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Abstract— Eastern hemlock (Tsuga canadensis) is in rapid decline because of infestation by the invasive 42 

hemlock woolly adelgid (Adelges tsugae; ‘HWA’) and, to a lesser extent, the invasive elongate hemlock 43 

scale (Fiorinia externa; ‘EHS’). For many conifers, induced oleoresin-based defenses play a central role in 44 

their response to herbivorous insects; however, it is unknown whether eastern hemlock mobilizes these 45 

inducible defenses. We conducted a study to determine if feeding by HWA or EHS induced changes in the 46 

volatile resin compounds of eastern hemlock. Young trees were experimentally infested for three years with 47 

HWA, EHS, or neither insect. Twig and needle resin volatiles were identified and quantified by gas 48 

chromatography/mass spectrometry. We observed a suite of changes in eastern hemlock’s volatile profile 49 

markedly different from the largely terpenoid-based defense response of similar conifers. Overall, both 50 

insects produced a similar effect: most twig volatiles decreased slightly, while most needle volatiles 51 

increased slightly. Only HWA feeding led to elevated levels of methyl salicylate, a signal for systemic 52 

acquired resistance in many plants, and benzyl alcohol, a strong antimicrobial and aphid deterrent. Green 53 

leaf volatiles, often induced in wounded plants, were increased by both insects, but more strongly by EHS. 54 

The array of phytochemical changes we observed may reflect manipulation of the tree’s biochemistry by 55 

HWA, or simply the absence of functional defenses against piercing-sucking insects due to the lack of 56 

evolutionary contact with these species. Our findings verify that HWA and EHS both induce changes in 57 

eastern hemlock’s resin chemistry, and represent the first important step toward understanding the effects 58 

of inducible chemical defenses on hemlock susceptibility to these exotic pests.  59 

 60 

Key Words—Adelges tsugae; Fiorinia externa; Tsuga canadensis; plant-insect interactions; conifer 61 

volatiles: induction. 62 

 63 
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INTRODUCTION 64 

Conifers in the family Pinaceae are among the largest and longest-living organisms on earth. Their striking 65 

longevity means that individual trees face an imposing array of biotic and abiotic challenges.  They respond 66 

to these challenges via complex constitutive and inducible defenses that enable them to survive under 67 

highly diverse and taxing conditions and dominate vast areas of the earth’s temperate and alpine forests 68 

(Trapp and Croteau 2001, Dudareva et al. 2006). 69 

Conifers commonly use oleoresin-based chemical defenses to combat herbivorous insects and 70 

pathogens (Zulak and Bohlmann 2010). Oleoresin, or simply ‘resin,’ is a complex and species-specific 71 

mixture of phytochemicals that is usually dominated by volatile monoterpenoids and non-volatile 72 

diterpenoid acids but also contains smaller amounts of volatile organic chemicals such as sesquiterpenoids, 73 

benzenoids (including phenolics), and fatty acid derivatives.  These compounds are produced in resin-cells 74 

of buds, needles and woody tissue, and in some conifers (such as Pinus species) they accumulate in 75 

intercellular ducts or canals either constitutively or in response to trauma (Keeling and Bohlmann 2006). 76 

Many conifers can respond to insect and microbial challenges via inducible increases in the biosynthesis 77 

and accumulation of resin (Hudgins et al. 2004). These defenses variously act to physically engulf and 78 

expel insects from the tree by the force of resin flow, seal off infected regions from surrounding tissue, 79 

deter herbivory or oviposition, chemically interfere with insect developmental pathways, ATP production 80 

and nervous system functioning, and disrupt microbial cell membranes causing cell leakage and death 81 

(Langenheim 1994, Eyles et al. 2010). Herbivore attack can also induce the release of volatile resin 82 

semiochemicals that attract predators of the colonizing plant-feeder (Mumm et al. 2003, Koepke 2010).  83 

Over the last century, factors such as non-native pest introductions, forestry practices, and climate 84 

change have sharply increased the amount of conifer mortality due to pests or pathogen (Trapp and Croteau 85 

2001, Cudmore et al. 2010). The increasing frequency and severity of such outbreaks have spurred 86 

intensive molecular and biochemical research into the factors underlying host susceptibility and 87 

pest/pathogen defense in spruce (Picea; Bohlmann 2008), fir (Abies; Hain et al. 1991, Lewinsohn et al. 88 

1993a), and pine (Pinus; Sampedro et al. 2011) species. Defense induction in conifers by mechanical 89 

wounding (Lewinsohn et al. 1993a), experimental insect attack (Miller et al. 2005, Sampedro et al. 2011) or 90 

‘simulated’ herbivory by application of chemical elicitors such as methyl jasmonate (Martin et al. 2002, 91 
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2003, Sampedro et al. 2010) leads to dramatic increases in bark and stem-wood terpenoid accumulation and 92 

volatile release from needles.  An increasing number of the active genes and biosynthetic enzymes 93 

underlying defensive chemical outputs in these conifer systems have been identified, establishing strong 94 

evidence that resin-based—and primarily terpenoid-based—chemical defenses are central to the trees’ 95 

evolved responses to insect or pathogen colonization (Franceschi et al. 2005, Keeling and Bohlmann 2006). 96 

