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CATHLEEN WIGAND,1,8 CHARLES T. ROMAN,2 EARL DAVEY,1 MARK STOLT,3 ROXANNE JOHNSON,1 ALANA HANSON,1

ELIZABETH B. WATSON,1 S. BRADLEY MORAN,4 DONALD R. CAHOON,5 JAMES C. LYNCH,6 AND PATRICIA RAFFERTY
7

1U.S. EPA Office of Research and Development, National Health and Environmental Effects Research Lab, Atlantic Ecology Division,
Narragansett, Rhode Island 02882 USA

2National Park Service, North Atlantic Coast Cooperative Ecosystem Studies Unit, University of Rhode Island,
Narragansett, Rhode Island 02882 USA

3Department of Natural Resources Science, 112 Kingston Coastal Institute, 1 Greenhouse Road, University of Rhode Island,
Kingston, Rhode Island 02881 USA

4Graduate School of Oceanography, University of Rhode Island, Narragansett, Rhode Island 02882-1197 USA
5United States Geological Survey, U.S. Geological Survey, Patuxent Wildlife Research Center, 10300 Baltimore Avenue,

BARC-East, Building 308, Beltsville, Maryland 20705 USA
6National Park Service, Northeast Coastal and Barrier Network, 4598 MacArthur Boulevard NW, Washington, D.C. 20007 USA

7National Park Service, Northeast Region, 120 Laurel Street, Patchogue, New York 11772 USA

Abstract. Marshes in the urban Jamaica Bay Estuary, New York, USA are disappearing
at an average rate of 13 ha/yr, and multiple stressors (e.g., wastewater inputs, dredging
activities, groundwater removal, and global warming) may be contributing to marsh losses.
Among these stressors, wastewater nutrients are suspected to be an important contributing
cause of marsh deterioration. We used census data, radiometric dating, stable nitrogen
isotopes, and soil surveys to examine the temporal relationships between human population
growth and soil nitrogen; and we evaluated soil structure with computer-aided tomography,
surface elevation and sediment accretion trends, carbon dioxide emissions, and soil shear
strength to examine differences among disappearing (Black Bank and Big Egg) and stable
marshes (JoCo). Radiometric dating and nitrogen isotope analyses suggested a rapid increase
in human wastewater nutrients beginning in the late 1840s, and a tapering off beginning in the
1930s when wastewater treatment plants (WWTPs) were first installed. Current WWTPs
nutrient loads to Jamaica Bay are approximately 13 995 kg N/d and 2767 kg P/d. At Black
Bank, the biomass and abundance of roots and rhizomes and percentage of organic matter on
soil were significantly lower, rhizomes larger in diameter, carbon dioxide emission rates and
peat particle density significantly greater, and soil strength significantly lower compared to the
stable JoCo Marsh, suggesting Black Bank has elevated decomposition rates, more
decomposed peat, and highly waterlogged peat. Despite these differences, the rates of
accretion and surface elevation change were similar for both marshes, and the rates of
elevation change approximated the long term relative rate of sea level rise estimated from tide
gauge data at nearby Sandy Hook, New Jersey. We hypothesize that Black Bank marsh kept
pace with sea level rise by the accretion of material on the marsh surface, and the maintenance
of soil volume through production of larger diameter rhizomes and swelling (dilation) of
waterlogged peat. JoCo Marsh kept pace with sea-level rise through surface accretion and soil
organic matter accumulation. Understanding the effects of multiple stressors, including
nutrient enrichment, on soil structure, organic matter accumulation, and elevation change will
better inform management decisions aimed at maintaining and restoring coastal marshes.

Key words: belowground biomass; carbon dioxide emissions; computer-aided tomography (CT)
imaging; eutrophication; Jamaica Bay; marsh loss; peat swelling; radiometric dating; sea level rise; shear
stress.

Each soil has its own history. Like a river, amountain, a

forest, or any natural thing, its present condition is due

to the influence of many things and events of the past.

—Charles E. Kellogg (1956)

INTRODUCTION

The extent of the Jamaica Bay salt marsh islands was

about 950 ha in the 1950s with only about 355 ha

remaining in 2003 (National Park Service 2007). Marsh

loss rates have accelerated in recent decades, averaging

13 ha/yr from 1989 to 2003 (National Park Service

2007). Many stressors are proposed to contribute to

marsh loss in the Jamaica Bay Estuary including

wastewater inputs, dredging and filling activities,

groundwater removal, and global warming with its

Manuscript received 28 March 2013; revised 19 September
2013; accepted 7 October 2013. Corresponding Editor: C. B.
Craft.
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associated changes (e.g., accelerated sea level rise,

increase in soil temperatures [Hartig et al. 2002, Kolker

2005, Swanson and Wilson 2008, National Park Service

2007]). Extensive dredging in the Jamaica Bay Estuary

increased the tidal range of the system, and as a result,

the water levels at high tide over the marshes have

increased by 56–78% above that expected by regional

sea level rise alone (Swanson and Wilson 2008). In

addition, a hardening of the bay’s perimeter from

increased residential and commercial development, and

the channeling of overland flow through storm sewers

and combined sewer overflows have presumably reduced

the overall sediment load to the bay and marshes

(National Park Service 2007). Among these multiple

stressors, human wastewater is suspected to be an

important contributing cause of marsh deterioration.

