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Tidal Flushing Restores the Physiological Condition of
Fish Residing in Degraded Salt Marshes
Kimberly L. Dibble1*, Laura A. Meyerson1,2

1Department of Natural Resources Science, University of Rhode Island, Kingston, Rhode Island, United States of America, 2Department of Invasion Ecology, Institute of

Botany, Academy of Sciences of the Czech Republic, Průhonice, Czech Republic

Abstract

Roads, bridges, and dikes constructed across salt marshes can restrict tidal flow, degrade habitat quality for nekton, and
facilitate invasion by non-native plants including Phragmites australis. Introduced P. australis contributes to marsh accretion
and eliminates marsh surface pools thereby adversely affecting fish by reducing access to intertidal habitats essential for
feeding, reproduction, and refuge. Our study assessed the condition of resident fish populations (Fundulus heteroclitus) at
four tidally restricted and four tidally restored marshes in New England invaded by P. australis relative to adjacent reference
salt marshes. We used physiological and morphological indicators of fish condition, including proximate body composition
(% lipid, % lean dry, % water), recent daily growth rate, age class distributions, parasite prevalence, female gravidity status,
length-weight regressions, and a common morphological indicator (Fulton’s K) to assess impacts to fish health. We detected
a significant increase in the quantity of parasites infecting fish in tidally restricted marshes but not in those where tidal flow
was restored to reduce P. australis cover. Using fish length as a covariate, we found that unparasitized, non-gravid F.
heteroclitus in tidally restricted marshes had significantly reduced lipid reserves and increased lean dry (structural) mass
relative to fish residing in reference marshes. Fish in tidally restored marshes were equivalent across all metrics relative to
those in reference marshes indicating that habitat quality was restored via increased tidal flushing. Reference marshes
adjacent to tidally restored sites contained the highest abundance of young fish (ages 0–1) while tidally restricted marshes
contained the lowest. Results indicate that F. heteroclitus residing in physically and hydrologically altered marshes are at
a disadvantage relative to fish in reference marshes but the effects can be reversed through ecological restoration.
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Introduction

It is well established that fish and swimming crustaceans (termed

‘‘nekton’’) use vegetated intertidal salt marsh habitats for refuge,

feeding, as nurseries, and for reproduction [1–6]. Although there

has been a long-standing debate on the role of salt marsh detritus

in the direct support of higher trophic levels [7–11], several studies

have linked access to invertebrate prey on the marsh surface to

measurable changes in fish growth, weight gain, and energy

storage [4,12–16]. High quality salt marsh habitat facilitates

secondary production in coastal waters as nekton are consumed by

higher trophic levels [17–19].

Throughout the United States, .50% of tidal salt marshes have

decreased in size and quality [20] because of disturbances such as

interstate commerce, urban and shoreline development, and

livestock rearing [21,22]. Roads, bridges, and dikes constructed

through salt marshes restrict tidal flow when associated culverts

are undersized, resulting in marsh compaction and subsidence

through the loss of inorganic sediments from tidal deposition and

the oxidation and decay of drained peat deposits [23]. Tidal

restrictions also facilitate plant invasions and further degrade

habitat quality for resident nekton species [24,25].

Introduced Phragmites australis subsp. australis (hereafter, ‘‘in-

troduced P. australis’’) has widely invaded oligohaline to polyhaline

salt marshes throughout the mid-Atlantic and New England

regions of North America [26–28]. This invasive macrophyte takes

advantage of reduced salinity and increased disturbance and

nitrogen availability behind tidal restrictions and forms near

monocultures that decrease native plant diversity, temperature,

and light [29,30]. The dense belowground network of introduced

P. australis roots and rhizomes and high aboveground biomass mat

of living and slowly decomposing organic matter [29] that traps

mineral and organic sediment can counteract the effects of marsh

subsidence by raising marsh surface elevation. However, high rates

of marsh accretion (3–4 mm per year) [31] can elevate the marsh

platform to the extent that daily high tides may no longer flood the

marsh surface [22]. In addition, during the later stages of P.

australis invasion small water-filled marsh pools and depressions are

often reduced [32,33]. Restoration of tidal flow into restricted

marshes has successfully decreased the cover of this invader
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[24,30,34,35] and restored ecological function for multiple taxa

[25,36,37].

Previous studies in New England have used measures of faunal

presence/absence, quantity, richness, and diversity to assess

habitat quality in tidally restricted marshes invaded by P. australis

and tidally restored marshes relative to reference (Spartina

alterniflora) marshes. Decreases in bird species richness, density,

and abundance were documented in restricted marshes [36,38],

but nekton response was variable across studies, with density,

abundance, and species richness varying by site and species

[25,36,37,39,40]. Tidally restored sites exhibit wide variation in

support of nekton for several years post-restoration while

hydrologic, environmental, and physical variables respond over

time to increased tidal flooding and duration [25,36,41,42].

Raposa and Talley [43] suggest the variability in restoration

response may be related to whether the marsh was previously

diked/drained or diked/impounded, with the former showing

increased nekton density and the latter showing decreased nekton

density post-restoration.

Several studies have acknowledged the need to move beyond

the collection of community data (e.g., density, richness) to assess

the functional response of nekton to tidal restrictions and

restoration [16,43,44]. Fish condition and growth are affected by

habitat characteristics (e.g., prey availability, predation, competi-

tion, water quality, parasite presence, etc.) and by the physiology

of the fish species (e.g., reproductive status, life history stage, sex,

etc.) [45–48]. Fish exhibit life-long tradeoffs in resource allocation

to metabolism, somatic growth, reproduction, and energy (lipid)

storage [49,50], with the latter essential to their ability to cope with

environmental stress and successfully overwinter in northern

climates [49,51]. Resident salt marsh fish such as the mummichog,

Fundulus heteroclitus, gain a significant portion of their energy by

foraging on the marsh surface at high tide but show significant

decreases in growth rate and weight gain when they only have

access to unvegetated creek beds and pools [4,12,14]. Therefore,

a decrease in marsh surface access or habitat quality resulting from

tidal restrictions and P. australis invasion may result in detectable

tradeoffs to fish condition, growth, and ultimately, survival.

Morphological and physiological indicators have been used to

examine habitat quality for fish residing in different environments

[5,16,46,48,52–54]. At the morphological level, the relationship

between fish length and wet weight using regression and indices

such as the Fulton’s Condition Factor (K) can be used to infer the

well being of fish and are based on the premise that heavier fish of

a given length are in better condition [55]. At the biochemical

level the analysis of proximate body composition (% lipid, % lean

dry mass, % water) is used to estimate resource allocation to

energy storage vs. body structure [49,52]. Habitat quality

influences fish growth rate; therefore, if a linear relationship exists

between fish size and otolith size [56], the mean daily width of the

marginal otolith increments can be used as an index of recent daily

growth [48,57,58]. Further, age class distributions using the annuli

of otoliths and scales provide information on habitat suitability for

different life history stages [54,59]. Parasite prevalence and

infection intensity have been used as indicators of environmental

quality; however, the responses of parasite communities and their

hosts vary depending on exposure time, parasite life cycle (direct or

indirect), and environmental perturbations present (e.g., sewage,

eutrophication, pollution, thermal stress, etc.) [53,60–62]. None-

theless, parasites are energetically costly and infection may result

in tradeoffs to lipid storage, reproduction, and growth [16,61].

Our study builds on earlier work by directly linking habitat

quality to measurable attributes of fish health and productivity.

We examined the influence of habitat quality on fish condition and

growth using the above morphological and physiological indica-

tors in order to address the following research questions: 1) Does

the condition and growth of fish residing in tidally restricted

marshes invaded by P. australis differ from fish in unrestricted,

uninvaded (reference) marshes? 2) Can we detect a difference in

the condition and growth of fish residing in reference marshes vs.

those that have been tidally restored to remove P. australis? 3) Are

differences in fish condition and growth between the restricted,

restored, and reference marshes consistent across regions, seasons,

and for both males and females?

