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ABSTRACT

Global Navigation Satellite Systems (GNSS) are well known to be accurate providers of position, navigation, and time
(PNT) information across the globe. With capable receivers and well-populated satellite constellations, GNSS users
typically believe that the position and time information provided by their GNSS receiver is perfectly accurate. More
sophisticated users look beyond accuracy and are also concerned with the integrity of the GNSS information.

Advances in electronics technology have enabled the creation of malicious RF interference of GNSS signals. Inex-
pensive jamming devices overpower or distort the GNSS receivers input so as to completely deny the GNSS user of
PNT information. A second threat to GNSS integrity is spoofing, the creation of counterfeit GNSS signals. This
type of attack is considered more dangerous than a jamming attack since an erroneous PNT solution is often worse
than no solution at all. The detection of spoofing is the subject of this paper.

A variety of approaches have been proposed in the literature to recognize spoofing; many of these are based on the
RF signal alone, including multi-antenna and multi-receiver methods. Another class of spoof detection algorithm is
to compare the GNSS result to data from another, non-GNSS (hence, non-spoofed) sensor. In this paper we imagine
that the trusted signal is the output of an Alternative PNT (APNT) receiver.

APNT refers to stand alone, non-GNSS systems that are intended to provide PNT information during periods in
which GNSS is unavailable The wide recognition of the vulnerabilities of the GPS in the Volpe report spurred
the search for APNT systems; examples include the development of eLoran in the U.S. and Europe, general work
on signals of opportunity ranging, DME-DME positioning, and, quite recently, R-Mode in Europe (we note that
none of these systems is currently operational). The intent is that an integrated receiver, either loosely or tightly
coupled, would merge the two systems’ observables to yield the best PNT information possible; in practice, since the
APNTs’ solutions are typically of lower accuracy than the GNSS solutions, the combined result is nearly equal to
the GNSS-alone solution.

The goal of this paper is to show that these APNT solutions should be used at ALL times; as a substitute for GNSS
PNT when GNSS is unavailable and as an integrity check (e.g. spoof detector) when GNSS is available. At a cursory
level spoof detection using APNT appears simple; just compare the two position outputs to see if they are close.
This paper looks deeper, considering the questions: How can we use the time estimates to detect position spoofing?
How close is close enough in this context? What is the probability of error in the decision? How do the geometries
of both systems impact the test itself and its resulting performance? What happens if the receivers are providing
different information?



INTRODUCTION

Global Navigation Satellite Systems (GNSS) are well known to be accurate providers of position, navigation, and
time (PNT) information across the globe; as such, they are commonly used to locate and navigate craft in various
transportation modes. Because of high signal availabilities, capable receivers, and well-populated satellite constel-
lations, GNSS users typically believe that the position and time information provided by their GNSS receiver is
perfectly accurate. More sophisticated users look beyond accuracy and are also concerned with the integrity of the
GNSS information; for example, RAIM algorithms were developed to ensure users that the provided information is
resistant to several possible satellite failure modes.

Advances in electronics technology have enabled the creation of malicious RF interference of GNSS signals. Inexpen-
sive jamming devices overpower or distort the GNSS receivers input so as to completely deny the GNSS user of PNT
information. While a serious concern when we expect PNT at all times, current generation GNSS receivers warn the
user when PNT is unavailable; some of the more sophisticated receiver designs can also battle jamming. A second
threat to GNSS integrity is spoofing, the creation of counterfeit GNSS signals. This type of attack is considered more
dangerous than a jamming attack since an erroneous PNT solution is often worse than no solution at all.

