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Taxonomy of particles in Ising spin chains

Dan Liu,1 Ping Lu,1 Gerhard Müller,1 and Michael Karbach2

1Department of Physics, University of Rhode Island, Kingston, Rhode Island 02881, USA
2Bergische Universität Wuppertal, Fachgruppe Physik, D-42097 Wuppertal, Germany

(Received 4 April 2011; revised manuscript received 20 June 2011; published 25 August 2011)

The statistical mechanics of particles with shapes on a one-dimensional lattice is investigated in the context
of the s = 1 Ising chain with uniform nearest-neighbor coupling, quadratic single-site potential, and a magnetic
field, which supports four distinct ground states: | ↑↓↑↓ · · ·〉, | ◦ ◦ · · ·〉, | ↑↑ · · ·〉, | ↑ ◦ ↑ ◦ · · ·〉. The complete
spectrum is generated from each ground state by particles from a different set of six or seven species. Particles
and elements of the pseudovacuum are characterized by motifs (patterns of several consecutive site variables).
Particles are floating objects that can be placed into open slots on the lattice. Open slots are recognized as
permissible links between motifs. The energy of a particle varies between species but is independent of where it
is placed. Placement of one particle changes the open-slot configuration for particles of all species. This statistical
interaction is encoded in a generalized Pauli principle, from which the multiplicity of states for a given particle
combination is determined and used for the exact statistical mechanical analysis. Particles from all species belong
to one of four categories: compacts, hosts, tags, or hybrids. Compacts and hosts find open slots in segments of
pseudovacuum. Tags find open slots inside hosts. Hybrids are tags with hosting capability. In the taxonomy of
particles proposed here, “species” is indicative of structure and “category” indicative of function. The hosting
function splits the Pauli principle into exclusion and accommodation parts. Near phase boundaries, the state of
the Ising chain at low temperature is akin to that of miscible or immiscible liquids with particles from one species
acting as surfactant molecules.

DOI: 10.1103/PhysRevE.84.021136 PACS number(s): 05.50.+q, 75.10.−b

I. INTRODUCTION

The constituent particles of condensed matter are subject to
strong interaction forces. Inspired by the search for separable
coordinates in Hamiltonian mechanics, much progress in the
understanding of material properties has resulted from finding
collective modes that are much more weakly interacting. The
(quasi)particles associated with these modes are generated out
of vacua representing particular solid states. Exotic exclusion
statistics are one manifestation of this diversity.

In the study of magnetic insulators, commonly modeled
as lattice systems of interacting spins, a variety of particles
have been identified to describe their statistical mechanical
properties under specific circumstances [1–3]. In each case
the physical vacuum (ground state) is configured as the
pseudovacuum for particles from one or several species
representing collective excitations. In general, these particles
scatter off each other elastically or inelastically. Particles may
decay or form bound states. An exact solution is almost always
out of reach.

Among the rare exceptions are the completely integrable
spin chain models. In these systems, the particles interact only
via two-body elastic scattering. The kinematic constraints of
one dimension combined with the dynamic constraints of a
factorizing S matrix impose conservation laws that guarantee
an exact solution (via the Bethe ansatz, for example) [4–6].
Many integrable spin model systems have one or several Ising
limits (of commuting spin operators), where some of the key
particle properties such as their exclusion statistics are left
intact.

Here we propose a taxonomy of free particles in Ising
chains. We classify particles according to both structure
and function. We associate structures with particle species
and functions with particle categories. It appears that Ising

chains produce particles of a seemingly unlimited diversity of
structures but of only four categories.

It remains to be seen how robust some of the statistical
mechanical properties of the particles identified here are when
noncommuting terms are added to the Ising Hamiltonian. The
insights reported in this study are not limited to magnetism.
Ising systems are applicable to phenomena in other areas
of physics and beyond. The methodology introduced here is
adaptable to applications beyond Ising models.

We consider the spin-1 Ising chain with periodic boundary
conditions,

H =
N∑

l=1

[
JSz

l S
z
l+1 + D

(
Sz

l

)2 − hSz
l

]
, Sz

l = 0, ± 1, (1)

where the J term denotes a nearest-neighbor coupling, the
D term a quadratic potential, and the h term the Zeeman
energy. In higher dimensions this Hamiltonian coincides with
the thoroughly studied Blume-Emery-Griffiths model [7]. The
statistical mechanics of the spin chain (1) per se is of limited
interest and most conveniently worked out via the transfer
matrix method [8]. We employ this textbook model as a vehicle
to develop an idea of much wider scope.

The spectrum of H is expressible in the form of product
states |σ1σ2 · · · σN 〉 with σl =↑ , ◦ , ↓. The zero-temperature
phase diagram features six phases as shown in Fig. 1(a) [9]:
one antiferromagnetic phase �A, one singlet phase �S , two
ferromagnetic phases �F±, and two plateau phases �P± [10].
The physical vacuum (ground state) is unique in �F±,�S and
twofold degenerate in �A,�P±.

In Sec. II we configure each physical vacuum as the
pseudovacuum of a set of dynamically free but statistically
interacting particles. The statistical mechanical analysis, car-
ried out in Sec. III, yields the exact population densities of
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LIU, LU, MÜLLER, AND KARBACH PHYSICAL REVIEW E 84, 021136 (2011)

..

..
.
.

.

.
..
.. ...

...

+FΦ

ΦF−

ΦP−

ΦP+

ΦS

h/J

+1

−1

+1

...

... .
...

..

...

...

...

D/J

ΦA

ΦS

ΦA

D

...

FΦ
J

(a)

(b)

FIG. 1. (a) Six T = 0 phases �A (antiferromagnetic), �F±
(ferromagnetic), �S (singlet), and �P± (plateau) for J > 0; (b) three
phases at h = 0. The text refers to regions in parameter space by the
same names.

particles. In Sec. IV we interpret the low-T state near phase
boundaries as that of miscible or immiscible liquids. Section V
further elaborates on the taxonomy of particles.

II. COMBINATORIAL ANALYSIS

It will suffice to consider four sets of particles owing
to spin-flip symmetry. The two sets generated from twofold
pseudovacua (�A,�P+) have shared attributes. The two sets
generated from unique pseudovacua (�S,�F+) share different
attributes. Each choice of pseudovacuum can be used in the
entire parameter space, but only in one region does it coincide
with the physical vacuum.