Methods

Ethics Statements
Our study was carried out in strict accordance with the

American Veterinary Medical Association Guidelines on Eutha-

nasia and was approved by the University of Rhode Island

Institutional Animal Care and Use Committee (protocol #AN09-

05-020). Permission for collections were given by the Connecticut

Department of Environmental Protection (#SC-10021), Rhode

Island Department of Environmental Management (#2010-39),

Massachusetts Division of Marine Fisheries (#159948), National

Park Service Cape Cod National Seashore (#CACO-2010-SCI-

0016), Rachel Carson National Wildlife Refuge (#53553-2009-05,

2010-05, 2011-10), and Maine Department of Marine Resources

(#2009-53-00, 2010-60-01, 2011-45-02).

Study Sites and Sampling Locations
We selected four tidally restricted (hereafter, ‘‘restricted’’) and

four tidally restored (‘‘restored’’) salt marshes invaded by in-

troduced P. australis in New England spanning Connecticut to

Maine (Fig. 1, Table 1). Each restricted or restored site was paired

with an adjacent downstream, unrestricted (‘‘reference’’) site that

was sampled on the same day (n= 16 marshes; 4 restricted, 4

restored, 8 reference). Three sampling stations were randomly

selected a priori along the main tidal creek within each of the 16

marshes (n = 48 experimental units). Because we employed

a matched pairs experimental design, data from restricted marshes

were only compared to data from the adjacent reference marshes,

and data from restored marshes were only compared to data from

adjacent reference marshes (i.e., four ‘‘marsh types’’ were

analyzed; restricted/reference; restored/reference; Table 1). At

the Stony Brook, MA site two undersized, failing culverts were

replaced between the first and second year of our study due to

funds appropriated for ‘shovel-ready’ habitat restoration projects

(American Recovery and Reinvestment Act of 2009). However,

because the other sites had tidal restrictions removed 11–22 years

earlier we still classified year 2 data as restricted in the analysis.

Site characteristics are reviewed in Table 1 [63–76]. Introduced

P. australis was more prevalent in restricted marshes than in the

restored marshes (K.L. Dibble, personal observation). At restored

marshes the increase in tidal flow and associated salinity over time

has decreased the cover of introduced P. australis and/or forced

distributional shifts of the invasive plant toward the upland edge of

the marsh [35,71,75]. The restored marshes are all marsh meadow

systems with restrictions dating back to 1848 that were put in place

to enhance hunting, agriculture, commerce, and flood control.

They have been undergoing restoration for 1–2 decades as

evidenced by similarity in mean tidal range and salinity relative to

adjacent reference marshes. The restricted marshes are all tidal

riverine systems diked dating back to the 1700’s for agriculture

(salt hay farming), salt works, flood control, and/or to facilitate

commerce/travel [63–76]. Mean tidal range and salinity in the

restricted marshes is lower relative to adjacent reference marsh

Tidal Flushing Restores Fish Condition in Marshes
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meadows and fringing marshes (Table 1), facilitating the observed

invasion by P. australis. Although our study design does not allow

us to separate the effects of tidal restrictions from the effects of P.

australis invasion, these two factors are often successive in New

England salt marshes and both work to reduce tidal range and

marsh surface access and hence, nekton support functions

[24,40,71,77].

Field Data
We collected data on water column salinity (ppt), temperature

(uC), and dissolved oxygen (mg/L) at each station using a YSI-85

(2010) and a YSI Pro-2030 (2011). Water quality data were spot

measurements (n = 1 per station per time period) taken from

approximately mid-way through flood tide to peak high tide (prior

to ebbing) when fish were removed from the water column. We

collected water quality data from all sites in fall 2010, summer

2011, and fall 2011, but only from the four southern sites in

Connecticut and Rhode Island in summer 2010 (due to equipment

malfunction). Sampling dates were as follows: summer 2010 (7/

12–7/25, 7/29), fall 2010 (9/22–10/3), summer 2011 (7/11–7/

23), and fall 2011 (9/25–10/7). Study sites were sampled along

a south-to-north transect in summer, and then along a north-to-

south transect in fall to account for seasonality changes in the

marshes. For gravidity data, sites were sampled during one lunar

cycle in summer 2010 (new moon on 7/11/10, full moon on 7/

26/10), while sites were sampled during the days leading up to and

just past full moon (7/15/11) in summer 2011.

On flood tide at each station on every sample date we deployed

two minnow traps containing bait in enclosed mesh packets (to

prevent consumption). All traps were placed within one meter of

the salt marsh bank parallel to the shore in the main tidal creek of

each system [78]. After 30 minutes we combined the fish contents

from both traps and randomly selected eight male and eight

female adult F. heteroclitus (.40 mm in fork length) representing the

longest (2 male, 2 female), shortest (2 M, 2 F), and intermediate (4

M, 4 F) size ranges of fish available. Sixteen fish were selected per

Figure 1. Map of study site locations in New England.
doi:10.1371/journal.pone.0046161.g001

Tidal Flushing Restores Fish Condition in Marshes

PLOS ONE | www.plosone.org 3 September 2012 | Volume 7 | Issue 9 | e46161



T
a
b
le

1
.
C
h
ar
ac
te
ri
st
ic
s
o
f
o
u
r
N
e
w

En
g
la
n
d
st
u
d
y
si
te
s.
a

H
y
d
ro

lo
g
ic

S
ta
tu

s/
M
a
rs
h
T
y
p
e

S
it
e

L
a
ti
tu

d
e
/

L
o
n
g
it
u
d
e

R
e
g
io
n

S
y
st
e
m

T
y
p
e

P
u
rp

o
se

o
f

R
e
st
ri
ct
io
n

Y
e
a
r

R
e
st
ri
ct
e
d

Y
e
a
r

R
e
st
o
re
d

M
a
rs
h
S
iz
e

(h
a
)

T
id
a
l
R
a
n
g
e

(m
)

S
a
li
n
it
y

(p
p
t)

R
e
st
o
re
d

B
ar
n
Is
la
n
d
(I
P
3
),

St
o
n
in
g
to
n
,
C
T

4
1
u2
0
92
2
99
N
,

7
1
u5
2
92
9
99
W

LI
S

m
ar
sh

m
e
ad

o
w

w
at
e
rf
o
w
l/
h
u
n
ti
n
g

1
9
4
7

1
9
9
1

1
1

0
.8
7

2
3
.4
2

R
e
st
o
re
d

D
ra
ke
s
Is
la
n
d
,
W
e
lls
,
M
E

4
3
u1
9
94
9
99
N
,

7
0
u3
3
93
0
99
W

G
O
M

m
ar
sh

m
e
ad

o
w

ag
ri
cu
lt
u
re

1
8
4
8

1
9
8
8
/2
0
0
5
b

3
5

0
.8
6

2
9
.5
4

R
e
st
o
re
d

G
al
ile
e
,
G
al
ile
e
,
R
I

4
1
u2
2
94
2
99
N
,

7
1
u3
0
90
8
99
W

LI
S

m
ar
sh

m
e
ad

o
w

tr
av
e
l/
co
m
m
e
rc
e

1
9
5
6

1
9
9
7

4
0

0
.4
7

3
0
.8
4

R
e
st
o
re
d

H
at
ch
e
s
H
ar
b
o
r,

P
ro
vi
n
ce
to
w
n
,
M
A

4
2
u0
3
95
6
99
N
,

7
0
u1
4
90
9
99
W

G
O
M

m
ar
sh

m
e
ad

o
w

m
o
sq
u
it
o
/f
lo
o
d

co
n
tr
o
l

1
9
3
0

1
9
9
9

4
0

0
.5
5

3
1
.6
9

R
e
fe
re
n
ce

(r
es
to
re
d
)