In eastern North America, the invasive twig-feeding hemlock woolly adelgid (Adelges tsugae; 97 

‘HWA’) threatens to extirpate the native eastern hemlock (Tsuga canadensis Carr.; McClure and Cheah 98 

1999). The first documented population of the adelgid in eastern North America was detected in the early 99 

1950s, and appears to be of Japanese origin (Havill et al. 2006).  The insect has now spread to the southern 100 

extent of eastern hemlock’s range in northern Georgia, and is moving northward into Vermont, New 101 

Hampshire, and Maine (Preisser et al. 2008, Forest Health Protection Program 2011). The insect can take a 102 

year or two to reach high densities, but its effect on hemlocks is needle desiccation, branch mortality, and 103 

marked suppression of new spring growth, often leading to tree death in four years or less (McClure 104 

1991a). As the only native shade-tolerant conifer in the eastern United States, eastern hemlock acts as a 105 

foundation species (sensu Ellison et al. 2005) that creates cool and moist microclimates in the midst of 106 

deciduous forests. The nearly complete removal of mature and seedling eastern hemlocks following HWA 107 

infestation (Preisser et al. 2011) substantially increases soil and stream temperatures, alters soil chemistry 108 

and nutrient cycling patterns, and favors fast-growing, early-successional trees—a series of changes that 109 

dramatically transforms the forest landscape (Orwig et al. 2008, Gandhi and Herms 2010). The elongate 110 

hemlock scale (Fiorinia externa; ‘EHS’) is another exotic pest of eastern hemlock; an armored scale 111 

introduced to the Northeastern United States in the early 20th century, this insect is also now present in 112 

much of the tree’s range and continues to spread northward (Preisser et al. 2008). Reports seemingly based 113 

on observational, rather than experimental, evidence suggest that although EHS is usually not lethal, high 114 

densities can cause significant needle loss and contribute to the mortality of already stressed trees (McClure 115 

1980, Abell and Van Driesche 2012).  116 

Despite the existence of several studies documenting a correlation between terpenoid levels and 117 

herbivory in eastern hemlock, there has been no direct investigation into whether either of these exotic 118 

pests elicits resin defenses in eastern hemlock. One study reported a positive correlation between volatile 119 
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terpenoid levels and the fecundity of both EHS and a second armored scale pest of eastern hemlock 120 

(McClure and Hare 1984). Lagalante and Montgomery (2003) compared the constitutive volatile terpenoid 121 

profiles of HWA resistant and susceptible Tsuga species and suggested that several volatile terpenoids may 122 

act as deterrents or attractants (‘feedants’) to HWA. In a follow up study focused on eastern hemlock, 123 

Lagalante et al. (2006) measured spatial and temporal variability in resin volatiles and hypothesized that 124 

these phytochemical fluctuations drive the HWA’s unusual annual patterns of settlement, aestivation, and 125 

feeding.  European silver fir (Abies alba), a conifer of a genus related to Tsuga, showed increased levels of 126 

monoterpenoid accumulation in bark naturally infested with Adelges piceae, the balsam woolly adelgid 127 

(Hain et al. 1991).  In addition, western hemlock (Tsuga heterophylla) responded to simulated herbivory 128 

(treatment with methyl jasmonate) in a manner typical of the conifers of Pinaceae: traumatic resin ducts 129 

formed and terpenoid concentrations increased (Hudgins et al. 2004).  This evidence suggests resinosis may 130 

also occur in species of Tsuga. However, despite the prevalence of research into herbivore-defense 131 

responses of other conifers of Pinaceae, little is known about the inducible resin defenses of hemlocks.  132 

There is growing evidence that HWA infestation induces changes in eastern hemlock chemistry 133 

and physiology. Evidence of a localized and systemic hypersensitive response (a common plant defense 134 

against pathogens and sessile herbivores leading to tissue necrosis at the infected site; Radville et al. 2011), 135 

substantially higher foliar free amino acid concentrations (Gomez 2012), changes in woody plant anatomy 136 

(Gonda-King et al. 2012) and a reduction of both new growth and percent total foliar nitrogen (Miller-137 

Pierce et al. 2010) have been reported in response to HWA feeding on eastern hemlocks. EHS, on the other 138 

hand, appeared to produce only a localized hypersensitive response and did not significantly affect free 139 

amino acid concentration, percent total foliar nitrogen, woody plant anatomy, or subsequent new growth.  140 

