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Abstract. Structured population models are increasingly used in decision making, but
typically have many entries that are unknown or highly uncertain. We present an approach for
the systematic analysis of the effect of uncertainties on long-term population growth or decay.
Many decisions for threatened and endangered species are made with poor or no information.
We can still make decisions under these circumstances in a manner that is highly defensible,
even without making assumptions about the distribution of uncertainty, or limiting ourselves
to discussions of single, infinitesimally small changes in the parameters. Suppose that the
model (determined by the data) for the population in question predicts long-term growth. Our
goal is to determine how uncertain the data can be before the model loses this property. Some
uncertainties will maintain long-term growth, and some will lead to long-term decay. The
uncertainties are typically structured, and can be described by several parameters. We show
how to determine which parameters maintain long-term growth. We illustrate the advantages
of the method by applying it to a Peregrine Falcon population. The U.S. Fish and Wildlife
Service recently decided to allow minimal harvesting of Peregrine Falcons after their recent
removal from the Endangered Species List. Based on published demographic rates, we find
that an asymptotic growth rate k . 1 is guaranteed with 5% harvest rate up to 3% error in
adult survival if no two-year-olds breed, and up to 11% error if all two-year-olds breed. If a
population growth rate of 3% or greater is desired, the acceptable error in adult survival
decreases to between 1% and 6% depending of the proportion of two-year-olds that breed.
These results clearly show the interactions between uncertainties in different parameters, and
suggest that a harvest decision at this stage may be premature without solid data on adult
survival and the frequency of breeding by young adults.

Key words: elasticity; Falco peregrinus anatum; matrix sensitivity; Peregrine Falcons; robustness;
structured population models.

INTRODUCTION

Decision making under uncertainty is a pervasive

characteristic of conservation biology. Sometimes, the

scientific uncertainty can be so severe that it paralyzes

decision making, or causes decisions to be made solely

on social grounds, without being informed by science.

Current quantitative approaches to decision making

usually rely on being able to construct models or

scenarios that illuminate the consequences of decisions

for various stakeholders. Managers of wildlife popula-

tions use population projection matrices (Caswell 2001)

to assess decisions with increasing frequency, but

parameters in these matrices are inherently uncertain.

Unfortunately, the standard tools for assessing the

effects of parameter uncertainty on matrix models

require better data than is typically available in the

management of threatened or endangered species. The

method of sensitivity and elasticity analyses is predicated

on analyzing perturbed behaviors resulting from small

deviations away from some assumed nominal behavior.

In fact, this approach can be misleading for large

perturbations (see Mills et al. 1999, Hodgson and

Townley 2004). Another standard approach is to use

Monte Carlo simulations, where the data is assumed to

be substantial enough to determine parameter estimates

of the distributional form of random variables. In the

management of threatened or endangered species, where

information can be extremely scarce, it is unlikely that
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the perturbations are small, and in many cases there is

not enough information available to know the distribu-

tion of uncertainties. Scarcity of data particularly

impacts estimates of the variance, possibly leading to

underestimates of the probability of extreme values.

Even when empirical variance estimates or bounds on

parameters are available, and accepted by all parties,

correlations between parameters are certainly present

and usually unknown. In this paper, we present an

alternate approach for the systematic analysis of the

effect of uncertainties on long-term population growth

or decay. This approach does not require the perturba-

tions to be small, can handle simultaneous uncertainty in

several parameters, and does not require strong distri-

butional assumptions.

Suppose that the model (determined by the data) for

the population in question predicts long-term growth.

Our focus is to determine how uncertain the data can be

before the model loses this property. Roughly speaking,

the robustness of a desired property (such as long-term

population growth) to uncertainty or perturbation of

data is a measure of how much the data can be changed

before the desired property is destroyed. A general

framework of robustness analysis, which has been

developed in the field of control theory, has been

adapted for population dynamics in ecology by Hodg-

son and Townley (2004). The robustness approach

adopts a different viewpoint to that typified by

sensitivity/elasticity analysis: the latter is microscopic,

perturbing away from a nominal model and focusing in

on the infinitesimal dependence of a specific dynamical

property on the perturbation; the latter is essentially

macroscopic and focuses in on perturbation as a

function of required dynamical property. Hodgson and

Townley (2004) tabulates a clear comparison between

these micro- vs. macroscopic approaches.

