonal matrices Uk, Lk. The exact form of these bidiagonal matrices is not important at the moment, we
only mention that their entries need not be computed; they are readily available in terms of the nodes {xi} defining V (x).
Björck and Pereyra used (4.2) to compute a = (V (x))−1f very efficiently. Indeed, the bidiagonal structure of Uk, Lk obviously
implies that only O(n2) operations are needed. Further, since the entries of Uk, Lk are readily defined by {xi}, only O(n)
storage is needed.

5 It is easy to solve a Vandermonde system inO(n log n) flops but such superfast algorithms are typically totally inaccurate already for 15× 15 matrices.
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Table 6
Previous work. Fast O(n2) polynomial–Vandermonde solvers

Polynomial sequence R = {rk(x)} Fast O(n2) linear system solver
Monomials Björck–Pereyra [10]
Chebyshev polynomials Reichel–Opfer [49]
Real orthogonal (three-term) polynomials Higham [31]
Szegö polynomials Bella–Eidelman–Gohberg–Koltracht–Olshevsky [2]

The speed and accuracy of the classical Bjorck-Pereyra algorithm attracted much attention, and as a result the algorithm
has been generalized to several special cases of polynomial–Vandermonde matrices of the form

VR(x) =

r0(x1) r1(x1) · · · rn−1(x1)
...

...
...

r0(xn) r1(xn) · · · rn−1(xn)

 , (4.3)

namely to those specified in Table 6.
The algorithms of [49,31,2] are not generalizations of the original Björck–Pereyra [10] algorithm but analogs of it.

4.2. A true generalization. New Björck–Pereyra-type algorithm for quasiseparable–Vandermonde matrices

A new Björck–Pereyra-type algorithm, obtained recently in [3,1], uses the superclass of quasiseparable polynomials and
hence it is a generalization of all of previous work listed in Table 6. The new algorithm is based on the following theorem.

Theorem 4.1. Let VR(x) be a polynomial–Vandermonde matrix of the form (4.3) for a sequence of (H, 1)-quasiseparable
polynomials R given by the generators {pj, qi, dl, gi, bk, hj} of the corresponding (H, 1)-quasiseparable matrix A in (2.11). Then

VR(x)−1 = U1 ·
[
I1

U2

]
· · ·

[
In−2

Un−1

]
·

[
In−2

Ln−1

]
· · ·

[
I1

L2

]
· L1, (4.4)

Uk =



1
α0
0

A(n−k)×(n−k) − xkI
...

0 · · · 0 1
αn−k

 , Lk =


1

1
xk+1−xk

. . .
1

xn−xk



1
−1 1
...

. . .

−1 1

 , (4.5)

where A(n−k)×(n−k) is the leading (n− k)× (n− k) submatrix of A in (2.11), and α0 = r0(x) and for k > 0 the number αk is the
ratio of the leading coefficients of rk(x) and rk−1(x).

Remark 4.2. The overall cost for solving VR(x)a = f via (4.4) is O(n2) operations, since matrices Lk,Uk can be multiplied
by a vector in O(n) operations each. For Lk it follows immediately from its sparsity. For Uk the linear cost of matrix-vector
multiplication is possible thanks to the quasiseparable structure of its block A(n−k)×(n−k), see, e.g., [3,1] for details.
At first glance, the O(n2) complexity may not seem optimal. As we mentioned, however, even for the well-studied

simplest Vandermonde matrices in (4.1), all known algorithms with lower complexity are quite inaccurate in numerical
computations over R and C (although in applications over finite fields they make perfect sense).

Remark 4.3. The input of the new algorithm based on (4.4) is a set of generators of the corresponding (H, 1)-quasiseparable
matrix A in (2.11). Hence it includes, as special cases, all the algorithms listed in Table 6. Indeed, in order to specify the new
algorithm to a particular special case, one needs just to use its special generators listed in Table 3. Furthermore, in the
case where the polynomials {rk(x)} involved in (4.3) are given not by a generator, but by any of the recurrence relations of
Section 2.3, one can simply precede the algorithm with the conversions of Table 4.