A variety of approaches have been proposed in the literature to recognize spoofing; many of these are based on
the RF signal alone (for example, examining the power levels of the signals, looking for vestigial peaks in the
correlator outputs, etc.), including multi-antenna and multi-receiver methods. Another class of spoof detection
algorithm compares the GNSS result to data from another, non-GNSS (hence, non-spoofed) sensor. One obvious
choice is an inertial unit recognizing that the spoofer might be unable to match the random motion in the vehicle;
examples include monitoring the roll/pitch of a Coast Guard vessel due to waves [1] and the effect of wind gusts
on an aircraft [2]. A second sensor choice is radar, exploiting the relative position vector available from the radar
returns between vehicles in a convoy [3]. Yet another possibility is to employ ranges [4] or pseudoranges [5] from
fixed beacons, comparing the GNSS derived ranges to those measurements. These last two efforts are of particular
relevance to the work presented herein.

The examinations in [4,5] characterized the binary hypothesis test of spoofing/no spoofing, developed the generalized
likelihood test statistic, and solved for the tests’ probabilities of false alarm and detection. The formulation in these
papers was for any number of range/pseudorange measurements and involved solving the data fusion problem of
combining the GNSS position with the additional range/pseudorange measurements. The examples considered one
or two such measurements; it was observed that two measurements could be quite effective at detecting spoofing.
If more range/pseudorange measurements were available, enough to compute an separate position solution (often
referred to as Alternative PNT or APNT), one might ask “How do we implement a spoof detector based on only the
GNSS and APNT solutions?” This question is relevant if one does not have access to the actual measurements used
by the APNT system or might just be preferred as a simpler system to implement. By the data processing theorem
we expect that a detector based on the APNT solution would experience worse detection performance than that
of [4,5] (as the conversion from ranges/pseudoranges to position is non-invertible), but wonder how much loss there
really is. In this paper, then, we explore spoofing detection using a trusted signal and envision that that trusted
signal is the output of an Alternative PNT (APNT) receiver.

As developed in the navigation literature APNT usually refers to separate, non-GNSS systems that could provide
PNT during periods in which GNSS is unavailable. The wide recognition of the vulnerabilities of the GPS [6] spurred
the search for APNT systems; examples include the development of eLoran in the U.S. and Europe [7], general work
on signals of opportunity ranging [8], DME-DME positioning [9], and, quite recently, R-Mode in Europe [10] (we
note that none of these systems is currently operational). The intent is that an integrated receiver, either loosely or
tightly coupled, would merge the two systems’ observables to yield the best PNT information possible; in practice,
since the APNT estimates are typically of lower accuracy than the GNSS positions, the combined solution is nearly
equal to the GNSS-alone solution.

The point of this paper is to show that these signals should be used at ALL times; as a substitute for GNSS PNT
when GNSS is unavailable and as an integrity check (e.g. spoof detector) when GNSS is available. At a cursory level
spoof detection using APNT appears to be quite simple; just compare the two position outputs to see if they are
close. Going deeper, various question emerge:

• Since time is probably provided by both receivers, how do we use these measurements to detect position



spoofing? How do we use position information to detect time spoofing?

• How close is “close enough” in this context? What is the probability of error of the decision?

• How do the geometries of both systems (essentially the Geometric Dilution of Precision, GDOP) impact the
test itself and its resulting performance?

• What happens if the receivers are providing different information, for example, 3-dimensional position versus
latitude-longitude?

This paper develops the hypothesis test and analyzes the performance of such an spoofing detector assuming the use
of a stand alone APNT receiver. Specifically, we assume that the APNT and GNSS receivers are not coupled, do
not share pseudoranges, and base the integrity test on the position and time outputs of the two receivers. The next
section characterizes the binary hypothesis test of spoofing/no spoofing for the combination of GNSS and APNT
receiver outputs and develops the generalized likelihood test statistic. This is followed by examples, both position
and time spoofing, with a Monte Carlo simulation of detector performance. The detector results are then extended
to the case in which the APNT receiver provides a reduced set of information; examples of a APNT without time or
vertical position is considered.