B
ar
n
Is
la
n
d
(I
P
3
),

St
o
n
in
g
to
n
,
C
T

4
1
u2
0
92
2
99
N
,

7
1
u5
2
92
9
99
W

LI
S

m
ar
sh

m
e
ad

o
w

n
/a

n
/a

n
/a

2
8

0
.8
2

2
6
.5
8

R
e
fe
re
n
ce

(r
es
to
re
d
)

D
ra
ke
s
Is
la
n
d
,

W
e
lls
,
M
E

4
3
u1
9
94
9
99
N
,

7
0
u3
3
93
0
99
W

G
O
M

m
ar
sh

m
e
ad

o
w

n
/a

n
/a

n
/a

2
8

2
.1
2

3
1
.4
7

R
e
fe
re
n
ce

(r
es
to
re
d
)

G
al
ile
e
,
G
al
ile
e
,
R
I

4
1
u2
2
94
2
99
N
,

7
1
u3
0
90
8
99
W

LI
S

fr
in
g
in
g
m
ar
sh

n
/a

n
/a

n
/a

1
1

0
.5
9

3
0
.7
3

R
e
fe
re
n
ce

(r
es
to
re
d
)

H
at
ch
e
s
H
ar
b
o
r,

P
ro
vi
n
ce
to
w
n
,
M
A

4
2
u0
3
95
6
99
N
,

7
0
u1
4
90
9
99
W

G
O
M

m
ar
sh

m
e
ad

o
w

n
/a

n
/a

n
/a

3
4

0
.6
5

3
1
.7
0

R
e
st
ri
ct
e
d

H
e
rr
in
g
R
iv
e
r,

W
e
llf
le
e
t,
M
A

4
1
u5
5
95
4
99
N
,

7
0
u0
3
94
9
99
W

G
O
M

ti
d
al

ri
ve
ri
n
e

tr
av
e
l/
co
m
m
e
rc
e

1
9
0
8

n
/a

4
2
c

0
.5
0

1
7
.0
8

R
e
st
ri
ct
e
d

Sl
u
ic
e
C
re
e
k,

G
u
ilf
o
rd
,
C
T

4
1
u1
6
93
2
99
N
,

7
2
u3
9
95
2
99
W

LI
S

ti
d
al

ri
ve
ri
n
e

ag
ri
cu
lt
u
re

1
8
4
7

n
/a

3
1

0
.7
0

1
6
.4
0

R
e
st
ri
ct
e
d

St
o
n
y
B
ro
o
k,

B
re
w
st
e
r,
M
A

4
1
u4
5
90
5
99
N
,

7
0
u0
6
94
9
99
W

G
O
M

ti
d
al

ri
ve
ri
n
e

ag
ri
cu
lt
u
re
/s
al
t
w
o
rk
s
1
7
0
0
9s

2
0
1
1
d

8
0
.6
0

1
1
.1
3

R
e
st
ri
ct
e
d

Sy
b
il
C
re
e
k,

B
ra
n
fo
rd
,
C
T

4
1
u1
5
94
3
99
N
,

7
2
u4
7
95
9
99
W

LI
S

ti
d
al

ri
ve
ri
n
e

fl
o
o
d
co
n
tr
o
l

e
ar
ly

1
9
0
0
9s

n
/a

3
0

0
.3
6

2
0
.7
3

R
e
fe
re
n
ce

(r
es
tr
ic
te
d
)

H
e
rr
in
g
R
iv
e
r,

W
e
llf
le
e
t,
M
A

4
1
u5
5
95
4
99
N
,

7
0
u0
3
94
9
99
W

G
O
M

fr
in
g
in
g
m
ar
sh

n
/a

n
/a

n
/a

4
0

2
.3
0

2
8
.8
9

R
e
fe
re
n
ce

(r
es
tr
ic
te
d
)

Sl
u
ic
e
C
re
e
k,

G
u
ilf
o
rd
,
C
T

4
1
u1
6
93
2
99
N
,

7
2
u3
9
95
2
99
W

LI
S

m
ar
sh

m
e
ad

o
w

n
/a

n
/a

n
/a

2
9

1
.7
0

2
2
.3
6

R
e
fe
re
n
ce

(r
es
tr
ic
te
d
)

St
o
n
y
B
ro
o
k,

B
re
w
st
e
r,
M
A

4
1
u4
5
90
5
99
N
,

7
0
u0
6
94
9
99
W

G
O
M

m
ar
sh

m
e
ad

o
w

n
/a

n
/a

n
/a

3
6

1
.4
0

3
0
.8
0

R
e
fe
re
n
ce

(r
es
tr
ic
te
d
)

Sy
b
il
C
re
e
k,

B
ra
n
fo
rd
,
C
T

4
1
u1
5
94
3
99
N
,

7
2
u4
7
95
9
99
W

LI
S

m
ar
sh

m
e
ad

o
w

n
/a

n
/a

n
/a

1
4

1
.8
0

2
2
.1
4

a
C
it
at
io
n
s:
[2
3
,2
5
,3
5
,6
3
–
7
6
;
D
r.
M
ic
h
e
le

D
io
n
n
e
,
W
e
lls

N
ER

R
,
u
n
p
u
b
lis
h
e
d
d
at
a]
.

b
D
ra
ke
s
Is
la
n
d
(r
e
st
o
re
d
):
U
n
p
la
n
n
e
d
p
ar
ti
al

re
st
o
ra
ti
o
n
in

1
9
8
8
(f
la
p
p
e
r
g
at
e
fe
ll
o
ff
d
u
ri
n
g
st
o
rm

);
se
lf
-r
e
g
u
la
ti
n
g
ti
d
e
g
at
e
in
st
al
le
d
in

2
0
0
5
.

c
H
e
rr
in
g
R
iv
e
r
(r
e
st
ri
ct
e
d
):
T
o
ta
l
su
it
ab

le
h
ab

it
at

ar
e
a
fo
r
m
y
st
u
d
y
(u
p
st
re
am

o
f
C
h
e
q
u
e
ss
e
tt

M
ar
sh

R
d
.,
d
o
w
n
st
re
am

o
f
H
ig
h
T
o
ss

R
d
);
to
ta
l
ar
e
a
fo
r
p
o
te
n
ti
al

re
st
o
ra
ti
o
n
-
4
4
5
h
a.

d
St
o
n
y
B
ro
o
k
(r
e
st
ri
ct
e
d
):
T
w
o
fa
ili
n
g
cu
lv
e
rt
s
w
e
re

re
p
la
ce
d
b
e
tw

e
e
n
ye
ar

1
an

d
ye
ar

2
o
f
m
y
st
u
d
y
(w

in
te
r
2
0
1
0
–
2
0
1
1
).

d
o
i:1
0
.1
3
7
1
/j
o
u
rn
al
.p
o
n
e
.0
0
4
6
1
6
1
.t
0
0
1

Tidal Flushing Restores Fish Condition in Marshes

PLOS ONE | www.plosone.org 4 September 2012 | Volume 7 | Issue 9 | e46161



station (15 fish analyzed, 1 stored in 280uC freezer) because

previous power analyses and other analyses using nekton species

composition, abundance, length, and biochemical data indicated

that replicate samples of 5–15 F. heteroclitus was sufficient to detect

trends between marsh types [16,79,80]. We measured fork length

(nearest millimeter) and wet weight (nearest centigram), quantified

external parasites (ectoparasites) on the body surface, and then

humanely euthanized fish in the field using a sharp knife and the

guillotine method. In the laboratory, we quantified internal

parasites (endoparasites) infecting the liver, heart, and abdominal

cavity, recorded female gravidity status (eggs present/absent), and

removed and discarded fish digestive tracts and regurgitated food.

We calculated parasite infection intensity, prevalence, and

weighted prevalence [81,82] using all data from 2010–2011. We

rinsed fish in DI water then froze and freeze-dried the 16 fish from

each station. Of the 16 fish, five female and five male fish were

randomly selected, ground, and stored in a280uC freezer for lipid

extraction. Five fish (2 male/3 females, or 3 female/2 males) from

each station were stored in a 280uC freezer, with the field-

decapitated head used for otolith measurements.