5. Fast Traub-like inversion algorithm

5.1. The classical Traub algorithm and its extensions

As mentioned in the previous section, numerical computations with classical Vandermonde matrices in (4.1) can be
problematic due to their large condition numbers [53], and the problem of inversion of such matrices using Gaussian
elimination suffers from the same problems as described in the previous section for solving linear systems. Gaussian
elimination (i) cannot provide forward accuracy, and (ii) is expensive, requiring O(n3) flops.
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Table 7
Previous work
Polynomial system R Fast O(n2) inversion algorithm
Monomials Traub [52]
Chebyshev polynomials Gohberg–Olshevsky [27]
Real orthogonal polynomials Calvetti–Reichel [16]
Szegö polynomials Olshevsky [40,41]

Fast O(n2) inversion algorithms.

There is a fast Traub algorithm [52] that computes the entries of V (x)−1 in only O(n2) operations, but it is known to be
inaccurate as well. Fortunately, it was observed in [28] that a minor modification of the original Traub algorithm typically
results in a very good forward accuracy.
The Traub algorithm has been generalized to polynomial–Vandermonde matrices of the form (4.3), namely to those

specified in Table 7.
The algorithms of [27,16,40] are not generalizations of the original Traub [52] algorithm but its analogs.

5.2. A true generalization. New Traub-type algorithm for quasiseparable-Vandermonde matrices

A new Traub-type algorithm, obtained recently in [7,1], uses the superclass of quasiseparable polynomials and hence it is
a generalization of all of previous work listed in Table 7. The new algorithm is based on the following theorem.

Theorem 5.1. Let VR(x) be a polynomial–Vandermonde matrix of the form (4.3) for a sequence of (H, 1)-quasiseparable
polynomials R = {rk(x)} given by the generators {pj, qi, dl, gi, bk, hj} of the corresponding (H, 1)-quasiseparable matrix A in
(2.11). Then

VR(x)−1 = Ĩ · V TR̂ (x) · diag(c1, . . . , cn), (5.1)

where

Ĩ =


0 · · · 0 1
... . .

.
1 0

0 . .
.
. .
. ...

1 0 · · · 0

 , ci =
n∏
k=1
k6=i

(xk − xi)−1, (5.2)

and R̂ = {̂rk(x)} (defining the matrix V̂R(x) in (5.1)) is the sequence of what are called the associated (or generalized Horner)
polynomials that satisfy the following recurrence relations:[̂

Fk(x)
r̂k(x)

]
=

1
qn−kpn−k+1

[
pn−k+1qn−k+1bn−k+1 −pn−k+1hn−k+1
qn−k+1gn−k+1 x− dn−k+1

] [̂
Fk−1(x)
r̂k−1(x)

]
︸ ︷︷ ︸

typical terms

+

[
0
Pn−k

qn−kpn−k+1

]
︸ ︷︷ ︸

perturbation term

(5.3)

where the coefficients Pk are defined by

n∏
k=1

(x− xk) = P0r0(x)+ P1r1(x)+ · · · + Pn−1rn−1(x)+ Pnrn(x). (5.4)

Remark 5.2. The overall cost for computing VR(x)−1 via (5.1) is O(n2) operations. Indeed, Ĩ is just a permutation, and the
diagonal matrix diag(c1, . . . , cn) can be formed via (5.2) in 1.5n2 operations. Hence the cost of inversion is dominated by
forming the matrix V̂R, which is a polynomial Vandermonde matrix of the form (4.3), but with associated (generalized
Horner) polynomials {̂rk(x)} in place of the original {rk(x)}. Since [7,1] contains an O(n2) algorithm for computing Pk’s,
the recurrence relations (5.3) allow us to form the matrix V̂R in O(n2) operations which results in the overall cost of O(n2)
operations for the entire algorithm.