While we build on the approach in Hodgson and

Townley (2004), our approach differs from theirs in

several ways. Most importantly our focus is on

robustness of population growth (at least one eigenvalue

greater than one in modulus), which is more delicate

than their simpler problem of robustness of population

decline (all eigenvalues less than one in modulus). In

addition, we describe all acceptable uncertainties, while

they give the answer in terms of the stability radius,

which gives a distance that the data can be changed

before causing the desired property to be lost.

The methods presented here are generalizable to all

population projection matrices, but we illuminate the

method with a particular problem: the decision to allow

limited harvesting of a recently recovered endangered

species. Peregrine Falcons (Falco peregrinus anatum)

were placed on the endangered species list in 1970 (U.S.

Fish and Wildlife Service 2003), due to DDT, habitat

loss, hunting, and other factors. In addition to the ban

on DDT, the implementation of fostering, hacking

(young falcons slowly reintroduced to the wild in

stages), and the release of over 6000 Peregrines helped

populations recover (Craig et al. 2004).

With over 2000 breeding pairs in the United States,

the population is again increasing, and falcons were

removed from the endangered species list in 1999. There

is renewed interest in harvesting Peregrine Falcons for

falconry, and, in May 2001, the U.S. Fish and Wildlife

Service allowed states west of the 1008 longitude line

(from North Dakota through Texas) to allow harvesting

of up to 5% of their state’s population (U.S. Fish and

Wildlife Service 2001). Falconers as a group have

considerable interest in the outcome, as they contributed

a huge, voluntary effort to foster and hack young birds

during the recovery phase. For them, the new harvest

permits are the payoff of a long and significant

investment.

In July 2005, controversy arose over the number of

falcons currently being harvested in Oregon. The

Audubon Societies of Portland and Denver, the Center

for Biological Diversity, and the New Mexico Audubon

Council questioned the decision of the U.S. Fish and

Wildlife Service allowing harvesting of the Peregrine

Falcon population. In particular, the plaintiffs claimed

that the U.S. Fish and Wildlife Service’s calculations of

the margin of error misrepresented the data, and

consequently harvesting exposed Peregrine Falcon

populations to unnecessary risk of decline. These

concerns were dismissed and 5% of the population are

still allowed to be harvested.11 The key issue on which

this case hinged was whether or not the incorporation of

uncertainty into the calculations of the allowable harvest

rate was done appropriately.

After we apply our methods to the model for

Peregrine Falcon population growth, we incorporate

harvest effects into the population model to assess how

different levels of harvesting reduce the robustness to

uncertainty. How much uncertainty is tolerable is a

value judgment, but the methods used in this paper

make direct connections between uncertainty and

maintenance of population growth under different

management choices, without assuming that uncertain-

ties are tiny or that errors have particular distributions.

METHODS

General method for classifying perturbations

Begin by assuming that A is a time-invariant

population projection matrix for the population in

question. The leading eigenvalue of A, which we denote

by k(A), satisfies k(A) . 1, which implies that the

population is increasing if A accurately models the

population dynamics. The parameters used in this

matrix are estimated from the available data, and are

referred to as the nominal values, and A is referred to as

the nominal matrix. The actual values of the parameters

11 Audubon Society of Portland v. United States Fish and
Wildlife Service, No. 04-670-KI (D. Oregon July 21, 2005).
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could differ by unknown amounts from the nominal

values, due to data collection errors and changes over

time, so the actual population may not in fact be

growing. We will explore the effects of this uncertainty

on the population. It is not difficult to determine how far

a single parameter can be perturbed before the

population experiences negative population growth;

one method is given in Appendix A. However, it is

more difficult to determine the effect of independent

perturbations of two or more underlying parameters. It

is our goal to determine which combinations of

perturbations maintain population increase, and which

lead to population decline.