In this study, we focus on the high loads of nutrients in

Jamaica Bay as a driver of change in belowground

marsh soil structure and processes, and subsequent

marsh loss.

Space-for-time substitution studies in coastal estuaries

have shown that human wastewater nitrogen contributes

to community and system level changes in urban salt

marsh ecosystems (McClelland and Valiela 1998,

Wigand et al. 2003, Bannon and Roman 2008, Wigand

2008). A large scale, nutrient enrichment study in the

Plum Island Estuary (Massachusetts) has shown that

additions of dissolved N and phosphorus (P) to 15–20

times over background have resulted in noticeable and

significant deterioration of coastal wetlands (Deegan et

al. 2012). Some responses noticed in long-term, large

(e.g., Plum Island, Massachusetts), and meso-scale (e.g.,

Great Sippewisset marsh, Massachusetts) nutrient fer-

tilization experiments in the northeast United States are

increased aboveground biomass, decreased below-

ground biomass, and loss in marsh soil strength (Valiela

et al. 1976, Turner et al. 2009, Turner 2011, Deegan et

al. 2012). A significant inverse relationship between

nutrient enrichment and belowground roots and rhi-

zomes has been reported for marshes in the western

Atlantic and the Gulf of Mexico (Darby and Turner

2008). Langley et al. (2009) demonstrated that nitrogen

fertilization reduces belowground growth and also

inhibits the stimulatory effect of elevated atmospheric

carbon dioxide on root growth. Increases in marsh soil

carbon dioxide emission rates have been detected in

short- and long-term nutrient fertilization experiments

(Morris and Bradley 1999, Anisfeld and Hill 2012), as

well as in N-loading gradient surveys (Wigand et al.

2009). Nutrient fertilization (nitrogen and/or phospho-

rus) enhanced microbial mineralization and decomposi-

tion processes in the Everglades (Qualls and Richardson

2008), arctic tundra soils (Mack et al. 2004), and organic

rich salt marsh soils (Deegan et al. 2012).

Wastewater nitrogen is associated with human settle-

ments. New York City (NYC) became the first stop in

the United States for millions of immigrants in the late

1800s (Damon 1981), and many chose to settle in

communities surrounding Jamaica Bay. Since the late

1840s, the bay has received wastewater either as raw
sewage or effluent from wastewater treatment plants,

first constructed in the 1930s. Currently, the New York
City Department of Environmental Protection operates

four municipal wastewater treatment plants (WWTPs)
that discharge treated wastewater into Jamaica Bay
(Fig. 1), at rates of about 13 995 kg N/d (Benotti et al.

2007) and 2767 kg P/d (New York City Department of
Environmental Protection 2007). Prior to development

(pre 1900s), nitrogen primarily received from subsurface
groundwater flow was estimated at 36 kg N/d (Benotti et

al. 2007). In the 1990s, the Jamaica Bay estuary was
described as having poor water quality with total

dissolved inorganic nitrogen concentrations ranging
from 0.11–2.15 mg/L and total phosphorus ranging

from 0.10–0.60 mg/L, which exceeded the potentially
limiting nutrient (N þ P) concentrations to primary

production, causing the bay to be eutrophic (O’Shea and
Brosnan 2000). Human wastewater N inputs to coastal

waters are detected as enriched stable nitrogen isotope
ratios in biota among sub-estuaries with varying

watershed development and nitrogen loads (e.g.,
McClelland et al. 1997, McKinney et al. 2001, Bannon
and Roman 2008), and at single sites with depth in

radiometrically dated cores (Maren and Struck 1997,
Struck et al. 2000, Castro et al. 2007). In this study, we

examined for a historic cultural eutrophication signal in
Jamaica Bay marsh cores using stable nitrogen isotopes

and radiometric dating.
In an earlier study in Jamaica Bay, we verified the use

of computer-aided tomography (CT) imaging to quan-
tify marsh soil structure, i.e., coarse roots, rhizomes, and

peat in salt marshes (Davey et al. 2011, Wigand and
Roman 2012). In the present study, we expanded the

belowground surveys to more locations and looked for
differences in the soil morphology in disappearing,

stable, and restored marshes. In addition, we tested for
differences in marsh carbon dioxide emissions and shear

strength between stable and disappearing marshes. We
examined the soil percent nitrogen and nitrogen isotope

ratios in radiometrically dated cores to test the premise
that cultural eutrophication might contribute to the
decline of Jamaica Bay marshes, and measured the

marsh surface accretion and elevation change to
examine if the marshes are keeping up with sea level rise.