Remark 5.3. As in Remark 4.3, note that the input of the new algorithm based on (5.1) is a set of generators of the
corresponding (H, 1)-quasiseparablematrixA in (2.11). Hence it includes, as special cases, all the algorithms listed in Table 7.
Indeed, in order to specify the new algorithm to a particular special case, one needs just to use its special generators listed
in Table 3.
To apply the algorithm when the polynomials {rk(x)} involved in (4.3) are given not by a generator, but by any of the

recurrence relations of Section 2.3, one can simply precede the newTraub-type algorithmbyusing the conversions of Table 4.
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Remark 5.4. Comparing the recurrent relations (2.12) for the original (H, 1)-quasiseparable polynomials {rk(x)} (involved
in VR(x)) with the recurrent relations (5.3) for the associated polynomials {̂rk(x)} (needed to form VR(x)−1) we see the
following two differences. (i) The relations (5.3) have almost the same form as (2.12), but they flip the order of indexing
generators. (ii) As opposed to (2.12) the relations (5.3) contain a certain ‘‘perturbation term’’.
In fact, along with (5.3) one can find in [7,1] two more versions of the new Traub-like algorithm. The version based on

(5.3) can be called [EGO05]-type version since (5.3) is a perturbed counterpart of the [EGO05]-type relations (2.12). The two
other versions in [7,1] are based on perturbed counterparts of Szegö-type and of general three-term recurrence relations.
As opposed to the algorithm based on (5.3), the two other versions can be used under certain (mild) limitations.

Finally, the Traub-like algorithm described in this section has been recently extended to the more general (H,m)-
quasiseparable case in [5,1].

6. Eigenvalue problems: QR algorithms

6.1. Motivation

It is customary to compute the eigendecomposition of a symmetric matrix in two steps: (i) reduce the matrix to a
similar tridiagonal matrix by means of Householder transformations (unitary reflections); (ii) run the QR algorithm on this
tridiagonal matrix. For a given (or reduced in step (i)) matrix A(1) one computes the QR factorization A(1)−σ1I = QR (where
Q is orthogonal and R is upper triangular). The next iterant A(2) = RQ + σ1I is obviously similar to A(1). It is well-known
(see, e.g., [51] and the references therein) that with the right choice of shifts σk the sequence {A(k)} rapidly converges to a
diagonal matrix thus providing the desired eigenvalues. The point is that the tridiagonal structure of A(1) is preserved, under
QR iterations which makes the above scheme fast and practical.
This process has been recently generalized to semiseparable matrices in [9,11,54,55]; but again, these methods are

not generalizations of the classical tridiagonal version, rather its analogs. The QR iteration algorithm for arbitrary order
symmetric quasiseparablematriceswas derived in [21] (non-Hessenberg quasiseparablematriceswill be defined below). As
opposed to its predecessors, the algorithm of [21] is a true generalization of the classical tridiagonal QR iteration algorithms
as well as of its semiseparable counterparts.
In this section we (i) describe how to precede the QR iteration algorithm of [21] with a method of reduction of a general

symmetricmatrix to a quasiseparable form (that admits, similarly to tridiagonalmatrices, sparse generator representations).
Two comments are due. First, there is a freedom in this reductionmethod. Hence, there is, in fact, a ‘‘family’’ of quasiseparable
matrices that can be obtained as a result, all similar to the original matrix. One member of this family is simply the
‘‘good old’’ tridiagonal matrix, indicating that our reduction scheme is a true generalization of the classical Householder
method. Secondly, as we will see in a moment, the structure of the reduced matrix can be better captured not by a general
quasiseparable representation, but rather by a more flexible out-of-band quasiseparable representation. The latter option
allows one to decrease the order of quasiseparability and hence to reduce the required storage. (ii) We observe that
(similarly to tridiagonal structure) the out-of-band quasiseparable structure is inherited under QR iterations. This observation
was exploited in [6,1] to derive a generalization of the algorithm of [21] that applies to the more general out-of-band
quasiseparable matrices.
This seems to be currently the most general algorithm of this type. Once again, the overall algorithm has a freedom in

choosing certain parameters, so that it is actually a family of algorithms that included the classical Householder QR algorithm
as a special case.