Particle species and elements of pseudovacuum are char-
acterized by motifs comprising two, three, or four consec-
utive site variables σl . Motifs interlink in one shared site
variable. Particles are subject to mutual statistical interactions
as captured in the generalized Pauli principle proposed by
Haldane [11]. The relation

�dm = −
∑
m′

gmm′�Nm′ (2)

expresses how the number of slots available to one particle of
species m is affected when particles of any species m′ from
a given set are added. This idea has proven to be surprisingly
versatile with a wide range of applications and a high degree of
flexibility regarding the notion of particle species [3,12–14].

In a chain of N sites the number of many-body states
containing a specific combination of particles from all species
is determined by a multiplicity expression inferred from (2)
via combinatorial analysis [11]. The exact structure of the
multiplicity expression varies between applications. We have
developed a template that can be employed for all situations
considered here:

W ({Nm}) = npvN

N − N (α)

M∏
m=1

(
dm + Nm − 1

Nm

)
, (3a)

dm = Am −
M∑

m′=1

gmm′(Nm′ − δmm′ ), (3b)

N (α) =
M∑

m=1

αmNm, (3c)

where dm counts the number of open slots for particles of
species m in the presence of Nm′ particles from any species m′.
The permissible combinations {Nm} produce integer-valued
dm.

Each application is characterized by specific values of M

(number of particle species), npv (multiplicity of pseudovac-
uum), Am (capacity constants), αm (size constants), and gmm′

(statistical interaction coefficients). These specifications will
be tabulated for each situation under scrutiny. The prefactor
in (3a) is specific to the use of periodic boundary conditions.
It is a generalization of a modification factor worked out by
Polychronakos [15].

The energy of a many-body state depends only on its
particle content, not on the particle configuration:

E({Nm}) = Epv +
M∑

m=1

Nmεm, (4)

where Epv is the energy of the pseudovacuum and εm the
particle energy (species m) relative to the pseudovacuum.
There is no interaction energy. Each phase in Fig. 1(a) is the
pseudovacuum of one set of particle species or a solid of one
species of particles (with εm < 0) from the same set.

All particle motifs occupy at least one bond on the lattice.
Adding particles of any species, therefore, diminishes the
number of open slots for more particles. Normally we have
gmm′ > 0, which enforces �dm < 0 in (2) whenever a particle
is added. The limited space for particles on the finite lattice is
signaled in (3a) by a vanishing binomial factor caused by the
factorial of a negative dm in the denominator.

However, we shall find some gmm′ to be zero or negative. A
vanishing gmm′ means that placing a particle m′ has no direct
effect on the options for placing a particle m thereafter. A
negative gmm′ turns the exclusion principle into an accommo-
dation principle. Placing a particle m′ increases the options
for placing a particle m thereafter. In these instances, space
limitations on the lattice are enforced by indirect effects on the
dm. The statistical mechanics of a macroscopic system only
depends on the specifications Am,εm,gmm′ as is demonstrated
in Sec. III.

A. Antiferromagnetic pseudovacuum

In region �A the ground state is the twofold degenerate
Néel state | ↑↓↑↓ · · ·〉, | ↓↑↓↑ · · ·〉, implying npv = 2. We
have identified a set of M = 6 species of dynamically free
particles excited from this state [16]. The motifs and statistical
interaction specifications are summarized in Tables I and II.
The full spectrum of product states |σ1 · · · σN 〉 is equivalent to
all possible particle configurations. The number of states with
given particle content {Nm} and energy (4) is determined by
(3a).

021136-2
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TABLE I. Specifications of M = 6 species of particles excited
from the Néel state (npv = 2) | ↑↓↑↓ · · ·〉, | ↓↑↓↑ · · ·〉: motif,
category, species, energy (relative to pseudovacuum), spin, capacity
constant and size constant. Segments of � vacuum bonds ↑↓ , ↓↑
have energy �(D − J ). At h �= 0 the entries for εm must be amended
by −smh.

Motif Category m εm sm Am αm

↑↑ Compact 1 2J +1 N−1
2 1

↓↓ Compact 2 2J −1 N−1
2 1

◦◦ Tag 3 J − D 0 0 1
↑ ◦ ↑ Host 4 2J − D +1 N−2

2 2
↓ ◦ ↓ Host 5 2J − D −1 N−2

2 2
↑ ◦ ↓ , ↓ ◦ ↑ Host 6 2J − D 0 N − 1 1

Particles m �= 3 and vacuum bonds are placed side by side
onto the lattice. They interlink in one shared site variable as in
these examples:

↑↑↓ ◦ ↓ =̂1 + vac + 5, ↓↓ ◦ ↑ =̂2 + 6,

↑ ◦ ↑ ◦ ↑ =̂4 + 4, ↑ ◦ ↑↓ ◦ ↓ =̂4 + vac + 5, (5)

↑ ◦ ↓ ◦ ↑ =̂6 + 6, ↑ ◦ ↓↑ ◦ ↓ =̂6 + vac + 6.

Particle 3 can only be placed inside particles 4,5,6 as in the
following examples:

↑ ◦◦ ↑ =̂4 + 3, ↑ ◦ ◦ ◦ ↓ =̂6 + 3 + 3,
(6)

↑ ◦ ↓ ◦◦ ↓↑ ◦◦ ↑ =̂6 + 5 + 3 + vac + 4 + 3.

The six particle species naturally divide into three cate-
gories: compacts, hosts, and tags. Particles m = 4,5,6 are
hosts to tag m = 3. The compacts m = 1,2 do not host nor
are they being hosted.

The motifs of compacts 1,2 are to be interpreted as
consisting of one bond and half of the site at either end. In
the hosts 4,5,6 we count two bonds and two sites (the site in
the middle and half of each outer site). Tag 3 has one bond
and one site. The site on the right is counted fully. The site on
the left is counted as interior site of the surrounding host or as
right-hand site of another tag to its left. With these rules each
particle has a definite energy εm and a definite spin sm.

Vanishing and negative gmm′ are indeed realized in Table II.
The placement of one host, m′ = 4, does not affect the number
of open slots for placing a compact, m = 1; hence g14 = 0.
Likewise, the options for placing a tag, m = 3, are unaffected

TABLE II. Statistical interaction coefficients of the particles
excited from the Néel (or plateau) state.

gmm′ 1 2 3 4 5 6

1 1
2

1
2

1
2 0 1 1

2

2 1
2

1
2

1
2 1 0 1

2

3 0 0 0 −1 −1 −1

4 1
2

1
2

1
2 1 1 1

2

5 1
2

1
2

1
2 1 1 1

2

6 1 1 1 2 2 2

by first placing a compact m′ = 1,2, or another tag; hence
g31 = g32 = g33 = 0.

