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Reducing quasi-ergodic behavior in Monte Carlo simulations by J-walking:

Applications to atomic clusters
D.D. Frantz and D. L. Freeman

Department of Chemistry, University of Rhode Island, Kingston, Rhode Isiand 02881

J. D. Doll

Department of Chemistry, Brown University, Providence, Rhode Island 02912

(Received 11 April 1990; accepted 3 May 1990)

A method is introduced that is easy to implement and greatly reduces the systematic error
resulting from quasi-ergodicity, or incomplete sampling of configuration space, in Monte Carlo
simulations of systems containing large potential energy barriers. The method makes possible
the jumping over these barriers by coupling the usual Metropolis sampling to the Boltzmann
distribution generated by another random walker at a higher temperature. The basic
techniques are illustrated on some simple classical systems, beginning for heuristic purposes
with a simple one-dimensional double well potential based on a quartic polynomial. The
method’s suitability for typical multidimensional Monte Carlo systems is demonstrated by
extending the double well potential to several dimensions, and then by applying the method to
a multiparticle cluster system consisting of argon atoms bound by pairwise Lennard-Jones
potentials. Remarkable improvements are demonstrated in the convergence rate for the cluster
configuration energy, and especially for the heat capacity, at temperatures near the cluster
melting transition region. Moreover, these improvements can be obtained even in the worst-
case scenario where the clusters are initialized from random configurations.

I. INTRODUCTION

We present a method for reducing errors occurring in
Metropolis' walks because of insufficient sampling of con-
figuration space. This problem, which remains one of the
fundamental concerns of Monte Carlo simulations, arises in
systems where the sample space contains two or more re-
gions marked by a very low transition probability between
them, resulting in bottlenecks that effectively confine the
sampling to only one of the regions.? The dichotomy of time
scales characterizing the walks produces rapid motion with-
in a confined region and very slow movement between the
regions. This results in errors that are systematic in the sense
that they have a definite sign and do not diminish with an
increasing number of walks. The errors arise as a conse-
quence of the finite length of the walks and hence diminish
with increasing walk length, disappearing in the limit of infi-
nitely long walks. A prototypical example is the double well
problem where the wells are separated by a large barrier. For
sufficiently low temperatures, the random walker is unable
to cross over the barrier within the duration of the walk and
hence never samples from the other well. Valleau and Whit-
tington® refer to this phenomenon as quasi-ergodicity. The
problem is especially insidious because it is difficult to de-
tect; the quasi-ergodic simulation can give all appearances of
being a good one, having low asymptotic variance and rapid
convergence, yet yield results that are completely wrong.

Despite the clear need for ensuring ergodicity in Monte
Carlo simulations, there have been relatively few direct stud-
ies on identifying and reducing quasi-ergodicity. Within the
context of free-energy determinations, attempts have been
made to widen the distribution using umbrella sampling ap-
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proaches.* In a similar context, Voter® has developed meth-
ods for determining the Helmholtz free-energy difference
between two systems widely separated in configuration
space. Although quite powerful, Voter’s method requires the
predetermination of the regions of configuration space that
must be accessed. Recently, Cao and Berne® have developed
antiforce bias and variable step algorithms that substantially
reduced quasi-ergodicity in the one-dimensional double well
potential they tested by accelerating the barrier crossings.
Their methods are distinguished by the use of techniques
that increase the likelihood of walking over barriers. We
have instead concentrated on the development of algorithms
that are characterized by “jumping over” barriers with at-
tempted moves made directly to the wells. Because Metropo-
lis stepsize ranges are implicitly scaled with temperature to
maintain the usual move acceptance rate of approximately
50%, quasi-ergodicity in a given system becomes an issue
only at low temperatures where the stepsize is too small to
surmount the high barrier. We propose that a low tempera-
ture random walker making the usual Metropolis moves
within a largely confined region of configuration space be
occasionally transported to another region by periodically
attempting jumps to another Metropolis walker whose tem-
perature is sufficiently high to fully access the whole config-
uration space. This jump-walking (or J-walking) scheme
couples the typically small stepsizes necessary for adequate-
ly sampling within a region of configuration space to the
large scale moves necessary to escape the bottlenecks. The
Boltzmann distribution generated by the high temperature
walker (J-walker) becomes the sampling distribution for the
low temperature walker’s attempted jumps. Because its dis-
tribution’s peaks correspond to the potential minima, the J-
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walker’s motion remains biased about the minima, greatly
increasing the likelihood an attempted jump will be accept-
ed. Furthermore, the J~-walker finds these regions automati-
cally; no a priori knowledge of the potential’s wells and bar-
riers is necessary.

This coupling of different distributions is similar in spir-
it to single and multiple histogram methods’ where the equi-
librium probability distribution at one value of some param-
eter is used to determine the probability distribution at
another value of the parameter. While these methods have
been developed to extend the parameter space obtainable
from a particular simulation and hence reduce the total cal-
culation time for the applied range, they do not treat quasi-
ergodicity per se, which is the intent of J-walking. The two
methods are complementary and could in principle be com-
bined.

The easiest way to implement the J-walker algorithm is
to run the two walkers in tandem. However, this can lead to
large correlations between the walkers that also results in
large systematic errors. There are several methods useful for
breaking these correlations. For example, the J-walker can
be moved an extra number of steps whenever a jump is at-
tempted, or several J-walkers can be run simultaneously
with jumping attempted to each in a random fashion. We
have found in general that the most efficient method is to
generate a high temperature distribution of adequate size
beforehand and store it in an array so that jumps can be
attempted to a configuration within the distribution simply
by generating a random index.

We have tested the J-walker method on a number of
simple systems. In Sec. II we introduce for illustrative pur-
poses a simple model of the prototypical one-dimensional
double well potential based on a quartic polynomial. The
potential consists of one well of fixed depth containing the
global minimum and a second well of variable depth. The
variable depth of the second well allows us to examine in a
systematic manner quasi-ergodic behavior as a function of
well depth as well as a function of temperature. A solution of
high accuracy can be easily obtained using standard numeri-
cal integration so that errors arising from quasi-ergodicity
can be quantified. We next develop our motivation for the J-
walker method by examining some simple jumping schemes
before presenting the method in detail. We systematically
test the method in Sec. IT1, beginning with an analysis of the
functional dependence of the classical average potential en-
ergy for the double well on the temperature and variable well
depth. Although useful heuristically, one dimensional sys-
tems can be misleading since good results can be obtained
from algorithms that are useless in typical Monte Carlo mul-
tidimensional applications. Hence we further test the utility
of the method by extending the double well potential to sev-
eral dimensions. In Sec. IV, we apply the J-walker method to
a multiparticle cluster system consisting of classical argon
atoms bound by pairwise Lennard-Jones potentials. We il-
lustrate the great increase in the rate of convergence engen-
dered by the method by obtaining good results even from
clusters that have been initialized randomly. Finally, in Sec.
V we summarize our experience and suggest future applica-
tions.