METHODS

Watershed and marsh descriptions

The Jamaica Bay Estuary is located at the west end of
Long Island, New York, USA. The 313-km2 watershed

includes parts of Kings (Brooklyn, 102 km2), Queens
(134 km2), and Nassau (77 km2) counties (Fig. 1).

Historic population and U.S. Census data were used to
estimate the population size in the watershed over time
(Greene and Harrington 1932, Forstall 1996, U.S.

Census 2000). Census block data were available for
year 2000 and used to estimate the watershed popula-

CATHLEEN WIGAND ET AL.634 Ecological Applications
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tion. For each census year 1790–1990, the proportion of

area of each county (excluding the area of the marsh

islands) located within the boundaries of the watershed

was multiplied by the total number of people in the

respective county, and then summed for a total

watershed population. The pre-1790 population was

estimated from historical records (Greene and Harring-

ton 1932).

We studied two disappearing marsh island sites (Black

Bank and Big Egg), a restored section of the Big Egg

Marsh and a relatively stable marsh (JoCo Marsh) that

are located within Jamaica Bay (Fig. 1). We initially

sampled the four sites to evaluate trends in the

belowground structure among marshes in different

stages of deterioration and recovery, and then focused

on just two of the marshes (JoCo Marsh and Black

Bank) with more detailed measures to see if there were

significant differences in belowground structure and

processes between a stable site and a deteriorating site.

We chose Black Bank as the deteriorating marsh,

because we wanted a marsh that was relatively early in

the deterioration process. Also, we did not have the

resources to conduct detailed measures at all four of the

sites.

The disappearing Black Bank and Big Egg Spartina

alterniflora marshes are characterized by deteriorating

creek-bank edges and marsh platforms that are breaking

apart (Hartig et al. 2002). Marsh elevations measured in

2012 varied among the marshes with JoCo located 8 cm

above mean high water (MHW), Black Bank at 17 cm

below, Big Egg at 55 cm below, and the restored Big Egg

at 3 cm below. The restored area of the Big Egg marsh

(0.8 ha) was supplemented with approximately 45 cm of

sediment using a self-propelled swinging-ladder dredge

and sediment-spray technique in 2003 (Rafferty et al.

2010).

Elevation measures and surface elevation tables

Vertical accretion and surface elevation change were

measured at JoCo and Black Bank marshes using the

surface elevation table-marker horizon (SET-MH)

method (Cahoon et al. 1995, 2002). These data were

collected in the same area as the computer-aided

tomography (CT) imaging and radiometric analysis in

2006 and 2007.

FIG. 1. Location of the marsh study sites, waste water treatment plants (WWTP), and counties in the Jamaica Bay (New York)
watershed. The inset shows the location of the more detailed map in the region. Abbreviations are New Jersey, NJ; New York, NY;
Pennsylvania, PA; Connecticut, CT; and Rhode Island, RI.
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Three SET-MH stations were installed in 2002 at the

Black Bank marsh, and three others were installed in the

S. alterniflora zone at the eastern end of the JoCo marsh

in 2006 to monitor changes in marsh surface elevation.

Benchmark pipes were driven to substantial resistance

(15–22 m) at both sites, and the marsh elevation was

measured one to three times per year (Boumans and

Day 1993, Cahoon et al. 2002). Three (0.25-m2) sand or

feldspar clay marker horizons (Cahoon and Turner

1989) were established in the immediate vicinity of each

of the three surface elevation tables. Marker horizons,

installed to measure marsh surface accretion trends,

were sampled simultaneously with the elevation mea-

surements.

Marsh soil carbon dioxide emission rates

Carbon dioxide emissions from bare marsh soils

between S. alterniflora culms were measured in August

2006 and 2007 at the Black Bank and JoCo marshes with

a Li-Cor (8100; Li-Cor, Lincoln, Nebraska, USA) CO2

flux system and dome using standard methods (e.g.,

Howes et al. 1985, Wigand et al. 2009). Polyvinylchlor-

ide (PVC) collars (10 cm diameter) were placed in the

soil near low tide at least 15 minutes before in situ

sampling was conducted. The instrument uses an

infrared detector to measure changes in carbon dioxide

in the dome within short (5-minute) incubations.

Carbon dioxide emissions at each marsh location were

measured in five areas located at least 0.5 m apart.