FORMULATION

In vector form, let x be the true PNT information (three position variables plus time) and x̂G and x̂A be the
estimates of this information from GNSS and APNT systems, respectively. Assuming conditional independence, we
characterize these two measurements under the relevant hypotheses:

H0: Under no spoofing both solutions are assumed to be accurate (unbiased) and their errors are dependent upon
their own covariance matrices

x̂G ∼ N (x,ΣG) x̂A ∼ N (x,ΣA)

in which the notation N (µ,Σ) represents a multivariate Gaussian distribution with mean vector µ and co-
variance matrix Σ. For the GNSS solution the covariance matrix ΣG is a function of the satellite geometry
and the user range error; for the APNT estimate it will depend upon the technology employed. For example,
if the APNT is provided by another ranging/pseudoranging system, its covariance is also determined by the
geometry of the transmitters.

H1: With spoofing the statistics of x̂A is assumed to be unchanged, but the GNSS information is now inaccurate

x̂G ∼ N (µ,ΣS) x̂A ∼ N (x,ΣA)

For simplicity we still assume Gaussian statistics for x̂G, but use µ to represent the (unknown) spoofed mean
vector and ΣS as the spoofed GNSS covariance (potentially different than ΣG).

Assuming a Neyman-Pearson formulation of the detection problem (i.e. maximize the probability of detection for a
fixed probability of false alarm) the likelihood ratio test is well known to be the optimum detector [11]. For the two
measurement scenario above, the likelihood ratio test is

T =
f (x̂G, x̂A|H1)

f (x̂G, x̂A|H0)
=
f (x̂G|H1)

f (x̂G|H0)
· f (x̂A|H1)

f (x̂A|H0)

H1

>
<
H0

λ

(using the conditional independence of measurements from the two systems) in which λ is a threshold selected to fix
the false alarm probability (the probability of deciding for spoofing when spoofing is not present, typically a small
probability on the order of 0.01 or less). Since the statistics of x̂A are identical under both hypotheses, the second
ratio equals unity; employing the Gaussian model, taking the natural logarithm, and ignoring constants yields the
equivalent test

T = (x̂G − x)
T

Σ−1
G (x̂G − x) − (x̂G − µ)

T
Σ−1

S (x̂G − µ)
H1

>
<
H0

λ



This test is unrealizable due to it containing several unknown parameters. To continue we invoke the concept of
Generalized Likelihood Ratio Tests (GLRTs) [11] and replace the unknown parameters by their maximum likelihood
estimates (MLEs). Specifically, under H1 the MLE of µ is µ̂ = x̂G so that the GLRT test statistic is

T = (x̂G − x)
T

Σ−1
G (x̂G − x)

H1

>
<
H0

λ

Under H0 the MLE of x is

x̂ =
(
Σ−1

G + Σ−1
A

)−1 [
Σ−1

G x̂G + Σ−1
A x̂A

]
Defining δx as the difference in the two positions, δx = x̂G − x̂A, then the test statistic becomes

T = δxT
(
ΣAΣ−1

G ΣA + 2ΣA + ΣG

)−1︸ ︷︷ ︸
A

δx (1)

a quadratic form in δx. Details of the development of these last two expressions appear in Appendix A.

PERFORMANCE

This section contains an example to demonstrate the capabilities of the proposed, basic test to detect spoofing. For a
Neyman-Pearson formulation of the detection problem we describe performance by two quantities, the probabilities
of false alarm and detection:

• The probability of false alarm, Pfa, is the probability that we decide spoofing (H1) when no spoofing exists

Pfa = Prob (T > λ|H0) = Prob
(
δxT A δx > λ|H0

)
Typically we want this probability to be low, often below 0.01 (a 1% false alarm rate). We note that under H0

the distribution of δx is Gaussian with a zero mean vector

δx ∼ N (0,ΣG + ΣA)

• The probability of detection, Pd, is the probability that we decide spoofing (H1) when spoofing actually exists

Pfa = Prob (T > λ|H1) = Prob
(
δxT A δx > λ|H1

)
The likelihood ratio test maximizes this probability for a fixed value of Pfa. We note that under H1 the
distribution of δx is also Gaussian

δx ∼ N (µ− x,ΣS + ΣA)

but with different parameters.