Frantz, Freeman, and Doll: J-walking clusters

Il. THEORY
A. Quasi-ergodicity in the double well potential

We begin to study quasi-ergodicity with a one dimen-
sional double well potential defined by the quartic polyno-
mial

V(x) =36x* + 45(a — 1)x° — 68ax® + 1, (1)
where
1
6= . 2
20 + 1 )

This function has a fixed minimum located at x = 1, a fixed
barrier of unit height at x = 0 and a variable minimum locat-
ed at x = — a. By restricting a to the range 0<a<]1, the
x =1 well remains the global minimum and the potential
varies from a single well and barrier (a = 0) to a symmetric
double well (o = 1). We can recast a in terms of a more
physically meaningful potential parameter by considering
the ratio of the well depths,

V() — V( —a) =a3(a+2)
V(0) — F(1) 20 +1)°
Since the barrier height is fixed at unity, ¥ is also a direct
measure of the variable well depth. For a given ¥, a can be
easily obtained from Eq. (3) by simple iteration. Figure 1(a)
shows the potentials for some representative values of ¥.

The problems arising from quasi-ergodicity in these po-
tentials can be seen by examining their classical average po-
tential energy,

— BV,
W)= fVe_; dx
fe~""dx

as a function of y and the temperature parameter 8 = 1/kT.
In the usual Metropolis method,' a random walker samples
the configuration space making moves from an initial coor-
dinate x; to a final coordinate x, with a probability of accep-
tance,

p=min{l,q(x/|x;)}, (5)
where

, (4)

_ T(x, le)p (xf)

= , 6
T(x,|x,. )p(x;) ©

q(x/|x;)
p(x) =Z ~ ' exp{ — BV (x)} is the Boltzmann distribution
with Z the standard configuration integral, and T(x'|x) the
sampling distribution. Figure 1(b) displays the Boltzmann
distributions for the ¥ = 0.9 potential for some representa-
tive values of S.

The sampling distribution is usually generated® from
uniform deviates £ over a finite stepsize range A to give

1 , A
— for |x' —x}< —
T(x'|x)=14A 2 @)
0 otherwise,
and
g(x'|x) = exp{ — B[V (x') — V(x)1}. (8)
Attempted steps are generated according to

x'=x+ (§ —}) A. The maximum stepsize A/2 is usually
adjusted to give acceptance probabilities of approximately
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FIG. 1. (a) One dimensional double well potentials for y = 0,0.2,...,1, where ¥ is the depth of the variable well as given by Eq. (3) in the text. The potential
with ¥ = 0 corresponds to a single well with a barrier, while y = 1 represents the symmetric double well. (b) Boltzmann distribution functions for the = 0.9
potential at # = 1,5,10 and 20, where S = 1/kT is the temperature parameter. The dashed curve is the potential.

50%. The required size decreases with increasing 8. We
have found that for potentials nearly quadratic about their
minima, the stepsize range has a temperature dependence

A~c/+f, where c is a constant dependent upon the well
curvature. This dependence on /3 can lead to quasi-ergodic
behavior for systems with barriers too high to ascend with a
sequence of several small steps and too broad to jump with a
single step; the walker becomes trapped in one of the wells
and never samples the remaining configuration space. This
can be seen in Fig. 1(b). The energy for 8 = 1 is comparable
to the barrier height and hence a significant fraction of the
distribution function is found in the barrier region so that the
walker has little trouble moving from well to well. An accep-
tance rate of approximately 50% can be obtained with a
stepsize range of A = 2.5, which is larger than the distance
between the wells, 1 -+ a. At = 20, the probability of pene-
trating the barrier with A = 0.5 is so low that only the distri-
bution in one of the wells can be effectively sampled.

The direction of the error resulting from this quasi-ergo-
dic behavior depends upon the walk initialization. If the
walks originate at the global minimum x = 1 then (V') will
be too low since the distribution associated with the higher
energy « well will be insufficiently sampled. The magnitude
of the error depends upon the fraction of the distribution
associated with the & well and hence varies with both ¥ and
B. Likewise, initialization in the a well results in values of
{¥) that are too high. This behavior can be used to recognize
quasi-ergodicity as can be seen in Fig. 2, which shows (V')
obtained from standard Metropolis sampling as a function of
B at constant y [Fig. 2(a)] and as a function of y at constant

B [Fig. 2(b)]. The two Monte Carlo curves represent initia-
lization at the global minimum and random initialization.
The third curve is the numerically exact solution obtained
from conventional integration routines.” Figure 2(a) re-
veals quasi-ergodic behavior in the ¥ = 0.9 potential begin-
ning at S~ 6. The error occurring with initialization fixed at
the global minimum is mostly lower than that occurring
with random initialization and decreases with increasing £
at high £ as the fraction of the distribution associated with
the a well decreases. Figure 2(b) for # = 10 also shows a
larger error for random initialization, with quasi-ergodic be-
havior beginning at ¥~0.3. For the fixed initialization case,
the onset becomes noticeable at a greater value (y=0.5).
Although the error is substantially less in this case, it is still
significant (about 30%). The good agreement for low y is
due to the tiny fraction of the total distribution contributed
by the small well. Note that quasi-ergodicity is not a problem
for the classical average potential energy of the symmetric
double well (¥ = 1) since sampling from either half of the
distribution gives the same result.

Table I shows the effects of quasi-ergodicity in the con-
vergence for the ¥ = 0.9 potential for both initialization at
the global minimum and for random initialization. The re-
sults obtained for fixed initialization for £ = 20 illustrate the
deceptive nature of quasi-ergodicity. The standard deviation

has the expected 1//N decrease with increasing walk length
N, but {V'} is converging to the wrong value. Quasi-ergodic
behavior is more readily recognized when the walks are ran-
domly initialized since the walkers can be confined in either
well. This leads to a bimodal distribution in (¥ ), and hence
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FIG. 2. Quasi-ergodicity in the double well potential. (a) The classical average potential energy (¥} for the y = 0.9 potential as a function of 8. (b} (V) asa
function of y for B = 10. In both plots, curve (/) is the average (¥} obtained from 100 independently initialized Metropolis walks, each originating at the
global minimum x = 1 and consisting of 500 warmup steps followed by 10 steps with data accumulation. Curve (if) was similarly obtained except that each
walk was initialized at a random x and curve (iif) is the numerically exact solution. Some representative error bars have been included. As in subsequent

figures, these correspond to single standard deviations.

the standard deviation reflects the difference in (¥') for the
two wells as well as the usual contributions from the vari-
ation about each well, which have the typical 1/yN behav-
ior. For very low temperatures, the difference in (¥} domi-
nates and the standard deviation becomes nearly constant.
This is evident in Table I where the relative standard devi-
ation for £ = 20 is constant to within 0.1% over a change in
N of five orders of magnitude. At 8 = 10, the temperature is
high enough to allow occasional barrier crossings in walks
longer than about 10* steps, as can be seen by the decrease in
the relative error for both cases. Again the lack of 1/yN
behavior in the standard deviation indicates the persistence
of some quasi-ergodicity in walks of N = 10°,

B. Simple jumping schemes

_ The simplest way to deal with quasi-ergodicity in Me-
tropolis sampling is to merely increase the stepsize range A
sufficiently so that some of the steps become large enough to
jump over the barriers. While this allows effective motion
between the constricted regions of configuration space, the
fraction of steps small enough to effectively sample the dis-
tribution within a region becomes too low. For example, we
found using a stepsize range of A = 4 for the one-dimension-
al double well at 8 = 10 gave good results despite step rejec-
tion rates of greater than 90%. This inherent inefficiency
makes this scheme untenable for multidimensional systems
where distributions are often typified by sparsely located

TABLE I. Quasi-ergodic behavior in convergence. The error and o, columns are the relative error (Error

= [calculated-exact] /calculated) in the classical average potential energy (¥ ) and the relative standard devi-
ation (g, = o/exact), respectively, for the y = 0.9 potential, with each entry obtained from 100 independently
initialized walks. The walks with fixed initialization all originated at the global minimum x = 1.

