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J. D. Doll 
Department of Chemistry, Brown University, Providence, Rhode Island 02912 

(Received 7 May 1992; accepted 29 June 1992) 

The J-walking (or jump-walking) method is extended to quantum systems by incorporating 
it into the Fourier path integral Monte Carlo methodology. J walking can greatly 
reduce systematic errors due to quasiergodicity, or the incomplete sampling of configuration 
space in Monte Carlo simulations. As in the classical case, quantum J walking uses a 
jumping scheme ,to overcome configurational barriers. It couples the usual Metropolis sampling 
to a distribution generated at a higher temperature where the sampling is sufficiently 
ergodic. The J-walker distributions used in quantum J walking can be either quantum or 
classical, with classical distributions having the advantage of lower storage requirements, but 
the disadvantage of being slightly more computationally intensive and having a more 
limited useful temperature range. The basic techniques are illustrated first on a simple one- 
dimensional double well potential based on a quartic polynomial. The suitability of J 
walking for typical multidimensional quantum Monte Carlo systems is then shown by applying 
the method to a multiparticle cluster system consisting of rare gas atoms bound by 
pairwise Lennard-Jones potentials. Different degrees of quantum behavior are considered by 
examining both argon and neon clusters. Remarkable improvements in the convergence 
rate for the cluster energy and heat capacity, analogous to those found in classical systems, are 
found for temperatures near the cluster transition regions. 

1. INTRODUCTION 

We recently presented a method called J walking (for 
jump walking)’ that was shown to greatly reduce system- 
atic errors occurring in random walks in classical systems 
that arise because of quasiergodicity,’ the incomplete sam- 
pling of configuration space. We demonstrated the tech- 
nique’s utility on small atomic clusters bound by Lennard- 
Jones potentials. Recently, Tsai and Jordan3 applied J 
walking together with histogram methods4 to a Monte 
Carlo simulation of the water octomer, and Strozak, Lo- 
pez, and Freeman applied J walking to a simulation of 
argon clusters absorbed on graphite.5 In this work, we ex- 
tend the method to quantum systems, incorporating it into 
the Fourier path integral (FPI) Monte Carlo methodol- 
~gy.~ Path integral methods based on Feynman’s formula- 
tion of quantum statistical mechanics’ provide a prescrip- 
tion for the computer simulation of quantum many-body 
systems. In the FPI scheme, the quantum paths associated 
with each coordinate are represented by Fourier series ex- 
pansions, leading to a generalized configuration space that 
has been extended to higher dimensions by the inclusion of 
the auxiliary degrees of freedom from the Fourier coeffi- 
cients. This enhanced multidimensional space is amenable 
to the usual methods associated with the Metropolis, 
Rosenbluth, Rosenbluth, Teller, and Teller algorithm.* 

As in the classical case, quasiergodicity arises in quan- 
tum systems where the sample space contains two or more 
regions having a very low transition probability between 
them, resulting in bottlenecks that effectively confine the 

sampling to only one of the regions.’ The dichotomy of 
time scales characterizing the walks produces rapid motion 
within a confined region and very slow movement between 
the regions.” This results in systematic errors that arise 
because of the finite length of the walks. They diminish 
with increased walk length, disappearing in the limit of 
infinitely long walks. A prototypical example is the double 
well potential where the wells are separated by a large 
barrier. For sufficiently low temperatures, the random 
walker is unable to cross over the barrier within the dura- 
tion of the walk and hence never samples from the other 
well. 

J walking addresses this problem by coupling the usual 
small scale Metropolis moves with occasional large scale 
jumps that move the Metropolis walker to different regions 
of configuration space, in essence “jumping” over the bar- 
riers rather than walking over them. This is accomplished 
in classical systems by using the Boltzmann distribution 
obtained at a temperature sufficiently high for the sampling 
to be ergodic. The distribution generated by the high tem- 
perature walker (J walker) becomes the sampling distri- 
bution for the low temperature walker’s attempted jumps. 
Because the distribution’s peaks correspond to the poten- 
tial minima, the J-walker’s motion remains biased about 
the minima, greatly increasing the likelihood an attempted 
jump would be accepted. An analogous scheme can be 
developed for quantum systems simply by sampling from 
the distribution generated by a high temperature quantum 
walker. However, because of their larger number of param- 
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eters, FPI methods offer a greater degree of flexibility than 
available in the Metropolis simulation of classical systems, 
allowing several possible variations on the theme. Since the 
configuration space is often dominated by the coordinate 
subspace, an alternative scheme is for the low temperature 
quantum walker to sample from a classical J-walker dis- 
tribution. Another possibility is to use a quantum J walker 
with the same temperature, but having a lower mass, since 
quasiergodicity becomes less important in highly quantum 
systems where larger zero-point energies and tunneling ef- 
fectively lower the configurational barriers. 

cle cluster systems consisting of either Ne or Ar atoms 
bound by pairwise Lennard-Jones potentials and compare 
it to the usual FPI methods. Finally, in Sec. V we summa- 
rize our findings. 

II. THEORY 

A. Fourier path integral Monte Carlo methods 

Path integral formulations of quantum statistical me- 
chanics have become increasingly useful in recent years as 
continuing developments in computer technology have 
provided the computational power necessary for their ap- 
plication to realistic systems. There have been two major 
numerical algorithms developed to evaluate path integrals, 
discretized path integral methods,” and Fourier path inte- 
gral methods,6 although at a fundamental level, the two 
prescriptions are essentially the same.” We describe here 
the application of J walking to the Fourier methods only 
and note in passing that, in principle, J walking can also be 
extended to discretized methods. 
I. Action integrals 

Two complementary implementations for generating 
the classical J-walker Boltzmann distributions were origi- 
nally presented. The first ran the J walker in tandem with 
the low temperature walker. The low temperature walker 
occasionally attempted jumps to the current J-walker po- 
sition by simply using the J-walker coordinates for its trial 
move. The second scheme ran the J walker beforehand and 
periodically stored the configurations in an external array. 
Subsequent jump attempts could be made by accessing the 
stored configurations via randomly generated indices. The 
tandem walker scheme required that the J walker be 
moved an extra number of steps whenever a jump was 
attempted in order to reduce correlations between the two 
walkers that caused systematic errors. The extra number of 
steps needed depended on the temperature difference be- 
tween the high and low temperature walkers, increasing 
the computation time greatly as the difference became 
larger. This scheme is therefore more suited for parallel 
computation. The external distribution scheme, on the 
other hand, had only a modest overhead in computation 
(mostly the time required to generate the distribution), but 
demanded large storage facilities to handle the distribution 
arrays. Because of the additional computational overhead 
inherent in the FPI method (typically up to an order of 
magnitude), we did not consider the tandem walker 
method to be feasible for the simulation of quantum sys- where 
tems on scalar computers and so we limited our investiga- 
tion to externally stored J-walker distributions. 

Recent reviews of FPI methods give a comprehensive 
description of their development and application.6 We re- 
view briefly here the major concepts that are instrumental 
to the application of J walking. For notational simplicity, 
we limit the discussion to one-dimensional systems; the 
extension to multidimensional systems is straightforward 
and is described in the reviews. 

Path integral methods enable the calculation of the 
quantum density matrix, in coordinate representation 

p(x,x’;P)=(x’Iexp(--BH)Ix), (1) 
by employing Feynman path integrals’ 

p (x,x’;P> = s Dx(u)expC-S[x(u>lI, (2) 

We begin in Sec. II with a brief review of the FPI 
method and the essential concepts that pertain to J walk- 
ing. We then develop two quantum J walking methods 
based on the use of quantum and classical distributions, 
and contrast them with the more familiar classical J- 
walking method. As in our original study of classical sys- 
tems, we have tested the quantum J-walker method on a 
number of simple systems. For heuristic purposes, we be- 
gin in Sec. III with the simple model of the prototypical 
one-dimensional double well potential defined by a quartic 
polynomial. This potential consists of one well of fixed 
depth containing the global minimum and a second well of 
variable depth separated by a fixed barrier. The variable 
depth of the second well allows us to examine in a system- 
atic manner quasiergodic behavior as a function of well 
depth as well as a function of temperature. A solution of 
high accuracy can be obtained easily using standard har- 
monic oscillator basis set expansion techniques so that er- 
rors arising from quasiergodicity can be quantified. In Sec. 
IV, we apply the J-walker method to quantum multiparti- 

1 Bti 
S[x(u)] =z 

I I 
ml(u) 

du T+ Ux(u)l 
I 

(3) 
0 

is in the form of a classical action integral in imaginary 
time. The temperature parameter is fl= l/kBT, where T is 
the temperature and k, is the Boltzmann constant. The 
integral S Dx( u) implies a summation over all paths con- 
necting x to x’ in imaginary time pii. FPI methods repre- 
sent each path parametrically in a Fourier series. Using II 
in units of flfi gives expressions for the path 

x(u)=x+(x’-x)u+ i aksin(krru), 
k=l 

and for the density 

(4) 

p(x,x’;B) ‘Pfp(XJW 

X,daexp{-~k”=l(azk/2aZ,)-~~~V[x(u)]du} 
/daexp[-~Bkm_1(u~2dk2k)] ’ 

(5) 
where 
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(6) wk,,,(w@> =pf#exp - 1:: @p262k) 
1 

is the width of the Gaussian-like Fourier coefficient distri- 
bution and pfP is the free particle density 

Plp(X,X’;B)=(~)“‘exp[ -($$)(X-Xtj2]. 