We denote the actual population projection matrix by

Ã, and we write

Ã ¼ Aþ P

where P is called the perturbation matrix. We do not

know P, and hence do not know Ã exactly. The nonzero

entries of P correspond to the uncertain entries of A. If

the actual matrix is close to the nominal matrix (i.e., the

data is accurate), then the entries of P will be small, but

this is not guaranteed. The long-term population growth

rate is directly determined by k(Ã), which we denote

by k.
If the dimension of the population vector is n, then the

matrices A, Ã, and P have n2 entries. The uncertainties

are typically structured, and can be described by m

parameters (p1, p2, . . . , pm), where m � n2. The smaller

the number of parameters we consider, the more

tractable the analysis will be, so this approach will be

easier if we consider only the most significant parame-

ters, for instance, the parameters that affect k the most,

or the most uncertain parameters. We say that (p1, p2,

. . . , pm) is admissible if AþP is an acceptable projection

matrix, and we let S be the set of admissible (p1, p2, . . . ,

pm); for example, it will be typical to restrict the

perturbations so that the sum of the survival probabil-

ities are always between 0 and 1. We can denote the

explicit dependence of Ã and k on (p1, p2, . . . , pm) by

writing

Ã ¼ Ãðp1; p2; . . . ; pmÞ; k ¼ kðp1; p2; . . . ; pmÞ:

Now consider the subset of S given by

C ¼ ðp1; p2; . . . ; pmÞ 2 Sjkðp1; p2; . . . ; pmÞ ¼ 1f g: ð1Þ

This is the set of (p1, p2, . . . , pm) that lead to a leading

eigenvalue of 1. Mathematically, this set is a hypersur-

face. If we are considering two uncertain parameters,

then m ¼ 2 and C is a curve; this is the case which is

illustrated in this paper. If we are considering three

uncertain parameters, then m ¼ 3 and C is an ordinary

surface (that is, a two dimensional object in three

dimensions). When m¼ 2 or 3, it is clear what it means

for a particular (p1, p2, . . . , pm) to be on one side or

another of C. For hypersurfaces in dimensions higher

than 3, it is sometimes not possible to define the notion

of the ‘‘side’’ of the hypersurface. However, for the

surfaces described by Eq. 1, the notion of the side of C

can be made precise mathematically, using Proposition

A.1 in Appendix A. Since we are assuming that the

unperturbed matrix A has k(A)¼ k(0, 0, . . . , 0) . 1, the

‘‘population growth’’ side of C is the one containing (0,

0, . . . , 0). Hence, we consider all ‘‘good’’ perturbations

to be those that are on the population growth side of C.

Since the nominal model corresponds to (p1, p2, . . . , pm)

¼ (0, 0, . . . , 0), one measure of robustness is how far (0,

0, . . . , 0) is from C. In the case where m¼ 2 or 3, we get

stronger results, since we get a graphical representation

showing exactly which combinations of uncertainties

maintain and destroy population growth.

If we are concerned with maintaining a particular

growth rate, say 3%, then we would replace C with

C1:03 ¼ ðp1; p2; . . . ; pmÞ 2 Sjkðp1; p2; . . . ; pmÞ ¼ 1:03f g:

Furthermore, it should be pointed out that for some

applications we will be interested in maintaining

population decay, in which case the good perturbations

will be on the side of C that guarantees that k(p1, p2, . . . ,

pm) , 1.

It still remains to find an equation for C. It is easy to

find the hypersurface on which some eigenvalue of Ã is

1. Letting I denote the n 3 n identity matrix, this

hypersurface is

C ¼ ðp1; p2; . . . ; pmÞ 2 Sjdet½I � Aðp1; p2; . . . ; pmÞ� ¼ 0f g:
ð2Þ

For the Peregrine Falcon model, in Appendix B we

determine C manually, and we show that C is the same

curve as C by using an analytical argument based on the

Peron-Frobenius Theorem (Seneta 1981). The manual

computations would be arduous for larger matrices or

multidimensional perturbations, so in the Supplement

we provide MATLAB code demonstrating how to apply

this method to a larger matrix and more complex

perturbations. For all matrices we have tried so far, it is

easy to confirm numerically that C is the same curve as

C. A thorough theoretical study of when C ¼ C is

forthcoming (D. Boeckner, J. Lubben, R. Rebarber, B.