We investigated whether HWA or EHS infestation induced oleoresin production in eastern 141 

hemlock, an ecologically unique native U.S. conifer in rapid decline in many areas. Previous research has 142 

suggested spatial and temporal fluctuations in volatile resin compounds can influence the establishment of 143 

colonizing hemipteran herbivores (McClure and Hare 1984, Lagalante et al. 2006).  To test this, we 144 

measured levels of resin volatiles in both twigs and needles of eastern hemlocks experimentally infested 145 

with HWA, EHS or neither insect in early summer and again in mid-autumn, each time following periods 146 

of active feeding by both insects. We predicted that both insects would elicit changes in the concentrations 147 
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or composition of volatile resin compounds. We hypothesized that an agent as rapidly lethal as HWA 148 

would elicit a defensive resinosis typical of many conifers of Pinaceae: pronounced increases in toxic or 149 

deterrent phytochemicals, especially terpenoids. We also predicted that the much milder effects of EHS on 150 

the host tree’s physiology (Miller-Pierce et al. 2010, Radville et al. 2011, Gonda-king et al. 2012, Gomez et 151 

al. 2012) would be accompanied by an induced resin response distinct from that of HWA.  152 

 153 

METHODS AND MATERIALS 154 

Study System. Eastern hemlock buds begin opening in May in the Northeastern United States, and the 155 

young new growth shoots, at first green and pliant, complete their elongation at approximately the end of 156 

summer.  By that time the foliage has hardened and taken on the form and appearance of the fully mature, 157 

previous year growth.   158 

The HWA completes two clonal generations per year in eastern North America, as in its range of 159 

origin in Japan (McClure and Cheah 1999). In the Northeastern United States, first instar nymphal crawlers 160 

of the progredien generation settle in April (before bud-break) on already mature previous year’s growth 161 

just below the needle abscission layer and feed through a stylet bundle on xylem ray parenchyma cells in 162 

the twig (Young et al. 1995). The sexuparae, a winged, sexually reproducing generation of HWA, hatch 163 

concurrently with the clonal female progrediens and, in Japan, subsequently disperse  to a spruce (Picea) 164 

primary host to complete reproduction. Sexuparae in North America are unable to complete their life-cycle 165 

due to the absence of a suitable spruce host andthus, only asexual reproduction occurs. The sessile 166 

progredien adults complete egg laying in June, at which point the crawlers of the sisten generation emerge, 167 

settle preferentially on the new, young current year’s growth, and promptly enter aestivation. In early fall, 168 

by the time the new growth has matured, the sisten nymphs resume feeding, completing development and 169 

oviposition in April (McClure and Cheah 1999).  170 

The EHS completes two full generations per year in its natural range in Japan, but in the 171 

Northeastern United States it appears to lack a distinct and regular cycle of life stage development, and 172 

completes between one and two generations annually (Abell and Driesche 2012). First instar nymphs begin 173 

to hatch in early June and settle preferentially on the undersides of young hemlock needles.  EHS is also a 174 

sessile stylet feeder, inserting a thread-like stylet bundle and sucking fluid from needle mesophyll cells 175 
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(McClure 1980).  Since generation times in the Northeast are irregular, life stages appear to overlap and 176 

often two or more instars may be found developing concurrently on the same foliage (Abell and Driesche 177 

2012).     178 

 179 

Experimental Design. In April 2007, eastern hemlock saplings (0.7-1.0m) were removed from Cadwell 180 

Experimental Forest (Pelham, MA, USA) and planted in an open field setting (East Farm, Kingston, RI, 181 

USA) in a rectangular grid.  The source forest was free of both HWA and EHS at the time of collection, 182 

and careful inspection of the sapling trees revealed no prior infestation by either insect. Artificial 183 

infestation with HWA, EHS, or neither insect was randomly applied to the saplings. Because both insects 184 

are wind-dispersed during their first-instar crawler phase, each tree (including all uninfested controls) was 185 

enclosed in a mesh cage annually from early spring to late fall to prevent cross-contamination. Each of the 186 

1 m x 1 m x 2 m (length by width by height) cages consisted of a plastic PVC pipe frame covered by 187 

mosquito netting (97 holes/cm2 mesh size). Weed-inhibiting fabric (1 m2) was placed around the base of 188 

each tree. By 2010, a combination of insect cross-contamination and tree death from transplantation-related 189 

stress reduced the level of replication to nine trees in the HWA treatment, seven trees in the EHS treatment, 190 

and eight trees in the control treatment.  191 

  192 

Insect Inoculations. Insect inoculations were conducted following standard procedures (see Butin et al. 193 

2007). Briefly, trees were inoculated with insects each spring from 2007 to 2010 to mimic natural 194 

infestation cycles. Immediately prior to crawler emergence (May for HWA, June for EHS), naturally-195 

infested branches with comparable insect densities were collected from sites in southern New England and 196 

attached to trees in the appropriate treatment group; control trees received uninfested branches. Individual 197 

branches were placed in aquapics to slow needle desiccation and decrease insect mortality.  198 

 199 

Plant Material. Plant tissue samples were collected from each tree in late June 2010 (fully mature, previous 200 

year foliage segments) after the first-instar crawlers of both insects had settled and commenced feeding, 201 

and again in mid-October 2010 (young, current year growth twigs) after settled HWA had ceased 202 

aestivation and resumed feeding.  An average of 10 cm of twig with foliage was clipped; in the case of the 203 
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insect treatments, infested foliage samples were selected.  Each sample was placed in a polypropylene 204 

cryovial, flash-frozen in liquid nitrogen, transported to the laboratory on dry ice and stored at –80°C until 205 

extraction and analysis.  206 

 207 

Extraction of Resin Volatiles. Extraction of resin volatiles was modified from a protocol developed by 208 