Steps Fixed initialization Random initialization
£=20 £=10 B=20 B=10
Error TR Error Og Error Error Or

10? —0.31209 0.02229 —0.35889 0.02347 095714 0.13453  0.22280 0.06782
10° —0.33840 0.00531 —0.35054 0.01425 097497 0.13437 0.27064  0.06288
10* —0.32731 0.00185 —0.31786 0.01706  1.10802  0.13389  0.21808  0.06146
10° —0.32460 0.00060 —0.19033 0.02862 1.00336  0.13413  0.08846  0.04440
10° —0.32494 0.00020 —0.04045 0.01524 1.16313  0.13318  0.01445  0.02025
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sharp peaks. A big improvement can be made by coupling
the jumping scheme to standard Metropolis sampling. The
stepsize range is selected with the usual criterion that the
sampling have a acceptance rate of about 50%. Occasional
jumps to the other well can then be attempted by magnifying
the stepsize with

A, -k, A for 0<&, <Py, (9

where &, is a constant dependent upon the distance between
the wells and P, is a constant that defines the jumping proba-
bility. Although this modified scheme provides good sam-
pling within a well, it is still too inefficient since few of the
jumps land near the other distribution peak.

A different method that greatly increases the jump ac-
ceptance rate is based upon the observation that at low tem-
peratures the walker is confined to a small region about a
minimum. Hence jumps to the other well have a greater like-
lihood of success if the step is translated symmetrically an
amount equal to the distance between the wells,

x’=x+(§-—-;—)A+d(§,), (10)
where
—d, for 0<¢, <% P,
d(§;) =

d, for %-P,<§J<P,

0 otherwise,

andd, = 1 + ais the distance between the wells. While this
method works very well for the one-dimensional potential
and continues to give good results when extended to the mul-
tidimensional case, it suffers from the severe limitation of
having to know the minima locations beforehand. We will
not pursue it here further except to note that its low compu-
tational overhead and ease of implementation can make it
useful for certain problems.

C. J-walker method

The =1 Boltzmann distribution function shown in
Fig. 1(b) encompasses the advantages of both simple jump-
ing methods while overcoming their deficiencies. The range
is large enough to cover both wells (equivalent to a stepsize
range A, =~ 3) and much of the distribution is concentrated
about the minima, implying a high likelihood of jump accep-
tance. Since this distribution can be easily obtained with a
Metropolis walker (there are no quasi-ergodic problems at
this temperature), prior knowledge of the locations of the
potential minima is unnecessary. These features can be uti-
lized then by having the low temperature walker attempt
occasional jumps to a high temperature walker, or J-walker.
The sampling distribution for the jumps is just the Boltz-
mann distribution at the higher temperature

T,(x'|x) =2Z ~'exp{ — B,V (x")} for 0<&, <P,.
(1D

Using Eq. (6) gives

g, (x'|x) =exp{(B, — BV (x') — V(x)1}. (12)

2773

In the limit 8, -0, g, (x'|x) reduces to the standard Metro-
polis form given in Eq. (8). Because the high temperature
distribution broadens as 3, decreases, the J-walker method
essentially reduces to simple jumping with a large stepsize
range A; in this limit. In the limit 8, -8, ¢, (x'|{x) — 1 since
the low temperature walker is now effectively sampling from
its own distribution.

There are two complementary methods of generating
the J-walker distribution. The first method runs the J-walk-
er in tandem with the low temperature walker with jumps
attempted by

x' =x; for 0<&; < P;. (13)

As will be seen in the next section, this simple prescription
leads to correlation errors that need to be overcome by tak-
ing extra J-walker steps whenever a jump is attempted or by
employing several J-walkers in tandem and accessing them
inrandom. A better alternative is to run the J-walker before-
hand and save a given number of points from the distribution
in an external array for subsequent sampling by the low tem-
perature walker,

x =x,(éEN) for 0<&; < P, (14)

where N is the size of the array. The former method has the
advantage of lower memory requirements at a cost of in-
creased computational time while the latter has the advan-
tage of lower computational overhead at a cost of increased
storage requirements.

Il. RESULTS
A. One dimensional results

The first step in implementing the J-walker method is to
find a suitable temperature for the high temperature walker.
The temperature must be high enough to avoid quasi-ergo-
dic behavior in the J-walker but low enough to provide a
sufficient jump acceptance rate. Figure 3(a) shows the rela-
tive error in the classical average (¥} as a function of the J-
walker temperature parameter S, for the ¥ == 0.9 double
well potential with the low temperature walker at 8 = 10,
for the case of the J-walker running in tandem with the low
temperature walker. Results consistent with the standard
deviation were obtained for both fixed and random initiali-
zation for 5, up to about 3, where correlation between the
two walkers became a factor (both walkers were initialized
at the same point). These curves were generated by allowing
the J-walker to take an extra 100 steps to reduce the correla-
tion whenever a jump was attempted; increasing the number
of extra steps to 1000 increased the useful range for 8, up to
about 5. This dependence on the number of extra J-walker
steps can be seen in Fig. 3(b), which shows the relative error
in (V') as a function of the number of extra steps for 8, =2
and 3. The curve shows an exponential-like decrease in the
error with an increasing number of extra steps. The number
of extra steps required to remove the correlation increases
with B;; it becomes prohibitively large as 8, approaches the
onset of quasi-ergodicity at S~ 6 [see Fig. 2(a) | because the
time scales for intrawell and interwell motion in the J-walker
become too different. Quasi-ergodicity can be seen in the J-

J. Chem. Phys., Vol. 93, No. 4, 15 August 1990
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FIG. 3. J-walker temperature dependence for the case of the tandem walker. (a) The relative error (as defined in Table I) in ( ¥} as a function of the J-walker
temperature parameter 3, for the ¥ = 0.9 double well potential with the low temperature walker at 8 = 10. As in Fig. 2, the average (V') was obtained from
100 independently initialized walks consisting of 500 warmup steps followed by 10* steps with data accumulation. For curve (i), initialization was fixed at the
global minimum, while for curve (Jf), it was random. The two smoother curves are the relative standard deviations (also defined in Table I} for the 100 walks.
The jumping probability was P, = 0.1 and correlation between the walkers was reduced by allowing the J-walker 100 extra steps whenever a jump was
attempted. (b) The reduction in the correlation error as a function of the number of extra J-walker steps for 8, = 2 and 3. Again, the two smoother curves are

the relative standard deviation.

walker for 3, larger than about 7 by the divergence of the
two error curves in Fig. 3(a).