Tenhumberg, and S. Townley, unpublished manuscript).

Even if C is not the same as C (or cannot be proved to be

the same as C), it is still useful. For (p1, p2, . . . , pm) on C,
the eigenvalue of largest modulus k(p1, p2, . . . , pm) must

be greater than or equal to 1, since some eigenvalue of

Ã(p1, p2, . . . , pm) is equal to 1. Hence for (p1, p2, . . . , pm)

on side of C which contains (0, 0, . . . , 0), it is guaranteed

that k(p1, p2, . . . , pm) . 1; however, it is not guaranteed

that on the other side of C we have k(p1, p2, . . . , pm) , 1.

Falcon population model

In this section, we consider a model for an endangered

Peregrine Falcon population, and show how different

kinds of uncertainties can be simultaneously, and

globally, analyzed. We use a standard age-structured

December 2007 2177POPULATION MANAGEMENT UNDER UNCERTAINTY



population projection model (Caswell 2001) with three

age classes: birds less than one year old, birds older than

one year and less than or equal to two years old, and

birds older than two years. We refer to the population of

birds in each of these three classes as x1, x2, and x3,

respectively, and the population vector is as follows:

x ¼
x1

x2

x3

0
@

1
A:

The population vector during year k is denoted xk,

and ðxkÞ‘k¼0 satisfies the discrete time equation

xkþ1 ¼ Axk ð3Þ

where A is the population projection matrix. The

nominal population projection matrix we use is a

correction of the post-breeding model derived in Craig

et al. (2004); the published matrix incorrectly includes an

additional juvenile age class, although the reported

model results are from the correct model (G. C. White,

personal correspondence). The model parameters are S0,

the survivorship from birth to age one; S1, the

survivorship from age one to age two; S2, the yearly

survivorship for all older birds. The fecundity F is

assumed to be the same for all breeding pairs. Birds

under two years old may or may not breed. We quantify

this by letting B represent the proportion of birds in the

second age class that breed. R denotes the proportion of

birds that are female. In terms of these parameters, the

nominal population projection matrix is

A ¼
0 FRBS1 FRS2

S0 0 0

0 S1 S2

0
@

1
A: ð4Þ

We use parameter values estimated from the Peregrine

Falcons in Colorado, USA (Table 1; Craig et. al. 2004).

We need to incorporate harvesting into the population

projection matrix. We introduce the variable h, which

represents the proportion of nestlings harvested, so the

term (1 � h), denoting the proportion of nestlings

remaining in the wild population, is included in the

matrix A by multiplying this term by the fecundities

(Caswell 2001). The amount of harvesting is assumed to

be the same in both age classes since for many birds the

age cannot be determined. This also assumes that the

two age classes are equally vulnerable to harvesting. Let

Ah ¼
0 ð1� hÞFRBS1 ð1� hÞFRS2

S0 0 0

0 S1 S2

2
4

3
5: ð5Þ

Harvesting can affect the nesting habits of the parents

and the survivorship of the remaining nestlings.

Peregrine Falcons are known to re-nest (lay another

clutch) if a clutch is lost early (Ratcliffe 1993). However,

by U.S. Fish and Wildlife Service regulations, nestlings

may not be harvested prior to 10 days of age (U.S. Fish

and Wildlife Service 2001); thus removing nestlings will

not cause the parents to re-nest. Removing a nestling

could increase the survivorship of remaining nestlings

due to less work for the parents. However, removing

nestlings only minimally improves the survivorship of

the remaining young (T. Cade, personal communication),

thus, in modeling the worst case we may ignore this.

The U.S. Fish and Wildlife Service found k ¼ 1.03

(Audubon Society of Portland v. United States Fish and

Wildlife Service 2005), indicating long-term growth of

3%. This is consistent with our nominal model, which

has largest eigenvalue 1.0288. However, much of the

data in A is uncertain.

Data uncertainties

For the purpose of demonstrating the method, we will

focus on the two parameters contributing the most to

the uncertainty of k. We choose one of the parameters to

be the most uncertain one, and the other parameter to be

the one that affects the long-term population growth

rate k the most.