Typically the probability of false alarm is plotted against the probability of detection as the Receiver Operating
Characteristic (ROC) curve. For such a representation the further to the left and up the curve is, the better is the
resulting detector performance. On such a graphic, a line at a slope of unity, Pd = Pfa, is the performance of a
(terrible) system that merely guesses between H0 and H1. For the proposed optimum test these probabilities are both
based on quadratic forms of multivariate Gaussian vectors. There are analytical approaches to computing both of
these probabilities [12–14]. As these are complicated, infinite series representations with difficult convergence issues
we defer to Monte Carlo simulation for the examples here.

Imagine a GNSS environment with covariance for East, North, Up, and Time equal to

ΣG =


0.796 −0.122 0.027 −0.082
−0.122 0.907 −0.170 0.086

0.027 −0.170 2.42 −1.03
−0.082 0.086 −1.03 0.732


(such a covariance results for seven GNSS satellites with azimuths 30◦, 45◦, 80◦, 150◦, 215◦, 285◦, and 290◦ and
elevations 10◦, 70◦, 15◦, 10◦, 15◦, 85◦, and 10◦, respectively, and a User Range Error, URE, of 2 meters). For the
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Figure 1: Simulated performance of the detector for a 5-meter spoofing shift.

APNT system we assume a considerably noisier set of measurements with East, North, Up, and Time covariance
matrix

ΣA =


1.60 1.43 1.74 −1.03
1.43 11.0 13.4 −7.18
1.74 13.4 27.7 −14.1
−1.03 −7.18 −14.1 7.96


(as might results from 4 satellites with azimuths 60◦, 120◦, 240◦, and 300◦ and elevations 20◦, 30◦, 60◦, and 10◦,
respectively, and URE of 3 meters although the APNT need not be satellite based). Figure 1 (the red curves)
shows the results of four Monte Carlo estimates of the false alarm and detection probabilities for the proposed spoof
detector: spoofing offset to the East, North, Up, and in Time, respectively. In each example, we assumed that the
spoofer created the same covariance matrix, ΣS = ΣG, and moved the measurement by 5 meters (for Time, this
is approximately 16.7 nsec). Even with these small offsets the detector is quite effective, providing reasonably high
probability of detection for small probability of false alarm (detecting some offsets better than others due to the
underlying covariance structures of both the GNSS and APNT measurements).

The optimum test in Eq. (1) is complicated by the weighting matrix A in the quadratic form, a function of both
the GNSS and APNT covariances. One might wonder if this complexity is really necessary, that the correlation
structure displayed in both ΣG and ΣA impact detector performance. To explore this idea we consider the simpler
hypothesis test that ignores the covariance structures and merely looks at the magnitude (squared) of the difference



vector between the two receivers’ outputs

Tsimple = δxT δx
H1

>
<
H0

λ

(this is equivalent to A being replaced by an identity matrix). Figure 1 also include simulation results for this simpler
test (shown as solid blue lines). We note that in both cases its performance is grossly inferior to that of the optimum
test; that the covariance based weighting (via ΣA) is important.

MISMATCH OF THE OUTPUT COMPONENTS

The test statistic developed above assumes that both xG and xA are of the same size and in the same coordinate
frame; both representing a three-dimensional position solution, (x, y, z) or (e, n, u) and time. The question for this
section is to consider the case in which the two PNT solutions do not match in dimension. For example, a terrestrial
APNT system might only provide East and North position estimates, no vertical term, or an APNT receiver might
not provide a GNSS time estimate.