(7) 

The Gaussian width ak provides a natural length scale, 
growing as the temperature is decreased; like the thermal 
deBroglie wavelength, it provides a measure of the extent 
of quantum contributions in the system. 

The quantum density given by Eq. (5) can be used in 
the canonical ensemble to evaluate the expectation value of 
any operator depending only on the coordinates.t3 For ex- 
ample, the expectation value of the potential energy is 

(v>= 
S dx da w(x,x,a;B) V(x) 

S dx da w(x,x,a$?) ’ 

where 

w kx’&?> =pfp (x,x’@) exp - i ( ut/2dk) I k=l 
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The quantum average is obtained in the limit that all the 
Fourier coefficients are included 

*im (f?kmBx+(ne 
Cax-+m 

For notational simplicity, we will omit the k,,, subscript 
from subsequent averages. Equation ( 13) has the form of a 
classical Monte Carlo average, differing only in the in- 
creased dimensionality of the integrations due to the intro- 
duction of the Fourier coefficients ak as additional integra- 
tion variables. This addition of auxiliary degrees of 
freedom in the quantum expressions is characteristic of 
path integral treatments in general. 

(8) 

2. Kinetic energy estimators 

-P j-i Ux(u> ldu] (9) 

is the action weight factor. Since the quantum paths begin 
and end at the same point for properties dependent only on 
the coordinates, the free particle density reduces to a con- 
stant 

The calculation of the kinetic energy expectation value 
is complicated by the nondiagonality of the kinetic opera- 
tor in coordinate representation. Several kinetic energy es- 
timators have been developed, two of which are the T 
method14 (for temperature differentiation) and the H 
method15 (for Hamiltonian operating on the density ma- 
trix). The T method evaluates the internal energy U in its 
entirety using the statistical mechanical expression 

(15) 

(10) 

and so we denote the weight factor simply as w(x,a;P). 
The effects of the higher-order Fourier coefficients on the 
expectation value decrease with increasing k, and in prac- 
tice, the infinite sums are truncated at some suitably se- 
lected maximum value of k denoted k,,, giving an ap- 
proximate path 

where Q is the standard canonical partition function 

Q(T,V,iV>= dxp(x;P). I (16) 

Using JZq. (5) gives 

(17) 
x,(u) =x+ c (Ik sin(k?ru). 

k=l 
(11) 

The number of Fourier coefficients required for a given 
calculation depends on the system being studied, the tem- 
perature, and the level of accuracy desired. For notational 
convenience, we represent the average of some function 
along an approximate path as 

Since (V)=(T)+(V) for the systems we consider, the 
T-method kinetic energy can be written explicitly as 

(T)T=;(~- ( $~&-fl~(v[x(.)l)~ 
(18) 

(F[x(u) ] ),= Jo1 Fix,(u) ldu. (12) 

The expectation value for the potential then becomes 

(nL= 
s dx da wkmuha;P> V(x) 

.f dx da w&(x,a$) ’ (13) 

where 

Another kinetic energy estimator closely related to the T- 
method estimator can be obtained by noting that in the 
limit km,, -+ 03, the term (( qx(u)]),- V(x)) in Eq. (18) 
(where the average is taken over all the paths) vanishes.16 
The expression resulting from the neglect of this term at 
finite k,,, can also be obtained directly from the mass 
differentiation of Q and hence is denoted the M method 
(for mass differentiation) 
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<Th=;(y-( z 3)). 
4. Partial averaging 

(19) 

The H-method estimator can be obtained direc$y as the 
expectation value of the kinetic operator T= - (#/ 
2m)V2, 

Since the number of Fourier coefficients required in the 
FPI calculations increases rapidly with decreasing temper- 
ature or as the system becomes highly quantum, it is useful 
to employ techniques that improve the convergence of the 
calculations with respect to k,,. One such method is par- 
tial averaging, ” which takes into account the effects of the 
truncated Fourier coefficients of order higher than k,, 
that are neglected by the direct Fourier method. The sys- 
tem potential is replaced with an appropriate effective po- 
tential obtained as the Gaussian transform of the bare po- 
tential 

(T)H= 
S dx $~(x,x’;P) 1 x=x) 

S dx p(x,x’;P) ’ (20) 

which gives 

(T)H=$- (K:-K2), (21) 

where 

K =@((1-u)V’[x(u)]) 
’ 2m P9 (22) 

K =Bliz((l-u)2V”[x(u)]j 
2 2m L’ 

Both the T and M methods have the advantage of being 
computationally simple to evaluate, but suffer the disad- 
vantage of having a variance that grows linearly with k,,. 
The H method is more computationally intensive, but its 
variance growth is usually much weaker, even decreasing 
with increasing k,, for some systems. 

3. Heat capacity 

As with kinetic energy estimators, there are several 
estimators for the constant volume heat capacity C, The 
estimators we used are analogous to the T-method kinetic 
estimator-they are derived by temperature differentiation 
of the energy 

(24) 

and hence are called T-method heat capacities. Inserting 
the T-method energy expression ( 17) into Eq. (24) gives 
the T-method heat capacity 

(Cv)T=kB [y-2( 12 $) +Bi(O--oi)], 
(25) 

where 

(26) 

while using the sum of the potential energy and the H- 
method kinetic energy given in Eq. (21) gives a hybrid 
TH-method heat capacity 

(TPA)H=-- W~p,-KzpA)~ 
w 

and in the heat capacity estimators, 

(cvp,) T=‘b [w-2( 2; $) +p2((&) 
(C,)TH=kBC~+B[(F(V--K:+K2))-((II’)(V--K~+K2) 

+ W:-Kd Il. (2-O 
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- WPA)~) -P(hpAjn , 1 (35) 

Vedxa(u),ul =q-& j-:m dp 
2 

Xew -& Vtx,(u)+pl, I 1 (28) 

where 

$(a) = bt+i & sin2(kru) 
ax 

=(@/m)[u(l-u)]- ;Tdsin’(krru). (29) 

This leads to an analogous partial average action weight 
factor 

wPA(wd) =pfp@)exp vd[x(u) 1). . 1 
(30) 

For polynomial potentials, the Gaussian transform is ana- 
lytic and the effective potential becomes simply the bare 
potential plus correction terms comprised of potential de- 
rivatives and functions of g(u), 

Veff[Xn(U),U] = v[x,(u)l +.fP&,(d,h)]* (31) 

A similar separability is found in the kinetic energy esti- 
mators 

(T,,),=$ (v- ( 1;: ~-p((v.,~x(u)l). 

- V(X)}--B(gPA)a 3 (32) 

(T,,),=; (v- ( ;; &-t%-PAh)), (33) 

1 
(34) 



(C”~,)TH=~BC~+P[(FPA(V-K~P,+K~P~)> 

- @‘PA) ( V-K~p,+K2,,> 

+ mp, - Kz,) + (kpA),l)t 

where 

(36) 

B. J walking 

The tern &?PA[&(~b2.(~)19 hPA[xdu),&u)l, and 
kpA[x,( u) ,c? ( u )] are partial average terms that depend on 
the specific potential. 

(37) 

For classical systems, the usual Metropolis method 
uses a random walker to sample the configuration space by 
making moves from an initial coordinate xi to a final co- 
ordinate xf with a probability of acceptance 

where 

(38) 

is the acceptance ratio, p(x)=27’exp[-@V(x)] is the 
Boltzmann distribution with Z the standard configuration 
integral, and T(x’ Ix) is the transition matrix or sampling 
distribution. 

The sampling distribution is usually generated from 
uniform deviates 6 over a finite stepsize range A to give’* 

T(x’lx)= 
I 
l/A for Ix’-xl <A/2 
0 otherwise 

and 

(4-o) 

Attempted moves are generated according to x’=x+ (g 
-;)A with the maximum stepsize A/2 usually adjusted to 
give acceptance probabilities of approximately 50%. The 
required size decreases with increasing p. This temperature 
dependence can lead to quasiergodic behavior whenever 
the step size becomes too small relative to the potential 
barrier heights and widths; the walker becomes effectively 
trapped within a region of configuration space and is un- 
able to sample the whole space in a representative manner. 