Lewinsohn et al. (1993b). All reagents and reference standards were obtained from Sigma-Aldrich (St. 209 

Louis, MO, USA). Solvents were HPLC or GC grade purity.  210 

Needles were separated from twigs and ground to a homogenous powder using a mortar and pestle 211 

under liquid nitrogen.  Approximately 100-200 mg (dry weight) of needle tissue was combined with methyl 212 

tert-butyl ether (MTBE; 1.3-1.5 mL) containing a known concentration of isobutylbenzene (40 µg mL-1) as 213 

an internal standard in a pre-weighed 2 mL vial (glass with PTFE-coated screw cap, Sigma-Aldrich, St. 214 

Louis, MO, USA). Needle samples were extracted overnight (20 h) with constant shaking at room 215 

temperature. Each extract was transferred to a fresh glass vial and washed with aqueous (NH4)2CO3 (0.3 216 

mL, 1 M) to neutralize acidic impurities. The organic layer was then filtered through a Pasteur pipette 217 

column packed with silica gel (0.3 g, Sigma-Aldrich, 60Å) overlaid with MgSO4 (0.2 g). Oxygenated 218 

volatile compounds were subsequently eluted by washing the filter with diethyl ether (1 mL), and 219 

combined eluates were collected in a GC vial (PTFE-coated screw cap, Agilent Technologies, Santa Clara, 220 

CA, USA) and stored at -20°C until analysis.  221 

Twig samples of approximately 10-50 mg (dry weight) were cooled with liquid nitrogen in a 222 

mortar and pestle, ground to a coarse powder, and combined with MTBE (1.0 mL) containing 223 

isobutylbenzene (2 µg mL-1) in a 2 mL glass vial. Twigs were extracted overnight (19 h) with constant 224 

shaking at room temperature. Aqueous (NH4)2CO3 (0.2 mL; 1 M) was added to each extract, followed by 225 

thorough mixing. The organic layer was then transferred directly to a Pasteur pipette filter packed with 226 

silica gel (0.2 g, 60Å) overlaid with MgSO4 (0.13 g). The filter was washed with diethyl ether (0.5 mL), 227 

and combined eluates were collected and stored as described above. After extraction, each sample was 228 

dried for at least 48 hours at 55-60°C and weighed for the determination of tissue dry weight.  229 

 230 



9 

Analysis of Resin Volatiles. Needle volatile extracts were analyzed on a Hewlett-Packard (HP) 6890 GC 231 

equipped with a flame ionization detector (FID). For all analyses, the injection volume was 1 µL, injector 232 

temperature 220°C. Volatile compounds were separated on an Agilent DB-5, 0.25 mm i.d. x 30 m, 0.25 µm 233 

coating thickness, fused silica capillary column. H2 carrier gas flow was a constant 1.0 mL min-1 and the 234 

split ratio was 20:1. The FID was heated to 250°C, with H2 flow at 40 mL min-1, air flow 350 mL min-1, 235 

and constant make-up flow (N2) at 45 mL min-1. The GC oven was programmed with an initial temperature 236 

of 60°C (no hold), an increase at 3°C min-1 to 156°C, then 50°C min-1 to 300°C (hold 3 min). GC-FID 237 

generated peaks were integrated using HP ChemStation software (Agilent technologies). Datafiles for five 238 

of the October needle samples were corrupted, reducing the level of replication to seven trees in the HWA 239 

treatment, six trees in the EHS treatment, and six trees in the control treatment. 240 

 For all compound identifications, as well as all twig volatile quantification, analyses were 241 

performed on a Shimadzu GC-2010 system equipped with a QP2010-Plus mass spectrometer (EI mode, 70 242 

eV), running GCMSolution software (Shimadzu Corporation, Kyoto, Japan). Separations were performed 243 

on the same column as described above for GC-FID. The injection volume was 1 µL and injector 244 

temperature 220°C. Helium carrier gas flow was in constant linear velocity mode at 36.5 cm sec-1, with 245 

column flow set at 1.0 mL min-1 and a split ratio of 5:1. The GC oven was programmed with an initial 246 

temperature of 60°C (no hold), an increase at 3°C min-1 to 175°C, then 30°C min-1 to 300°C (hold 5 min). 247 

The interface and ion source temperatures were both set at 300°C, and the MS scan range was m/z 40-400.  248 

Identification of each volatile compound was, wherever possible, based on comparison of the 249 

experimental retention time and mass spectrum with those of an authentic standard (indicated in Table 1); 250 

when a pure standard was unavailable, tentative identification was based on comparison with retention 251 

index and mass spectral information reported in the literature (Adams 2001) and with mass spectra in the 252 