Occasionally, when completely bare areas could not be

found between culms, stems (one to three) in the

sampling area were cut and plugged with clear silicone

gel to prevent gas exchange through lacunae (Wigand et

al. 2009).

Quantification of stems, roots, rhizomes,

and organic matter

Large-diameter (15 cm diameter by 30 cm depth) soil

cores vegetated with S. alterniflora were collected with a

PVC cylinder during slack low tide in August 2006 and

2007. The cylinder was hammer driven into the soil and

extracted with a shovel. Cores were imaged using CT

and, in 2006, single cores from JoCo, Black Bank, Big

Egg, and restored Big Egg marshes were subsequently

used for soil morphological descriptions. The below-

ground biomass and structure (roots, rhizomes, and

peat), aboveground-to-belowground ratios, and soil

organic matter were assessed in 2007 at the Black Bank

and JoCo marshes. Cores were collected from the creek-

bank, mid-marsh, and high-marsh interior locations (n¼
3 locations for each) at each site. Plant stems were

clipped, dried to a constant mass at 808C, and weighed.

Roots and rhizomes were separated from one-half of the

soil core using a hydropneumatic root washer (Gillison’s

Variety Fabrication, Benzonia, Michigan, USA), and

then oven dried to a constant mass. The second half of

the core was sliced every 3 cm to a depth of 21 cm. A

subsample (4 3 4 3 3 cm) from each depth was dried,

sieved, ground with mortar and pestle, and ashed at

5508C for 3 h to determine the percentage of organic

matter in the soil using loss on ignition (Heiri et al.

1999). At each depth from cores collected from the mid-

marsh locations, a second subsample was dried, sieved,

and analyzed for percent carbon and nitrogen on a

ThermoFinnigan Flash elemental analyzer (San Jose,

California, USA). Percent phosphorus was determined

by digesting an ashed sample with 1 mol/L HCl and

measuring total phosphorus with standard colorimetric

methods on a Thermo Spectronic Genesys 2 spectro-

photometer (Rochester, New York, USA; Strickland

and Parsons 1972, Aspila et al. 1976). Dry bulk density,

percent carbon, percent nitrogen, percent phosphorus,

N:P molar ratios, and C:N molar ratios were determined

for each depth. Coring at the JoCo and Black Bank

marshes was paired with descriptions of vegetation

cover using the point intercept method and 1-m2

quadrats (n ¼ 3 for each location). The heights of the

10 tallest S. alterniflora plants in the quadrats were also

recorded.

A GE Medical Systems model Light Speed16 CT

scanner (Milwaukee, Wisconsin, USA) with an X-ray

tube current of 265 milliamps and voltage of 140

kilovolts was used to examine the belowground struc-

ture of the marsh cores following the CT methodology

of Davey et al. (2011). Calibration rods of air, water,

and glass were placed into the cores to provide reference

standards to estimate the specific particle densities of the

coarse roots and rhizomes and peat. The cores were

spirally scanned in a horizontal position from the top to

the bottom of the core with the resolution set at a slice

thickness of 0.625 mm. We were able to quantify the

volume and abundances of coarse roots and rhizomes

and the volume and wet mass of the peat using the

estimated densities for each soil component. We defined

peat as dead roots and rhizomes and decomposing

organic matter. Changes in the quality of the peat would

be reflected in the CT peat particle density, peat volume,

and peat mass as well as in the accumulation of organic

matter. There is a significant inverse relationship of CT

peat particle density and percent organic matter in salt

marsh soils (Davey et al. 2011), and the CT peat particle

density increases with increasing water content. Since

degrading peat would be highly waterlogged and

decomposed, it would have an increased peat particle

density and a loss in organic matter.

The coarse roots were defined as having diameters

greater than or equal to 1 mm but less than 2 mm, and

rhizomes as having diameters greater than or equal to 2

mm. The CT image analyses had enough resolution to

quantify roots greater than 1 mm in width using these

methods. The belowground structure was reported for

shallow (0–10 cm) and deep sections (10–20 cm) to

examine for differences in the more active shallow root

zone compared with the deeper soils.

The soil macromorphology included descriptions of

horizons, matrix color, and texture using standard

CATHLEEN WIGAND ET AL.636 Ecological Applications
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methods (Schoeneberger et al. 2002). The three major

horizons described were the O, A, and C horizons.