(39) 

where w(x,a;p) is given by Eq. ( 14), or by Eq. (30) if 
partial averaging is used. Since the coordinate moves are 
usually more important than the Fourier coefficient moves, 
the usual implementation of the transition matrix is to 
move a randomly selected Fourier coefficient simulta- 
neously with each attempted coordinate move. Usually the 
selection scheme for the Fourier coefficients weights the 
lower-order coefficients more highly than the higher-order 
coefficients. While the coordinate moves use the typical 
Metropolis scheme of uniform deviates scaled by a suitable 
box size A,, the Gaussian-like distribution of the Fourier 
coefficients allows attempted coefficient moves to be sam- 
pled either from a Gaussian distribution of width ok or 
from uniform deviates scaled by box sizes A+. Both 
schemes work well, although sampling from a Gaussian 
distribution results in more rejected moves at lower tem- 
peratures. 

The J-walker method is based on the observation that Quantum J walking then couples this scheme with at- 
the Boltzmann distributions governing the Metropolis tempted jumps to a higher temperature distribution of 
walker are largely dependent on the form of the potential (xJ,aJ) configurations in a manner analogous to the clas- 
with distribution maxima corresponding to potential min- sical case. Whenever a jump is attempted, the transition 
ima. The widths of the distribution peaks are inversely matrix used is simply the action weight factor for the 
dependent on B with higher temperatures resulting in higher temperature 
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wider distributions. In essence, higher temperature walkers 
are less constrained since their larger stepsizes allow them 
to overcome the potential barriers more effectively. For a 
Metropolis walk of a given length, there is a threshold 
temperature such that walks undertaken above the temper- 
ature are ergodic. J walking then occasionally replaces the 
usual Metropolis moves with an attempted jump to the 
position occupied by such a higher temperature walker (J 
walker). This is equivalent to replacing the usual Metrop- 
olis transition matrix given by Eq. (39) with the Boltz- 
mann distribution at the higher temperature whenever a 
jump is attempted 

T~(x~lx)=Z;’ exp[-fiJV(xJ)] for O<&;<P,, 
(41) 

where PJ is the jump attempt probability. This gives an 
acceptance ratio of 

qAx.&) =expC(PJ-B> [ VW - V(x) 11, (42) 

where fiJ is the J-walker temperature parameter. In the 
high temperature limit pJ -+O, the acceptance ratio reduces 
to the standard Metropolis expression given in Eq. (40). 
Because the Boltzmann distribution broadens as the tem- 
perature increases, J walking in this limit reduces to simple 
jumping with a large stepsize AJ, and so the likelihood of a 
jump being accepted decreases sharply. In the limit /3,+fl, 
qJ(xJlx) + 1 since the low temperature walker is now ef- 
fectively sampling from its own distribution. 

For quantum systems, the extra degrees of freedom 
associated with the Fourier coefficients result in an accep- 
tance ratio 

q(x’,a’ Ix,a) = 
T(x,ajx’,a’)w(x’,a’;p) 
T(x’,a’Ix,a)w(x,a;fl) ’ (43) 
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TJQha~I x,4 = 

The J subscript on temperature-dependent parameters 
such as ukJ indicates they have had fi replaced with fl& 
Inserting Eq. (44) together with Eqs. ( 10) and ( 14) into 
Eq. (43) gives 

q+h,aJI x,a) =eAsQ, (45) 

where AS’, is the change in the action in moving from 
(x,a) to (xJ,aJ). For the direct FPI formulation, 

As,= & 
( 

: ii 
g+qg +o%-Bw%Jwl),, 

J ) 

- (V[x(u> 1 >a39 

while if partial averaging is used, 

(46) 

~q,=hSe+BJC(f[x,(u);aZ,(Ir)l)., 

- (f[xW&f4 1 M+BC(fb04;&4 1 )a 

- (fb.J(24;&4 1 )a& (47) 

In the high temperature limit a,+O, the Fourier coefficient 
distribution width okJ vanishes and the acceptance ratio 
reduces to the Metropolis expression (with large step sizes 
implicit ), analogous to the classical case, so that the jump 
acceptance becomes negligibly small. In the limit #IJ-p, 
OkJ -+ CQ, and o$(u) +2(u), giving qJp(xJ,aJIx,a) + 1, so 
all attempted jumps are accepted since the low temperature 
walker is again sampling from its own distribution. 

The inverse dependence between /3 and the mass m as 
evident from the ratio B/m appearing in the expressions for 
parameters such as pfp, ak, and a(u) suggests alternative 
formulations of J walking where the temperature is held 
constant and the J walker mass decreased, or where both 
the J-walker temperature and mass are varied. We have 
not investigated these formulations, but only note in pass- 
ing that they might be considered in those situations where 
J walking at higher temperatures is problematic. 

The disadvantage of using quantum J-walker distribu- 
tions is that the storage requirements are increased by a 
factor k,,. Since quasiergodicity results primarily from 
the large barriers associated with coordinate space, it seems 
plausible to use a distribution that is mostly dependent on 
the coordinates. Hence an alternative to using the quantum 
distribution for J walking is to use a classical J-walker 
distribution obtained from the Boltzmann distribution for 
coordinate moves and to then sample the Fourier moves 
from a normalized Gaussian distribution. The composite 
transition matrix for attempted jumps is then 

T+(xJ,aJIx,a) =Z;’ exp i - z &-,Y(,) I- 
(48) 

(50) 

The prime on okJ signifies that the coordinate and Fourier 
coefficient J-walker temperatures need not be the same, 
and in fact the resultant expression for the change in the 
action can be greatly simplified by setting the Fourier co- 
efficient J-walker temperature equal to that of the low tem- 
perature walker. This results in the cancellation of the Fou- 
rier coefficient contributions, giving for the direct Fourier 
path integral formulation 

qJc(xhaJIx,a) =flc, 

where 

(49) 

Qc2=/%[ Vkr) - V(x) 1 -Pi-( V[x.&) I>*, 

-(V[x(u)l),h 
and for the partial average formulation 

- cfb.lw;&) 1 )a). (51) 

The limiting behavior of the acceptance ratio is not as 
straightforward as in the purely classical and purely quan- 
tum cases discussed previously. In the high temperature 
limit BJ-O, the J-walker effective potential ( V[X~(U)]),, 
reduces to the potential V(x,). Again because the distri- 
bution width increases with increasing temperature, the 
configuration x, will not likely correspond to a minimum 
and the probability of the jump being accepted is small. In 
the limit flJ+/?, the change in the action AS, (or 
tiCpA) will not be zero as was the case for the quantum 
distribution, and consequently the jump acceptance will 
not be unity. Physically, the low temperature walker is not 
sampling from its own distribution if it is sampling from a 
classical distribution at the same temperature. For higher 
temperatures, the quantum and classical distributions con- 
verge since the effective potentials approach the bare po- 
tentials and the partial average contributions become 
small, but for lower temperatures, these differences become 
appreciable. So in the limit PJ=8-0, 
q&wA x,a) -4 1, but in the low temperature limit flJ 
=B+CO, qJc(x,,,aJIx,a) -+ 0. Thus J walking from a clas- 
sical distribution is ultimately limited in its use at low 
temperatures (or low particle masses). 

III. QUASIERGODICITY IN THE QUANTUM DOUBLE 
WELL POTENTIAL 

We illustrate the effects of quasiergodicity on quantum 
systems by considering a one-dimensional double well po- 
tential defined by the quartic polynomial 

V(x) = i. f&P, (52) 

J. Chem. Phys., Vol. 97, No. 8, 15 October 1992 
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X 

FIG. 1. One-dimensional double well potentials for y=O,O.2,...,1, where y 
is the depth of the variable well as given by Q. (53) in the text. The 
potential with y=O corresponds to a single well, while y=l represents 
the symmetric double well. 

where a,,=!~, al=O, a?=-6Sabh, a,=ti(a-b)h, and 
ag=3Sh, with S=[b3(b+2a)]-‘. This function has a min- 
imum located at x = b with V(b) =0, a barrier of height h 
located at x=0, and a second minimum located at x= --a. 
By restricting a to the range O<a<b, the x=b well is the 
global minimum and the potential varies from a single well 
and barrier for a=0 to a symmetric double well for a= b. 
We can parametrize the degree of asymmetry in the double 
well for a given b and h by recasting a in terms of the ratio 
of the well depths 

F’(0) - V( -a) 
‘= V(O)--(b) 

=(;)‘(G). (53) 

For a given b and y, a can be obtained easily by iteration. 
This potential is a generalization of the double well poten- 
tial we examined in our study of J walking on classical 
systems,’ where the barrier height and global minimum 
were fixed at h = b = 1. For a particle of given mass m, the 
degree of quantum mechanical behavior in terms of spac- 
ings between quantized energy levels can be varied by ad- 
justing the “box size” b and barrier height h. Alternatively, 
for a given potential, the degree of quantum behavior can 
be adjusted by varying the system mass. In order to com- 
pare the quantum results with the classical results obtained 
earlier, we have chosen the latter scheme and have used the 
previous classical potential with h and b fixed at unity and 
a variable. We have arbitrarily selected m = 1,O. 1, and 0.01 
amu to model low, moderate, and high degrees of quantum 

behavior, respectively. Figure 1 shows the potentials for 
some representative values of y. 