If a host m′ = 4,5,6 is placed into any open slot then the
options for placing a tag m = 3 increase by 1; hence g34 =
g35 = g36 = −1. Tags have vanishing capacity constants:
A3 = 0. Open slots for tags are created by hosts.

The two distinct motifs of host 6 do not compromise
the indistinguishability of particles belonging to the same
species. At most one of the two motifs can be placed into
any particular slot. Distinguishable motifs of indistinguishable
particles cannot exchange positions. It is possible to split
species 6 into two species with one motif each. This introduces
a mutual statistical interaction between the two new species
and modifies the statistical interactions with all other species
[17,18].

In region �A all εm are positive. Here the physical vacuum
is the pseudovacuum. Elsewhere in parameter space we have
εm < 0 for at least one species. There the physical vacuum is a
solid formed by the particles with the lowest (negative) energy
density. We can reconfigure any one of these solids as the
pseudovacuum for a different set of particles. In Ref. [16] these
particles were interpreted as soliton pairs in generalization of
the well-known classification used in the context of spin- 1

2
XXZ chains [19].

B. Singlet pseudovacuum

In region �S the ground state is unique, | ◦ ◦ · · · ◦〉,
implying npv = 1. It is the pseudovacuum for a set of M = 7
particle species. The specifications are listed in Tables III and
IV. The multiplicity expression (3) again accounts for the full
spectrum.

There are no compacts among the seven species. Particles
1,2,3,4 are hosts to particles 5,6,7. The latter behave like tags
in some respects. However, their ability to coexist inside the
same host implies a hosting capability among them. We have
named them hybrids. Particle 7 has two motifs, which again
causes no complications.

Each host is an island in the singlet pseudovacuum. The
size of an island depends on its hybrid content. When a hybrid
is placed inside a host, the first site variable (on the left) of its
motif is shared with an interior site variable of the host or any

TABLE III. Specifications of M = 7 particles excited from the
singlet state (npv = 1) | ◦ ◦ · · ·〉: motif, category, species, energy
(relative to pseudovacuum), spin, capacity constant and size constant.
Segments of vacuum bonds ◦◦ have zero energy. At h �= 0 the entries
for εm must be amended by −smh.

Motif Category m εm sm Am αm

◦↑◦ Host 1 D +1 N − 1 1
◦↓◦ Host 2 D −1 N − 1 1
◦↑↓◦ Host 3 2D − J 0 N − 2 2
◦↓↑◦ Host 4 2D − J 0 N − 2 2
↑↑ Hybrid 5 D + J +1 0 1
↓↓ Hybrid 6 D + J −1 0 1
↑↓↑ , ↓↑↓ Hybrid 7 2D − 2J 0 0 2

021136-3
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TABLE IV. Statistical interaction coefficients of the particles
excited from the singlet (or spin-polarized) state.

gmm′ 1 2 3 4 5 6 7

1 2 1 2 2 1 1 2
2 2 2 2 2 1 1 2
3 2 2 3 2 1 1 2
4 2 2 3 3 1 1 2
5 −1 0 −1 −1 0 0 −1
6 0 −1 −1 −1 0 0 −1
7 −1 −1 −1 −1 0 0 0

matching site variable of a hybrid already present inside that
host as in these examples:

◦ ↑↑ ◦=̂1 + 5, ◦ ↑↓↑↓ ◦=̂3 + 7,
(7)

{◦ ↑↓↑↑ ◦,◦ ↑↑↓↑ ◦}=̂1 + 5 + 7.

In the last instance, two states correspond to the same
combinations of particles, which is accounted for by the
multiplicity expression (3).

In the course of adding a hybrid, one bond of the host or
of a hybrid already present is broken up and replaced by an
identical bond to the right of the newly placed hybrid. Each
host has at most one open slot for any particular hybrid. The
second example in (7) is no exception because it makes no
difference whether one or the other motif of hybrid 7 is placed
inside host 3.

Whereas a given combination of particles may be placed in
multiple ways on the lattice, each product state has a unique
particle content as expressed by the list {Nm} in (3a) and (4).
The rules that ensure that each bond and each site are counted
exactly once are the same as in Sec. II A.

The gmm′ listed in Table IV again include some vanishing
or negative coefficients. Not all occurrences have the same
interpretation. Hosts m′ = 3,4 can accommodate all hybrids
m = 5,6,7 whereas hybrid m = 5 (6) cannot be accommo-
dated by host m′ = 2 (1) without the presence of at least one
hybrid m = 7. This explains the nonpositive coefficients gmm′

between hosts and hybrids.
Ambiguities arise when we aim to determine the gmm′

among hybrids. Hybrids m = 5,6 alone do not share open
slots for placement, implying g56 = g65 = 0. New situations
present themselves when hybrids m = 7 are added to the mix.
All hosts are capable of accommodating hybrids m = 5,7 or
m = 6,7 or m = 5,6,7 in multiple combinations.

Consider a single host, say m = 1, with several hybrids
embedded. If all hybrids are of the same species, e.g., m′ =
5 or m′ = 7, then the multiplicity is dictated by the size of
the expanded host. This information is encoded in the gmm′

between host m and hybrid m′.
However, if host m = 1 accommodates hybrids m′ = 5,7

in several different sequences, then that contribution to the
multiplicity is encoded in the statistical interaction coefficients
between the two hybrids. Since there is no hierarchy between
the two hybrids, the encoding of that information can be
implemented in g75 or in g57. In Table IV we use g57 =
g67 = −1, g75 = g76 = 0. Different choices produce the same

TABLE V. Specifications of M = 7 particles excited from the
spin-polarized state (npv = 1), | ↑↑ · · ·〉: motif, category, species,
energy (relative to pseudovacuum), “spin,” capacity constant and size
constant. Segments of � vacuum bonds ↑↑ have energy �(D + J ). At
h �= 0 the entries for εm must be amended by −smh.

Motif Category m εm sm Am αm

↑◦↑ Host 1 −2J − D −1 N − 1 1
↑↓↑ Host 2 −4J −2 N − 1 1
↑◦↓↑ Host 3 −4J − D −3 N − 2 2
↑↓◦↑ Host 4 −4J − D −3 N − 2 2
◦◦ Hybrid 5 −J − D −1 0 1
↓↓ Hybrid 6 0 −2 0 1
◦↓◦, ↓◦↓ Hybrid 7 −2J − D −3 0 2

multiplicity. The hybrids (like the tag in Sec. II A) have zero
capacity constants Am.