6.2. Reduction to tridiagonal form via Householder reflections

Before describing this new approach, we give a brief overview of the classical reduction to tridiagonal form. Recall that
for any two nonzero, distinct vectors x, y ∈ Cn, there exists a Householder reflection P such that Px = αy for some constant
α, and P = P−1. In particular, for any vector x, one can always find a matrix P such that

Px =


α
0
...
0


for some α. This fact can be used to reduce a given symmetric matrix to a similar tridiagonal matrix, implementing (i) above.
We illustrate the reduction on the following 4× 4 example:

A =

 a11 a21 a31 a41
a21
a31 A1
a41

 .
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Let P1 be such that

P1

[a21
a31
a41

]
=

[
?
0
0

]
, (6.1)

and then since A is symmetric, we have[
1 0
0 P1

] a11 a21 a31 a41
a21
a31 A1
a41

[ 1 0
0 P1

]
=

 a11 ? 0 0
?
0 P1A1P1
0

 ,
and repeating this procedure on P1A1P1, one gets a symmetric tridiagonal matrix that is similar to the original symmetric
matrix A.
We suggest a similar approach, but instead of a reduction to tridiagonal form, we give a reduction to a slightly modified

version of quasiseparable matrices for which this structure is particularly suited.

6.3. Reduction to (out-of-band) quasiseparable form

In this section we start with considering a more general class of quasiseparable matrices than (H, 1)-quasiseparable
matrices defined in Definition 2.5.

Definition 6.1 (Quasiseparable Matrices). A matrix A is called (nL, nU)-quasiseparable if

max(rankA21) = nL, and max(rankA12) = nU ,

where the maximum is taken over all symmetric partitions of the form

A =
[
∗ A12
A21 ∗

]
.

Wenext showhow the scheme of Section 6.2 can bemodified to reduce any symmetricmatrix to a quasiseparablematrix.
Consider again the 4× 4 example

A =

 a11 a21 a31 a41
a21 a22 a32 a42
a31 a32 A1a41 a42

 .
As opposed to (6.1), let us choose a matrix P2 such that

P2

([
a31
a41

]
−

[
a32
a42

])
=

[
?
0

]
,

and hence

P2

[
a31
a41

]
=

[
?
ã

]
, P2

[
a32
a42

]
=

[
?
ã

]
;

that is, the two products differ only in their first entry. Then, similar to above, we have

(6.2)

The above reduction step creates a dependence relation in the first and second rows, above the diagonal, and similarly in
the first and second columns below it. In other words, the top-right and lower-left blocks of the first symmetric partition are
low rank. Continuing in this fashion does not destroy this dependence, and results in a quasiseparable matrix. Two remarks
are due.

Remark 6.2. We emphasize at this point that the classical reduction to tridiagonal is but a special case of the reduction
described herein. Preceding what is described in this subsection with a Householder reflection P1 of (6.1) (i.e., the one
zeroing out the first column below the first two elements), the algorithm reduces precisely to tridiagonal form. Thus, we
have described a family of reductions (parameterized by the choice of P1, which can be arbitrary), one ofwhich is the classical
reduction to tridiagonal form.



T. Bella et al. / Theoretical Computer Science 409 (2008) 158–179 175

Remark 6.3. Secondly, depending on partitioning the matrix in (6.2) one obtains off-diagonal blocks of different ranks.
Specifically, the highlighted off-diagonal blocks of the left matrix in (6.2) clearly have rank at most two. On the other side,
with a different partitioning, the matrix on the right has highlighted blocks of rank one. As we shall see in a moment, it is
attractive to manipulate with blocks of lower ranks which motivates the definition given next.