A. Exact results 

The problems arising from quasiergodicity in these po- 
tentials can be seen by comparing their average energies 
obtained by FPI methods with the numerically exact solu- 
tions obtained directly from the eigenenergies. For systems 
at a defined temperature and volume, the average of a Her- 
mitian operator P^ in energy representation is 

(p)= 
Z,P&?+n 

2 &3E,, * (54) 
n 

Because the potentials are quartic polynomials, their ei- 
genenergies can be obtained easily by expanding the eigen- 
functions in a harmonic oscillator basis set 

$n(X> = C, cjn4j(x) (55) 

and using standard numerical techniques on the resulting 
matrix equations. A suitable oscillator frequency can be 
obtained in terms of the barrier height h with o 
= $%%. Since FPI methods can provide averages for 
both the potential and kinetic energies, we calculated ex- 
pectation values for both the potential and kinetic opera- 
tors (in amu) 

4 

F,= z, a, c c CjnCkn(+jw I4k)Y i k (56) 

(57) 

As a check, the eigenenergies were also obtained directly 
from the differential equations using common two point 
boundary value numerical methods.” Figure 2 shows the 
energy levels for the y=O.8 potential for each of the three 
masses, while Fig. 3 shows the average internal energy as a 
function of p for the same potential, as well as the average 
classical energy for comparison. 

6. FPI results 

Using the FPI formulation, the average potential en- 
ergy for a given potential at some temperature defined by /3 
is given by Eq. ( 13 ) , while kinetic energies can be obtained 
with Eqs. (32)-( 34). Applying partial averaging to the 
double well potential given by Eq. (52) gives the effective 
potential correction term for Eq. ( 3 1) in terms of the poly- 
nomial coefficients 

fp,&,(4,&41= ta2+3a,x,(u)+6a~~(u)la2(u) 

+3a4a”(u). (58) 

Likewise, the T- and M-method correction terms in Eqs. 
(32) and (33) are 

&&a(U),&) ]= [a2+%X,(u) +f%&4 l&U) 

+6a4a4(u). (59) 
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FIG. 2. Energy eigenvalues (in hartrees) for the y=O.8 double well potential for particles of mass 1, 0.1, and 0.01 amu. 

Partial averaging provided significant improvements in 
convergence for this potential and all results reported sub- 
sequently were obtained with partial averaging invoked. 
Hence for the sake of notational simplicity, the partial av- 
erage subscripts will be omitted. All of the double well 
results were obtained as averages of 100 independently ini- 
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FIG. 3. Numerically exact average internal energies (in hartrees) as 
functions of /3 for the y=O.8 double well potential for quantum particles 
of mass 1, 0.1, and 0.01 arnu. The CM curve is for the classical system. 

tialized FPI Metropolis walks, each consisting of lo4 
warm-up moves followed by lo4 moves with data accumu- 
lation. Each attempted move consisted of a coordinate 
move together with a Fourier coefficient move (sampled 
from a Gaussian distribution of width ak>, with the coef- 
ficient index selected from a Gaussian distribution of width 
k,,,/2 to give higher weight to the lower-order coefficients. 
The action integrals were evaluated using Simpson’s rule 
with n quad = 16 quadrature points. 

In our study of quasiergodic behavior in classical sys- 
tems we noted that the direction of the error resulting from 
the incomplete sampling depended on the walk initializa- 
tion and that this property could be used as an indicator of 
quasiergodicity. For quasiergodic walks originating at the 
global minimum, the average value of the potential energy 
(v) is too low since the higher energy wells are insuffi- 
ciently sampled, while walks originating from higher wells 
result in values that are too high. This is the case for quan- 
tum systems as well. Figure 4 shows the results obtained 
for (V) and for the H-method kinetic energy (T), for 
quantum particles with masses of m = 1,O. 1, and 0.01 amu. 
The plots show the variation with P for a fixed potential 
having y=O.9, and the variation with y for a fixed temper- 
ature corresponding to fi= 10. As in the classical case, 
there is a threshold temperature that marks the onset of 
quasiergodicity for walks of a given length. It occurs at the 
corresponding j3 point where the (V) curves representing 
global initialization diverge from the (V) curves represent- 
ing random initialization. The threshold temperature de- 
pends slightly on the mass, being lowest for the m =O.Ol 
system. This can be attributed to the effective lowering of 
the energy barrier by the higher quantum zero point energy 
with the lower mass and by the increased importance of 
tunneling. The effects are particularly noticeable in the 
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FIG. 4. Quasiergodicity in Metropolis FPI walks for the double well potential for particles of mass 1, 0.1, and 0.01 amu. The left-hand plots depict the 
average potential energy ( I’) and H-method kinetic energy ( T)H for the y=O.9 potential as functions of p, while the right-hand plots depict ( v) and 
(T), as functions of y for p= 10. In each case, the smooth curves are the numerically exact solutions, while the Metropolis curves were obtained from 
100 independently initialized walks consisting of 10” warm-up moves followed by lo4 moves with data accumulation, all with partial averaging invoked. 
Each attempted move consisted of a coordinate move sampled from a uniform distribution, together with one Fourier coefficient move sampled from a 
Gaussian distribution. The Fourier coefficient moved was also selected randomly from a Gaussian distribution. The number of Fourier coefficients needed 
to achieve convergence in the kinetic energy at p= 10 is given by k,,. Some representative single standard deviation error bars have been included. The 
potential energy curves exhibit the bifurcation characteristic of quasiergodicity in classical systems. In each plot, the lower branch corresponds to walks 
initialized at the global minimum x= 1, while the upper branch corresponds to walks randomly initialized. The kinetic energy curves exhibit no 
bifurcation. 
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FIG. 5. A comparison of the convergence rates for the partial averaged 
H- and T-method kinetic energy estimators as functions of B for the 
y=O.9 double well potential with particle mass m=O.Ol amu. The 
smooth curve is the numerically exact solution, while the Metropolis FPI 
curves are for k,,,- - 1, 2, 4, 8, and 16. The H-method kinetic estimator 
converges faster than the T-method estimator and has a variance that 
increases only slightly with k,,. 

plots with variable y and fixed 0. The m = 1 and 0.1 plots 
show considerable evidence of quasiergodicity at /I= 10, 
while the m =O.Ol plot shows only slight systematic error. 
The higher levels of noise for the m =O.Ol system are a 
consequence of having included a greater number of Fou- 
rier coefficients in the simulation. 

The H-method kinetic energies show no evidence of 
quasiergodicity and are in good agreement with the numer- 
ically exact values throughout. Similar results were ob- 
tained for the T method. Figure 5 compares the H- and 
T-method kinetic energies as functions of p for various 
k,,, for the y=O.9 potential for m=O.Ol. As expected, the 
convergence in k,, is significantly better for the H-method 
kinetic estimator than for the T method. While the T 
method has a lower variance at low k,,,, its variance in- 
creases much more rapidly with increasing k,, than does 
the H-method variance, so that its variance is comparable 
to the H method’s in the convergence limit. The larger 
variance at higher k,,, can make quasiergodicity less of a 
problem for highly quantum systems since the longer walks 
required to reduce the variance in the kinetic energy will 
also increase the likelihood of the walker passing through 
the bottlenecks in configuration space. 

C. J-walking results 

The ability of J walking to eliminate the systematic 
errors arising from quasiergodicity in the quantum double 
well potential can be seen in Fig. 6, which shows results 
obtained using J walking from classical and quantum dis- 
tributions. The plots depict the internal energies as func- 
tions of y for /3=10 for masses m=l and m=O.l. The 
jump attempt probability was P,=O.l. Comparison with 
the analogous FPI Metropolis results depicted in Fig. 4 
shows that the large systematic errors in the average po- 
tential energy have been eliminated. The results were ob- 
tained in a similar manner as those in Fig. 4. Although we 
have depicted only four combinations, we ran calculations 
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for k-- - 1, 2, 4, 8, 16, and 32 for all three masses for J 
walking from both quantum and classical distributions. All 
combinations gave similarly good results, differing only 
with the increased noise at higher values of k,,,. The ef- 
fects of various J-walking parameters on the quantum re- 
sults are very similar to the effects on the analogous clas- 
sical results we obtained in our earlier work,’ and so we 
refer the reader to that paper for a detailed discussion of 
the effects of varying the jump attempt frequency and dis- 
tribution parameters, and instead concentrate here on the 
differences between J walking from quantum distributions 
and classical distributions. 