C. Ferromagnetic pseudovacuum

Here we pick the spin-polarized state | ↑↑ · · ·〉 as the
pseudovacuum for a set of particle species that again generate
the full spectrum. This state coincides with the physical
vacuum in region �F+. The specifications for a set of M = 7
particles can be obtained, in this instance, by reasoning as
follows. With the transcription

{◦, ↑ , ↓}S=̂{↑ , ◦ , ↓}F+ (8)

between site variables we produce a one-on-one mapping
between Ising product states that maps the singlet state
| ◦ ◦ · · ·〉 onto the spin-polarized state | ↑↑ · · ·〉. Given that
the singlet state is the pseudovacuum of the particles listed
in Table III, the transcription yields a corresponding set
of particles generated from the spin-polarized state. These
particles are listed in Table V. Hosts map onto hosts and
hybrids onto hybrids, leaving the Am and αm invariant. The
gmm′ keep the values listed in Table IV. The mapping changes
the specifications εm,sm. Given the nonzero spin polarization of
the pseudovacuum, the quantum number sm is not a spin in the
usual sense, but its use enables us to write the magnetic-field
dependence of the particle energy in the Zeeman form, −smh.

D. Plateau pseudovacuum

The partially magnetized plateau state | ↑ ◦ ↑ ◦ · · ·〉, |◦ ↑
◦ ↑ · · ·〉, which is the physical vacuum in region �P+, is
selected here as the pseudovacuum for the fourth set of particle
species. These particles can be found with the transcription

{◦, ↑ , ↓}A=̂{↓ , ↓ ,◦}P+ (9)

between site variables, which produces a one-on-one mapping
between the Néel state and the plateau state. The specifications
of the M = 6 particles transcribed from Table I are listed in
Table VI. Only the motifs and the entries of εm,sm are different.
The gmm′ remain as stated in Table II. The transcription does
not affect the categories.

The structural correspondence between particle species as
determined by transcriptions (8) and (9) does not imply a

021136-4
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TABLE VI. Specifications of M = 6 particles excited from the
plateau state (npv = 2) | ↑ ◦ ↑ ◦ · · ·〉, |◦ ↑ ◦ ↑ · · ·〉: motif, category,
species, energy (relative to pseudovacuum), “spin,” capacity constant,
and size constant. Segments of � vacuum bonds ↑ ◦,◦ ↑ have energy
�D/2. At h �= 0 the entries for εm must be amended by −smh.

Motif Category m εm sm Am αm

↑↑ Compact 1 J + 1
2 D 1

2
N−1

2 1

◦◦ Compact 2 − 1
2 D − 1

2
N−1

2 1

↓↓ Tag 3 J + 1
2 D − 3

2 0 1

↑↓↑ Host 4 −2J + D −1 N−2
2 2

◦ ↓ ◦ Host 5 0 −2 N−2
2 2

↑↓ ◦,◦ ↓↑ Host 6 −J + 1
2 D − 3

2 N − 1 1

functional correspondence because some functions depend on
the relative energies, as discussed in Secs. IV and V.

E. Species and categories

The following comments are based on wider evidence than
reported in this work, including evidence from Ising chains
with spin s = 1

2 , 3
2 and with next-nearest-neighbor coupling,

where sets of particles with up to 17 species and motifs of up
to six sites have been found [20].

(i) The template (3) for the multiplicity expression with
specifications npv,Am,αm,gmm′ characterizing the pseudovac-
uum and all particle species excited from it has proven
sufficiently robust to hold for all cases investigated.

(ii) The classification of particles into the four categories
of compacts, hosts, tags, and hybrids has proven useful and
comprehensive within the range of our explorations. Compacts
and hosts find open slots on segments of pseudovacuum, tags
and hybrids inside hosts, and hybrids with hosting capability
for tags and different hybrids.

(iii) The capacity constants Am are extensive (∝N ) for
compacts and hosts. The value of Am reflects the holding
capacity of the pseudovacuum for particles of these two
categories. It depends on the size of the motif(s) of a given
species and how closely particles of that species can be
packed. The pseudovacuum has no holding capacity for tags
and hybrids, implying Am = 0. Holding capacity for tags and
hybrids must be generated by hosts.

(iv) The statistical interaction coefficient gmm′ reflects the
direct impact on the open slots available to particles of species
m if one particle of species m′ is added. Negative coefficients
gmm′ represent an accommodation principle. The presence of
hosts m′ opens up slots for tags or hybrids m. However, for
every gmm′ < 0 there is a gm′m > 0, and these, in combination,
limit the holding capacity for hosts and tags (or hybrids).

(v) The limited room for particles of any species is signaled
in the multiplicity expression (3) by a vanishing binomial
factor as caused by the factorial of a negative dm (interpreted
as a 	 function) in the denominator.

III. STATISTICAL MECHANICAL ANALYSIS

The statistical mechanics of the four sets of particles
identified in Sec. II is amenable to a rigorous analysis that
starts from the multiplicity expression (3). The method was

developed by Wu [21] for a generic situation (see also
Refs. [22,23]).

The range of applications is surprisingly wide. It includes
an alternative to the thermodynamic Bethe ansatz [14],
applications to particles in real space and in reciprocal
space [3,11,13,24,25], and applications to systems in higher
dimensions [26]. Each application requires a certain degree
of adaptation of Wu’s generic result. The application to
interlinking particles with shapes is no exception.

For given energies εm and statistical interaction specifica-
tions Am,gmm′ , the grand partition function of any one of the
four sets of particles has the form

Z =
M∏

m=1

(
1 + wm

wm

)Am

, (10)

where the (real, positive) wm are the solutions of the coupled
nonlinear algebraic equations

εm

kBT
= ln(1 + wm) −

M∑
m′=1

gm′m ln

(
1 + wm′

wm′

)
. (11)

With the wm thus determined, the average numbers of particles,
〈Nm〉, are the solutions of the coupled linear equations [27]

wm〈Nm〉 +
M∑

m′=1

gmm′ 〈Nm′ 〉 = Am. (12)

Note the sensitivity of Eqs. (10) and (12) to particle
category. Tags and hybrids, which have Am = 0, do not
contribute their own factor to Z. Their contributions manifest
themselves indirectly via their hosts. Equations (12) with
indices m pertaining to tags or hybrids are homogeneous,
which makes the tag and hybrid populations conditional on
host populations.

The solution of Eqs. (10)–(12) covers a wider territory than
the transfer-matrix solution of the Ising chain (1) because we
are free to assign any values to the particle energies εm [28]. We
choose the tabulated values pertaining to the three-parameter
Ising model for mere convenience. The ordering tendencies
and phase boundaries are then as shown in Fig. 1.