Laboratory Data
Proximate body composition (lipid/lean dry/water). In

2010 and 2011 we extracted whole-body lipid reserves from 1,920

adult fish (n = 960 fish/year). Powdered fish samples were packed

into pre-weighed Whatman cellulose extraction thimbles, dried to

a constant weight in a 50uC oven overnight, re-weighed pre-

extraction, extracted for six hours using petroleum ether and

a Soxhlet apparatus, dried in a 50uC oven overnight, and then re-

weighed post-extraction [83]. We selected petroleum ether as the

non-polar lipid solvent because it is highly effective at removing

neutral lipids (energy reserves) while minimizing loss of non-lipid,

structural material [83]. We determined the percent lipid (% dry),

lean dry mass (% dry), and water (% wet) of individual fish using

the following equations:

(i) % lipid~½(pre-extraction dry wt: (g)

{post-extraction dry wt: (g))=

(pre-extraction dry wt: (g)

{dry thimble weight (g))�|100

(ii) % lean dry mass~½(post-extraction dry wt: (g)

{dry thimble wt: (g))=

(pre-extraction dry wt: (g)

{dry thimble weight (g))�|100

(iii) % water~½fish wet wt: in field (g)

{(pre-extraction dry wt: (g)

{dry thimble wt: (g))=

fish wet wt: in field (g)�|100

Fish age and recent daily growth rate. Radtke and Dean

[84] verified daily increment formation using F. heteroclitus sagittae,

finding that daily increments form regardless of growth rate, which

is faster at higher water temperatures (30uC vs. 24uC). Therefore,

we can use sagittal otolith increments to determine the age and

growth rates of F. heteroclitus living in different environmental

conditions. We removed pairs of sagittal otoliths from 960 adult

fish (n = 480 fish/year) using a dissecting microscope and the

‘crunch and crumble’ extraction method [85]. Otoliths were

cleaned in distilled water and 10% bleach, treated with 95%

ethanol, and then dried in an oven (1 h at 50uC). We mounted the

pair of otoliths on standard microscope slides (sulcus side down),

covered in Cargille immersion oil (Type FF, nonfluorescing). All

measurements were done using the right otolith for consistency,

unless the right was broken or could not be located during

extraction. In that case, measurements were done on the left

otolith. Using a Zeiss Stereo Microscope (Discovery, v12), high-

powered objective (Plan Apo S 3,5x), and image analysis software

(AxioVisionRel.4.8), we recorded fish age under transmitted light

(# dark annular rings, magnification 100x) [59].

To verify the relationship between otolith growth and somatic

growth [56], we took threemeasurements of total otolith radius (mm)

and calculated the mean. We also took three measurements of total

otolith height and length and calculated the mean for each otolith.

Under reflected lightandhighmagnification (560x),wemeasured the

distancebetweenthemarginof theotolith inthepostero-dorsal region

[86,87]backtothe10thdailygrowthringthree times, tookthemeanof

the three separate measurements, and divided the measurement by

10days tocompute theRecentGrowthIndex (inmm)[48,57].Recent

daily growthmeasurements fromreadableotolithswere re-measured

by a second reader 2–3 months later. We discarded any otoliths for

which the first and second growth measurements were not within

10% of each other and report the mean of the first and second

measurements [88–91].
Fulton’s K and length-weight relationships. During field

collections, we recorded the fork length and wet weight of 1,487

fish in 2010 and 1,529 fish in 2011. We use a common

morphometric index of fish condition, Fulton’s Condition Factor

(K), to compare the condition of adult fish. It is calculated using

the following equation:

(iv) K~100 � W=L3
� �

Where W=weight of fish (mg) and L= fork length of fish (mm)

[55]. Fulton’s K assumes that heavier fish of a given length are in

better condition; therefore this index can be used as an indicator of

energy storage. We compared the results of K to the results of

Multiple Linear Regression using categorical variables for each

marsh type (restricted, restored, reference).

Statistical Analyses
In total, our main experiment included two paired marsh

comparisons (restricted vs. reference; restored vs. reference). Each

of the 48 Experimental Units (EU) were visited twice in 2010

(n= 96) and twice in 2011 (n= 96). Because we collected samples

from each EU over time, we analyzed data using repeated

measures mixed model ANOVA (Statistical Package SAS, v 9.2).

To avoid pseudoreplication we took the mean of each response

variable collected on each EU on each sampling date (i.e., the

mean of 10 fish for proximate body composition, 5 for recent daily

growth, 16 for morphology). The exception to this was water

quality data, for which we had one data point per EU on each

sample date (except the four sites in summer 2010, as discussed

above). We used SLICES in the model to examine interaction

effects to determine whether there were significant differences in

the response after explanatory variables were incorporated into the

model (i.e., marsh type, time, region, parasitism status, gravidity,

sex). We used Heterogeneous Autoregressive (1) as our covariance

Tidal Flushing Restores Fish Condition in Marshes
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structure because it assumes that data that are farther apart in time

will be less similar and that each time period has its own unique

variance. Assumptions of normality and equality of variances

within datasets were verified prior to all statistical analyses. We

arcsine-square-root transformed our percent lipid, lean dry, and

water data prior to analysis. For proximate body composition and

growth rate data we incorporated mean fish length into the model

as a covariate to ensure significant differences were attributable to

marsh type and not differences in fish size [49]. Significance was

determined at the a=0.05 level. We developed figures and

graphics using SigmaPlot (v. 9.0) and the R statistical software

environment (v. 2.14.1).

Proportions of gravid and/or parasitized fish were compared

between habitats using Two Sample Tests for Proportions; data is

reported as the mean 6 proportional standard deviation. A

continuity correction was conducted for the restricted vs. reference

gravidity data to increase the quality of the normal approximation

to the binomial distribution. To determine whether it was

necessary to remove afflicted individuals from the analysis, we

quantified the effects of parasitism and gravidity on fish lipid mass

and morphology using repeated measures ANOVA. Due to

unequal sample size (.26), we analyzed the effects of parasitism/

gravidity on recent daily growth using Welch’s t-tests. We used

Simple Linear Regression to model the relationship between fish

length and otolith radius in healthy fish (i.e., those without ecto/

endoparasites or eggs present) and examined homogeneity of fish

age class distributions using Chi Square Tests of Homogeneity.

Lipid and lean dry mass results are presented as a percentage of

fish dry weight, water mass as a percent of wet weight, growth as

the mean recent daily growth increment of the otolith (in

micrometers), and morphology as a unitless index value (K).

Means are reported for each statistic 6 standard deviation.

Results

Field Data
Water quality. We collected 164 sets of water quality data

from the 48 stations from 2010–2011 (Table 2). In the restored vs.

reference sites in Long Island Sound (LIS), we found no significant

difference in salinity (p = 0.9717; t40 = 0.04), temperature

(p = 0.4287; t40 =20.80), or dissolved oxygen (p = 0.3747;

t40 =20.90), which mirrored results in the Gulf of Maine

(GOM; salinity: p = 0.9542, t40 =20.06; temperature:

p = 0.8690, t40 =20.17; dissolved oxygen: p = 0.5496, t40 = 0.60).

In LIS, we found a highly significant difference in salinity between

restricted vs. reference sites (p = 0.0019; t40 = 3.33), but not for

temperature (p = 0.1588; t40 =21.44) or dissolved oxygen

(p = 0.3821; t40 =20.88), which also mirrored results in the

GOM (salinity: p,0.0001, t40 = 11.89; temperature: p = 0.1409,

t40 =21.50; dissolved oxygen: p = 0.2253, t40 =21.23; Table 2).