Definition 6.4 (Out–of–Band Quasiseparable Matrices). A matrix A is called out-of-band (nL, nU)-quasiseparable (with a
bandwith (2k − 1)) if max(rankA31) = nL and max(rankA13) = nU , where the maximum is taken over all symmetric
partitions of the form

A =

 ∗ ∗ A13
∗ A22 ∗

A31 ∗ ∗

 ,
with any k× k A22.

Basically, a matrix is quasiseparable if the blocks above/below the main diagonal in symmetric partitions are low rank.
A matrix is off-band quasiseparable if the blocks above the first superdiagonal/below the first subdiagonal in symmetric
partitions are low rank, as illustrated next.

Remark 6.5. The class of out-of-band quasiseparable matrices is more general (and it is more efficient in capturing the
structure) than the class of band-plus-quasiseparablematrices. Indeed, consider a (2m−1)-bandmatrix (just as an example).
It can be immediately seen that it is (2m−3)-band plus orderm quasiseparable. At the same time it is clearly (2m−3)-band
plus order 1 out-of-band quasiseparable, i.e., the order of quasiseparability drops from m to 1 leading to savings in storage
and in reducing the cost.

6.4. QR iterations

Finally, the symmetric out-of-band quasiseparable structure is preserved under QR iterations. To show this, assume for
simplicity that we start with an invertible matrix A(1) and compute its QR factorizationA

(1)
11 A(1)12 A(1)13
A(1)21 A(1)22 A(1)23
A(1)31 A(1)32 A(1)33

 =
Q

(1)
11 Q (1)12 Q (1)13
Q (1)21 Q (1)22 Q (1)23
Q (1)31 Q (1)32 Q (1)33

 ·
R

(1)
11 R(1)12 R(1)13
0 R(1)22 R(1)23
0 0 R(1)33

 .
The next iterant, A(2) is obtained viaA

(2)
11 A(2)12 A(2)13
A(2)21 A(2)22 A(2)23
A(2)31 A(2)32 A(2)33

 =
R

(1)
11 R(1)12 R(1)13
0 R(1)22 R(1)23
0 0 R(1)33

 ·
Q

(1)
11 Q (1)12 Q (1)13
Q (1)21 Q (1)22 Q (1)23
Q (1)31 Q (1)32 Q (1)33

 ,
so that rankA(1)31 = rankQ

(1)
31 R

(1)
11 = rankR

(1)
33 Q

(1)
31 = rankA

(2)
31 . The fact that rankA

(1)
13 = rankA

(2)
13 follows from symmetry.

We refer to [6,1] for the details of the QR iteration algorithm for matrices with out-of-band quasiseparable structure, and
describe here its basic steps.
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Table 8
Divide and conquer eigenvalue algorithms
Matrix Algorithm
Tridiagonal Cuppen [15], Bini–Pan [12,13], Gu–Eisenstat [26]
Unitary Hessenberg Gragg–Reichel [29]
Semiseparable Mastronardi–Van Camp–Van Barel [39]

1. We startwith a (r, r)-out-of-band quasiseparablematrixwith the bandwidthm given by its generators.We first compute
two unitary matrices V and U and an upper triangular matrix R whose out-of-band orders of quasiseparability are
indicated below matrices, and the corresponding bandwidth is written on the top:

bandwidth=(2m−1)︷︸︸︷
A(1)︸︷︷︸
(r,r)

−σ I = V︸︷︷︸
(r,∗)

· U︸︷︷︸
(∗,2r)

·

bandwidth=(4m−2)︷︸︸︷
R︸︷︷︸

(0,2r)

Here σ is a standard shift that can be chosen to speed up the convergence of the QR method.
2. Then we compute the generators of Q which is a product of V and U:

A(1)︸︷︷︸
(r,r)

−σ I = Q︸︷︷︸
(r,2r)

· R.︸︷︷︸
(0,2r)

3. Finally we compute the generators of the next iterant A(2):

bandwidth=(2m−1)︷︸︸︷
A(2)︸︷︷︸
(r,r)

= R.︸︷︷︸
(0,2r)

· Q︸︷︷︸
(r,2r)

+σ I.