Briefly, the O horizons are organic layers with fresh and

decaying plant residues typically at the soil surface. The

A horizons are layers of mineral materials near the soil

surface in which organic matter is accumulated, mixed,

and humified. The C horizons are mineral layers

unaltered by soil-forming processes. The soil micromor-

phology was described using thin sections (5.13 7.6 cm)

prepared from undisturbed samples collected from the

center of the upper 10 cm of the core. These samples

were air dried and impregnated with an epoxy resin

before cutting the thin sections (Spectrum Petro-

graphics, Vancouver, Washington, USA). The thin

sections were described following the micromorpholog-

ical terminology of Bullock et al. (1985), Stoops (2003),

and Stolt and Lindbo (2010). Fresh materials (roots and

rhizomes) and plant residues (decomposed plant mate-

rials with identifiable organs and tissues) were separated

by size. Mineral materials were generally identified as

coarse silt-sized particles or larger. Smaller mineral

particles were likely masked by organic fine material and

could not be identified under the microscope at 1003

magnification. Void spaces were not counted, because it

was difficult to discern natural voids from artifacts due

to the drying process and slide preparation. Point counts

(300 per slide) were made along transects oriented

parallel to the soil surface to quantify percent mineral,

and fresh and decomposed organic soil materials based

on size and decomposition on an area basis (Blazejewski

et al. 2005).

Soil shear strength was measured adjacent to coring

sites in May 2012 at JoCo and Blank Bank marshes to

compare belowground structure (i.e., organic matter,

biomass) with soil erosion resistance. Soil shear strength

describes the resistance of a soil to shearing stresses

derived from the cohesion and frictional resistance of

soil constituents. We used a Geonor H-60 vane borer

(Oslo, Norway) to measure shear strength at different

soil depths (Turner et al. 2009). Profiles of soil shear

strength were determined by measuring the soil shear

stress required to force soil failure, in kilopascals, at 10

depths, beginning at a depth of 10 cm and in increments

of 10 cm thereafter. The final depth measured in each

profile was 100 cm. Ten soil shear-strength profiles were

carried out at each marsh. The replicates at each marsh

were spaced about 30–50 cm apart, equally sampling the

vegetated creek bank and adjacent high marsh.

Archival qualities of salt marsh soil cores

To reconstruct historic sediment accumulation rates,

nitrogen isotope ratios, and percent soil nitrogen, three

50 cm deep, mid-marsh cores were collected with a

Macaulay peat sampler (Jowsey 1966) from the JoCo

Marsh in October 2008. We conducted the historic

reconstruction at the JoCo Marsh, because it was the

most stable marsh at the time of sampling and

representative of the larger Jamaica Bay marsh island

system. We generalized the historic reconstruction from

the stable marsh site to the larger marsh system.

Sectioning resulted in resolution of 3 cm to a depth of

30 cm, and 5 cm from 30–50 cm of depth. Dry samples

were sieved to remove macro-organic matter, and

introduced into either a Ge well detector (GL20203,

Canberra, Meridian, Connecticut, USA; 150 cm3) or

pure Ge planar detector (Canberra 2020) for measure-

ment of 210Pb, 226Ra, and 137Cs. Counting efficiencies

for 210Pb, 226Ra (214Pb), and 137Cs were obtained by

counting sediment standards obtained from the Nation-

al Institute of Standards and Technology. For each core,
210Pb excess (xs) activities were calculated by subtracting

the measured average 226Ra activity from the total 210Pb

activity: 210Pbxs ¼ total 210Pb � 226Ra (214Pb) activity.

Sediment accumulation rates and chronologies were

generated using a linear regression of the natural log of

excess 210Pb activity vs. depth, assuming a constant rate

of 210Pb supply (e.g., Appleby and Oldfield 1978,

Krishnaswami et al. 1980, Cochran et al. 1992). The

mean (n¼ 3 cores) sediment accumulation rate was used

to date the marsh soil and examine for temporal patterns

in nitrogen isotope ratios and percent soil nitrogen with

depth. The 210Pbxs-derived sediment accumulation rates

were compared to depth profiles of 137Cs (mainly a

product of atmospheric weapons testing), by assuming

that 137Cs supply to the environment began in 1954, with

a peak in 1963. The depth of the measured 137Cs peak,

where discernible, provides a time-stratigraphic marker

that serves as an independent check on the calculated

sediment accumulation rate.

The stable nitrogen isotopic composition and percent

nitrogen of historic marsh sediments to a depth of 50 cm

were determined by continuous flow isotope ratio mass

spectrometry (CF-IRMS) employing a Carlo-Erba NA

1500 Series II Elemental Analyzer (CE Elantech, Lake-

wood, New Jersey, USA) interfaced to a Micromass

Optima Mass Spectrometer (Elementar Americas, Mt.

Laurel, New Jersey, USA) using standard methods

(McClelland et al. 1997, McKinney et al. 2001). The

nitrogen isotope ratio of the soil was expressed as a part

per thousand (per mil) difference from the composition

of a recognized reference material, which by convention

is N2 in air (Mariotti 1983). All samples were analyzed in

duplicate with a typical difference of about 0.1%.