In the following we determine the average population
densities 〈N̄m〉 .= 〈Nm〉/N of particles from all species. These
quantities inform us about the roles of particle species in
the ordering tendencies and about the significance of particle
categories in the behavior near phase boundaries.

A. View from �A

The statistical mechanical analysis of the particles identified
in Sec. II A begins with the solution of Eqs. (11). The excitation
energies εm including the Zeeman term −smh are taken from
Table I and the statistical interaction coefficients from Table II.
The six equations with these specifications can be simplified
into

w6

w3
= eKJ ,

1 + w2

1 + w3
= eKJ +KD+H ,

1 + w2

1 + w1
= e2H ,

(13)
w1w3

1 + w4
= eKJ ,

w2

w1

1 + w4

1 + w5
= 1,

√
w4w5

1 + w6
= 1,
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LIU, LU, MÜLLER, AND KARBACH PHYSICAL REVIEW E 84, 021136 (2011)

where KJ
.= J/kBT , KD

.= D/kBT , and H
.= h/kBT are

scaled parameters. Expression (10) for the grand partition
function becomes

Z = [(1 + w3)eKD−KJ ]N. (14)

Equations (13) reduce to the cubic equation for w3 [29]. The
solution at h = 0 is sufficiently compact to be cited:

1 + w3 = e−KD cosh KJ + 1

2

+
√(

e−KD cosh KJ − 1

2

)2

+ 2e−KD . (15)

We calculate the dependence of the population densities
〈N̄m〉 on the reduced parameters D/J and h/J at a fixed
value of reduced temperature kBT /J by solving Eqs. (12) for
given wm.

In the high-T limit we have w1 = w2 = w3 = w6 = 2,
w4 = w5 = 3, and 〈N̄1〉 = 〈N̄2〉 = 〈N̄3〉 = 〈N̄6〉 = 1

9 , 〈N̄4〉 =
〈N̄5〉 = 1

18 , implying Z = 3N , the total multiplicity of states.
Taking into account the sizes and multiplicity of motifs the

population densities must satisfy the constraint

〈N̄1〉+〈N̄2〉+〈N̄3〉 +2(〈N̄4〉 + 〈N̄5〉 + 〈N̄6〉) + 〈N̄vac〉 =1,

(16)

where 〈N̄vac〉 is the density of vacuum elements with motifs
↑↓ , ↓↑. Relation (16) holds at any T . For T = ∞ we infer
〈N̄vac〉 = 2

9 .
As T is lowered toward zero, particles from all species

with εm > 0 are gradually frozen out and particles from some
species with εm < 0 are crowded out by particles from the
species with the lowest negative energy per bond. Inside any
region in the parameter space of Fig. 1(a) the state of the system
in the limit T → 0 (physical vacuum) either has been emptied
of any particles (pseudovacuum) or has turned into a solid of
one species of particles. The former is the case in region �A,
the latter in all other regions [30].

Compacts m = 1 have negative energies (ε1 < 0) in region
�F+. Hence their high density in this region as is evident in
Fig. 2(a). Phase �F+ is a solid of interlinked compacts 1. Tags
3 have negative energies in the region �S . That is reflected in
Fig. 2(b). These particles solidify at T = 0 in that region.

The plateau phase �P+ is a solid of interlinked hosts 4
(with ε4 < 0). The high density of these hosts in the narrow
region �P+ at nonzero T is illustrated in Fig. 2(c). Hosts 6
have positive energy for any value of h/J and D/J . Their
average number remains small everywhere but reaches a flat
maximum at h/J  D/J  0, as is illustrated in Fig. 2(d).

The plots for 〈N̄3〉 and 〈N̄6〉 are reflection symmetric with
respect to the line h/J = 0. Plots for 〈N̄2〉 and 〈N̄5〉 would be
mirror images of the plots for 〈N̄1〉 and 〈N̄4〉, respectively.

At the five phase boundaries that border region �A we have
εm = 0 for exactly one species m. In all but one case that
species is a compact or a host. Particles from these categories
interlink directly with elements of the pseudovacuum and thus
produce a state of high degeneracy.

The �A-�S phase boundary is the exception. Here the
particles with εm = 0 are tags. They do not interlink with
elements of the pseudovacuum. They exist only inside hosts,
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FIG. 2. (Color online) Average numbers (per site) 〈N̄m〉 of (a)
compacts m = 1, (b) tags m = 3, (c) hosts m = 4, and (d) hosts
m = 6 versus D/J and h/J at kBT /J = 1. The dashed lines indicate
the phase boundaries as in Fig. 1(a).

but all hosts have εm > 0. The tags m = 3 by themselves can
form only one zero-energy state, the singlet state | ◦ ◦ · · ·〉. The
degeneracy remains low (threefold).

At the four phase boundaries not bordering region �A two
species of particles have equal (negative) energy per bond.
In two cases (�S-�P±) the two species are a host and a tag,
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either m = 4,3 or m = 5,3. In the other two cases (�P±-�F±)
the two species are a compact and a host, either m = 1,4
or m = 2,5. In all these cases the particle species involved
interlink either side by side or one inside the other in many
different configurations.

B. View from �S

The analysis for the particles identified in Sec. II B proceeds
along the same lines. Equations (11) for this set of particles
can be simplified into

1 + w6

1 + w5
= e2H ,

w5w6

1 + w7
= e4KJ ,

w4

w7
= eKJ ,

(1 + w1)w6

(1 + w6)w7
= e2KJ −KD−H ,

w3

1 + w4
= 1, (17)

w1w6

(1 + w2)w5
= 1,

w1w2w6

(1 + w2)(1 + w3)
= e2KJ .

They reduce to a cubic equation for w5 (quadratic for h = 0).
Expression (10) for the grand partition function reduces to [31]

Z = [(1 + w5)e−KJ −KD+H ]N. (18)

The dependence of the 〈N̄m〉 on D/J and h/J at fixed kBT /J

as inferred from Eqs. (12) is (selectively) depicted in Fig. 3.
At T = ∞ we have the values w1 = 7

2 , w2 = 5
2 , w3 = 4,

w4 = 3, w5 = w6 = 2, w7 = 3; 〈N̄1〉 = 〈N̄2〉 = 〈N̄7〉 = 2
27 ,

〈N̄3〉 = 〈N̄4〉 = 1
27 , 〈N̄5〉 = 〈N̄6〉 = 1

9 . At finite T the popu-
lation densities are low for all particles in region �S . Here
all particles have positive energy, the ground state is free of
particles, and the physical vacuum is the pseudovacuum. In
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FIG. 3. (Color online) Average numbers (per site) 〈N̄m〉 of (a)
hybrids m = 7 and (b) hosts m = 3,4 versus D/J and h/J at
kBT /J = 1.