Since the algorithm avoids computations with matrix entries and manipulates only the generators, this is an efficient
algorithm using only linear storage.
As with the reduction described earlier in this section, the previously considered classes of tridiagonal, banded, and

semiseparable are special cases, and what is described is a generalization. As we have seen it above, these unifying
approaches are typical of what is offered by working with the superclass of quasiseparable matrices.

7. Eigenvalue problems: Divide and conquer algorithms

Another (now also standard) method for computing eigenvalues replaces the second step of Section 6 with two different
steps, based on the divide and conquer strategy [15]. This strategy is based on (i) the divide step, and (ii) the conquer step.

7.1. Tridiagonal matrices and divide and conquer algorithms

The divide step consists of transforming a single problem into two smaller problems with the same structure of size
roughly half of the original. This is done recursively until several small problems, say of size 2, can be solved very simply.
The conquer step consists of ‘‘stitching together’’ all of these solutions to small problems. That is, one needs to take the
solution of the two problems of half the size, and use them to compute the solution of the larger eigenvalue problem from
which the smaller problems were ‘‘divided’’. An overview of divide and conquer methods was given in Section 2.

7.2. Divide and conquer algorithms. Previous work

This idea was carried over from tridiagonal matrices to several other special structures, and the results of this work are
given in Table 8.
In a recent paper [1], one can find an algorithm that is a generalization of all of this previous work listed in Table 8, as we

consider the superclass of quasiseparablematrices. The input of our algorithm is a linear array of generators, and all known
algorithms can be obtained via using special generators listed in Table 3.

7.3. Generators of arbitrary order, non-Hessenberg quasiseparable matrices

We start with an analogue of Theorem 2.19, which provides generators of a (nL, nU)-quasiseparable matrix in
Definition 6.1.
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Theorem 7.1. Let A be an n × n matrix. Then A is an (nL, nU)-quasiseparable matrix if and only if there exists a set
{pj, qi, dl, gi, bk, hj} for i = 1, . . . , n− 1, j = 2, . . . , n, k = 2, . . . , n− 1, and l = 1, . . . , n, such that

@
@
@
@
@
@
@
@
@
@
@
@

@
@

@
@

@
@
@

@
@
@
d1

. . .

. . .

dn
pia×ij qj

gib×ij hj

A =

The generators of the matrix A are matrices of sizes

pk ak qk dk gk bk hk
sizes 1× r ′k−1 r ′k × r

′

k−1 r ′k × 1 1× 1 1× r ′′k r ′′k−1 × r
′′

k r ′′k−1 × 1
range k ∈ [2, n] k ∈ [2, n− 1] k ∈ [1, n− 1] k ∈ [1, n] k ∈ [1, n− 1] k ∈ [2, n− 1] k ∈ [2, n]

where

max
k
r ′k = nL max

k
r ′′k = nU

and

a×ij =
{
ai−1 · · · aj+1 for i > j+ 1
1 for i = j+ 1 , b×ij =

{
bi+1 · · · bj−1 for j > i+ 1
1 for j = i+ 1 .

Furthermore, using the generators of the previous theorem as well as the notations

Pm+1 = col
(
pka×k,m

)n
k=m+1 =


pm+1
pm+2am+1
pm+3am+2am+1

...
pnan−1 · · · am+2am+1

 , (7.1)

Qm = row
(
a×m+1,kqk

)m
k=1 =

[
am · · · a3a2q1 am · · · a3q2 · · · amqm−1 qm

]
, (7.2)

one can represent a Hermitian quasiseparable matrix A as

A =
[
Am Q ∗mP

∗

m+1
Pm+1Qm Bm+1

]
. (7.3)