NIST05 and NIST05s mass spectral libraries (Stein 2005). Concentrations of all compounds were 253 

determined by normalizing integrated peak areas against that of the internal standard isobutylbenzene in 254 

each chromatogram. Each tissue volatile concentration value was standardized to ‘ug g-1 dry weight’ by 255 

dividing by the sample dried weight. 256 

Since both the HWA and the EHS are quite small and adhere tightly to their twig or needle feeding 257 

sites, complete removal of insects and their ovisacs from infested samples prior to analysis was not 258 
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practical.  To test whether detected volatiles could potentially be of insect, rather than hemlock, origin, we 259 

obtained several samples of HWA-infested foliage of comparable size and insect density to our 260 

experimental samples, collected the insects, eggs, and the wax of ovisacs into vials, and extracted and 261 

analyzed the insect material using the plant-volatile protocol described herein.  262 

 263 

Statistical Analysis. Resin volatile concentrations were log transformed prior to statistical analysis to 264 

reduce heterogeneity of variance.  Two-way mixed-model ANOVAs (Proc Mixed, SAS 9.3; SAS Institute 265 

2011) were used to test twigs and needles separately for treatment-level differences in the concentration of 266 

individual volatiles, total monoterpenoids, total sesquiterpenoids, total green leaf volatiles (needles only) 267 

and total combined benzenoids (including phenolics; twigs only) with month (June vs. October) and 268 

treatment (HWA, EHS and control) as fixed factors and tree as a random factor. Mixed-model analyses 269 

were appropriate because we sampled from the same trees in both months. We also used ANOVA planned 270 

contrasts to separately test HWA and EHS treatment means against the control mean, using treatment as the 271 

fixed factor (R 2.14.0; R Development Core Team 2012).  272 

Familywise error rate for the mixed model analyses was evaluated using a false discovery rate 273 

(FDR) estimation method (‘fdrtool’ software package; R 2.14.0; Strimmer 2008).  FDR techniques are now 274 

used widely with multiple simultaneous hypothesis testing to estimate the proportion of tests with 275 

incorrectly rejected null hypotheses among tests with statistically significant findings.  This is in contrast to 276 

traditional familywise error rate correction methods (e.g. the sequential Bonferroni) that estimate the 277 

probability of a false rejection among all tests conducted and, arguably, unnecessarily sacrifice statistical 278 

power.  279 

As an additional measure of the overall strength of evidence for our mixed-model hypothesis test 280 

findings, we used the following binomial equation (sensu Moran 2003) to calculate the overall probability 281 

of obtaining K tests with P-values smaller than our specified α-level:  282 

PB = N!/ N −K( )!K![ ]× α K 1−α( )
N −K

 283 

where N = number of tests.  This procedure allowed us to estimate the probability that so many statistically 284 

significant treatment effects could arise by chance (i.e. could be ‘false positives’). 285 

 286 
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RESULTS 287 

The overall effects of infestation with HWA and EHS were very similar in both June 2010 (mature 288 

previous year’s growth) and October 2010 (young current year’s growth) samples. Both insects produced a 289 

notable trend of decreases of most individual twig volatiles, though only a modest fraction of these 290 

decreases carried statistical significance; the same trend of largely non-significant decreases was observed 291 

for total twig volatile levels. Conversely, both insects produced a largely non-significant but also notable 292 

trend of increases of most needle volatiles (Table 1), with the same non-significant trend of increases for all 293 

measures of total needle volatiles. Across all treatments, the total twig or needle monoterpenoid levels were 294 

25-40% higher in the young current year’s growth than in the mature previous year’s growth (Table 2A, B). 295 

Total needle sesquiterpenoids followed a similar pattern, while current year’s growth twigs had volatile 296 

concentrations 65-70% higher than previous year’s growth.  297 

In twig tissue, 16 monoterpenoids, five sesquiterpenoids, and six benzenoid or phenolic 298 

compounds were present in quantities sufficient for identification and quantification (Fig 1A); in needle 299 

tissue, the corresponding numbers were 18 monoterpenoids, five sesquiterpenoids, one benzenoid, and 300 

three fatty acid derivatives (i.e. green leaf volatiles or ‘GLVs’; Fig 1B). Qualitatively, needle and twig 301 

volatile profiles were overlapping but different (Table 1). Monoterpenoids dominated in terms of both 302 

diversity and mass contribution, and had the greatest effect on the induced changes of total volatiles. 303 

Sesquiterpenoids, present at somewhat lower abundance, generally increased in both twigs and needles.  304 

GLVs were detected only in needle tissue, and were consistently increased by both insects, especially by 305 

EHS—the total amount of these compounds had nearly doubled from June to October; Fig. 2. 306 

The effects of insect feeding on volatile concentration were larger in twigs than in needles (Table 307 

1, Online Resource 2). In twigs, the results of mixed-model ANOVAs (Online Resource 2A) show that 308 

HWA feeding significantly (P<0.05) or marginally significantly (0.05<P<0.10) decreased five of 17 309 

individual monoterpenoids and two unidentified volatiles; additionally, the dramatic increases in the 310 

benzenoid benzyl alcohol (more than 30-fold in June and about 10-fold in October; Fig. 3) and the 311 

monophenolic phytohormone methyl salicylate (‘MeSA’; two orders of magnitude in June and more than 312 