Parasitism and gravidity. Fundulus heteroclitus were infected

by a range of parasites including sea lice (Branchiura), anchor

worms (Copepoda), flat worms (Monogenea, Digenea), internal

cavity worms infecting the liver, intestines, and mesenteries

(Cestoda, Acanthocephala), and the internal nematode parasite,

Eustrongylides spp. We grouped data by parasite location (ecto/

endo) and found that fish in the restricted marshes had the highest

overall prevalence and weighted prevalence of parasite infection

among the marsh types (Table 3). Overall infection intensity was

also highest for the restricted marsh fish. We analyzed the

proportion (prevalence) of parasitized fish by marsh type and

found no significant difference between the reference (n = 62/755;

8.2161.00%) vs. restored marsh fish (n = 72/751; 9.5961.07%;

p= 0.3486, Z=20.94; Fig. 2; Table 3). However, we found

significantly more parasitized fish in restricted marshes (n = 185/

756; 24.4761.56%) in comparison to adjacent reference marshes

(n = 125/754; 16.5861.35%; p= 0.0001; Z=23.80; Fig. 2;

Table 3). Within the female population collected over our entire

study period (2010–2011), there was no difference in the

proportion of gravid fish in the reference (n = 27/397;

6.8061.26%) vs. restored marshes (n = 29/378; 7.6761.37%;

p= 0.6397; Z=20.47; Fig. 2). However, we did find significantly

fewer gravid fish inhabiting the restricted (n = 10/392;

2.5560.80%) vs. reference marshes (n = 32/385; 8.3161.41%;

p= 0.0007; Z=3.55; Fig. 2) from 2010–2011.

Laboratory Data
Proximate body composition (lipid/lean dry/

water). We successfully extracted whole body lipids from 1,915

of 1,920 fish captured from 2010–2011. Approximately 14.67%

(n= 281) of the fish analyzed for proximate body composition were

parasitized. Incorporation of parasitism status into a repeated

measures ANOVA revealed a significant negative effect on lipid

stores when fish length was added as a covariate (p = 0.0181;

F1,37 = 6.12), with lower lipid reserves in parasitized fish

(�xx=7.9062.89%) than in unparasitized fish (�xx=8.4462.55%).

Approximately 6.84% (n= 68) of the fish analyzed for proximate

body composition were gravid. The unparasitized gravid female fish

had significantly less lipid than the non-gravid females (p,0.0001;

F1,20 = 88.44). These effects were highly significant and consistent

acrossmarsh types, with gravid females averaging 4.8961.92% lipid

and non-gravid females averaging 8.3362.04% lipid, indicating

a significant allocation of energy reserves to reproduction. Since we

found significant negative effects of parasitism and gravidity on lipid

mass,we removedall gravid andafflicted fish from further analyses to

eliminate confounding effects and clarify the interpretation of our

results (n = 338/1,915 removed; 17.65%). The fish in all subsequent

lipid analyses represent unparasitized, non-gravid (termed

‘‘healthy’’) individuals in the population (n = 1,577). A consequence,

however, is that the mean from each EU became unbalanced (i.e.,

n,10).

Table 2. Mean water quality 2010–2011, by marsh type (standard deviations in parentheses; data pooled across regions and
seasons).

Response Salinity (ppt) Temperature (uC) Dissolved Oxygen (mg/L) N

Restored 28.62 (6.79) 21.44 (3.62) 6.98 (2.78) 42

Reference (restored) 29.89 (3.65) 20.41 (3.25) 7.15 (2.34) 41

Restricted 14.19 (9.65) 21.98 (3.92) 7.50 (2.44) 39

Reference (restricted) 25.50 (4.78) 21.17 (3.86) 6.44 (2.55) 42

doi:10.1371/journal.pone.0046161.t002
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Using pooled data by sex across habitat/time periods, we found

that fish in the Gulf of Maine had significantly more lipid than

those in Long Island Sound (p,0.0001; F1,40 = 125.70), which was

consistent by season and suggests influences of countergradient

variation [92,93]. Overall, females contained more lipid than

males (p = 0.0001; F1,40 = 18.64; Table 4). We found significant

differences overall by season (p,0.0001; F3,120 = 30.67), with fall

fish (pre-hibernation) having significantly more lipid than summer

fish (post-reproduction) in both 2010 (p = 0.0008; t120 = 3.43) and

2011 (p,0.0001; t120 = 7.66; Table 4). By marsh type, we found

no difference in the lipid mass of healthy fish inhabiting the

restored vs. reference marshes (p = 0.2445; t40 = 1.18; Table 4;

Fig. 3a). When we analyzed the interactions between marsh type,

region, time, and sex we found a significant difference between the

restored and reference habitats in LIS (p = 0.0278; t40 = 2.28),

which was likely driven by differences in males in fall 2010

(p = 0.0129; t40 = 2.60). We found a highly significant difference in

lipid mass between fish inhabiting the restricted vs. reference

marshes (p = 0.0013; t40 = 3.45; Tables 4–5; Fig. 3a). Significant

differences between restricted and reference marsh fish held with

comparisons of fish from the GOM, LIS, in three of the four time

periods sampled, and for both males and females (Table 5).

We analyzed lipid-free dry mass (composed primarily of protein

and bone/ash) in healthy fish to examine investment in body

structure vs. lipid storage. Because we analyzed data on a dry

weight basis, % lipid and % lean dry mass are the only two

proportions in dry fish weight. Therefore, the statistics reported

(Table 5) are nearly identical, but in the opposite direction.

Overall, lean dry mass constituted a lower proportion of fish body

weight in the GOM than in LIS (p,0.0001; F1,40 = 125.70) and

lean dry mass in females was lower than that of males (p = 0.0001;

F1,40 = 18.64; Table 4). By marsh type, we found no difference

between the restored and reference sites in the proportion of mass

allocated to structure (p = 0.2445; t40 =21.18) or water

(p = 0.6547; t40 =20.45; Table 4; Figs. 3b,c). We found a highly

significant difference between the restricted and reference sites in

the proportion allocated to structural mass (p = 0.0013;

t40 =23.45) but not for water mass (p = 0.5213; t40 =20.65;

Tables 4–5; Figs. 3b,c). We also found no difference in water mass

by region (p = 0.0826; F1,40 = 3.17) and for most of the interactions

(Table 5).

Fish age and recent daily growth rate. Our capture and

fish selection methodology was designed to gather information

from a range of fish sizes present at each site, so we analyzed

whether the proportion of age classes differed between marsh

systems. We report age data from 465 fish in 2010 and 479 fish in

2011. From 2010–2011, we captured five age classes of fish (ages 0,

1, 2, 3, 4). Although it was not our intent to capture fish in the age

0 class (i.e., those in their first year of life), we captured 31 fish in

fall 2011 that had grown to at least 40 mm and were therefore

included in our field collections. Chi Square Tests of Homogeneity

revealed a significant difference in age class distributions between

restored vs. reference marsh systems (p = 0.0280; x24 = 10.8785;

n = 473; Fig. 4) but not between the restricted vs. reference

marshes (p = 0.3643; x24 = 4.3211; n= 471; Fig. 4). Within the

four marsh types, the frequency of the smallest age classes (ages

0 and 1) was highest in reference marshes adjacent to restored sites

(n = 78; 32.77%) and lowest in the tidally restricted marshes

(n = 33; 14.04%). Fish in the other two marsh groups were

intermediate (restored: 56 fish, 23.83%; reference adjacent to

restricted: 47 fish 19.92%; Fig. 4). Therefore, reference marshes

adjacent to restored marshes harbored the largest proportion of

young fish.