The correlation problem can be overcome by generating
the J-walker distribution beforehand and periodically stor-
ing points for subsequent sampling. Correlation between the
walkers is no longer an issue since the steps are now accessed
randomly and not sequentially. Figure 4(a) shows the rela-
tive error in (V') as a function of B, for this case. Results
consistent with the standard deviation were obtained for 3,
up to the onset of quasi-ergodicity, at which point the sys-
tematic errors in the J-walker distribution lead to statistical-
ly incorrect sampling during jump attempts. Because the J-
walker distribution was initialized randomly at each S3,, the
quasi-ergodicity is made manifest here by the increasingly
large fluctuations in the error for B, > 7. Starting the low
temperature walker at the global minimum gave similar re-
sults since the interwell motion is dominated by the J-walker
distribution.

The elimination of the correlation error with the use of
the external distribution is at the cost of the memory neces-
sary to store the distribution. Hence some attention must be
paid to minimizing the array size as much as possible. For
example, successive moves should not be stored since the
differences between them are minor. By storing every tenth
or hundredth move, a more representative distribution can
be generated for a given array size. The distribution will be

more coarse grained of course, but since it is used primarily
for transporting the low-temperature walker to different re-
gions of configuration space, this is incidental. Figure 4(b)
displays the dependence on the J-walker distribution size for
the ¥ = 0.9 potential. Each distribution consists of points
sampled every 100 moves. It is clear for this case that a distri-
bution of the order of 10* points is necessary to give proper
convergence for 100 low temperature walks of 10* steps/
walk each.

Table I further examines the dependence of the conver-
gence on the J-walker distribution size for the ¥ = 0.9 poten-
tial. As in Fig. 4, each J-walker distribution of a given size
was generated from one walk at 5, = 2 by sampling every 10
or 100 steps and was subsequently used for 100 walks at
B = 10. The relative error in the average potential energy at
By, {(V),, for each J-walker distribution is listed in the J-
error column of Table I1. The substantial reduction in quasi-
ergodicity in the low temperature walks is evident in their
standard deviations, which now show the expected 1/YN
decline, even when distributions as small as 10° points were
used (compare this with the random initialization case in
Table I). Although the fluctuations are large, the relative
error for each set of low temperature walks appears consis-
tent with the respective standard deviation when the number
of steps is of the same order as the J-walker distribution size
or less. Decreasing the J-walker sampling rate to one point

J. Chem. Phys., Vol. 93, No. 4, 15 August 1990
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TABLE II. J-walker convergence for one-dimensional potential. The Error
and o columns are the relative error in the classical average potential ener-
gy (V) and the relative standard deviation, respectively, for the y = 0.9
potential, with each entry obtained from 100 independently initialized
walks. The J-walker distributions were at 8, = 2, and the jumping probabil-
ity was P, = 0.1.

J-walker distribution Random initialization

Size Steps/Pt.  J-error  Steps/Walk Error Or
10° 10 0.01500 10 —0.01688  0.03807
0.04951 10° 0.00604 0.01449
0.06461 10* 0.01530  0.00464
0.00931 10° — 0.00698  0.00140
—0.03467 10° —0.03593  0.00043
10* 10 —0.01664 102 0.00657  0.03754
0.01608 10° —0.02113  0.01377
0.00133 10* 0.00430 0.00414
0.01399 10° 0.01266  0.00154
0.02075 10° 0.00026  0.00041
10° 10 0.00603 107 —0.07335  0.03780
—0.00487 10° 0.00170  0.01399
0.00031 10* 0.00080  0.00422
0.00041 10° —0.00856 0.00116
0.00093 10° —0.00341  0.00040
10° 10° — 0.06586 10 —0.08968  0.03251
—0.03217 10° 0.02065 0.01345
0.07866 10¢ —0.00868  0.00422
— 0.05580 10° - 0.00511 0.00123
0.00230 10° —0.01528  0.00044
10* 10? 0.00216 10? 0.05088  0.04208
—0.01872 10° 0.00889  0.01362
0.02146 10 —0.00793  0.00405
0.01333 10° 0.01654  0.00150
— 0.00299 10° —0.00934  0.00037
10° 107 0.00181 10? 0.03518  0.03851
0.00385 10° 0.01702  0.01290
— 0.00237 10* 0.00695  0.00384
0.00072 10° 0.00035 0.00115
0.00430 10° —0.00314  0.00042

per 100 steps mostly improved the accuracy of (V) but did
not improve the accuracy in the low temperature walks.
Even though a J-walker distribution of size 10° sampled ev-
ery tenth step and a distribution of size 10* sampled every
hundredth step were both generated from J-walks of 10°
steps, the distribution with the larger size gave the better
results. The large fluctuations in the error in (¥}, for J-
walker distributions of a given size and the lack of correla-
tion with the resultant error in (¥) for the low temperature
walks indicates that the errorin (¥}, is not a good indicator
of the quality of the J-walker distribution. It should also be
noted that there is a strong correlation between systematic
errors in the J-walker distribution and subsequent systemat-
ic errors in the low temperature walks. For example, using a
distribution generated at 5, = 10 from a quasi-ergodic walk
that is confined to one well will result in systematic errors for
a 3 = 20 walker since all jumps are within the confined re-
gion.

Figure 5 shows the dependence on the jumping proba-
bility P, for the ¥ = 0.9 potential where the J-walker distri-
bution was generated at 8, = 3. A dramatic drop in the rela-
tive error in (¥') occurs even for P, <0.01 (the error for

P, =0 was 0.3) because only a few successful jumps are
needed for movement between the two wells. Results consis-
tent with the standard deviation occur for a jumping proba-
bility greater than about 0.03. Since the computational cost
of attempting a jump is about the same as attempting a regu-
lar Metropolis move (the computational overhead is mostly
in the generation of the J-walker distribution), we usually
used a jumping probability of P, = 0.1.

Figure 6 shows the results obtained over the entire range
of y for a low-temperature walker at 8 = 10 using J-walking
from an external distribution at 8, = 2. Figure 6(a) shows
(V') asafunction of y and Fig. 6(b) therelativeerrorin (V).
Again, the fluctuations in the error are consistent with the
standard deviation throughout. Comparison with Fig. 2(b)
reveals the substantial improvement rendered by the J-walk-
ing. Similarly good results were obtained at the same 3, us-
ing a tandem J-walker taking 100 extra steps for each jump
attempt.