We note that B is completely unknown, and varies

substantially between different populations. If a popu-

lation is close to carrying capacity, then two-year-old

birds are less likely to find a nesting site and so are less

likely to breed (Hunt 1988). However, if the population

is growing, then a high percentage of two-year-old birds

will breed as there is less competition. Hence, we

consider B to be the most uncertain of the parameters.

In Fig. 1, we see how k is affected by changes in each

of the parameters. When determining the effect of a

parameter on k, we can think of k as a function of each

parameter while the other parameters stay fixed at the

nominal values. Fig. 1 gives k(p) for each parameter.

The value of p (shown on the x-axis) represents the

proportional change in the parameter from the nominal

value (e.g., p ¼ �0.1 represents a 10% decrease in the

parameter). The y-axis gives the value of k obtained

TABLE 1. Nominal, or unperturbed, matrix parameters for the falcon model, sensitivities, and elasticities.

Parameter Meaning Estimate Sensitivity Elasticity

F no. nestlings fledged per pair 1.660 0.0954 0.1539
R proportion of female nestlings 0.500 0.3166 0.1539
S0 survival of nestling to age 1 0.544 0.2910 0.1539
S1 survival of 1-yr-old birds 0.670 0.2363 0.1539
S2 survival of birds � 2 yr old 0.800 0.8901 0.6922
B proportion of 2-yr-old birds that breed 0 0.0453 0

Note: These are ‘‘lower level’’ sensitivities, so the corresponding elasticities do not add to 1.

A. DEINES ET AL.2178 Ecological Applications
Vol. 17, No. 8



when that entry is changed and other entries are not

changed. These curves are obtained using Eq. A.2 in

Appendix A. From these graphs, we see that changes in

S2 are more important to k than changes in S1 or S0.

Since the long-term growth rate k is most sensitive to S2,

and B is the most uncertain parameter, we look at how k
is affected by simultaneous changes in B and S2. In

particular, we will determine what changes can be

tolerated in B and S2 without destroying the conserva-

tion property k . 1.

The traditional approach to analyzing the affect of a

change of p to a parameter a on k is via sensitivity

analysis. The sensitivity of k to a is the instantaneous

rate of change in k with respect to a, i.e., it is dk/da
evaluated at the nominal value of a (see Table 1). Even

though sensitivity analysis is only guaranteed accurate

for small p, in this case, the sensitivities in Table 1 lead

to the same conclusion as the graphs in Fig. 1.

We now analyze the effect of simultaneous changes in

both B and S2. We parameterize the change in B by p1,

and the change in S2 by p2, where p1 is an absolute

change and p2 is a relative change. In particular, we want

the perturbed matrix to be

Ã ¼ Aþ P1 þ P2 ¼
0 FRS1p1 FRS2ð1þ p2Þ
S0 0 0

0 S1 S2ð1þ p2Þ

2
4

3
5:

ð6Þ

As in Appendix A, we write

P1 ¼ p1D1E1 P2 ¼ p2D2E2

where

D1 ¼
FRS1

0

0

0
@

1
A E1 ¼ ð 0 1 0 Þ ð7Þ

and

D2 ¼
FRS2

0

S2

0
@

1
A E2 ¼ ð 0 0 1 Þ: ð8Þ

The admissible range of p1 is 0 to 1, where p1 ¼ 1

implies all two-year-old females breed. The admissible

range of p2 is constrained so that the term S2(1 þ p2),

which is a probability, is between 0 and 1, so p2 ranges

from �1 to 0.25. Thus the set of admissible perturba-

tions is described by

S ¼ ðp1; p2Þj0 � p1 � 1;�1 � p2 � 0:25f g:

We wish to find the set of (p1, p2) in S so that k . 1.

We can easily find a curve in the (p1, p2) plane on which

some eigenvalue (not necessarily the largest eigenvalue

k) is equal to one. Hence, on this curve, k must be

greater than or equal to 1. If we can prove that, on this

curve, k ¼ 1, then the curve breaks up the set S of

admissible perturbations into two regions, one of which

corresponds to k .1, while the other region corresponds

to k , 1. In Appendix B, we find the equation of the

curve using a method which guarantees that k ¼ 1 for

(p1, p2) on this curve. The curve is shown in Fig. 2, on a

coordinate system with p1 on the horizontal axis and p2
on the vertical axis. The nominal values of (B, S2) are

represented by (p1, p2)¼ (0, 0) The shaded area in Fig. 2

represents those (p1, p2) that correspond to k . 1.