Due to unclear daily growth rings or other structural

abnormalities in the otoliths (e.g., irregular accretion of calcium

carbonate along the edge, resulting in a scalloped morphology) we

initially discarded 263 fish from our study, with an additional 155

discards due to a .10% difference between the first and second

Figure 2. Proportion of fish parasitized (circles; females and males) or gravid (triangles; females only) by marsh type. Data is
presented as the mean proportion 6 standard deviation.
doi:10.1371/journal.pone.0046161.g002
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growth readings. In total we analyzed growth rate data from 542

fish from 2010–2011 (56.5%). Our approach is consistent with

other studies that have selected only the clearest otoliths for

microstructure analysis (top 15.7%) [91] or discarded data from up

to 44.9% of samples due to imprecise increment patterns,

accessory primordia, or errors during sample preparation

[89,92–94].

An analysis of the effects of parasitism and gravidity did not

reveal significant negative effects on fish growth rate (p = 0.7739;

t94.26 =20.288); however, we removed an additional 81 parasit-

ized and/or gravid individuals from the growth rate analysis to be

consistent in our interpretation of results across physiological and

morphological analyses, resulting in growth rate data for 461

healthy fish. Using simple linear regression we found a highly

significant relationship between fish length and otolith radius for

healthy fish (p,0.0001; r2 = 0.6628; Otolith radius =22.77341 +
0.09572* fish length; Fig. 5). Therefore, the marginal ten

increments of F. heteroclitus otoliths can be used as a reliable

indicator of recent daily growth at our sites.

Using the healthy individuals in the population and fish length

as a covariate, we found that females grow significantly faster than

males (p = 0.0461; F1,38 = 4.25; Table 6), so we separated our

model by sex. Unlike our lipid mass results, we found no difference

in the growth rate of fish residing in the GOM vs. LIS (p = 0.2786;

F1,40 = 1.21). However, we did find a significant effect of season in

the marshes, with fish growing at a higher rate in summer than in

fall in both 2010 (p,0.0001; t93 =213.63) and 2011 (p,0.0001;

t93 =28.58; Table 6). The higher growth rate in 2010 across

habitats, regions, and seasons corresponds generally to a lower

investment in energy storage (Tables 4, 6), whereas in 2011 the

relationship is reversed (lower growth rate, higher energy

Table 3. Parasites infecting Fundulus heteroclitus by marsh
type, 2010–2011.

Ectoparasites Endoparasites Total

Restored

Abundance 68 29 97

Total Infected 56 18 72

Infection Intensity 1.21 1.61 1.35

Prevalence 7.46% 2.40% 9.59%

Weighted Prevalence 9.05% 3.86% 12.92%

Reference (restored)

Abundance 62 42 104

Total Infected 53 13 62

Infection Intensity 1.17 3.23 1.68

Prevalence 7.02% 1.72% 8.21%

Weighted Prevalence 8.21% 5.56% 13.77%

Restricted

Abundance 91 396 487

Total Infected 77 132 185

Infection Intensity 1.18 3.00 2.63

Prevalence 10.19% 17.46% 24.47%

Weighted Prevalence 12.04% 52.38% 64.42%

Reference (restricted)

Abundance 83 195 278

Total Infected 69 70 125

Infection Intensity 1.20 2.79 2.22

Prevalence 9.15% 9.28% 16.58%

Weighted Prevalence 11.01% 25.86% 36.87%

doi:10.1371/journal.pone.0046161.t003

Figure 3. Proximate body composition of fish. Healthy fish only-
data pooled across seasons, regions, and sex. Outlier circles represent
the 5th and 95th percentiles and error bars the 10th and 90th percentiles
for each population. (A) % lipid mass (dry weight). (B) % lean mass (dry
weight). (C) % water mass (wet weight).
doi:10.1371/journal.pone.0046161.g003
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investment), indicating potential trade-offs in somatic investments

that may shift from year to year. Seasonally, fish in the summer are

growing faster but have depleted lipid stores, whereas in fall the

fish are growing slower but have significantly higher lipid reserves.

By marsh type, we did not detect differences in the growth rate

between fish residing in restored vs. reference marshes (p = 0.2506;

t40 = 1.17), nor between fish in the restricted vs. reference marshes

(p = 0.5153; t40 = 0.66; Table 6). However, we did detect

a difference in growth rate between the restored and reference

sites within the LIS region (p = 0.0389; t40 = 2.14) that mirrors our

proximate body composition data. The difference in LIS appears

to be driven by the males (p = 0.0201; t38 = 2.43) rather than the

females, which were equivalent between marsh types (p = 0.5327;

t38 = 0.63). For the restricted vs. reference fish, none of the

interactions for growth rate by season, region, and time were

significant (p.0.05), indicating that fish of similar lengths are

Table 4. Mean proximate body composition of fish in study, 2010–2011 (standard deviations in parentheses; data by marsh type
are pooled across regions, seasons, and sex; data by region, season, and sex are pooled across marsh types; reference marshes
adjacent to the restored and restricted marshes are noted in parentheses).

Response
Lipid
(% of dry)

Total lipid
(g)

Lean mass
(% of dry)

Total lean
mass (g)

Water
(% of wet)

Total
water (g)

Fish length
(mm)

Restored 8.78 (2.69) 0.08 (0.05) 91.22 (2.69) 0.84 (0.38) 80.14 (1.66) 3.62 (1.50) 69.7 (9.5)

Reference (restored) 9.09 (2.63) 0.06 (0.04) 90.91 (2.63) 0.63 (0.32) 80.56 (1.62) 2.81 (1.38) 63.6 (9.4)

Restricted 7.48 (2.61) 0.06 (0.04) 92.52 (2.61) 0.75 (0.32) 80.54 (1.42) 3.26 (1.29) 67.0 (8.7)

Reference (restricted) 8.62 (2.49) 0.10 (0.07) 91.38 (2.49) 0.96 (0.46) 80.04 (1.75) 4.59 (5.21) 71.6 (10.0)

Gulf of Maine 9.90 (2.20) 0.10 (0.06) 90.10 (2.20) 0.92 (0.44) 80.20 (1.58) 4.23 (3.89) 71.2 (10.4)

Long Island Sound 7.08 (2.33) 0.05 (0.02) 92.92 (2.33) 0.67 (0.29) 80.44 (1.67) 2.90 (1.13) 64.7 (8.0)

Summer 2010 7.51 (2.22) 0.06 (0.04) 92.49 (2.22) 0.76 (0.28) 81.71 (1.54) 3.63 (1.25) 69.9 (7.1)

Fall 2010 8.41 (2.50) 0.08 (0.06) 91.59 (2.50) 0.85 (0.44) 80.05 (1.51) 3.60 (1.69) 69.7 (10.7)

Summer 2011 7.72 (2.25) 0.07 (0.05) 92.28 (2.25) 0.86 (0.41) 80.30 (1.10) 3.72 (1.67) 69.0 (9.4)

Fall 2011 10.31 (2.74) 0.08 (0.06) 89.69 (2.74) 0.71 (0.41) 79.24 (1.28) 3.33 (5.24) 63.3 (10.3)

Males 8.23 (2.87) 0.07 (0.05) 91.77 (2.87) 0.75 (0.38) 80.18 (1.76) 3.24 (1.46) 66.9 (9.5)

Females 8.75 (2.42) 0.08 (0.05) 91.25 (2.42) 0.83 (0.41) 80.46 (1.48) 3.89 (3.86) 69.0 (10.1)

doi:10.1371/journal.pone.0046161.t004

Table 5. Results of repeated measures ANOVA for the restricted vs. reference systems [Model terms: Marsh type (termed ‘‘Marsh’’:
comparison of restricted vs. reference); Time (comparison of the two marsh types within summer 2010, fall 2010, summer 2011, fall
2011); Region (comparison of the two marsh types within the Gulf of Maine vs. Long Island Sound)].

% Lipid % Lean Dry Mass % Water

Model Terms Sign. t-statistic Sign. t-statistic Sign. t-statistic d.f.