Sec. III A the same physical vacuum was a solid of tags from
a different set of particles.

Hybrids 7 have negative energy in region �A, causing a
high population density there, as is evident in Fig. 3(a). Phase
�A, which was the pseudovacuum of choice in Sec. III A, now
is a solid formed by these hybrids.

In all other regions the ground state is a solid of one species
of particle from both views. In regions �F± the particles with
dominating population densities at low T are now hybrids 5 or
6. The contour plots (not shown) look very similar to Fig. 2(a)
and its mirror image.

Hosts 1 and 2 have a high population in regions �P±
and solidify into plateau phases as T → 0. The contour plots
for 〈N̄1〉,〈N̄2〉 look very similar to Fig. 2(c) and its mirror
image. Hosts 3 and 4 tend to be frozen out or crowded out by
other particle species in all regions. Their population densities
remain low, as shown in Fig. 3(b).

At two of the three phase boundaries that border region
�S the particle species with εm = 0 are hosts (m = 1,2),
which interlink with elements of vacuum, and at the third
phase boundary they are hybrids (m = 7), which do not. This
explains the high degeneracy at the �S-�P± boundaries and
the low degeneracy at the �S-�A boundary from the vantage
point of the singlet pseudovacuum.

At the remaining phase boundaries we again have two
species of particles with equal and lowest (negative) energy
per bond. In all cases particles of the two species interlink and
thus produce a high degeneracy, albeit not for the same reason.
In four cases they are hosts and hybrids. In two cases they are
two species of hybrids.

C. Views from �F± and �P±

Equations (11) for the particles excited from the spin-
polarized state (Sec. II C) can be simplified into Eqs. (17)
with the right-hand sides changed into

eKJ +KD+H , eKJ , e−2KJ ,
(19)

e−2H , 1, e3KJ , e2KJ .

The close relationship originates in the transcription (8)
between the motifs of the two sets of particles. The grand
partition function for this case reads

Z = [(1 + w6)e−2H ]N. (20)

The results for the 〈N̄m〉 as inferred from Eqs. (12) confirm
what is readily predicted by analogy to the previous cases.
At low T we have a low density of any particle species in
region �F+ because the physical vacuum of this region is the
pseudovacuum. In regions �P+,�A we find high densities of
hosts m = 1,2, respectively, and in regions �S,�F−,�P− high
densities of hybrids m = 5,6,7, respectively. Hosts m = 3,4
do not reach significant densities in any region.

At all phase boundaries except one the particles present
in high density interlink directly among themselves or with
elements of vacuum, thus producing a high degeneracy. The
low-degeneracy at the �A-�S boundary is interpreted, from
this vantage point, by the fact that hosts 2 do not accommodate
hybrids 5 alone.
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By analogous reasoning based on the transcription (9) we
can cast Eqs. (11) for the particles excited from the plateau
state (Sec. II D) in the form (13) with the right-hand sides
changed into

e−2KJ , e−KJ −KD−H , e−KJ −KD+H ,
(21)

e4KJ , e−3KJ , 1,

and the associated grand partition function in the form

Z = [(1 + w3)e−KJ −KD/2−3H/2]N . (22)

The calculation of the 〈N̄m〉 produces the expected results.
The region with a low density of particles of any kind at
low T is now �P+. Regions �F+,�S have high densities of
compacts m = 1,2, respectively, region �F− has a high density
of tags m = 3, and regions �A,�P− have high densities of
hosts m = 4,5, respectively. In this case the low degeneracy of
the �A-�S phase boundary is explained by the observation that
the negative-energy compacts m = 2 and the negative-energy
hosts m = 4 do not interlink directly, only via (zero-energy)
elements of pseudovacuum.

From the expressions for Z and the 〈N̄m〉 (all in four
versions) a great many statistical mechanical results can be
derived. However, the focus of this paper is on the identification
of functions associated with particles of given structures in
specific environments.

IV. ENTROPY OF MIXING

Depending on whether or not the pseudovacuum of choice
is a state of lowest energy, the Ising chain (1) inside any of
the six regions in the parameter space of Fig. 1(a) can be
interpreted (at low T ) either as a dilute gas of several species of
(positive-energy) particles or as a liquid of predominantly one
species of (negative-energy) particles with low concentrations
of higher-energy particles added. The physical processes that
take place when the Hamiltonian parameters are gradually
changed across one or the other phase boundary allow for
multiple interpretations in terms of particles from the four
sets {mA}, {mS}, {mF+}, and {mP+} introduced in Sec. II and
elements of the associated pseudovacua.

We now consider the simplified phase diagram pertaining
to h = 0 as shown in Fig. 1(b). The singlet phase �S and the
antiferromagnetic phase �A are the pseudovacua of particles
from the sets {mS} and {mA}, respectively. The ferromagnetic
phase �F represents the degenerate phases �F±. One ground-
state vector is the pseudovacuum for particles from set {mF+}
and the other is a solid of zero-energy particles from that set.
The plateau phases �P± are not realized at h = 0.

Along the two phase boundaries at D > 0, the degeneracy
of the ground state is low (threefold) and along the third phase
boundary (at D < 0) it is exponentially high. This qualitative
difference has a natural explanation expressible in terms of
particle functions.

A. Surfactants

We begin by examining the physics near the �A-�S

boundary simultaneously from two vantage points. Phase
�A is the pseudovacuum of particles from set {mA} or a

solid of hybrids mS = 7 (↑↓↑ , ↓↑↓). Conversely, phase �S

is the pseudovacuum of particles from set {mS} or a solid
of tags mA = 3 (◦◦). At the phase boundary, the lowest
excitations are separated by �E = J from the threefold
ground state and contain exactly one host particle acting as
a pair of barriers between one segment of tags or hybrids
on the inside and one segment of pseudovacuum on the
outside. Viewed from one vantage point, the host is among
mA = 4,5,6 (↑ ◦ ↑ , ↓ ◦ ↓ , ↑ ◦ ↓ , ↓ ◦ ↑) and accommo-
dates tags mA = 3. The other vantage point has one host mS =
1,2,3,4 (◦ ↑ ◦,◦ ↓ ◦,◦ ↑↓ ◦,◦ ↓↑ ◦) accommodating hybrids
mS = 7.

When we switch vantage points the host particle is turned
inside out and the tags or hybrids inside become elements of
pseudovacuum outside. One product state of this kind is

| · · · ↑↓︸ ︷︷ ︸
vac.