The quantum distributions consisted of lo5 configura- 
tions sampled every ten moves from individual high tem- 
perature FPI Metropolis walks at pJ=3. Each configura- 
tion consisted of the coordinate and its associated k,,, 
Fourier coefficients. An attempted jump simply required 
selecting one of the configurations randomly and evaluat- 
ing the acceptance ratio given by Eq. (45). The computa- 
tional overhead for the evaluation of the acceptance ratio 
was kept very low by also storing the Fourier coefficient 
term Xka2,/2o$, th e path averaged effective potential 
( VIdmaJI and the partial average term 
mJo4;o2J(um, f or each configuration in the distribu- 
tion. Consequently, the extra computational cost required 
to implement J walking from a quantum distribution was 
due mostly to the generation of the distribution from a long 
FPI Metropolis walk (the length being the product of dis- 
tribution size and the sampling frequency). 

The classical distributions similarly consisted of lo5 
configurations sampled every ten moves from individual 
high temperature classical Metropolis walks at flJ=3. 
However, each classical configuration consisted only of the 
coordinate, reducing the storage requirements by a factor 
of k-m compared to the quantum distributions. An at- 
tempted jump using a classical distribution consisted of 
randomly selecting a configuration from the coordinate 
distribution and generating each of the Fourier coefficients 
uk randomly from a Gaussian distribution of width ok. The 
attempted jump would then be accepted or rejected accord- 
ing to the acceptance ratio given by Eq. (49). The evalu- 
ation of the acceptance ratio was made more efficient by 
storing the potential energy for each configuration, but be- 
cause all the Fourier coefficients were generated with each 
jump attempt, the effective potential and partial average 
terms also had to be generated. This resulted in slightly 
longer walk times compared to J walking from quantum 
distributions. However, since the classical distributions 
could be generated much more quickly than the quantum 
distributions, the use of classical distributions was more 
efficient overall than the use of quantum distributions. 

Although useful for heuristic purposes, one- 
dimensional potentials are of limited use as tests since 
methods that give goods results in one-dimensional sys- 
tems can fail badly when applied to multidimensional sys- 
tems. For example, simply using step sizes larger than the 
barrier width gives good results for the classical one- 
dimensional double well potential since a relatively large 
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FIG. 6. Typical FPI J-walking results for the average internal energy (U) = ( I’) + ( T)H as a function of y for the double well potential for j3= 10. The 
plots at left are for jumps attempted from classical distributions, while the plots at right are for jumps attempted from quantum distributions. The upper 
plots are for m= 1 amu and k,, = 1, the lower plots for m=O.l and k,,- -4. As in Fig. 4, the smooth curves represent the numerically exact solutions, 
while the J-walker curves were obtained from 100 randomly initialized walks consisting of lo4 warm-up moves followed by lo4 moves with data 
accumulation; partial averaging was used throughout. The J-walker distributions used consisted of 10’ configurations sampled every ten moves from high 
temperature Metropolis walks at fi,=3. Classical distributions contained configurations obtained from individual classical Metropolis walks, while 
quantum distributions contained configurations and their associated k,, Fourier coefficients generated from individual Metropolis FPI walks. The jump 
attempt frequency was P,=O.l. 

number of attempted steps will land close to the other 
minimum, resulting in higher acceptance rates. The likeli- 
hood of landing near a minimum in a multidimensional 
space with a large random step is quite small though, and 

so the method is useless for the higher-dimensional spaces 
typically encountered in most Metropolis simulations. The 
great advantage of J walking is that the locales near the 
various potential minima are visited representatively by the 
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high temperature walker and their corresponding conflgu- 
rations stored for future use. The major limitation in clas- 
sical systems arises from the acceptance ratio depending 
exponentially on the difference between the temperature 
parameters [as is evident in Eq. (42)], so that the likeli- 
hood of a jump being accepted decreases for larger tem- 
perature differences. For quantum systems, the dependence 
of the jump acceptance probability on the temperature is 
more complicated, with J walking from classical distribu- 
tions inherently limited at lower temperatures and J walk- 
ing from quantum distributions practically limited at low 
temperatures because of the increased storage requirements 
with increased k,,. These limitations did not arise in the 
double well potential, and both quantum J-walking 
schemes gave equally good results, although J walking 
from classical distributions was still the preferred method 
for this system because of the lower storage requirements 
and shorter computational times required to generate the 
distributions. The differences between the use of classical 
and quantum distributions are more evident in multidi- 
mensional systems and a more thorough comparison of the 
two is given in the next section where we apply the meth- 
ods to atomic clusters. 

IV. J WALKING IN QUANTUM CLUSTERS 

In our initial study of classical J walking,’ we tested 
the method on rare gas clusters bound by pairwise additive 
LennardJones potentials. Evidence of quasiergodic behav- 
ior had been noted in previous Monte Carlo calcula- 
tions20’21 and molecular dynamics studies,22 and had been 
postulated to account for differences between Monte Carlo 
and molecular dynamics results for Ar13.23 The clusters’ 
small sizes and consequent modest storage requirements 
and computational times made them ideal candidates for a 
realistic test of J walking. We found that quasiergodicity 
was indeed evident in the constant volume heat capacity 
(and to a lesser extent in the internal energy) over a sig- 
nificant part of the temperature range encompassing the 
transition from “solid-like” behavior to “liquid-like” be- 
havior,24*25 and we showed that J walking was very suc- 
cessful in eliminating the problem. 

The large majority of theoretical studies of the equilib- 
rium and dynamical behavior of clusters to date have been 
classical. While classical mechanical methods are appro- 
priate for many cluster studies, there are many interesting 
problems where quantum mechanical effects are significant 
enough to render classical mechanical studies inadequatea 
The low temperatures typically encountered in rare gas 
cluster simulations suggest that quantum effects can be 
significant in the transition regions. Recent studies26s27 on 
small argon and neon clusters found moderate quantum 
effects in the cluster melting region for argon and large 
quantum effects for neon. In particular, the large zero- 
point fluctuations found for neon make the validity of even 
a qualitative classical description of the dynamical behav- 
ior of small neon clusters suspect. Contrast this with the 
bulk melting temperature of neon (23.48 K), which is 
quite close to the value obtained from applying the law of 
corresponding states to the melting temperature of bulk 

argon (83.95 K). The recent introduction of quantum sim- 
ulation methods such as path integral Monte Carlo com- 
bined with the increased computational performance of 
modern workstation computers has made the study of 
many-body quantum mechanical systems feasible. Thus 
clusters are also ideal for testing quantum J-walking meth- 
ods. 
A. Metropolis simulations of classical Ne7 and Ar, 

The comparison of quantum and classical Metropolis 
calculations for small clusters can help provide insight into 
the limitations of the classical studies, as well as indicate 
possible quasiergodic behavior in the quantum systems and 
so we begin with the classical results. The clusters were 
modeled by the usual pairwise additive Lennard-Jones po- 
tential 

v= 2 VLJ(@, 
icj 

(61) 

with E= 119.4 K and a=3405 A for argon, and e=35.60 
K and a=2.749 A for neon.” Small clusters are known to 
become unstable beyond a threshold temperature TB that 
varies with the cluster size n.28V29 For the Lennard-Jones 
potential under free volume conditions, the average energy 
vanishes in the limit of an infinite number of configura- 
tions. Consequently, the choice of boundary conditions can 
have a pronounced effect on some of the properties of small 
clusters.24 We have followed Lee, Barker, and Abraham3’ 
and confined the clusters by a perfectly reflecting con- 
straining potential of radius R, centered on the cluster’s 
center of mass. The constraining radius was set to R,=4o 
for all runs. 
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The classical internal energy and heat capacity for an 
n-atom cluster are given by 

(62) 

3nk, (V2)-(V)2 
wY)=~+ kBT2 * (63) 

Curves for ( 17) and (C,) as functions of T were generated 
for argon over the temperature range from l<T<60 K 
with a mesh size of AT= 1 K using the usual Metropolis 
methods. The lowest energy configuration, the pentagonal 
bipyramid,3’ was used to initialize the T= 1 K walk; sub- 
sequent temperatures used the final configuration from the 
preceding walk as their initial configuration. Each data 
point consisted of lo5 warm-up passes followed by IO’ 
passes with data accumulation. Because classical Lennard- 
Jones clusters obey the principle of corresponding states, 
results for Ne7 were obtained by simply scaling the Ar, 
results. 