B. Multidimensional results

While the one-dimensional case is useful for heuristic
purposes, it is of limited use as a test since a method that
gives good results in one dimension can fail badly when ex-
tended to several dimensions. The major advantage of the
one-dimensional case is that the exact solution can be deter-
mined to high accuracy, allowing for a quantitative deter-
mination of the errors. We can maintain this advantage by
forming a D-dimensional version of the double well poten-
tial,

D, D

V(ix) = 2 Vi(x,) + 2 X%, (15)

K=1 k=D, +1

where V, (x, ) is the one-dimensional doubie well potential
given by Eq. (1) and D,, is the number of coordinates having
this potential. Since the number of wells in the potential hy-
persurface is 2°, the addition of D — D,, harmonic oscilla-
tor modes allows the number of dimensions to be increased
independently of the number of wells. The global minimum
well depth remains unity, while the other wells have depths

of 9,92,7%,...,¥"“. The average potential energy becomes

Fx) =Dy (¥, () + (D -D £ (16)
Although this form still allows {¥(x)) to be calculated to
high accuracy by numerical integration, the separability of
the modes implies the Monte Carlo results will be essentially
similar to the one-dimensional Monte Carlo results if the
Metropolis moves are attempted on individual coordinates.
So better to mimic typical Monte Carlo simulations, at-
tempted moves were made on all D coordinates in concert.

Figure 7(a) depicts the multidimensional version of
Fig. 4(a), which plots the relative error in {¥) as a function
of B,. While the two curves are similar for higher 3,, the
multidimensional curve shows a large systematic error for
very low 3, that is not present in the one-dimensional case.
As 3, -0, the J-walker distribution broadens considerably
so that it becomes essentially similar to the simple jumping
scheme described by Eq. (9), which relies only on an ex-
panded stepsize range. As the effective stepsize range in-
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FIG. 4. J-walker temperature dependence for the external distribution case. (a) The plot for the y = 0.9 potential was obtained as in Fig. 3 except that
configurations for attempted jumps were sampled from a J-walker distribution generated once at each 3, point from one long J-walk and subsequently used
for all 100 walks at that point. The distribution consisted of 10° points with 100 steps taken per point. The two curves are the relative error in (¥} and the
relative standard deviation for the case of random initialization of each walk; initialization at the global minimum gave similar results since the J-walker was
initialized randomly. (b) Dependence on the J-walker distribution size. Each point is the mean of 100 walks. All the distributions consist of points sampled
every 100 steps after 500 warmup steps. The solid line is the numerically exact result.
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FIG. 5. Variation in the relative error in (¥} with the jumping probability
P, for the external distribution case. The J-walker distribution was genera-
ted for the ¥ = 0.9 potential as in Fig. 4 for 8, = 3. Again, the two curves
are the relative error and standard deviation for the case of random initiali-
zation. The error for no jumping is off scale at 0.3 for P, = 0.

creases in the multidimensional case, the likelihood of ac-
cepting an attempted jump diminishes rapidly since most of
the jumps will not be near a minimum. This can be seen Fig.
7(b), which plots the jump acceptance rate as a function of
B, for D = 1,5 and 20. The good results obtained for the one-
dimensional case for B, as low as 0.1 can be seen to arise from
the substantial jump acceptance still present at that point.
This is an intrinsic feature of the one-dimensional double-
well potential, since the constraint imposed by the single
degree of freedom entails that almost any motion over the
barrier has a good likelihood of being accepted. Note that
this narrowing of the usable range in 8, away from low 53,
with increasing dimension also diminishes the efficacy of the
tandem walker since the number of extra moves required to
break the correlation increases with increasing 53,.

Figure 8 shows the multidimensional analog of Fig.
6(b), which plots the dependence of the relative errorin (')
on the variable well depth y. Here results consistent with the
standard deviation were obtained for all ¥ except for some
points near ¥ ~0.8 where the error rose to about three stan-
dard deviations. The J-walking substantially reduced the
quasi-ergodic error in this region, but did not entirely elimi-
nate it. This illustrates the importance of still having to heed
the usual caveats associated with standard Metropolis
Monte Carlo when using J-walking—low asymptotic vari-
ance and rapid convergence are no guarantee of accuracy.
While these fluctuations in the error are larger than expected
relative to the standard deviations, they are unlike the sys-

J. Chem. Phys., Vol. 93, No. 4, 15 August 1990



Frantz, Freeman, and Doll: J-walking clusters

(a)

2777

0!09 v L} A T A L v T 0-02 s 1 T T L T
3 E
0.08 A 001} |
Y
L .
A S
> 0.07 S o.00f 1
A\Y4 L
[(V]
>
= ]
o
Q
0.06 ® _o.01f ]
0.05——— — — -0.02 — ' '
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

FIG. 6. Variation in ( ¥ ) with the variable well depth 7. (a) Asin Fig. 2(b), the plot shows the average (V) at 8 = 10 for 100 walks independently initialized
from random configurations, each consisting of 500 warmup steps followed by 10 steps of data accumulation. The jumping probability was P, = 0.1 and an
external J-walker distribution generated as in Fig. 4 for 8, = 2 was used for each batch of walks. The smooth curve is the numerically exact result. (b) The
relative error and standard deviationin (¥ ) as a function of y. Similar results were obtained for the same 5, using a tandem J-walker with 100 extra steps per

jump.

tematic errors arising from quasi-ergodicity in standard Me-
tropolis, which have a characteristic sign. As in the one-
dimensional case shown in Table II, their magnitude is
indicative of a J-walker distribution size that is insufficient
for the given walk length.

V. J~-WALKING IN CLUSTERS
A. Background

Cluster melting is a prototypical example of a physical
phenomenon where quasi-ergodicity can be troublesome for
Monte Carlo simulations. Because of their small size, clus-
ters do not have the sharp first-order transition characteris-
tic of bulk melting, but instead show transitions occurring
over a range of temperatures. Recent studies'® on the con-
nection between structure and the dynamics of melting in
small clusters have found the large separation in the time
scales between intrawell and interwell motion (which is of-
ten indicative of quasi-ergodicity) occurring in the transi-
tion region. For temperatures well below the transition
range, classical clusters are confined to the potential well
associated with the isomer most stable for their size where
they undergo small oscillations about the minimum energy
configuration. They take on a very rigid, solid-like form,
marked by small fluctuations in the bond length and no dif-
fusion; there is essentially no motion between different wells.
For temperatures well above the transition range, the clus-
ters have easy access to numerous higher energy wells and

hence take on a very floppy, liquid-like form with large fluc-
tuations and much diffusion. There is nearly unhindered
motion over the barriers and between the wells. However, in
the transition region, the solid-like forms exhibit highly an-
harmonic motions and are no longer rigid. The bond length
fluctuations increase sharply and some diffusion appears as
the clusters undergo hindered isomerization.