↑ ◦ ◦ · · · ◦ ◦ ↓︸ ︷︷ ︸
host+tags

↑↓ · · ·︸ ︷︷ ︸
vac.

〉

= | · · · ◦ ◦︸ ︷︷ ︸
vac.

◦ ↓↑↓ · · · ↑↓↑ ◦︸ ︷︷ ︸
host+hybrids

◦ ◦ · · ·︸ ︷︷ ︸
vac.

〉 (23)

with host mA = 6 and tags mA = 3 embedded in the antiferro-
magnetic pseudovacuum or host mS = 4 and hybrids mS = 7
embedded in the singlet pseudovacuum.

From either vantage point the host assumes the function
of a surfactant between elements of vacuum on one side and
tags or hybrids on the other side. The absence of direct links
between tags or hybrids and elements of vacuum implies an
infinite surface tension. The presence of surfactants reduces it
to a finite value.

At the phase boundary, the energy densities inside and
outside the host are equal. Moving away from the phase
boundary raises the energy density of one segment and lowers
that of the other, making the growth of one segment at the
expense of the other energetically favorable. This process
involves either the creation of negative-energy particles or the
annihilation of positive-energy particles from the tag or hybrid
categories.

To get the transition started, one host particle (of positive
energy) must first be created. Its energy at the phase boundary
is equal to J and decreases on a path into the phase
with opposite pseudovacuum. Eventually it goes negative,
producing a hysteresis effect.

What happens when the phase boundary D = J is crossed
at low but nonzero T evokes a metamorphosis reminiscent of
an M. C. Escher print. As the tags mA = 3 soften energetically,
their population explodes. The hosts of the soft tags expand in
the process. The number of thermally excited hosts remains
low. The segments of pseudovacuum between the hosts shrink
to sizes comparable to the expanded hosts.

A change of perception identifies the close-packed soft tags
of set {mA} as segments of pseudovacuum for set {mS} and
segments of pseudovacuum for set {mA} as close-packed soft
hybrids of set {mS}. The hosts from set {mA} break apart and
reassemble into hosts from set {mS}. Each left half of an old
host pairs up with the right half of the closest old host to its
left to form a new host.
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B. Immiscible liquids

Now we view the physics near the same �A-�S boundary
from a third vantage point. We describe it in terms of particles
from the set {mF+} whose pseudovacuum is not a lowest-
energy state. Each of the three vectors that make up the physical
vacuum at the phase boundary is a solid of one species of
negative-energy particles: two vectors of hosts mF+ = 2 (↑↓↑)
and one vector of hybrids mF+ = 5 (◦◦). The energy per bond
is −2J for both species. Hosts mF+ = 2 do not accommodate
hybrids mF+ = 5.

The lowest excited states contain one host mF+ = 3,4
(↑ ◦ ↓↑ , ↑↓ ◦ ↑) with energy per bond −5J/3 at the phase
boundary. These hosts interlink externally with hosts mF+ =
2 and internally with hybrids mF+ = 5. They assume the
function of a surfactant by reducing the interfacial tension from
infinity to a finite value. Varying the parameters J,D across
the phase boundary tips the energy balance from favoring
hosts mF+ = 2 to favoring hybrids mF+ = 5 or vice versa.
Any transition process that involves local spin flips cannot
take place without the presence of a host mF+ = 3,4, which
introduces the hysteresis effects noted previously.

At low, nonzero T the thermodynamic state near the
�A-�S phase boundary exhibits attributes of two immiscible
liquids. There are two species of particles with high population
densities, the hosts mF+ = 2 and the hybrids mF+ = 5. They
coexist in an emulsion of sorts with higher-energy hosts
mF+ = 3,4 of much lower density acting as emulsifiers.

In Fig. 4 we have plotted (at two fixed values of T ) the
population densities 〈N̄2〉,〈N̄5〉 of the particles that represent
the two liquids versus J along a line that crosses the �A-�S

boundary in a perpendicular direction. Also shown is the
entropy per site as derived from (20).

Away from the phase boundary we have a fairly pure
liquid of either hosts mF+ = 2 or tags mF+ = 5. The different
number densities are caused by the different particle sizes.
Particles of both liquids coexist in comparable numbers near
the phase boundary (J = 2).
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FIG. 4. (Color online) Average numbers (per site) 〈N̄2〉,〈N̄5〉 from
the set {mF+} and entropy (per site) S̄/kB versus J with D = 4 − J

at kBT = 0.25 (solid lines) and kBT = 0.5 (dashed lines) in arbitrary
energy units. The scale on the horizontal axis is for the lower T . The
curves at the higher T are for 1.0 < J < 3.0.
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FIG. 5. (Color online) Average numbers (per site) 〈N̄1〉 + 〈N̄2〉
and 〈N̄3〉 from the set {mA} and entropy (per site) S̄/kB versus J with
D = 4 + J at kBT = 0.3 (solid lines) and kBT = 0.6 (dashed lines)
in arbitrary energy units. The scale on the horizontal axis is for the
lower T . The curves at the higher T are for −3.0 < J < −1.0.

The entropy has a maximum at the phase boundary. The key
observation is that as T is lowered the coexisting populations
of particles representing the two liquids remain high but the
entropy is much reduced. It can be interpreted as the entropy
of mixing of two immiscible liquids [32].

The physics near the �S-�F boundary described from the
vantage points of the four sets of particles is a variation
of the same theme. One significant difference is that the
thermodynamic state as viewed from the vantage point of the
particle set {mA} involves three immiscible liquids rather than
just two.

The particle species with high population densities at low
T are the compacts mA = 1,2 (↑↑ , ↓↓) at J < −D and the
tags mA = 3 (◦◦) at J > −D as shown in Fig. 5. Throughout
region �F the negative-energy compacts remain segregated
by higher-energy hosts mA = 6 (↑ ◦ ↓ , ↓ ◦ ↑) or elements
of pseudovacuum (↑↓ , ↓↑). The entropy is very low. At the
phase boundary the compacts coexist with tags mA = 3, but
all three species remain segregated. The tags exist inside hosts
and the compacts outside.

In addition to hosts mA = 6, hosts mA = 4,5 (↑ ◦ ↑ ,↓ ◦ ↓)
are present in comparable numbers. The particle functions that
segregate compacts from each other are different from those
that segregate compacts from tags. The shallow peak in the
entropy curve at low T is a dim signal of the increase in
emulsion components near the phase boundary.