B. J walking for classical Ne, and Ar, 

As we found in our earlier study of classical Art3, a 
single J-walker distribution generated at a temperature of 
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FIG. 7. A comparison of J-walking and Metropolis results for classical 
Ar, and Ne,. The open circles were obtained from Metropolis walks 
consisting of 10’ warm-up passes followed by 10’ passes with data accu- 
mulation. Single standard deviation error bars have been included for 
those points where the standard deviation is larger than the symbol size. 
The curves were generated using J walking, with jumps attempted with a 
frequency P,=O.l from external J-walker distributions that each con- 
tained lo6 configurations sampled every 100 passes. The AI7 distributions 
were generated in stages at T~=50, 38, 24, and 14 K. The lower temper- 
ature distributions were obtained using J walking, with jumps attempted 
from the preceding distribution. Each J-walking point consists of 104 
warm-up passes followed by 10’ passes with data accumulation. The plot 
at left is the internal energy and the plot at right is the constant volume 
heat capacity; reduced units are used with lP = U/e and C$ = Cv/kB 

T=50 K is not useful at very low temperatures since the 
jump acceptance decreases sharply as the temperature dif- 
ference between the low-temperature walker and the J- 
walker distribution increases. Hence, to cover the entire 
temperature range, the J-walker distributions were gener- 
ated in stages at T=50, 38, 24, and 14 K. The T=50 K 
distribution consisted of lo6 configurations sampled every 
100 passes from a single Metropolis walk. This distribution 
was used for J walking over the temperature range 
38<T<50 with a mesh size of AT=0.2 K. The J walks 
were similar to the Metropolis walks, except that jumps 
were attempted with a frequency of PJ=O. 1. The distribu- 
tion was then used to generate a T=38 K distribution of 
the same size, which was then used for the next tempera- 
ture range and then to generate the T=24 K distribution, 
etc. 

Figure 7 compares the Metropolis and J-walking re- 
sults for the classical energy and heat capacity as functions 
of the temperature for the two systems. There is very good 
agreement between the J-walking and Metropolis results 
except in the low temperature side of the C, peak where 
the Metropolis results are very noisy and unconverged, 
indicating problems due to quasiergodicity. The shoulder 
in the heat capacity curve occurring at about 10-20 K for 
Ar7 corresponds to the transition region where Berry and 
co-workers32 found evidence of solid-like and liquid-like 
clusters coexisting. We graphically displayed samples of 
the Metropolis configurations in this region and found 
them to consist primarily of the four stable isomers and the 
compact transition forms reported by Berry. Despite the 
large configurational barriers reported in this region, we 
did not observe problems due to quasiergodicity. This is in 

sharp contrast to our earlier study of Ar13, which showed 
pronounced effects of quasiergodicity in the solid-liquid 
coexistence region. Quasiergodic effects are evident in the 
slightly higher temperature range from 20 to 40 K. When 
we graphically displayed samples of the Metropolis config- 
urations from this region, we also noticed the compact 
isomers and transition forms appearing in the shoulder re- 
gion, but in addition, we also saw a large percentage of 
loose random forms that could no longer be related to 
recognizable isomers. We also saw occasional dissociations 
consisting of a compact Ar6 core and a nearby lone atom. 
This was not the case in the high temperature side of the 
C, peak. Here, both Metropolis and J walking are well 
converged and in agreement with each other. This temper- 
ature range corresponds to the cluster dissociation region 
and many of the Metropolis configurations that we exam- 
ined appeared consistent with a dense gas enclosed in a 
spherical container. The low temperature side of the C, 
peak appears then to be another coexistence region con- 
taining a wide variety of configurations. The discrepancy 
between Metropolis and J-walking results in this region 
also occurred in the analogous quantum curves and we 
present a more detailed examination later when we discuss 
the quantum results. 

C. Metropolis FPI for quantum Ne, and Ar, 

The FPI treatment of Lennard-Jones clusters has been 
detailed before6 and so we merely recap the pertinent 
points. The computational overhead relative to analogous 
classical Metropolis simulations increases rapidly as the 
number of Fourier coefficients k,,.,a, needed for convergence 
grows. There is a slight increase due to the additional di- 
mensionality associated with the extra Fourier coefficients, 
but since a typical FPI move consists of a coordinate vector 
move together with one Fourier coefficient vector move 
(with a bias favoring the lower order coefficients), the 
computational cost is only moderate. The major cost is 
found in the calculation of the action integrals. Using Simp- 
son’s rule to evaluate the integrals, the total computation 
time has a roughly linear dependence on the number of 
quadrature points nquad used. Since the paths correspond- 
ing to higher k,, become increasingly irregular,” nquad 
needs to be increased as the number of Fourier coefficients 
is increased. We determined the minimum number of 
quadrature points needed for a given k,, by increasing 
lts,& until the changes in the average energy and heat ca- 
pacity were within the standard deviation. The values of 
rzquad that were found to be sufficient for each k,,, were 

k,,l, 2, 4, 8, 16, 32, 64, 

nq,,&-+ 4, 8, 8, 16, 32, 64. 
(64) 

In our preliminary investigations, we also found the 
number of Fourier coefficients needed for convergence was 
reduced substantially by using partial averaging within the 
gradient approximation,6 and so all the results reported 
here are with partial averaging invoked. Again for nota- 
tional simplicity, we will leave out the partial average sub- 
scripts. Applying partial averaging to the second-order 
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Taylor series expansion of the Lennard-Jones potential 
gives for the partial average terms for Eqs. (3 I)-( 36), 

TABLE 1. J-walker distributions.’ 

Ne7 
fpA=gPA=~~hP*=f~(11)V2V. (65) 

Although we found the H-method kinetic energy esti- 
mator to be superior to the T-method estimator for the 
double well potential, we primarily used the T-method es- 
timator for the cluster simulations. The computational re- 
quirements for the H method (especially for the heat ca- 
pacity) were substantially greater than those for the T 
method, and since values of k,,, of 1 or 2 were found to be 
adequate for the partial averaged T-method kinetic energy 
and heat capacity over much of the temperature range in- 
vestigated for each cluster, the faster convergence of the H 
method with k,,,, was not an issue. Another technical dif- 
ficulty with the H method that disfavored its use at higher 
temperatures concerns the constraining potential. Unlike 
the T-method case, the evaluation of the H-method inte- 
grals requires a finite constraining potential, such as a high 
power polynomial V,(r) = [(r--R,,. )/Rd2’, where R,,, is 
the center of mass of the cluster. The evaluation of such a 
potential adds even more computational overhead. We 
checked some of our T-method results by comparing them 
with their H-method counterparts and found excellent 
agreement. 

Classical Quantum 

T(K) T,(K) Size ( X 105) 7’(K) T,(K) k,, Size ( X 105) 

15 5 20 1 5.0 
11 15 5 15 1 5.0 
8 11 5 11 11 2 5.0 

9 11 4 2.5 
6 8 2.5 

Ar7 

We obtained FPI Metropolis results for the potential, 
kinetic, and total energies, and for the heat capacity for Ar, 
over a temperature range from 1 to 60 K on a mesh size of 
AT= 1 K, and for Ne, over a range of 0.5-20 K on a mesh 
size of AT=1 for higher temperatures and AT=05 for 
lower temperatures. Each result was obtained from walks 
having a total length of lo7 passes, initialized from previ- 
ously warmed configurations. We ran simulations for each 
point for k,,,,,= 1,2,4,... until the total energy and heat 
capacity converged, up to a maximum of k,,=32, with 
the number of quadrature points for each k,,, given by Eq. 
(64). Attempted moves for each pass were made by ran- 
domly displacing an atom’s coordinate vector together 
with one of its Fourier coefficient vectors, with a bias in 
favor of the lower order coefficients. Both coordinate and 
Fourier coefficient displacements were sampled from uni- 
form distributions with box sizes fixed to give approxi- 
mately 50% acceptance ratios for the combined moves. 

Classical Quantum 

‘J’-(K) T,(K) Size (X105) T(K) T,(K) k,,,,, Size (~10~) 

50 5 60 1 5.0 
38 50 5 40 38 2 5.0 
24 38 5 25 38 4 2.5 
14 24 5 15 8 2.5 

9 16 1.25 

aThe J-walker distributions were each generated from a single walk with 
configurations stored every 100 passes. Those distributions generated 
using J walking have their corresponding J-walker temperature listed in 
the T, column (quantum distributions generated with J walking used 
classical J-walker distributions). The columns labeled Size contain the 
total number of configurations stored. Classical configurations consisted 
of coordinates and the cluster potential energy, while quantum configu- 
rations consisted of coordinates, Fourier coefficients, and various cluster 
energies. 

Ne, distributions were generated at T,= 15, 11, and 8 K, 
and quantum distributions at T,=20, 15, 11, 9, and 6 K. 
Table I lists the particulars for each distribution. 