An especially interesting discovery has been that certain
clusters can exhibit different melting and freezing tempera-
tures, implying a temperature range where both solid-like
and liquid-like forms coexist.''?> This coexistence range
then corresponds to the transition range. It decreases as the
cluster size n increases, with the freezing and melting tem-
peratures coalescing to the bulk transition temperature as n
approaches infinity. This behavior is a very irregular func-
tion of n; for example, argon clusters with “magic number”
sizes n = 7, 13, and 19 have especially high melting tempera-
tures and pronounced coexistence ranges, while clusters of
size n = 8, 14 and 20 melt at much lower temperatures and
exhibit no coexistence. Beck and Berry'® have shown that in
addition to the separation of time scales for the interwell and
intrawell motions, another condition necessary for the coex-
istence of solid-like and liquid-like forms is the existence of a
very stable potential minimum relative to the nearest acces-
sible minima. For example, the minimum energy configura-
tion for the Ar,, cluster is the icosohedron,'* which is very
stable relative to any of its other isomers, while the most
stable structure for Ar,, is the icosohedron with one atom
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FIG. 7. (a) J-walker temperature dependence for the multidimensional extension of the double well potential given by Eq. (15), where D = 20and D,, = 3 to
give eight wells of depth 1,y,5* and ¥, with 7 = 0.9. The plot was obtained as in the one-dimensional case shown in Fig. 4(a) except that the J-walker
distribution generated at each B, consisted of 20 000 configurations sampled every 100 passes, the warmup period was 5000 passes, and the jumping
probability was P, = 0.2. Again, the two curves are the relative error in {¥) and the relative standard deviation for the case of random initialization of each
walk. (b) Jump acceptance for the two dimensions. Also included is the jump acceptance for the D = 5 case with D,, = 3; the J-walker distribution for this
case consisted of 10° configurations sampled every 10 passes.

placed on one of its 20 equivalent faces. No coexistence range
is found for Ar,, since nearly all of the accessible minima
have the same energy with relatively small barriers between
them. It is the large barriers associated with those clusters
showing coexistence behavior that can be expected to pro-
duce appreciable quasi-ergodic behavior.

There has been some controversy in the literature con-
cerning the solid-liquid transition in small rare-gas clusters.
Various studies have produced conflicting conclusions on
the sharpness of the transition and even whether two distinct
forms are observable (Ref. 11 gives a detailed account).
Some studies on Ar,, that used standard Metropolis Monte
Carlo have made mention of difficulties in obtaining proper
convergence and need for longer runs in this region.'*'* In
addition, quasi-ergodicity has also been a problem with mo-
lecular dynamics simulations of argon clusters in the transi-
tion region'® and has been postulated to account for differ-
ences obtained between Monte Carlo and molecular
dynamics calculations on Ar,;."” The fundamental nature
of these discrepancies, occurring in such a simple system as a
small rare-gas cluster, testifies to the difficulties inherent in
computer simulations in the transition region.

B. Method

The clusters were modeled by the usual pairwise addi-
tive Lennard-Jones potential
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o= (2]

with € = 119.4 K and o = 3.405 A for argon.'® Small clus-
ters are known to become unstable beyond a threshold tem-
perature T that varies with 7.>*° For the Lennard-Jones
potential under free volume conditions, the average energy
vanishes in the limit of an infinite number of configurations.
Hence the choice of boundary conditions can have a pro-
nounced effect on the properties of small clusters.!' We have
followed Lee, Barker, and Abraham?' and confined the clus-
ters by a perfectly reflecting constraining potential of radius
R_ centered on the cluster’s center of mass. For all our clus-
ter runs, the constraining radius was set to 40.

Some studies '""'* have shown a coexistence region for
Ar; clusters for temperatures from approximately 24 to 41
K. A J-walker temperature of 50 K would appear at first
glance to be suitable for generating a sampling distribution
since it is high enough to be fully liquid-like (and presum-
ably ergodic) but low enough for acceptable jump accep-
tance ratios for walkers in the coexistence range. The situa-
tion is, however, slightly more complicated. Fig. 9 shows the
distribution of potential energies for temperatures of 20, 30,
40 and 50 K. A 50 K J-walker accesses configurations hav-
ing energies that range from about — 35 to — 10 (in re-
duced units ¥ /¢€). This range has appreciable overlap with
that of a 40 K walker, only slight overlap with a 30 K walker
and no overlap with a 20 K walker. This behavior suggests
the J-walker distribution needs to be generated in stages.
Thus the 50 K distribution was generated from one long
Metropolis walk consisting of 10° warmup moves and
5% 107 moves where a configuration was stored every 1000
moves. The long length of the walk and the infrequent sam-
pling were used to ensure full sampling of the configuration
space and to reduce the correlations in the distribution. The
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FIG. 9. Potential energy distributions for argon clusters of size n = 13, with
¥ in reduced units. Each distribution consists of 50 000 configurations and
was obtained from a single walk where each stored configuration was sam-
pled every 1000 moves. The warmup period was 10° moves. The T= 50K
distribution was obtained using standard Metropolis Monte Carlo. The
T =40 K distribution was obtained by occasionally sampling from the
T = 50K distribution with P, = 0.1. Similarly, the 7= 30 K distribution
was obtained by sampling from the 7 = 40 K distribution and the T= 20K
distribution by sampling from the T = 30 K distribution.

40 K distribution was then similarly generated except that
occasional jumps were attempted to the SO K distribution
with a probability P, = 0.1. The resultant 40 K distribution
was used to generate the 30 K distribution, and the 30 K
distribution used to generate the 20 K distribution. The dis-
tributions were stored piecewise in external files, each a size
of about half the computer memory capacity, and used for
subsequent calculations.??

C. Results

Figure 10(a) shows the caloric curves, (¥ ) asa function
of temperature, for standard Metropolis and for J-walking
using the distributions shown in Fig. 9. This plot illustrates
the importance of initialization in standard Metropolis
Monte Carlo. Curve (i) is the mean (¥ ) obtained from 100
independently initialized walks, each consisting of 10°
warmup moves followed by 10° moves where data was accu-
mulated, where each walk was initialized from a random
configuration. Curve (i) was similarly obtained, except
each walk was initialized at the minimum energy configura-
tion, the icosohedron."? The two curves are coincident only
for temperatures greater than about 34 K; for low tempera-
tures, the randomly initialized cluster quenches to one of the
numerous higher potential isomers and becomes trapped.
Mostly coincident with the icosohedral curve (on the scale
of the plot) is curve (iif) for random initialization with J-
walking. This curve was generated by sampling from the 20
K J-walker distribution for points in the range 0-20 K, sam-
pling from the 30 K distribution for the 20to 30 K range, and
so on. Each distribution was stored piecemeal in several files
because of memory constraints, with each walk sampling
from a different random piece of the distribution. The J-
walking has completely overcome the quasi-ergodicity in the
randomly initialized walks at low temperature. This is a sig-
nificant advantage in itself since often much time and energy
can be extended in locating the global minimum to ensure
proper initialization for reasonable warmup times and good
convergence.