Fig. 2 shows us how much error is acceptable in B and

S2, and, more importantly, shows the interplay between

uncertainties in the two variables. For instance, for any

value of B, S2 can tolerate a negative error of 4% (or, of

course, any positive error). If B ¼ 1, S2 can tolerate a

negative error of 13% or less. This illustrates an

important principle: new information about one param-

FIG. 2. The boundary curve represents all pairs of
perturbations (p1, p2) for which k(p1, p2)¼ 1. The shaded area
represents all pairs of perturbations (p1, p2) for which k(p1, p2)
.1. The dashed line is k(p1, p2)¼ 1.0287, the growth rate of the
unperturbed matrix. The dotted line shows the linear approx-
imation to these curves obtained from direct use of sensitivity to
predict the effects of perturbations.

FIG. 1. The largest eigenvalue k vs. change in the falcon life
history parameters. Parameters are defined in Table 1.

December 2007 2179POPULATION MANAGEMENT UNDER UNCERTAINTY



eter often changes the robustness to uncertainty in other

parameters.

Now suppose that we wish to identify all (p1, p2) that

guarantee a long-term growth rate of at least 3%. Then,

we simply replace 1 in our computations with 1.03. This

yields a new curve (Fig. 2) that is shifted upward relative

to the previous curve; because k¼ 1.0287 at the nominal

values, this new curve runs through the nominal point.

The region above that curve gives the values of (p1, p2)

for which k . 1.03 for A.

It is possible to approximate the effect of multiple

large perturbations using sensitivities alone by assuming

that k(p1, p2) is linear (Caswell 2001:224; Fig. 2). When

uncertainty in S2 is considered alone (i.e., along the y-

axis of the figure), the approximation is very close

because the nonlinearity of k with respect to S2 is not

great (Fig. 1). However, when uncertainty in two

parameters is considered simultaneously the linear

approximation underestimates how much uncertainty

is allowed in S2 as B increases. For larger matrices or

more complex perturbations, the nonlinearity, and

hence the inadequacy of the linear approximation, could

easily be more severe.

The effect of harvesting on long-term growth

We now examine the effect of harvesting on the

largest eigenvalue k of the modified population projec-

tion matrix Ah (see Eq. 5). As a simple example, let Ah

use the nominal values of B and S2; we find that the

smallest value of h that gives an eigenvalue of 1 is

0.1714. Therefore, since k varies continuously with h and

the nominal matrix A with h ¼ 0 has largest eigenvalue

1.0288, any value of h less than 0.1714 gives a largest

eigenvalue of Ah greater than 1. Thus even with no two-

year-old falcons breeding, if there is no uncertainty, then

17.41% may be harvested while maintaining a growth

rate of k ¼ 1.

However, this does not take into account uncertain-

ties in B and S2. Hence, we again let p1 be the

uncertainty in B and p2 be the uncertainty in S2. As in

the analysis of A in Appendix B, for several values of h,

we find curves in the (p1, p2) plane on which the largest

eigenvalue k for Ah is 1. For h¼0, 0.05, 0.1, 0.15, 0.1714,

and 0.2, these curves are shown in Fig. 3. The region

above each curve gives the values of (p1, p2) for which k
. 1 for Ah. If B ¼ 1 and 17.41% are harvested, S2 can

tolerate uncertainties of up to �6%. The U.S. Fish and

Wildlife Service suggests that 5% can be harvested.

Reading from the h¼ 0.05 graph in Fig. 3, we see that, if

B¼ 0, this allows an uncertainty of 3% in S1, and if B¼
1, this allows an uncertainty of 11% in S1.