Let the GNSS solution vector x̂G be decomposed into two subvectors: ŷG whose components correspond to those
measured by the APNT receiver (with output ŷA) and ẑG as the remaining components. Further, define the difference
vector of the common components as δy = ŷG − ŷA. Referring to Appendix B for details, the optimum test in this
case is still a quadratic form, but on this reduced dimension difference

T = δyT B δy
H1

>
<
H0

λ with B =

(
ΣAΣ−1

GyΣA + 2ΣA + ΣGy

)−1

(2)

in which ΣGy is the covariance matrix of just the ŷG portion of x̂G. This test is, of course, perfectly reasonable in
view of the development above; the test compares whatever data is available using the statistics of that data.

As an example, consider a terrestrial APNT system based on range measurements yielding only east and north
position information. Assume that the covariance matrix is

ΣA =

[
6.32 −2.98
−2.98 4.74

]

For the statistics of the GNSS solution we reuse the example above; restricting attention to the East and North
components, the covariance matrix is

ΣGy =

[
0.796 −0.122
−0.122 0.907

]
Figure 2 shows simulated ROC curves for the test in Eq. (2) as the solid red curve for spoofing offsets to the East and
North, respectively. The blue curves are, in this case, simulations for a better APNT measurement, whose covariance
matrix is scaled by 0.25.

CONCLUSIONS/FUTURE WORK

While begun as an extension of our earlier work on using range/pseudorange measurements to detect GNSS spoofing
(or, more generally, integrity of the GNSS information), the results above are valid for any APNT system, not
just range/pseudorange based, as long as a statistical model of the APNT solution is available (specifically, the
covariance matrix ΣA). While the raw measurables of the APNT system are expected to contain more information
about spoofing, we observe that even a simple comparison of receiver outputs (with proper weighting) can effectively
detect small amounts of spoofing.
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Figure 2: Simulated performance of the detector for a 5-meter shift in position; no vertical or time measurements by
the APNT system.
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APPENDIX A

This first appendix develops the MLE of x under H0 based upon the two measurements, x̂G and x̂A. The likelihood
function under H0 is

L(x) = f (x̂G|H0) · f (x̂A|H0)

Recall that under H0

x̂G ∼ N (x,ΣG) and x̂A ∼ N (x,ΣA)

Substituting the Gaussian forms for the density functions, taking a natural logarithm, and dropping constants, the
log-likelihood is

l(x) = −1

2
(x̂G − x)

T
Σ−1

G (x̂G − x) − 1

2
(x̂A − x)

T
Σ−1

A (x̂A − x)

The MLE is that value of x which maximizes this expression. A necessary condition for the maximum is that the
vector derivative is equal to zero

∂l(x)

∂x
= Σ−1

G (x̂G − x) + Σ−1
A (x̂A − x) = 0

Solving for x yields the MLE

x̂MLE =
(
Σ−1

G + Σ−1
A

)−1 [
Σ−1

G x̂G + Σ−1
A x̂A

]
With this result the difference in the test statistic’s quadratic form is

x̂G − x = x̂G −
(
Σ−1

G + Σ−1
A

)−1 [
Σ−1

G x̂G + Σ−1
A x̂A

]
=
(
Σ−1

G + Σ−1
A

)−1
Σ−1

A (x̂G − x̂A)

Defining δx as the difference in the two solutions, δx = x̂G − x̂A, then the test statistic becomes

T = δxT A δx

a quadratic form with

A = Σ−1
A

(
Σ−1

G + Σ−1
A

)−1
Σ−1

G

(
Σ−1

G + Σ−1
A

)−1
Σ−1

A

=

(
ΣA

(
Σ−1

G + Σ−1
A

)
ΣG

(
Σ−1

G + Σ−1
A

)
ΣA

)−1

=

(
ΣAΣ−1

G ΣA + 2ΣA + ΣG

)−1

APPENDIX B

This second appendix redevelops the MLEs under H0 assuming that x̂A has fewer components than x̂G. For simplicity
of the development let x̂G measure the pair of vectors y and z while x̂A only measures y.