10-fold in October; Fig. 4) were both significant. EHS feeding decreased two monoterpenoids significantly. 313 

Both insects decreased the monophenolic raspberry ketone and several other monoterpenoids with marginal 314 
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significance.  HWA feeding significantly decreased total monoterpenoids, while EHS feeding decreased 315 

both total monoterpenoids and total volatiles with marginal significance. HWA feeding marginally 316 

increased total benzenoids, while EHS feeding marginally decreased these compounds (Online Resource 317 

2A).   318 

In needles, (Online Resource 2B) EHS feeding increased cis-3-hexenal and total GLVs 319 

significantly, and increased trans-2-hexenal and the benzenoid p-cymene with marginal significance.  320 

There were no significant effects of HWA feeding on needle volatile levels.  321 

Results of planned contrast ANOVA comparisons of average control versus treatment volatile 322 

concentrations were quite similar to those we obtained using the mixed model analyses.  Significance 323 

values from these simpler analyses are indicated in Table 1. 324 

The binomial probability that the 60 twig volatile mixed model tests we ran would generate P-325 

values smaller than the ones we observed was PB=0.00014 if calculated at the α=0.05 level, or 4.7 x 10 -9 if 326 

calculated at the α=0.10 level. For the 54 needle volatile tests, the overall probability of no ‘real’ effect 327 

was greater: PB=0.18, and 0.12, respectively.  328 

Estimated false discovery rate for twig volatile hypothesis tests is reported as q-value alongside 329 

each test’s nominal P-value (Online Resource 2A). The q-value is the minimum FDR level that would be 330 

needed to reject that hypothesis.  Selection of an appropriate FDR level, in turn, depends on the proportion 331 

of false rejections considered tolerable. We did not report FDR for needle volatile hypothesis tests (Online 332 

Resource 2B). Since the method estimates the proportion of false rejections among only tests with 333 

significant findings—and there was just one out of 54 needle volatile hypothesis tests that was statistically 334 

significant—in that case an estimate of FDR was superfluous. 335 

 336 

DISCUSSION 337 

We found evidence of an induced response in eastern hemlock during infestation by both HWA and EHS , 338 

encompassing a number of feeding-elicited changes in the tree’s resin volatile profile.  However, the 339 

modest  induction (mostly decreases) of resin metabolites in twig tissue and the non-significant trend of 340 

modest increases in needle tissue produced by both insects, was conspicuously different from the profuse 341 

resinosis observed in insect-infested pines, spruces, and firs (Trapp and Croteau 2001). In light of the 342 
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considerable evidence that HWA induces more extensive changes in eastern hemlock physiology than does 343 

EHS (Miller-Pierce et al. 2010, Radville et al. 2011, Gonda-King et al. 2012, Gomez 2012), the observation 344 

that HWA and EHS produced similar overall changes in the tree’s volatiles was intriguing and ran counter 345 

to our predictions.  346 

In contrast to the modest changes in terpenoid levels, a number of the non-terpenoids were sharply 347 

increased by HWA feeding, in what may reflect a hemlock defense response (Table 1). Benzyl alcohol was 348 

induced in HWA-infested trees; this compound is a common plant volatile (Dudareva et al. 2008) 349 

previously detected in the stem-wood of mountain hemlock (T. mertensiana; Shepherd et al. 2008) and in 350 

volatiles released from mite-infested spruce foliage (Kannaste 2008; Fig. 3). In screening studies, benzyl 351 

alcohol deterred feeding by the greenbug aphid Schizaphis graminum, reducing fecundity and causing 352 

substantial mortality (Formusoh et al. 1997).  MeSA, which was also induced by HWA (Fig. 4), has been 353 

found in the volatile mix released after aphid feeding and identified as a deterrent to aphid settling and 354 

fecundity in a number of plant-insect systems (Hardie et al. 1994, Quiroz et al. 1998).  355 

The sharp increase of these two compounds in HWA-infested trees (Table 1) is notable in light of 356 

the growing body of evidence that some plants respond to piercing-sucking hemiptera by activating 357 

biosynthetic pathways similar or identical to those used in pathogen defense (Kaloshian and Walling 2005). 358 

Benzyl alcohol is a strong antimicrobial agent against diverse microorganisms (Shenep et al. 2011), while 359 

MeSA, the volatile methyl ester of salicylic acid (SA), activates a SA-dependent biosynthetic cascade in 360 

numerous plants that leads to systemic acquired resistance (SAR) against pathogen infection (Durrant and 361 

Dong 2004).  For aphids, close relatives of adelgids, feeding has been shown in many studies to activate the 362 

SA-dependent biosynthetic pathways normally associated with pathogen defense (Moran and Thompson 363 

2001, Martinez de Ilarduya et al. 2003, Zhu-Salzman et al. 2004) or to induce pathogen-resistance outright 364 

in their host plant (Russo et al. 1997).  The elevated levels of these two compounds in HWA-induced 365 

hemlock tissue is a sign that a SA-driven insect defense syndrome may be active in HWA-infested trees.   366 