If our objective is to maintain 3% population growth

even with harvesting, then we can recalculate our curves

as we did for the no-harvesting model (Fig. 2). Although

we do not show the figure, it is straightforward to

calculate that 3% population growth cannot be main-

tained with 5% harvesting, unless our nominal value of

S2 is an underestimate, or at least 20% of two-year-old

birds breed. If more than 20% of two-year-old birds

breed, then uncertainties of up to 6% in adult survival

can be tolerated when B ¼ 1.

DISCUSSION

The difficulty of incorporating the effects of uncer-

tainty in matrix parameters into population manage-

ment decisions is possibly one of the largest problems

preventing widespread adoption of models in decision

making. One of the best examples of thoroughly

incorporating uncertainty in the assessment of manage-

ment is Heppell et al.’s (1994) work on Red-cockaded

Woodpeckers, which relied on simulation to explore the

effects of simultaneous uncertainties, as well as linear

approximations using elasticities. This approach of

using linear approximations from elasticities in one

dimension, and Monte Carlo simulations in multiple

dimensions is widely used (e.g., Ferriere et al. 1996,

Caswell et al. 1998, among many others). Although it is

possible to explore multidimensional parameter uncer-

FIG. 3. The effect of the harvesting fraction h
on the k(p1, p2) ¼ 1 curves. The bold line is h ¼
0.1714, the amount of harvesting that yields
k(p1, p2) ¼ 1 with no uncertainty for the nominal
values.
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tainty reasonably easily in this fashion, the exact results

obtained by simulation depend heavily on the details of

how perturbations are selected. This is especially true

when considering the possibility of constraints or

correlations among life history traits; information on

such correlations is generally unavailable (Wisdom et al.

2000). Caswell et al. (1998) incorporated constraints on

life history traits by sampling survival curves from a

group of related species. However, if a different set of

species had been selected, the results would differ by an

unknown amount, and this still does not answer the

problem of correlated environmental variation. The

method we introduce here gives an analytical result for

all possible perturbations, and is straightforward to

implement in readily available software (e.g., Symbolic

Toolbox in MATLAB, see Supplement).

It is widely reported that predictions of the perturba-

tions needed to effect a given change in k using

sensitivities or elasticities are accurate to relative

changes of 650% (e.g., de Kroon et al. 2000). However,

careful inspection of the numerical examples used to

support this claim show that they typically involve

perturbations of single vital rates or matrix entries. As

shown in Fig. 2 this is true for our matrix as well.

However, once multiple parameters are perturbed the

linear approximation breaks down. Some examples for

multiple perturbations are provided in Caswell (2001;

Chapter 18), and these demonstrate increasing approx-

imation errors with both the dimension and size of the

perturbation. B. Tenhumberg, S. Louda, J. Eckberg,

and M. Takahashi (unpublished manuscript) conducted a

Monte Carlo analysis of a large matrix with simulta-

neous uncertainty in 19 parameters, and found that

when parameters varied simultaneously the local and

linear elasticities were poor predictors of which param-

eters have a large influence on k. Our method makes all

of these predictions easily and without approximation

errors.

The notion of using direct perturbations of the life

cycle to improve decision making in conservation

biology was put forward for empirical perturbations

by Ehrlen and van Groenendael (1998). They suggested

that the tools of ‘‘life table response experiments’’ (sensu

Caswell 2001) should be used to analyze multiple years

of data as perturbations of an underlying matrix. A key

improvement of this idea over using elasticities alone is

the incorporation of the differential variability of each

matrix entry (de Kroon et al. 2000), arising because of

differential variability in life history traits. However,

small observed variation in a vital rate does not

necessarily mean it is a poor target for management

(Caswell 2001:619), and similarly large observed varia-

tion does not automatically lead to a good management

target. We have not addressed this issue in the present

example, but it would be straightforward to rescale the

perturbations (p1, p2) by the relative amount of

variability in the parameters they are affecting, if

estimates of this variability are available. A better,

prospective approach would rescale the perturbations by

their relative cost (ease of manipulation); an excellent

example of how to do this using sensitivity analysis is

given by Baxter et al. (2006).