Marsh p= 0.0013 3.45 p = 0.0013 23.45 p = 0.5213 20.65 40

Marsh 6 Region

GOM p=0.0116 2.65 p = 0.0116 22.65 p = 0.3746 20.90 40

LIS p = 0.0305 2.24 p = 0.0305 22.24 p = 0.9907 20.01 40

Marsh 6 Time

Summer 2010 p= 0.0519 1.96 p = 0.0519 21.96 p = 0.4474 0.76 120

Fall 2010 p= 0.0112 2.58 p = 0.0112 22.58 p = 0.3111 21.02 120

Summer 2011 p= 0.0141 2.49 p = 0.0141 22.49 p = 0.3092 21.02 120

Fall 2011 p= 0.1970 1.30 p = 0.1970 21.30 p = 0.5632 20.58 120

Marsh 6 Sex

Males p = 0.0068 2.85 p = 0.0068 22.85 p = 0.1892 21.34 40

Females p = 0.0027 3.20 p = 0.0027 23.20 p = 0.7592 0.31 40

Marsh 6 Region 6 Sex

GOM, Males p = 0.0096 2.72 p = 0.0096 22.72 p = 0.0400 22.12 40

GOM, Females p = 0.0801 1.80 p = 0.0801 21.80 p = 0.4887 0.70 40

LIS, Males p = 0.1964 1.31 p = 0.1964 21.31 p = 0.8144 0.24 40

LIS, Females p = 0.0088 2.75 p = 0.0088 22.75 p = 0.7863 20.27 40

doi:10.1371/journal.pone.0046161.t005
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growing at the same rate in both the restricted and reference

habitats despite the differences in allocation of resources to lipid

storage (Tables 4, 6).

Fulton’s condition factor (K). Analysis of morphology data

using Fulton’s K in our repeated measures ANOVA revealed no

overall negative effect of parasitism/gravidity on fish condition

(p = 0.7453; F1,40 = 0.11). However, to be consistent in our

interpretation of results across analyses we removed all afflicted

individuals from the analysis (n = 517). Using only healthy fish

(n = 2,499), we found no significant difference between the

restored vs. reference (p = 0.6273; t40 =20.49) or the restricted

vs. reference marsh fish (p = 0.4962; t40 = 0.69). Analysis of

possible interactions between marsh type, region, time, and sex

revealed only one significant difference between the reference and

restricted marsh fish in fall 2010 (p= 0.0458; t120 = 2.02), with

Fulton’s K indicating that reference marsh fish were in better

condition than those in restricted marshes. We did find a difference

between the summer and fall seasons in 2010 (p = 0.0016;

t120 =23.22) and a marginal difference in 2011 (p = 0.0570;

t120 =21.92), but the effect was in the opposite direction, with

Fulton’s K labeling summer fish (post-reproduction) healthier than

those in fall (pre-hibernation) in both years. In addition, this

morphological index did not detect trends in condition between

sexes (p = 0.3804; F1,40 = 0.89) or regions (p = 0.7849;

F1,40 =20.27) found using physiological indices.

Length-weight relationships. We analyzed length-weight

relationships using Multiple Linear Regression (with categorical

variables for the marsh types). Examination of fit statistics (AIC,

AICC, BIC), output from the regression coefficient hypothesis

tests, adjusted R2, and multicollinearity statistics (tolerance,

variance inflation factor) revealed that quadratic models best

explained the length-weight relationships for the restored, re-

stricted, and reference marsh fish (Figs. 6a,b). The restored and

reference fish populations were best explained by one line with the

following equation (adj. R2 = 0.9691; p,0.0001; Fig. 6a):

Fish mass~1:52097{0:11079 fish lengthð Þ

z0:00218 fish lengthð Þ2

There was a strong positive linear relationship (p = 0.0058) as

well as evidence of a curvilinear relationship (p,0.0001) between

fish length and weight, with the intercept not significantly different

from zero (p= 0.2329). For the restricted vs. reference marsh fish,

one regression line again best explained both populations (adj.

R2 = 0.9602; p,0.0001; Fig. 6b):

Fish mass~3:04263{0:16490 (fish length)

z0:00267 (fish length)2

Figure 4. Number of fish captured by age group and marsh type.
doi:10.1371/journal.pone.0046161.g004

Tidal Flushing Restores Fish Condition in Marshes

PLOS ONE | www.plosone.org 10 September 2012 | Volume 7 | Issue 9 | e46161



There was a strong positive linear relationship (p = 0.0009) and

evidence of a curvilinear relationship (p,0.0001) between fish

length and weight, with no difference in intercept (p = 0.0668).

Combined with results using the Fulton’s K condition factor,

results indicate that fish at our study sites are morphologically

indistinguishable.

Discussion

Tradeoffs between Fish Growth, Energy Storage, and
Reproduction
Our study demonstrates that fish residing in tidally restricted

marshes invaded by P. australis allocate a greater proportion of

Figure 5. Fish length vs. otolith radius for healthy fish. (Otolith radius =22.77341+0.09572*fish length; p,0.0001; r2 = 0.6628).
doi:10.1371/journal.pone.0046161.g005

Table 6. Mean otolith measurements for fish in study, 2010–2011 (standard deviations in parentheses; data by marsh type are
pooled across regions, seasons, and sex; data for region, season, and sex are pooled across marsh types; reference marshes
adjacent to the restored and restricted marshes are noted in parentheses).

Response
Daily Growth
(mm)

Otolith Radius
(mm)

Otolith Length
(mm)

Otolith Height
(mm)

Fish Length
(mm)

Fish Wet Weight
(g)

Restored 2.16 (0.66) 719.16 (102.21) 1496.63 (207.74) 1351.16 (157.28) 66.2 (11.9) 3.88 (2.20)

Reference (restored) 2.26 (0.74) 669.96 (99.81) 1393.41 (212.99) 1271.54 (167.68) 61.7 (11.5) 3.09 (1.84)

Restricted 2.21 (0.79) 692.70 (86.86) 1450.01 (193.28) 1324.26 (134.89) 61.2 (11.1) 2.98 (1.78)

Reference (restricted) 2.26 (0.75) 726.75 (107.94) 1559.24 (227.14) 1391.76 (158.14) 67.8 (12.7) 4.29 (2.79)

Gulf of Maine 2.20 (0.64) 681.37 (99.97) 1451.10 (229.76) 1317.49 (172.15) 67.0 (13.0) 4.05 (2.59)

Long Island Sound 2.24 (0.81) 721.39 (102.13) 1495.87 (209.91) 1348.28 (153.15) 62.0 (10.7) 3.18 (1.81)

Summer 2010 3.03 (0.64) 720.36 (92.25) 1501.03 (188.93) 1355.08 (134.94) 67.7 (10.0) 4.06 (1.96)

Fall 2010 2.09 (0.37) 719.18 (107.44) 1520.13 (250.34) 1362.19 (179.38) 66.0 (13.5) 3.91 (2.77)

Summer 2011 2.39 (0.54) 728.15 (103.99) 1521.30 (209.17) 1380.89 (153.29) 67.6 (10.6) 3.77 (1.85)

Fall 2011 1.53 (0.19) 655.91 (93.36) 1384.16 (202.22) 1261.84 (156.15) 58.4 (11.3) 2.84 (2.10)

Males 2.21 (0.71) 691.85 (96.71) 1461.51 (207.13) 1330.16 (157.45) 62.8 (10.8) 3.23 (1.72)

Females 2.23 (0.75) 712.53 (108.28) 1487.33 (233.71) 1336.65 (169.28) 66.1 (13.1) 3.99 (2.67)

doi:10.1371/journal.pone.0046161.t006
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Figure 6. Fish length vs. wet weight for healthy fish. Data pooled across seasons, regions, and by gender. (A) Restored vs. reference fish. (B)
Restricted vs. reference fish.
doi:10.1371/journal.pone.0046161.g006
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resources to maintaining growth and body size than to building

lipid stores relative to reference marsh fish. Results were consistent

by gender, region, and for three of the four seasons sampled. Our

findings suggest potential tradeoffs between growth, energy

storage, and reproduction potentially due to reduced habitat

quality, a decrease in access to invertebrate prey on the marsh

surface, and lack of habitat refugia to avoid larger predators.