It is also possible that increased production of these volatiles reflects the tree’s detection of a 367 

microbial associate of HWA rather than of the insect itself.  An endosymbiont was recently found 368 

throughout the body of the HWA and appears essential to the insect’s survival (Shields and Hirth 2005).  It 369 
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is possible that the hemlocks may be responding to this bacterium, if it is introduced into the vascular tissue 370 

of eastern hemlock during HWA feeding, by mobilizing a pathogen defense response. 371 

Our results may help elucidate why HWA causes more extensive damage to eastern hemlock than 372 

EHS. Radville et al. (2011) detected evidence of a local hypersensitive response (elevated hydrogen 373 

peroxide levels) in both EHS- and HWA-infested trees, and showed that this hypersensitive response 374 

occurs systemically in response to HWA-infestation. The hypersensitive response usually precedes the 375 

development of SAR (Durrant and Dong 2004, Kaloshian and Walling 2005). Research on tobacco has 376 

revealed that in pathogen-infected plant tissue SA is enzymatically converted to the volatile MeSA, which 377 

acts as a mobile agent that is taken up by receptors on distant, uninfected tissue.  There, the MeSA is 378 

demethylated and transformed back to SA, which in turn activates an induced resistance response to the 379 

invading organism (i.e. SAR; Shulaev et al. 1997, Park et al. 2007). Our discovery that MeSA levels were 380 

elevated in only the HWA-infested trees suggests this compound could be a mobile signal that propagates 381 

the ‘pathogen-like’ effects of the adelgid on uninfested foliage, extending the insect’s effects and 382 

intensifying the overall damage to the tree. The observation that HWA elicited such a response, but EHS 383 

did not, may reflect the species-specific nature of the hemlock defense elicitors carried in the insects’ 384 

salivary secretions, as has been observed in at least one other hemipteran-plant interaction (Ven et al. 385 

2000).  386 

The HWA-driven increases we observed in levels of benzyl alcohol and MeSA may also help 387 

explain previously noted changes in the primary chemistry of the hemlock saplings of the present study 388 

(Gomez et al. 2012). Although much of the biosynthetic pathway for the benzenoids has yet to be 389 

determined, radio-labeling experiments show they are derived from L-phenylalanine (Dudareva et al. 390 

2006). As with benzyl alcohol and MeSA, a marked increase in L-phenylalanine and many other free 391 

amino acids occurred in trees infested with HWA, but not EHS (Gomez et al. 2012). Thus the increased 392 

amino acid levels in HWA-infested trees may constitute an adaptive mobilization of precursors of defense-393 

related volatile compounds. 394 

 Alternatively, adelgid manipulation of host-plant biochemistry could explain a number of the 395 

insect-induced changes in resin chemistry we have shown. HWA, like many adelgids, forms extensive galls 396 

on the buds of its primary spruce host in its original range in Asia (Havill and Foottit 2007). Galling insects 397 
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are known to be adept at manipulating host plant physiology to create a more nutritious and less defended 398 

environment (Tooker and Moraes 2009). We have demonstrated a substantial decrease in monoterpenoids, 399 

often compounds of direct defense against herbivory (Eyles et al. 2010, Schiestl 2010), in the tissue where 400 

the adelgid feed.  Our results also show a less pronounced elicitation of GLVs (typical wounding response 401 

volatiles; Fig. 2; Shiojiri et al. 2006) in response to the feeding of HWA, relative to EHS, despite the 402 

adelgid’s much greater impacts on tree physiology (Miller Pierce et al. 2010, Radville et al. 2011, Gonda-403 

King et al. 2012).  These observations, considered together with the noted increase in free amino acids only 404 

in HWA-infested trees (Gomez at al. 2012), may constitute evidence that the host-manipulating capacity 405 

conserved in adelgid biology may be an underlying mechanism in this system.  406 

Lagalante et al. (2006) suggested that the lack of a co-evolutionary history between eastern 407 

hemlock and sessile piercing-sucking insects resulted in the absence of biosynthetic pathways with which 408 

eastern hemlock can defend against insects like HWA and EHS. This hypothesis is consistent with the 409 

finding of little or no output of anatomical of chemical resin defenses.  However, we did observe a resin 410 

chemical response to HWA, and to the co-occurring EHS, though perhaps of a subtler nature than that often 411 

seen in other conifers.  It is possible that the resistance traits HWA elicits in eastern hemlock are simply not 412 

well matched to the actual challenge of this introduced insect and do not confer resistance. A comparison of 413 

the induced response of susceptible eastern hemlocks to those of HWA-resistant Tsuga species and strains 414 

of eastern hemlock believed resistant to HWA, as well as conifers with putative resistance to EHS 415 

(McClure and Fergione 1977), will test these hypotheses.  Nonetheless, our findings establish that HWA 416 

and EHS both induce changes in the resin chemistry of eastern hemlock, and constitute the first critical step 417 

toward understanding the role inducible chemical defenses play in determining hemlock susceptibility to 418 

these exotic hemipteran pests.  419 
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FIGURES AND TABLES 591 