C. Miscible liquids

The physics near the �A-�F phase boundary is quali-
tatively different. From the vantage points of the adjacent
phases the two vectors of phase �A are the pseudovacuum of
{mA}, composed of elements ↑↓ , ↓↑, or two solids composed
of hosts mF+ = 2 (↑↓↑), whereas the two vectors of phase
�F are the pseudovacuum of {mF+}, composed of elements
↑↑, plus a solid of tags mF+ = 6 (↓↓) or two solids, one
composed of compacts mA = 1 (↑↑) and the other of compacts
mA = 2 (↓↓).
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The low degeneracy of the pure phases is explained by the
fact that the particles and elements of pseudovacuum involved
in each pair of vectors do not mix. However, when both
pairs of vectors become degenerate (at the phase boundary)
the options for particles or elements of pseudovacuum to
interlink mutually increase dramatically, producing a 2N -fold
degeneracy, which comprises all vectors |σ1 · · · σN 〉 with
σl =↑ , ↓. Any such state can be interpreted as either a
combination of compacts mA = 1,2 (↑↑ , ↓↓) and elements
of associated pseudovacuum (↑↓ , ↓↑) or as a combination of
hosts mF+ = 2 (↑↓↑), tags mF+ = 6 (↓↓), and elements of
associated pseudovacuum (↑↑).

From the vantage point of particle set {mS}, the physical
vacuum at the �A-�F phase boundary consists close-packed
configurations of particles with the lowest negative energy per
bond. They are the hybrids mS = 5,6,7 (↑↑; ↓↓; ↑↓↑ , ↓↑↓).
Their ability to interlink produces all 2N vectors of the ground
state at the phase boundary. Varying the parameter J across
the phase boundary at fixed D < 0 enables the transition to
proceed via local spin-flip processes without energy barrier.
There are no hysteresis effects in this case.

At low, nonzero T the thermodynamic state near the phase
boundary can be interpreted as that of three liquids. The species
of particles with high population densities are the hybrids
mS = 5,6 at J < 0 and the hybrids mS = 7 at J > 0. The
state in phase region �F is akin to that of two immiscible
liquids as already described (in Sec. IV B) from the vantage
point of set {mA}. However, here the two relevant species
are hybrids. In region �A, by contrast, we have a one-
component liquid, composed of hybrids mS = 7. The crucial
difference in this scenario compared to the one described near
the �S-�F phase boundary is that the hybrids mS = 7 not
only interlink with both species of hybrids, mS = 5,6, but
they also mediate their mixing by acting as a surfactant with
zero interfacial energy.

Figure 6 shows the population densities of hybrids mS =
5,6,7 near the �A-�F phase boundary and also the entropy,
all at two different temperatures. We observe a strikingly
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FIG. 6. (Color online) Average numbers (per site) 〈N̄5〉 = 〈N̄6〉
and 〈N̄7〉 from the set {mS} and entropy (per site) S̄/kB versus J at
D = −2 at kBT = 0.15 (solid lines) and kBT = 0.5 (dashed lines)
in arbitrary energy units. The scale on the horizontal axis is the same
for all curves.

different behavior of the entropy curve in comparison to its
behavior across the other two phase boundaries (shown in
Figs. 4 and 5). Here the particles with dominant populations
behave as in miscible liquids. Again there is a region where
these populations coexist in comparable high densities at both
the higher and the lower temperature. Unlike in the previous
two scenarios the entropy stays high at the lower temperature
because the particle populations are not separated by barriers
in the form of higher-energy host particles acting as surfactant
with significant interfacial energies.

V. STRUCTURE AND FUNCTION

In this project we started out with interacting Ising spins on
a periodic chain. The model Hamiltonian (1) causes the self-
assembly of particles with various structures that (i) remain
free of interaction energies even at high densities and (ii) are
robust against changes in the Hamiltonian parameters.

We have identified four sets of particle species excited from
four different ordered Ising states. From there on we are free
to remove the scaffold of the Ising model and assign arbitrary
energies to all particles species [28].

Each particle species from a given set has a distinct
structure. That structure is encoded in one or several motifs.
The structure of a particle is meaningful only in relation to the
structure of the associated pseudovacuum. Particles mA = 2,
mS = 6, and mP+ = 3, for example, all have the same motif
↓↓, but represent different structures. They belong to different
species, excited from different pseudovacua. The statistical
interaction specifications of all three species are different.

We have classified all particle species into four categories
according to structural features. These features represent
specific particle functions. Compacts have only external links.
They interlink with elements of pseudovacuum and with
external links of compacts and hosts. Hosts have external and
internal links. They interlink externally with elements of the
pseudovacuum and with compacts and hosts. They interlink
internally with tags or hybrids. Tags and hybrids interlink
with internal links of hosts and, selectively, with each other.
These limited options for particles to interlink mutually may
be interpreted as a manifestation of stereospecific binding with
zero binding energy.

The capacities of hosting and being hosted are functions
that some particle species have and other species lack. Some
functions of particle species depend on the circumstances as
is the case in two examples encountered in Sec. IV. (i) In
a situation where two particle species that do not interlink
directly have equal negative energy density, lower than the
energy density of any other species, they form two immiscible
liquids a low T . Segments of one liquid are separated from
segments of the other. The function of the surfactant is assumed
by a third particle species or by elements of the pseudovacuum
with higher density. (ii) If the circumstances change in such a
way that the energy density of the surfactant particle species
becomes equal to that of the particle species representing the
two immiscible liquids then the surfactant particle changes its
function into a miscibility agent of sorts.

Modifications in the model Hamiltonian (1) affect the
nature of the particles. We have already seen that variations in
the Hamiltonian parameters J,D,h cause changes in some

021136-10



TAXONOMY OF PARTICLES IN ISING SPIN CHAINS PHYSICAL REVIEW E 84, 021136 (2011)

functions of particles even though their structures remain
invariant.

Additional commuting terms in the Ising Hamiltonian such
as a next-nearest-neighbor coupling or a bond alternation
make it necessary to find new sets of particles with longer
motifs that interlink differently and exhibit different statis-
tical interactions. Ising Hamiltonians with spin s > 1 pose
similar challenges apart from the need for motifs with new
symbols [33].

Noncommuting terms in the Hamiltonian are apt to affect
the particles introduced here more drastically and in multiple
ways. The particles are likely to move along the lattice, scatter
off each other, and decay into other particles. Under special
circumstances as mentioned in Sec. I, the particles do not decay
and experience only elastic two-body scattering. Such particles
can be characterized by motifs in momentum space [3]. A
taxonomy of particles according to structures and functions in
this wider arena is, of course, a more challenging project.
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