Statistics

Two-way ANOVAs with site (Black Bank, JoCo) and

location (creek, mid, high) as main effects were used to

analyze belowground responses (i.e., roots, rhizomes,

and peat). Soil carbon dioxide emission data were log-

transformed prior to applying a two-way ANOVA

examining for the main effects of year and site. A

three-way ANOVA was used to examine organic matter

over depth in marsh cores, with soil depth, site, and

location as the main effects. Two-tailed t tests were used

to test for differences in the depth-averaged means of the

soil percent carbon, nitrogen, phosphorus, and the N:P

June 2014 637HISTORIC N TRENDS AND SOIL STRUCTURE



molar ratios and C:N molar ratios between sites. A two-

way ANOVA was used to examine soil shear strength

over depth, with soil depth and site as the main effects.

Regression analyses were used to examine for relation-

ships between the nitrogen isotope ratios of the soils and

the ln-transformed human population, and to determine

the rates of accretion and elevation change, and

ANCOVA to test for differences in the slopes of the

accretion and elevation relationships. Means are report-

ed with standard errors. The probability for significance

was P , 0.05 for all statistical analyses.

RESULTS

Historic reconstruction of marsh soils

The three JoCo marsh cores all displayed an

exponential decrease in excess 210Pb (Fig. 2). The mean

sediment accumulation rate for the three cores, based on

analysis of the upper 20–30 cm, was 0.21 6 0.003 cm/yr.

The 210Pb-derived sediment accumulation rates were

used to develop a chronology estimating the age of the

marsh soils with depth (Fig. 2d). The mean depth of
137Cs peak was located below the chronology at about

60 years, close to the 1950s (Fig. 2d). Decomposition in

the surface marsh soils, downward diffusion, and/or

mixing of 137Cs might explain the downward shift of the
137Cs peak in the cores (Turner et al. 2006, Mudd et al.

2009).

Our interpretation of the census data and historic

records is that the watershed and surrounding counties

of Jamaica Bay were sparsely populated prior to the

1850s, with an average population of about 2900 people

in the 1700s and 14 500 in the early 1800s, composed of

mostly farmers. However, during the U.S. Revolution-

ary War (1775–1783), about 40 000 combined British

and U.S. troops occupied this area. The watershed

population began to rise steeply in the 1850s, when

about 79 000 new immigrants settled in the watershed,

and continued to rise until the 1970s. There was a

decline of about 250 000 people in the 1980s. In the year

2000, the watershed was highly populated with 2.25

million people (Fig. 3a). The nitrogen isotope ratios

doubled across all three marsh cores from a mean of

1.7% in the early 1770s to a mean of 3.4% in the 1790s

(Fig. 3b). There was a rise in the soil percent nitrogen

and the nitrogen isotope ratios beginning in the mid

FIG. 2. (a–c) Excess 210Pb activity (measured as disintigrations�min�1�g�1) vs. depth for the JoCo marsh cores (n¼ 3) fit with a
linear regression. (d) Age (mean 6SE) vs. depth chronology based on the 210Pb sediment accumulation rates. The peak 137Cs (1963,
45 years before sampling year 2008) depth was plotted with the chronology. Sediment accumulation rates were generated assuming
a constant rate of 210Pb supply.

CATHLEEN WIGAND ET AL.638 Ecological Applications
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1800s that mirrored the rise in human population during

this same time period (Fig. 3b, c). From the early 1800s

to the 1940s, the mean nitrogen isotope ratios of the

marsh cores rose linearly from 2.5% to a peak of 9.5%.

From approximately 1960 to 1980, there was a decline

from the 1940s peak of 9.5% to a mean of 8.5% among

cores (Fig. 3b). There was a highly significant positive

regression relationship (R2¼ 0.94, P , 0.0001) between

the nitrogen isotope ratios and the ln-transformed

human population in the Jamaica Bay watershed (Fig.

3d).

Description of the marsh soil structure among

disappearing, restored, and stable marshes

Macromorphological observations of the low marsh

vegetated cores collected in 2006 among the four

Jamaica Bay sites showed three distinct soil types. The

restored Big Egg site was dominated by sand-textured C

horizons (Table 1). The development of an A horizon

was limited to the upper 3 cm of the profile (Table 1).