7.4. New divide and conquer algorithm for arbitrary order quasiseparable matrices

Suppose that A is a Hermitian, quasiseparable matrix. Thus, by using the notations in Section 7.3, we have representation
(7.3) for any Hermitian quasiseparable matrix, and so

A =
[
Am Q ∗mP

∗

m+1
Pm+1Qm Bm+1

]
=

[
A′m 0
0 B′m+1

]
+

[
Q ∗m
Pm+1

] [
Qm P∗m+1

]
(7.4)

with6

A′m = Am − Q
∗

mQm, B′m+1 = Bm+1 − Pm+1P
∗

m+1. (7.5)

Notice that this is an expression of A as a block diagonal matrix plus a small rank matrix (the actual rank of this small rank
matrix depends on the order of quasiseparability).
In order to specify the divide step of a divide and conquer algorithm, we must show that once completed, the divide and

conquer algorithm could be applied recursively to the partitions A′m and B
′

m+1 of (7.5). Thus we show next that the algorithm
is applicable to A′m and B

′

m+1; that is, they are Hermitian and quasiseparable. In fact, a slightmodification of the next theorem
gives a more general result also valid for non-Hermitian matrices.

6When making this calculation we are assuming that these multiplications are well-defined, which can be accomplished by padding the generators to
appropriate size.
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Theorem 7.2. Let A be a Hermitian, order (k, k)-quasiseparable matrix. Then the matrices

A′m = Am − Q
∗

mQm, B′m+1 = Bm+1 − Pm+1P
∗

m+1

as defined above are Hermitian matrices that are quasiseparable of order at most (k, k).

Proof. We give the proof for A′m, the second part is analogous. Without loss of generality, we assume that r
′
m = r

′′
m = k (see

Theorem 7.1), which can easily be accomplished by padding given generators with zeros as needed. With this assumption,
the product Q ∗mQm is well defined and of the sizem×m as required.
For i > j (in the strictly lower triangular part), the definitions of A and Qm yield the (i, j)-th entry of A′m to be

A′m(i, j) = Am(i, j)− Q
∗

m(i)Qm(j) = pia
×

ij qj − q
∗

i (a
∗)×i,m+1a

×

m+1,jqj

and from the equality

a×m+1,j = amam−1 · · · aiai−1 · · · aj+1 = a
×

m+1,i−1a
×

i,j

this becomes

A′m(i, j) = pia
×

ij qj − q
∗

i (a
∗)×i,m+1a

×

m+1,i−1a
×

i,jqj =
(
pi − q∗i (a

∗)×i,m+1a
×

m+1,i−1

)
a×i,jqj (7.6)

giving the desired quasiseparable structure in the strictly lower triangular portion. From (7.6), we see that the sizes of the
resulting lower generators of A′m do not exceed those of Am, and hence A

′
m is lower quasiseparable of order at most k.

For the main diagonal, we similarly obtain

A′m(i, i) = di − gib
×

i,m+1a
×

m+1,jqj

and for the strictly upper triangular part where j > i, we note that since both Am and Q ∗mQm are Hermitian, their difference
is as well, and the upper part is hence also quasiseparable of the same order. This completes the proof. �

From this theorem it is clear that the quasiseparable structure of A is inherited by the matrices A′m and B
′

m+1, and the
Hermitian property is as well. This specifies the divide step of the algorithm.
Thus the eigenproblem is decomposed into two smaller eigenproblems, and by using a small-rank update they can be

solved using the common conquer step of [15].

8. Summary

In this paper we used the relatively new concept of quasiseparable matrices to generalize the algorithms of Traub,
Björck–Pereyra and Cuppen. These generalizations were based on the interplay between polynomial sequence with sparse
recurrence relations and classes of structured matrices. This is as opposed to previous approaches to obtaining algorithms
for e.g. the Szegö case, which yielded not generalizations but alternate algorithms valid only for that case. Our approach
using the quasiseparable structure is unifying; special choices of generators in our algorithm correspond to special cases of
quasiseparable matrices, and in this sense our method generalizes all previous works.
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