The good results for even very low temperatures near
Zero seems surprising at first glance because these tempera-
tures are so low that no jumps to a 20 X distribution are
accepted. The method works because the randomly initia-
lized clusters almost always have energies higher than those
in the J-walker distribution so that the first attempted jump
during the warmup period is almost always accepted and the
random initialization is for all practical purposes an initiali-
zation from the J-walker configuration. Since the vast ma-
jority of 20 K J-walker distributions are solid-like distorted
icosohedra, the cluster quickly quenches to the global mini-
mum, after which no jumps are accepted. In fact, the icoso-
hedral wells are so dominant that even a J-walker distribu-
tion at 40 K, which contains a large proportion of liquid-like
configurations, resulted in quenches to the global minimum
more than 99% of the time.

The near agreement between the J-walker results and
the icosohedral initialized results indicate that quasi-ergodi-
city is not a problem for the average potential energy (V).
There are however some subtle advantages in J-walking that
can be seen in Fig. 10(b), which shows the standard devi-
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FIG. 10. (a) Variation of the classical average potential energy (in reduced units) with temperature for n = 13 argon clusters. Each point at a given
temperature was obtained from 100 independently initialized walks, each consisting of 10° warmup moves followed by 10° moves where data was accumulat-
ed. Curve (i) was obtained with randomly initialized clusters, while curve (i/) represents initialization from the lowest energy (icosohedral) configuration.
Nearly coincident with the icosohedral curve is curve (/i) obtained from random initialization using J-walking. The distributions in Fig. 9 were used in
sequence, with walkers in the T'= 0 to 20 K range jumping to the 7, = 20 K distribution, walkers in the 20 to 30 K range jumping to the 30 K distribution,
and so on. The jumping probability P, was 0.1 throughout. Some representative error bars corresponding to single standard deviations have been included. A
more detailed account of the standard deviation is shown in (b). The icosohedral curve (i) has low standard deviation until the onset of the coexistence range
at approximately 24 K whereupon it rises sharply. The random initialization curve (i) has high standard deviation throughout. The lowest curve (iif) is for

random initialization with J-walking.

ation as a function of temperature. The icosohedral initia-
lized curve has very low standard deviation until about 24 K,
where it rises rapidly with the onset of coexistence. It goes
through a maximum at about 34 K and another minimum at
about 41 K (corresponding to the end of the coexistence
range) before rising again. Since each randomly initialized
walk has a high probability of becoming trapped in a differ-
ent well, the standard deviation for the low temperature
points is considerably higher than that obtained when all
walks are initialized at the global minimum. The curve has
much larger fluctuations in the coexistence region, and also
has a maximum there. It follows the icosohedral curve in the
liquid-like region. The curve for random initialization with
J-walking shows a substantial reduction in the standard de-
viation, becoming even lower than the icosohedral curve.
Moreover, the standard deviation remains low throughout
the coexistence region and the liquid-like region. The steps in
the curve arise from the different stages of the J-walker dis-
tribution that were used.

A much more sensitive measure of quasi-ergodic behav-
ior can be seen in the heat capacity. Fig. 11(a) shows the
heat capacity as a function of temperature, where C, is the
sum of the configurational and kinetic heat capacities,

2 2
C=(V)——(V) +3nk. (18)

’ kT? 2

The curves were calculated from the same data used for the
caloric curves shown in Fig. 10. The lower curve represents
initialization from the global minimum and the upper curve
random initialization with J-walking; the curve representing
random initialization without J-walking has been excluded
for clarity. Again there is very good agreement for low tem-
peratures, indicating the success obtained with J-walking in
eliminating quasi-ergodicity in randomly initialized clusters
at low temperatures. More remarkable is the improvement
rendered by J-walking in the coexistence range. The J-walk-
ing curve is not only much smoother, it also shows a signifi-
cantly higher maximum at 34 K and continues to be higher
in the liquid-like region. The width of the heat capacity curve
about the finite maximum is a measure of the transition
range, with the maximum corresponding to the transition
temperature.'! Qur curve shows a sharp rise at about 24 K
and a minimum corresponding to the end of the transition
region at about 41 K, in good agreement with the literature
values'? for the coexistence range of about 2441 K. It
should be noted that the shape and location of the finite
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FIG. 11. (a) Heat capacity (in reduced units) for n = 13 argon clusters as a function of temperature. The curves were obtained as in Fig. 10. Curve (/) is the
heat capacity for icosohedral initialization and curve (if) for random initialization with J-walking. Substantial systematic error due to quasi-ergodicity is
evident throughout the coexistence range (approximately 24—41 K) and continues in the liquid region (7> 41 K). Again, some representative error bars
have been included and a more detailed account of the standard deviation is shown in (b). Curve (i) is for random initialization with J-walking. The curves
for random initialization without J-walking have not been included since they were mostly off scale.

maximum depend on the size of the constraining radius. In-
creasing R, to 5o, for example, moved the maximum to 35 K
and raised the high temperature part of the curve consider-
ably.

Figure 11(b) shows the standard deviation in the heat
capacity as a function of temperature. Like the curve for the
standard deviation of the average potential energy shown in
Fig. 10(b), the curve for the icosohedral initialized clusters
shows a very low standard deviation for low temperatures up
to the onset of the coexistence region where it rises sharply to
a maximum, falls off somewhat until the end of the coexis-
tence region and then rises again in the liquid-like region.
The standard deviation in the J-walker curve is also very low
in the solid-like region, but remains much lower throughout
the rest of the curve. Again the steps in the curve are due to
the different stages used in the J-walker distribution.

Figure 12 demonstrates that the discrepancies between
standard Metropolis Monte Carlo and J-walking are due to
the limitations in standard Metropolis. It plots the conver-
gence in the average potential energy and in the heat capac-
ity as a function of the number of moves per walk N. Each
point in the mean of 10 independently initialized walks, each
consisting of 10° warmup moves followed by N moves of
data accumulation. The standard Metropolis walks were ini-
tialized from the icosohedral configuration, while the J-
walker enhanced walks were again initialized from a random
configuration. The temperature selected was the maximum

of the heat capacity curve (34 K) since this point had the
largest standard deviations. The J-walker distribution was at
40 K. Those points with the largest standard deviations have
error bars drawn on them. The average of the five points at
each N is also given in Table III for both cases. Figure 12(a)
shows that both the standard Metropolis and J-walking
methods are in agreement with the converged value when
walks of about 10* or more moves are used, but that the
spread of points and the standard deviation are significantly
lower with J-walking. Figure 12(b) illustrates the great in-
crease in convergence for the heat capacity attainable with J-
walking. Standard Metropolis did not fully converge until
10’ moves, while J-walking gave good accuracy by 10*
moves. In order to ensure the warmup periods were suffi-
ciently long, the runs were repeated using 10° warmup
moves. The results obtained were similar.