Adequate time had not elapsed for an organic horizon to

form on top of recently deposited mineral soil. Soil in

the JoCo core had a 9 cm mineral A horizon of silt loam

texture over the underlying mucky peat (Oe) and muck

(Oa). The fine nature and silt loam texture of the A

horizon suggested a slow depositional process. This

layer was likely the result of considerable sediment input

from tidal creek flooding over the last three or four

decades. The Black Bank and Big Egg cores were similar

in morphologies with a series of Oa (muck) horizons

dominated by finely dispersed soil organic matter (Table

1). These horizons were typical of salt marsh peat soils

that were in very low energy environments. Within all of

the soils at least some horizons smelled slightly to

strongly of hydrogen sulfide, which was indicative of

typical salt marsh soils. With the exception of the

restored site at Big Egg, the mineral materials in the soil

thin sections composed 3% or less of the marsh materials

on an area basis (Table 1). Creek sediment was placed at

the restored Big Egg site in 2003 to increase the elevation

during the restoration and thus the high mineral content

(78%), sandy texture, and domination by Cg horizons

(Table 1). At the restored Big Egg marsh, signs of marsh

soil development were evident with 10% fresh soil

organic materials in the upper 10 cm and development

of a thin A horizon (3 cm thick, Table 1). The thin

sections of the natural marshes had similar amounts of

decomposed organic soil materials (about 81%), while

the restored site had only 12% (Table 1).

There were apparent site differences in the CT image

profiles of coarse roots, rhizomes, and peat with depth,

with the greatest volume of coarse roots and rhizomes in

FIG. 3. Temporal relationships in JoCo marsh soils with depth of (a) population, (b) nitrogen isotope ratios, (c) soil nitrogen,
and (d) relationship of human population and the mean nitrogen isotope ratios from 1770 to 2000. Population estimates were based
on historic records (Greene and Harrington 1932) and census data (Forstall 1996, U.S. Census 2000).
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the JoCo marsh soils (Fig. 4a; see Plate 1), with JoCo

(18.4%) . Black Bank (14.5%) . Big Egg (7.7%) .

restored Big Egg (2.4%; Table 2). However, the

magnitude of the root and rhizome volume at the 3 cm

depth in the restored Big Egg site was greater than the

volume at the Big Egg marsh and similar to the volume

at the Black Bank marsh (Fig. 4a). The volume of the

peat showed the opposite pattern as the volume of the

roots in the natural marshes (i.e., excluding the restored

site) with the greatest volume of peat at the Big Egg

marsh (Fig. 4b), and the peat volume at the Big Egg

marsh (84.7%) greater than at Black Bank (75.6%),

which was greater than at JoCo (69.3%) and greater

than at the restored Big Egg site (3.8%; Table 2). The

Black Bank and Big Egg marsh cores were dominated by

finely dispersed organic matter (muck) with high water-

holding capacity, which was reflected in their high peat

volumes. The highest percentages of gas in the marsh

soils were measured at the Big Egg marsh, with Big Egg

(1.2%) . Black Bank (0.9%) . JoCo (0.5%) . restored

Big Egg (0.1%; Table 2).

Comparative study between the stable JoCo

and deteriorating Black Bank marshes

Based on our SET data collection, the JoCo marsh

rate of elevation change was 5.1 6 0.4 mm/yr (R2¼0.94,

P , 0.0001) and that of Black Bank, 4.9 6 0.2 mm/yr

(R2 ¼ 0.98, P , 0.0001). The average accretion rates

(JoCo, 4.4 6 0.5 mm/yr, R2 ¼ 0.89, P , 0.0001; Black

Bank, 4.4 6 0.3 mm/yr, R2¼ 0.93, P , 0.0001) at both

sites were less than, but similar in magnitude to the rate

of elevation change. There was no significant difference

between the accretion rate and the rate of elevation

change at each site, and there were no significant

differences in the rates of elevation change or accretion

rates between sites.

There was no significant difference in plant cover

between sites. The quadrats were dominated by S.

alterniflora, which averaged 95.1% 6 1.3% (n¼ 18). The

stem lengths were significantly longer at the Black Bank

site (creek 144.4 6 3.9 cm, mid 121.3 6 6.9 cm, high

101.4 6 3.4 cm) compared to the JoCo site (creek 100.0

6 2.6 cm, mid 65.4 6 3.2 cm, high 50.3 6 3.0 cm), and

significantly decreased with distance from the creek-

bank to the high-marsh locations (two-way ANOVA,

site effect P , 0.0001, location effect P , 0.0001,

nonsignificant interaction). The dry biomass of roots

and rhizomes among locations was significantly greater

at the JoCo site (creek 7144 6 273 g dry mass/m2, mid

10 936 6 1052 g dry mass/m2, high 12 522 6 321 g dry

mass/m2) than at the Black Bank site (creek 7302 6 572

g dry mass/m2, mid 8488 6 428 g dry mass/m2, high

9826 6 215 g dry mass/m2; two-way ANOVA, site effect

P ¼ 0.003, location effect P , 0.0001, interaction P ,

0.05). Both marsh sites showed a pattern of increasing

belowground biomass from the creek-bank to the high-

TABLE 1. Representative morphological descriptions of the Jamaica Bay soils.