D. FPI J walking for quantum Ne, and Ar, 

We ran quantum J-walking calculations using both 
quantum and classical distributions for both Ar, and Ne,. 
The two methods gave statistically identical results for 
each cluster over the common temperature ranges and they 
both gave good agreement with FPI Metropolis over most 
of the temperature range, differing only in the low temper- 
ature side of the Cy peak, as in the classical case. Classical 
Ar, distributions were generated in stages at temperatures 
of T,=50,38,24, and 14 K as described in Sec. IV A, with 
classical J walking used to generate the lower temperature 
distributions from the preceding ones. Quantum Ar, dis- 
tributions with increasing k,,, were generated at temper- 
atures of T,=60, 40, 25, 15, and 9 K. Similarly, classical 

The data for each cluster were obtained in the same 
manner as was the Metropolis FPI data, except that the 
total walk length was only lo6 passes instead of lo7 passes; 
we found the J-walking data to typically have a much 
lower variance than the Metropolis data, despite the 
shorter walk length. The jump attempt probability was the 
same as in the classical J walking PJ=O. 1. For J walking 
from classical distributions, an attempted jump consisted 
of randomly selecting a cluster coordinate configuration 
from the distribution and randomly generating each of the 
Fourier coefficients for each coordinate from a Gaussian 
distribution. This allowed us to run simulations for each 
point with a complete km,, series for full comparison with 
the Metropolis results. For J walking from quantum dis- 
tributions, an attempted jump consisted of randomly se- 
lecting a cluster configuration containing both the coordi- 
nates and their attendant k,,, Fourier coefficients. This 
required the low temperature walker to also have the same 
value of km, and so the convergence in k,, could not be 
compared to Metropolis and J walking using classical dis- 
tributions without generating separate quantum distribu- 
tions for each k,,,. Because the Metropolis FPI and the J 
walking from classical distributions showed similar conver- 
gence and because generating quantum distributions was 
very time consuming, we simply took the results obtained 
using the classical distributions to determine the converged 
value of k,, needed for each quantum distribution. We 
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5 
T ‘“6) 

15 

FIG. 8. A comparison of FPI J-walking and Metropolis results for the 
T-method internal energy (in reduced units) for quantum Ne, and Ar,. 
The open symbols were obtained from FPI Metropolis walks consisting of 
10’ passes initialized from previously warmed configurations. Single stan- 
dard deviation error bars have been included for those points where the 
standard deviation is larger than the symbol size. The curves were gen- 
erated using J walking from externally stored J-walker distributions with 
jumps attempted with a frequency P,=O.l. The distribution parameters 
are listed in Table I. The J-walking walk length was only lo6 passes. The 
plot at left is for Ne7 using J walking from quantum distributions; the plot 
at right is for Ar, using J walking from classical distributions. For J 
walking using classical distributions, the values of km were the same as 
for the corresponding FPI Metropolis values, but for J walking using 
quantum distributions, the values were fixed by the distribution k,, val- 
ues (listed in Table I). 

also checked the sensitivity of J-walking results on the dis- 
tributions by extending the temperature ranges to overlap 
with other distributions. For example, the Ar7 T,= 50 clas- 
sical distribution had a useful range of 35<T<60 K, while 
the T,=38 K distribution had a useful range of 20<T<45 
K. Data obtained using each distribution agreed over the 
common range 35<T<45 K. 

A comparison of J-walking and Metropolis results for 
the total energy, kinetic energy, and heat capacity is shown 
in Figs. 8, 9, and 10, respectively. Because Ne, shows 
larger quantum effects than Ar7, we have shown Ne, re- 

O’.. ” 
0 5 

T ‘“K) 
,I 

FIG. 9. A comparison of FPI J-walking and Metropolis results for the 
T-method kinetic energy (in reduced units) for quantum Ne, (at left) 
and Ar, (at right). The dotted lines are the classical kinetic energy. The 
data was obtained as in Fig. 8. 

4s. 
0 ““I”““““““” ““” 
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FIG. 10. A comparison of PPI J-walking and Metropolis results for the 
T-method constant volume heat capacity (in reduced units) for quantum 
Ne, (at left) and Ar, (at right). The data was obtained as in Fig. 8. 

sults obtained using quantum distributions and Ar, results 
obtained using classical distributions. The results for Ne, 
obtained using classical distributions and for Ar7 obtained 
using quantum distributions were similar. The plots show 
very good agreement between J walking and Metropolis 
over most of the temperature range. As in the cases of 
classical Ar7 and Ne,, discrepancies occur in the tempera- 
ture range corresponding to the low temperature side of 
the heat capacity peak. The Metropolis data in this region 
is very noisy for both the total energy and the heat capac- 
ity, and generally lies above the J-walker curves. In an 
attempt to account for these discrepancies, we checked the 
convergence for both classical and quantum Ar7 at 35 K 
for total walk lengths of lo4 to lo8 passes, using a classical 
distribution at T,=38 K for each. The results are summa- 
rized in Table II. For both the classical and quantum J- 
walking results, the heat capacity and energy both show 
the l/,/N decrease in the standard deviation expected for 
asymptotically convergent stochastic processes, while the 
Metropolis results are clearly not converged. Quantum J- 
walking results obtained using a quantum distribution at 
Tp=40 K with km,= 1 gave good agreement with the re- 
sults obtained using the classical distribution. These results 
also agreed with J-walking results obtained using the T, 
=50 K classical distribution. A similar analysis of quan- 
tum Ne, at T= 10 K gave similar results-the Metropolis 
results were noisy and unconverged, while the J-walker 
results from both classical and quantum distributions at 
different temperatures were properly converged and gave 
good agreement with each other. 

The T-method kinetic energies obtained using Metrop- 
olis did not show the same convergence difficulties, indi- 
cating the problem is isolated mostly in the potential en- 
ergy. There is a slight discrepancy between Ne7 Metropolis 
and J-walking results at about 9-l 1 K, indicating perhaps 
some effects of quasiergodicity in the kinetic energy as well, 
but there could also be effects arising from incomplete con- 
vergence in k,,,. Different properties converge with k,,, at 
different rates, and the kinetic energy is more slowly con- 
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TABLE II. Metropolis and J walker convergence for Ar, at T= 35 K.a 

Passes 

104 
lo5 
IO6 
10’ 
lo8 
109 

Classical 
(v> (CA 

Metropolis J walker Metropolis J walker 

-9.1136 & 0.1325 -8.3301 f 0.0220 26.44 f 1.54 51.86 f 1.62 
-8.3772 * 0.2277 -8.3416 f 0.0128 40.80 * 3.96 54.77 f 0.63 
-8.4370 f 0.1147 -8.3317 f 0.0047 50.22 f 5.87 53.94 * 0.20 
-8.0757 f 0.2519 -8.3312 f 0.0011 57.05 f 3.66 53.65 f 0.14 
-8.0405 f 0.1426 -8.3350 f 0.0007 65.14 * 5.31 54.62 f 0.04 
-7.7926 + 0.0549 76.49 f 2.75 

Quantum (k,,,= 1) 
(W, (Cd 

Passes Metropolis J walker Metropolis J walker 

lo4 -6.2097 f 0.5765 -7.7743 f 0.0661 30.66 * 5.11 56.18 f 2.38 
105 -8.1480 f 0.2034 -7.8113 f 0.0187 38.06 f 4.00 56.96 f 0.51 
lo6 -7.6549 * 0.2402 -7.8189 f 0.0042 65.43 f 12.47 55.86 f 0.27 
10’ -6.9034 f 0.3610 -7.8275 f 0.0020 69.12 f 5.59 55.78 f 0.11 
108 -6.8000 f 0.2251 -7.8243 * 0.0005 101.18 * 12.10 56.18 f 0.03 

aThe J-walker distribution consisted of 5 x lo5 classical configurations sampled every 100 passes from a 
Metropolis walk at T,=38 K. For quantum Ar,, J-walking results obtained using a quantum J-walker 
distribution of the same size at Tp=40 K gave similar results. 

vergent than the total energy.6 The J-walker curve was 
fixed at k,,= 2 because the quantum distribution had 
been generated at that value (which was adequate for the 
total energy and heat capacity over that temperature 
range). The k,,,= 4 J-walking results obtained using a 
classical distribution gave good agreement with the Me- 
tropolis results. 

Figure 11 compares the jump acceptance rates for J 
walking using quantum and classical distributions. For J 
walking from quantum distributions, the jump acceptance 
for each distribution decreases from 100% (for T= T,), 
approaching 0% as the temperature difference becomes 

T,=6 T,=9 Tq=ll 
IOOL ’ 3 I * 1 r I I 

T,=l5 T,=20 
/ I / 

1’ / 
/ 

*. < 
s t 
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FIG. 11. A comparison of jump acceptance as a function of temperature 
for quantum ( T,) and classical (r,) J-walker distributions for Ne,. The 
distribution parameters are listed in Table I. 

large. The steepness of the decrease is greater at lower 
temperatures, reflecting the narrowing of the distributions 
with decreasing temperature. The useful range of the Tq 
= 15 K distribution ( k,, = 1) is from 15 down to about 10 
K, while the useful range of the Tq= 6 K distribution (k,,, 
=8) is only from 6 to 4 K. In addition, the number of 
Fourier coefficients required for convergence increases rap- 
idly at low temperatures, further limiting the useful tem- 
perature range of a low quantum J-walker distribution 
since the low temperature walker km,, is fixed at the same 
value as the J-walker distribution. Because the distribution 
size and the time required to generate the distribution grow 
rapidly with increasing k,,, J walking using quantum dis- 
tributions becomes practically unfeasible at very low tem- 
peratures. For J walking from classical distributions, the 
maximum jump acceptance for a given distribution was 
less than lOO%, even when T= To since the classical con- 
figurations and generated Fourier coefficients are different 
than the corresponding quantum configurations. As the 
temperature becomes lower and the system becomes more 
quantum, the difference becomes larger. The T,= 15 K 
classical distribution had a useful temperature range of 
about 20-I 1 K, with a maximum jump acceptance of about 
62%, but the T,= 11 K distribution had a useful range of 
12-8 K with a maximum jump acceptance of only 7%. 
Hence classical distributions have fundamental limitations 
at low temperatures where the Fourier coefficients become 
strongly coupled to the coordinates. Classical distributions 
have the advantage of allowing variable km,. Although 
only curves for converged values of km, are shown in Fig. 
11, the jump acceptance did not vary much with k,,. 