Access to the marsh surface is ultimately influenced by the

frequency, depth, and duration of tidal flooding, with nekton

exhibiting a positive relationship between marsh selection and

flooding duration [6]. Although we did not collect data on marsh

surface flooding at our sites, we collected samples on flood tide and

only observed flooding of P. australis at the fringe of one of the four

restricted sites (Herring River), whereas all reference and restored

marshes flooded daily on high tides. Flooding of the marsh surface

in invaded tidally restricted salt marshes is influenced by both the

reduction in tidal range due to the restriction (Table 1) and by the

increase in marsh surface elevation due to introduced P. australis

[95]. At one of our study sites (Hatches Harbor), Smith et al. [35]

measured tidal range pre-restoration and found that tidal range in

the restricted marsh was only 39% of that measured in the

adjacent unrestricted marsh. At another one of our sites (Galilee),

the depth and duration of flooding in the restricted marsh

increased post-restoration, whereas the reference marsh remained

the same [25]. Osgood et al. [96] found that a P. australis-invaded

(unrestricted) marsh in Connecticut was 29.0 cm higher in

elevation than an adjacent S. alterniflora marsh, resulting in

a reduction in flooding frequency by 52%. Similarly, Hunter

et al. [97] documented declines in marsh surface flooding depth

from the initial (6.060.5 cm), early (3.961.3 cm), to late

(2.460.8 cm) invasion stages that corresponded with reductions

in flooding frequency by 7%, 16%, and 37%, respectively, in three

P. australis-invaded (unrestricted) salt marshes in the mid-Atlantic

region.

Our data suggest that with reduced or limited access to the

marsh surface, F. heteroclitus in tidally restricted marshes invaded by

P. australis are not obtaining dietary prey items needed to

supplement their energy intake. Invertebrate prey on the marsh

surface can differ than those typically found in subtidal creeks,

with the former composed of isopods, gastropods, insects, spiders,

beetles, amphipods, and ostracods and the latter composed of

copepods, amphipods, and polychaetes [98]. The guts of fish

allowed access to marsh surface can be up to six times fuller than

those restricted to unvegetated subtidal creeks [98], providing

resources necessary for significantly higher growth rates and

weight gain [4,12,14,15]. In unrestricted P. australis marshes in the

Hudson River estuary, Weinstein et al. [16,99] reported reduc-

tions in the energy reserves (triacylglycerols, free fatty acids, total

lipids) of fish, which they attributed to reduced flooding frequency

and access to the marsh surface for feeding. Therefore, decreased

lipid reserves detected in our study could be due to lack of fish

access to invertebrate prey on the marsh surface.

A second potential reason for reduced lipid reserves relates to

increased movement of fish due to predation risk and reduced

habitat refugia at high tide. For F. heteroclitus, predation risk is of

primary importance in determining habitat use [45,46,100]. At

low tide, F. heteroclitus will occupy depositional areas of water

channels where prey is less abundant but predation pressure is low

[45]. When the tide rises, fish flood onto the marsh surface to feed

and escape predators [45], with adult F. heteroclitus moving farther

onto the marsh surface than juveniles, which stay near the marsh

fringe [19]. Increased risk of predation could confine movement of

F. heteroclitus to areas with poor prey availability [45], decrease

growth rates [46], or increase movements to avoid capture from

predatory fish and wading birds [101,102], thereby decreasing

resources available for energy storage.

We found gravidity in F. heteroclitus strongly influenced their lipid

reserves. Not only did we detect a significant cost of reproduction

in F. heteroclitus (as evidenced by reduced lipid stores in un-

parasitized gravid females), the decreased proportion of gravid fish

in restricted marshes suggests that investment tradeoffs between

growth, lipid storage, and reproduction are occurring in the

restricted marsh fish. Competing demands for energy acquisition,

avoidance of predators while foraging, parasitism, and coping with

seasonal fluctuations in north temperate estuaries influence energy

allocation strategies in fish [49–51,61]. Notably, we did not find

any differences in growth rate or morphology between the

restricted, restored, or reference marsh fish, indicating investment

into growth is a high priority across all populations. Reproduction

is costly [50,92], so fish may choose to skip spawning and invest

resources into growth and survival to enhance the chance of future

success rather than deplete current lipid stores by spawning [50].

Whether decreased lipid reserves in unparasitized fish inhabiting

restricted marshes were due to decreased foraging ability, in-

creased movement due to predation, or some other factor, it

appears that investment into lipid stores has been forgone in lieu of

growth.

Effectiveness of Tidal Restoration
Restoring hydrologic flow to salt marshes to decrease the cover

and height of introduced P. australis has been a standard

restoration practice in New England for decades and is used to

re-establish habitat quality for salt marsh nekton and birds [24,30].

Previous authors in New England have examined hydrologic

restoration effectiveness using gut content analyses, nekton density,

length frequency distributions, fish biomass, and species richness/

diversity, with varying outcomes based on restoration longevity,

tidal range, site location, species, and metric assessed

[25,34,36,37,40,43,44,67,71,77,103]. Our results support the

effectiveness of tidal restoration for nekton, as all environmental,

physiological, and morphological indices revealed that hydrolog-

ically restored marshes were equivalent in habitat quality for fish

relative to adjacent reference systems.

Notably, fish using the reference S. alterniflora marshes were

smaller in length than those within the restored marshes, likely

because we captured a significantly larger abundance of younger

individuals (ages 0–1) in the reference marshes. Intertidal salt

marshes serve as nurseries for young F. heteroclitus [3,4,19,100],

which use small surface marsh pools and depressions for feeding

and refuge during their first summer until they have obtained

sufficient length to enter the tidal creek system [32,33,96,97].

Many of our restored sites are still changing and have yet to

develop an extensive network of pools typical of salt marshes, so

exposure of juveniles to predators may be higher than in reference

marshes. Adult F. heteroclitus are known to consume their younger

conspecifics so it possible that young-of-the-year fish are fewer in

number in restored marshes simply due to predation [33,102].

Over time, nekton patterns in the restored marshes can mimic

those in reference areas as the hydrologic connection between

habitats allows greater faunal and prey exchange [34,37,40,44].

Our results demonstrate that restored and reference salt marshes

are equivalent in their provision of habitat to resident salt marsh

fish as indicated by non-significant differences in energy reserves,

growth rate, morphology, gravidity, parasite prevalence, and water

quality 11–22 years post-restoration. The outcomes of our study

agree with the findings of two recent meta-analyses (one global,

one regional) that concluded that in degraded wetlands ecological

restoration of faunal communities can rapidly occur within the
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timeframe of 5–10 years, especially where there is a hydrologic

connection to an intact marsh system [104, K.L. Dibble,

unpublished data]. Although other wetland functions such carbon

storage and nutrient cycling may take many more years to achieve

[104], habitat quality for fauna can be restored relatively quickly

in these systems.

Conclusions
Tidally restricted salt marshes invaded by introduced P. australis

have been the focus of restoration efforts due to measurable

differences in biodiversity and ecosystem function. We demon-

strated that fish in restricted, restored and reference marshes are

morphologically similar so that an assessment of condition based

on fish length or biomass might not capture the physiological

effects of poor habitat quality on resident fish populations. Instead,

we used biochemical condition indices and examined parasites and

gravidity and were able to detect trends in the health of a common

marsh resident. Numerically dominant along the Atlantic coast, F.

heteroclitus consume salt marsh herbivores/detritivores and are prey

to transient predators, thereby providing an important trophic link

between intertidal marsh production and near- and offshore food

webs [102]. Management efforts to restore tidal exchange and

control the P. australis invasion in salt marshes should be a priority

to ensure that forage fish populations are healthy and can support

coastal fisheries.
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