A general, but underappreciated, problem with using

models to assess the effects of management options is

uncertainty in the connection between management and

population vital rates. For example, when considering

the effects of river flows on fish populations, it may not

be at all clear what relationship exists between flow and

spawning frequency. This type of uncertainty could be

included in the methodology we present here by careful

parameterization of the perturbations, although this will

increase the number of dimensions in the perturbation,

making interpretation more difficult. In the falcon

harvesting example we ignored the issue of how many

nestlings a harvest rate of 5% actually represents. There

is substantial uncertainty in estimates of numbers of

breeding pairs, and consequently in the number of

nestlings that can be taken. However, if detectability of

breeding pairs is less than 1, then the actual number of

identified nests will be an underestimate. As long as the

actual, observed number of nests is used to calculate the

number of nestlings that can be taken, the actual harvest

rate will be less than 5%. This cannot be guaranteed if

the permitted take is based on an estimated number of

breeding pairs. In that case, if the breeding population is

overestimated then the nominal 5% harvest rate would

in fact be larger, and consequently there is a greater risk

that the population growth targets would not be

maintained. The robust, conservative decision is to use

the actual observed number of nests. This harvest level

could be increased, but this is only safe when the

accuracy of breeding population estimates can be

carefully defined.

We have approached the problem of uncertainty using

perturbations in a time-invariant matrix model. Vital

rates vary through time and space in natural popula-

tions, and ignoring these stochastic effects leads to

predictable biases in the long term population growth

rates (e.g., Tuljapurkar and Haridas 2006). When

comparing management alternatives, the leading eigen-

value of a time invariant matrix works well in the

relative sense, because it is a performance measure that

integrates across the entire life history (Caswell

2001:615), so for that purpose our approach should

work well. Nonetheless it would be an interesting

exercise to formally compare the perturbation approach

with stochastic population dynamics, and see if they can

be combined or reconciled.

Robustness approaches are a relatively new idea in

ecology and conservation biology, although they find

wide application in many other fields (e.g., Ben-Haim

2001). In addition to applications in conservation

biology (e.g., Hodgson and Townley 2004, Hodgson et

al. 2006), the concept was recently applied to foraging

theory to examine the possibility that foragers seek to

guarantee minimum returns rather than maximize
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returns (Carmel and Ben-Haim 2005). The key differ-

ence from a decision-making perspective is the shift from

maximizing a performance criterion to guaranteeing

some minimum level of that criterion. Although our

current work focuses on the asymptotic growth rate of a

structured population, the general notion of guarantee-

ing performance could be applied to any measure of how

well a population is doing. For example, a minimum

probability of quasi-extinction over T years could be

specified, and then simulations carried out to determine

the largest parameter perturbation that has that as a

worst case performance. By restricting our focus to

asymptotic population growth rates we enable the use of

a powerful set of analytical results rather than having to

rely on simulations.

This new approach may make setting objectives for

decision making much easier in conservation biology.

For example, when comparing two or more manage-

ment decisions for their effect on the risk of extinction,

we may choose the strategy that provides the lowest risk

of extinction (Regan et al. 2005). However, if the costs of

these decisions differ, we are then forced into making

arguments about how much a species is ‘‘worth’’ in order

to justify a greater expense. In contrast, if we specify

some minimum performance that we wish to guarantee,

we can use robustness methods to compare decisions

based on how much error each can tolerate and still

guarantee the minimum. Differing costs then purchase

different levels of robustness, relieving us of the need to

value each species. We still have to value the robustness,

but this would appear to be easier to do than argue

about the value of a species.

In conclusion, the approach we have outlined here

provides a powerful set of tools for examining the effect

of decisions in the face of large and poorly characterized

uncertainty in population projection matrices. Many

decisions for threatened and endangered species are

made with poor or no information. We can still make

decisions under these circumstances in a manner that is

highly defensible, even without making assumptions

about the distribution of uncertainty or limiting

ourselves to discussions of single, infinitesimally small

changes in the parameters.
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APPENDIX A

Simple perturbations, eigenvalues, and transfer functions (Ecological Archives A017-089-A1).

APPENDIX B

The k¼ 1 curve for two perturbations (Ecological Archives A017-089-A2).

SUPPLEMENT

MATLAB code to identify the hypersurface (Ecological Archives A017-089-S1).
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