Figure 12 compares the quantum and classical energies 
and heat capacities for Ne, and Ar,. The curves are com- 
prised mostly of J-walking data, with Metropolis results 
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FIG. 12. Plots of the T-method energy (at left) and heat capacity (at 
right) for Ne, and Ar,. The dotted curves are the classical results. The 
curves comprise the J-walking data shown in Figs. 7, 8, and 10. FPI 
Metropolis data has been used for the very high and low temperature 
regions where J-walking data had not been obtained. 

used for those temperature regions where J-walking data 
had not been obtained. The quantum neon Cy curve is 
shifted substantially to lower temperatures, with the peak 
much reduced relative to the classical curve, and the U 
curve is much higher than the classical energy throughout. 
This indicates that quantum effects for Ne, are consider- 
able over the entire temperature range, including the clus- 
ter dissociation region. The shoulder in the classical C, 
curve corresponding to the liquid-solid coexistence region 
is completely absent in the quantum curve. This is a con- 
sequence of the quantum zero-point motion and tunneling, 
which effectively raise the minima and lower the saddles of 
the multidimensional potential surface and allow for easier 
isomerization.26 These results are consistent with classical 
and quantum quench studies,27 which showed significant 
differences between classical and quantum quenched iso- 
mer population distributions. The shoulder is also largely 
diminished in the quantum Ar, Cy curve, and there is a 
small, but significant difference between the classical and 
quantum argon curves for higher temperatures up to the 
cluster dissociation region. Clearly, it is necessary to incor- 
porate quantum effects for a proper understanding of dy- 
namical and equilibrium behavior of small argon and neon 
clusters. 

V. DISCUSSION 

Path integral methods form an important set of tools 
for extending Monte Carlo methods to quantum many- 
body systems. Because of the greater computational re- 
quirements incurred by quantum simulations relative to 
similar classical Metropolis simulations, ensuring proper 
convergence and developing methods that increase the rate 
of convergence are especially important. Two sources of 
slow convergence are inherent in FPI Metropolis simula- 
tions. The first is due to the increased number of Fourier 
coefficients needed for highly quantum systems at low tem- 
peratures. This increases the effective dimensionality of the 

simulation, as well as the computational overhead associ- 
ated with the numerical calculation of the action integrals. 
The effect is purely quantum; classical simulations con- 
verge more quickly as the temperature becomes very low, 
but quantum simulations become increasingly difficult. The 
second source of slow convergence is due primarily to bot- 
tlenecks in configurational space and is common to classi- 
cal simulations as well. While the effects of quasiergodicity 
in quantum systems appear to be diminished somewhat in 
comparison to analogous classical systems, they can still be 
quite formidable. Quantum J walking is a very useful tech- 
nique for substantially reducing errors arising from 
quasiergodicity and increasing the rate of convergence, 
thus extending the power and scope of FPI methods. The 
method is related closely to classical J walking and shares 
many of its features. J walking is essentially a variant of the 
usual Metropolis algorithm, and so is very easy to incor- 
porate into existing code. Quantum J walking is slightly 
more complicated to implement than classical J walking, 
but it offers more flexibility. Two variations-J walking 
using fully quantum distributions and J walking using clas- 
sical coordinate distributions together with Gaussian dis- 
tributed Fourier coefficients-were shown to be successful 
over temperature ranges where both quasiergodicity was 
evident and quantum effects were substantial. Both varia- 
tions are completely compatible with various FPI tech- 
niques such as partial averaging, as well as the many ki- 
netic energy and heat capacity estimators that have been 
developed. Although J walking showed better convergence 
than FPI Metropolis even at lower temperatures where 
quasiergodicity was not an issue, its limitations at very low 
temperatures preclude its general use in this region for 
overcoming the slow convergence that is a consequence of 
including large numbers of Fourier coefficients; the method 
is best suited for handling quasiergodicity in configura- 
tional space (these limitations are inherent in scalar 
computers-this would not be the case with parallel com- 
puters). 

Because of the close kinship between quantum and 
classical J walking, many of the caveats we originally dis- 
cussed remain valid. Care must be taken in properly select- 
ing the J-walking temperature. It must be high enough to 
ensure a fully ergodic distribution, but low enough to pro- 
vide sufficient jump acceptance rates. For the multidimen- 
sional systems we have examined to date, both criteria 
cannot be met with a single distribution and multistage 
distributions generated at several temperatures over the 
required range are necessary. Quasiergodicity in the lower 
temperature distributions can be eliminated with J walk- 
ing, using the previously generated distributions for sam- 
pling. The walks used to generate the distributions need to 
be sufficiently lengthy to obtain representative samples of 
the configuration and Fourier coefficient spaces. This is 
especially important if the J-walker distribution is gener- 
ated at a temperature where quasiergodicity is substantial. 
The results obtained using such distributions can be 
checked for consistency by generating additional distribu- 
tions at the same temperature or at nearby temperatures. 
Quantum J-walking results can be checked further by us- 
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ing both quantum and classical distributions for sampling. 
To keep distribution sizes within the limitations im- 

posed by finite computer resources,33 configurations can be 
sampled periodically, say every ten or 100 passes. This also 
helps reduce correlations in the distributions. Since most 
computers have much larger disk storage than memory 
storage, the large distributions can be stored as a collection 
of several files, each of which can then be loaded randomly 
into the computer’s primary memory in a periodic manner 
as required. Writing the files in a parallel manner while the 
distribution is being generated also helps reduce the corre- 
lations within each file. Optical storage devices with capac- 
ities of hundreds of megabytes are well suited for J walk- 
ing. Fully read-w&able devices are commercially available 
at prices roughly comparable to fixed magnetic disk drives 
and with access times only slightly slower.34 Although 
each cartridge can typically store only a few hundred 
megabytes per side, very large distributions can be stored 
on several cartridges, greatly increasing the effective stor- 
age capacity of the system. At present, we still do not know 
the necessary criteria for determining the minimum size 
required for a given distribution to ensure that it is a rep- 
resentative sample of the configuration space. Conse- 
quently, we have tended to make the distributions as large 
as possible to minimize systematic errors due to unrepre- 
sentative distributions.35 

classical distributions. For Ne7, J walking using quantum 
distributions gave good results for the solid-liquid coexist- 
ence region (corresponding to the shoulder in the Cy 
curve), a temperature range not accessible using classical 
distributions, but this was also a region where standard 
FPI Metropolis gave sufficiently good results. 
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For the systems we examined, J walking using classical 
distributions was preferable to the use of quantum distri- 
butions. These distributions could be generated much more 
quickly than their quantum counterparts, and since they 
consumed far less storage per configuration, we could in- 
clude more configurations in each distribution. The classi- 
cal distributions can of course be used for J-walking studies 
of the corresponding classical systems, allowing for com- 
parison between the classical and quantum systems. J 
walking from classical distributions also has the advantage 
of being capable of handling arbitrary Jr,,, so that k, 
convergence can be checked easily for each temperature. J 
walking from quantum distributions fixes the low- 
temperature walker’s k,, value to the distribution’s value, 
requiring that the converged value of km over the useful 
temperature range of the distribution be ascertained before 
the distribution is generated. Classical distributions are 
more limited than quantum distributions for handling very 
low temperatures. For example, for Ne,, classical distribu- 
tions were useful down to about 8 K, while quantum dis- 
tributions were useful down to 4 K. However, much of the 
quasiergodic behavior evident in multiparticle systems 
such as clusters is a consequence of bottlenecks in the co- 
ordinate subspace and becomes evident only at higher en- 
ergies. Consequently, the corresponding temperatures are 
usually high enough to allow the use of classical distribu- 
tions. Even in the case of Ne,, where quantum effects were 
quite large over much of the temperature range, J walking 
using classical distributions was just as effective as J walk- 
ing using quantum distributions in eliminating quasier- 
godicity. The use of quantum distributions is generally 
preferable for handling very low temperatures or for pro- 
viding an independent check of the results obtained from 
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