The components of the likelihood function under H0 are

ŷG, ẑG ∼ N
([

y
z

]
,ΣG

)
and ŷA ∼ N (x,ΣA)

Letting

Σ−1
G =

[
Ψyy Ψyz

Ψzy Ψzz

]
the log-likelihood is

l(y, z) = −1

2
(ŷG − y)

T
Ψyy (ŷG − y)− (ŷG − y)

T
Ψyz (ẑG − z)

− 1

2
(ẑG − z)

T
Ψzz (ẑG − z)− 1

2
(ŷA − y)

T
Σ−1

A (ŷA − y)



The MLEs for y and z are those values that maximize this expression; we can find them by setting vector derivatives
equal to zero. The z derivative is

∂l(y, z)

∂z
= Ψzy (ŷG − y) + Ψzz (ẑG − z) = 0

so
ẑG − z = −Ψ−1

zz Ψzy (ŷG − y)

The y derivative is
∂l(y, z)

∂y
= Ψyy (ŷG − y) + Ψyz (ẑG − z) + Σ−1

A (ŷA − y) = 0

or
Ψyy (ŷG − y)−ΨyzΨ

−1
zz Ψzy (ŷG − y) + Σ−1

A (ŷA − y) = 0

so the MLE of y is

y =
[
Σ−1

A + Ψyy −ΨyzΨ
−1
zz Ψzy

]−1 ([
Ψyy −ΨyzΨ

−1
zz Ψzy

]
ŷG + Σ−1

A ŷA

)
With this two subvector notation the test statistic is

T =

[
ŷG − y
ẑG − z

]T
Σ−1

G

[
ŷG − y
ẑG − z

]
or

T = (ŷG − y)
T

Ψyy (ŷG − y) + 2 (ŷG − y)
T

Ψyz (ẑG − z) + (ẑG − z)
T

Ψzz (ẑG − z)

Note that
ŷG − y =

[
Σ−1

A + Ψyy −ΨyzΨ
−1
zz Ψzy

]−1
Σ−1

A (ŷG − ŷA)

and

ẑG − z = −Ψ−1
zz Ψzy (ŷG − y)

= −Ψ−1
zz Ψzy

[
Σ−1

A + Ψyy −ΨyzΨ
−1
zz Ψzy

]−1
Σ−1

A (ŷG − ŷA)

Using these expressions in the form for the test and defining the difference in the common measurements between
the GNSS and APNT system, δy = ŷG − ŷA, then

T = δyT B δy

another quadratic form with

B =

(
ΣA

[
Ψyy −ΨyzΨ

−1
zz Ψzy

]
ΣA + 2ΣA +

[
Ψyy −ΨyzΨ

−1
zz Ψzy

]−1
)−1

Note that this is really the same as the final line in Appendix A if we recognize that
(
Ψyy −ΨyzΨ

−1
zz Ψzy

)−1
is the

covariance matrix of ŷG, ΣGy.

B =

(
ΣAΣ−1

GyΣA + 2ΣA + ΣGy

)−1

We demonstrate this final point as follows. At the beginning of this appendix we defined

Σ−1
G =

[
Ψyy Ψyz

Ψzy Ψzz

]
Inverting this matrix should take us back to the covariance matrix for x̂G in block form

ΣG =

[
Cov(ŷG, ŷG) Cov(ŷG, ẑG)
Cov(ẑG, ŷG) Cov(ẑG, ẑG)

]
=

[
Ψyy Ψyz

Ψzy Ψzz

]−1

Employing the block version of the matrix inversion lemma[
Ψyy Ψyz

Ψzy Ψzz

]−1

=

[ (
Ψyy −ΨyzΨ

−1
zz Ψzy

)−1
term

term term

]
where term is inserted for the three terms of little interest here. The upper left term matches our result, so is clearly
the covariance matrix of the y component of the GNSS solution.
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