The standard deviations for the two methods given in
Table III were obtained by combining the five sets of data at
each point into one set of 50 walks in order to reduce their
fluctuations. For standard Metropolis Monte Carlo, the
standard deviations have the expected 1/{/N behavior only
for N> 10°, indicating that the shorter walks are not ergodic.
However, proper reduction in the variance is no guarantee of
ergodicity, as is evident in the heat capacity. The N = 10°
point again illustrates how Monte Carlo results can be very
misleading. The standard deviation for this point is quite
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FIG. 12 Comparison of convergence rates between standard Metropolis (open squares) and J-walking (filled circles) for n = 13 argon clusters. (a) Conver-
gence for the average potential energy. (b) Convergence for the heat capacity. Five sets of data were accumulated for each case, with each point the mean of 10
independently initialized walks having 10° warmup moves. The temperature used (T’ = 34 K) was taken from the maximum of the heat capacity curve in Fig.
11(a) where quasi-ergodicity was most evident. The J-walker distribution was generated at T, = 40 K from a randomly initialized walk of 10’ warmup

moves followed by 5 107 moves where 1 in 10° configurations was saved. Error bars have been included for the points with the largest standard deviations.
g

Averages of each set of five points are given in Table III.

low, but the heat capacity is less than a third of the converged
value. The standard deviations for J-walking show proper
1//N behavior already at N = 10°, but, surprisingly, they
level off at N~ 10°. At first glance, this appears to be simply a
limitation of the finite size of the J-walker distribution. Each
walk used a different random piece of the distribution, each
consisting of only 10* points. With a jump probability of
P, = 0.1, awalk of N = 10" moves would have an average of
100 jump attempts for each point in the J-walker array. Thus
the problem is not unlike that arising from the use of random
numbers obtained from a random number generator with

too small a cycle length.”> However, the one-dimensional
results given in Table II clearly show proper behavior in the
standard deviation, independent of the distribution size—it
is the error that depends on the distribution size. Further
investigation of these points is in progress.

V. DISCUSSION

These initial tests and preliminary applications of the J-
walking method show it to have much potential for eliminat-
ing, or at least substantially reducing, errors arising from

TABLE II1. J-walker convergence for Ar,, clusters. Averages of the data presented in Fig. 12. The standard
deviations for each method were obtained by combining the five sets of data at each point into one large set of 50
walks. Both (¥) and C, are in reduced units. The values for the J-walker distribution were T, =40 K,

(V,) = — 30.899 + 0.074 and C, = 91.10 + 2.34. These were obtained from a single randomly initialized
walk consisting of 10’ warmup moves followed by 5 X 10’ moves from which 5 X 10* configurations were sam-

pled.
Moves- e o

Metropolis J-walker Metropolis J-walker
10° — 35.327 4 0.368 —35.113 +0.198 33.07+0.76 97.03 + 4.73
10* — 34.944 + 0.318 — 35.312 4 0.066 52.96 1+ 1.96 121.28 4+ 1.56
10° — 35.098 4+ 0.222 — 35.282 4 0.032 92.61 + 3.91 120.57 + 0.61
10° —35.423 4+ 0.089 — 35.263 4+ 0.027 112.37 4+ 1.45 120.96 + 0.57
107 — 35.230 + 0.022 — 35.260 4 0.026 119.64 + 0.36 121.76 + 0.56
10® — 35.258 4+ 0.009 119.52 + 0.14
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quasi-ergodicity in Monte Carlo simulations. The method
has the added advantage of providing good results even with
randomly initialized walks. It is easy to implement since it
uses the same Metropolis algorithm to generate the J-walker
distribution; when jumps are attempted, only the tempera-
ture parameter S needs to be changed to 8 — ;. While
much work remains to be done to investigate the limits of its
applicability and to determine guidelines for optimal use, J-
walking can already provide significant improvements when
applied to small systems such as clusters. Our work up to this
point has produced some generalizations that should be kept
in mind when applying the method.

(1) Correlation between the low temperature walker
and the J-walker can be a severe impediment when using
tandem walkers. Tandem walkers also add substantial com-
putational overhead to the simulation if several similar
walks are run and then averaged. The prior generation of
separately stored J-walker distributions eliminates the cor-
relation problem and has no computational overhead after
the distributions are generated, thus allowing many addi-
tional walks to be run from the distributions for good statis-
tics at the same cost as standard Metropolis Monte Carlo.
For example, the computer time needed to generate the dis-
tributions used for Figures 10 and 11 was approximately
10% of the time used to generate each curve. If memory
constraints require tandem walkers, the efficiency can be
improved by storing J-walker configurations periodically
during the J-walk in a small buffer to provide at least some
random access.

(2) Some care must be taken in selecting the J-walker
temperature. It must be high enough to be fully ergodic but
low enough to provide sufficient jump acceptance rates. The
difficulty is that the size of this suitable temperature range
can be quite small and difficult to detect. For some systems,
both criteria cannot be met simultaneously since J-walker
temperatures that provide good jump acceptances are still
quasi-ergodic. In these cases, proper J-walker distributions
can be generated by occasionally sampling from a yet higher
temperature distribution that is itself ergodic.

(3) There is a strong correlation between systematic
error in the J-walker distribution and subsequent systematic
error in the low temperature walks. Hence the walk used to
generate the distribution must be sufficiently lengthy to be
representative. This is especially important if the J-walker
distribution is generated at a temperature where quasi-ergo-
dic behavior is substantial. Results obtained from such a dis-
tribution should be checked for consistency by generating
additional J-walker distributions and repeating the simula-
tions. Work still needs to be done to determine distribution
parameters best suited for distinguishing good distributions
from bad.

(4) Distribution sizes can be kept reasonably small by
periodically storing configurations. Since most computers
have much larger disk storage than memory storage, larger
distributions can be stored as a collection of several files,
each of which can then be randomly loaded into computer
memory in a periodic manner. Additional study is required
to determine the criteria that govern the appropriate distri-
bution sizes.
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(5) The optimum value for the jumping probability is
system dependent. We have found P, ~0.1 to be quite ade-
quate for the systems we have studied. When attempting
jumps from an external distribution, the computational
overhead is insignificant and larger values can be used, espe-
cially if the jump acceptance rate is low. For the tandem
walker case, attempted jumps are much more expensive
since extra moves are needed to break the correlation, and so
P, should be smaller. This also gives the walkers more time
to move apart after a jump is accepted until the next jump
attempt, further reducing the correlation.

The use of externally stored distributions might appear
at first glance to be a severe limitation for extending J-walk-
ing to larger systems. However, optical storage devices with
capacities in the hundreds of megabytes are already com-
mercially available at prices comparable to fixed magnetic
disk drives and with access times only slightly slower.”* De-
vices with terabyte (or 1 million megabytes) capacities are
already in use in large government and business opera-
tions.?® These kinds of capacities should prove sufficient
even for the huge distributions that would be required for
larger systems. In a similar vein, recent advances in parallel
computer architectures offer much promise in overcoming
the computational overhead of tandem J-walkers.

Work is currently underway in further optimizing the
method and determining its suitability for other Monte
Carlo problems. We are also extending the method to quan-
tum systems by coupling it to Fourier path integral Monte
Carlo methods.'® The ability of J-walking to cover large re-
gions of configuration space within a single walk suggests a
role as a general multidimensional minimization algorithm,
akin to simulated annealing.
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