Table 1  Resin volatile concentration relative change (treatment average/control average ratio) for eastern 592 

hemlock saplings treated with 3-year artificial infestation with hemlock woolly adelgid (HWA) or elongate 593 

hemlock scale (EHS) 594 

 595 
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Fig. 1  (A) GC-FID total ion chromatogram showing volatiles tentatively identified in HWA-infested 597 

eastern hemlock needles: 1, cis-3-hexenal; 2, n-hexanal; 3, trans-2-hexenal; 4, tricyclene; 5, α-pinene; 6, 598 

camphene; 7, sabinene; 8, β-pinene; 9, myrcene; 10, α-phellandrene; 11, isobutylbenzene (internal 599 

standard); 12, p-cymene, 13, D-limonene; 14, γ-terpinene, 15, terpinolene; 16, camphor; 17, borneol; 18, 4-600 

carvomenthenol; 19, p-menth-1-en-9-ol; 20, α-terpineol; 21, trans-piperitol; 22, piperitone; 23, bornyl 601 

acetate; 24, β-caryophyllene; 25, α-humulene; 26, germacrene-D; 27, α-amorphene; 28, δ-cadinene. (B) 602 

GC-MS total ion chromatogram showing volatiles in HWA-infested twigs: 1, tricyclene; 2, α-pinene; 3, 603 

camphene; 4, β-pinene; 5, myrcene; 6, isobutylbenzene (internal standard); 7, p-cymene; 8, D-limonene; 9, 604 

benzyl alcohol; 10, unknown; 11, unknown; 12, α-campholenal; 13, L-trans-pinocarveol; 14, cis-verbenol; 605 

15, trans-verbenol; 16, pinocarvone; 17, borneol; 18, p-cymen-8-ol; 19, methyl salicylate; 20, myrtenol; 21, 606 

verbenone; 22, cis-carveol; 23, bornyl acetate; 24, unknown; 25, β-caryophyllene; 26, 3,4-607 

dimethoxyphenol; 27, α-humulene; 28, germacrene-D; 29, α-amorphene; 30, raspberry ketone; 31, 608 

caryophyllene dioxide. 609 

 610 

Fig. 2  Green leaf volatile (‘GLV’) content (average ± SE) in needle tissue of control and insect-infested 611 

eastern hemlocks. ‘HWA’ or ‘EHS’ represents 3-year artificial infestation with hemlock woolly adelgid (A. 612 

tsugae) or elongate hemlock scale (F. externa). Data represents the average concentration (µg⋅g dry wt-1) of 613 

total GLVs in mature previous year growth (sampled 28 June) and young current year growth (sampled 19 614 

October), calculated from 6 to 9 trees per treatment group. P-values are shown when the difference 615 

between the treatment and control trees was significant (P<0.05), or marginally significant (0.05<P<0.10; 616 

planned contrast). 617 

 618 

Fig. 3  Benzyl alcohol content (average ± SE) in twig tissue of control and insect-infested eastern hemlock 619 

trees. ‘HWA’ or ‘EHS’ represents 3-year artificial infestation with hemlock woolly adelgid (A. tsugae) or 620 

elongate hemlock scale (F. externa). Data represents the average concentration (µg⋅g dry wt-1) of benzyl 621 

alcohol in mature previous year growth (sampled 28 June) and young current year growth (sampled 19 622 

October), calculated from 7 to 9 trees per treatment group. P-values are shown when the difference 623 



25 

between the treatment and control trees was significant (P<0.05), or marginally significant (0.05<P<0.10; 624 

planned contrast). 625 

 626 

Fig. 4  Methyl salicylate content (average ± SE) in twig tissue of control and insect-infested eastern 627 

hemlock trees. ‘HWA’ or ‘EHS’ represents 3-year artificial infestation with hemlock woolly adelgid (A. 628 

tsugae) or elongate hemlock scale (F. externa). Data represents the average concentration (µg⋅g dry wt-1) of 629 

methyl salicylate in mature previous year growth (sampled 28 June) and young current year growth 630 

(sampled 19 October) calculated from 7 to 9 trees per treatment group. P-values are shown when the 631 

difference between the treatment and control trees was significant (P<0.05), or marginally significant 632 

(0.05<P<0.10; planned contrast). 633 
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 Fig. 1 641 
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Fig. 2 644 
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Fig. 3 655 
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Fig. 4 665 
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ELECTRONIC SUPPLEMENTARY MATERIALS 

 

 

 
 

Online Resource 1  Structures of representative volatile compounds of eastern hemlock (Tsuga canadensis 
Carr.): (A) monoterpenoids, (B) sesquiterpenoids, (C) green leaf volatiles (GLVs) and (D) benzenoids 
detected in twig or needle tissue of young trees. 
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Online Resource 2A  Twig volatile concentrations (average ± SE) with mixed model ANOVA results  
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Online Resource 2B  Needle volatile concentrations (average ± SE) with mixed model ANOVA results 
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