Horizon

Macromorphological
Micromorphological descriptions

(upper 10 cm)
descriptions

Decomposed Fresh Mineral
Depth (cm) Texture materials (%) materials (%) (%)

JoCo Marsh 78 20 2

A 0–9 mucky silt loam
Oe 9–22 mucky peat
Oa 22–25þ muck

Black Bank Marsh 83 15 2

Oa1 0–1 muck
Oa2 1–12 muck
Oa3 12–19 muck
Oa4 19–25þ muck

Big Egg Marsh 83 14 3

Oa1 0–8 muck
Oa2 8–16 muck
Oa3 16–25þ muck

Restored Big Egg Marsh 12 10 78

A 0–3 sand
Cg1 3–11 sand
Cg2 11–15 sand
Cg3 15–22þ sand

Notes: Cores were generally collected to 25 cm. Percentages of mineral and organic materials
(decomposed and fresh) in the upper 10 cm of the salt marsh soils at JoCo, Black Bank, Big Egg,
and Restored Big Egg marshes was determined using micromorphological methods. The
micromorphological point count data are on a percentage of area basis. Void spaces were not
counted because it is difficult to discern natural voids from artifacts due to the drying process and
slide preparation. Percentage of mineral materials may be underestimated, because at 1003
magnification mineral grains smaller than 20 lm are not distinguishable.
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FIG. 4. Profiles of volume with depth of (a) coarse root and rhizomes and (b) peat for JoCo, Black Bank, Big Egg, and Restored
Big Egg soils collected from the low marsh. Volumes were determined from one core per site with computer-aided tomography
(CT) imaging and reported every 0.625 mm.

TABLE 2. Soil components determined by computer-aided tomography (CT) imaging and reported as percentage of volume in
Jamaica Bay marsh cores, one per site.

Marsh
Elevation

(cm) Gas (%)
Roots and

rhizomes (%) Water (%) Peat (%) Part (%) Sand (%)
Rock and

shell fragments (%)

JoCo þ8 0.5 18.4 11.6 69.3 0.2 0.0 0.0
Black Bank �17 0.9 14.5 7.0 75.6 1.9 0.0 0.0
Big Egg �55 1.2 7.7 6.0 84.7 0.2 0.1 0.0
Big Egg (Restored) �3 0.1 2.4 0.5 3.8 8.8 79.6 4.9

Notes: Vegetated cores were collected in the low marsh. Marsh elevation is reported relative to mean high water (MHW). Part
stands for particles finer than sand, such as silts and clays.
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marsh locations, with the greatest belowground biomass

in the high marsh. The creek-bank dry belowground

biomass was similar at the JoCo and Black Bank sites,

but the belowground biomasses at the mid- and high-

marsh locations were greater at the JoCo site than at the

Black Bank site. The above- to belowground mean dry

biomass ratio was significantly greater at the Black Bank

site (creek 0.46 6 0.06, mid 0.25 6 0.08, high 0.13 6

0.03) compared to the JoCo site (creek 0.16 6 0.04, mid

0.06 6 0.01, high 0.04 6 0.003), and significantly greater

at the creek-bank locations compared with the mid-

marsh and high-interior-marsh locations (two-way

ANOVA, site effect P ¼ 0.0002, location effect P ¼
0.0009, nonsignificant interaction).

Similar to the dry belowground biomass, the abun-

dances of the coarse roots and the abundances of the

rhizomes at shallow depths showed significant main

effects and interactions (two-way ANOVAs, site effects

P , 0.0001, location effects P , 0.0001, interactions P

, 0.01). The abundances (number/m2) of coarse roots

and rhizomes at shallow depths in the JoCo marsh cores

were lowest at the creek-bank locations (coarse roots

7648 6 1095; rhizomes 4224 6 358), but similar in

magnitude at the mid-marsh (coarse roots 18 199 6 572;

rhizomes 9494 6 196) and high-marsh locations (coarse

roots 16 781 6 1172; rhizomes 9340 6 918). In contrast,

the abundances (number/m2) of the coarse roots and

rhizomes at shallow depths at the Black Bank site were

low at both the creek-bank (coarse roots 5800 6 1071;

rhizomes 3750 6 621) and high-marsh locations (coarse

roots 6346 6 1808; rhizomes 3124 6 882), but greater at

the mid-marsh locations (coarse roots 10 576 6 692;

rhizomes 7243 6 382). The abundances (number/m2) of

the rhizomes at depths of 10–20 cm were significantly

greater at both sites in the high-marsh locations (JoCo

10 072 6 69; Black Bank 8171 6 683), compared to the

mid- (JoCo 5344 6 280; Black Bank 4508 6 228) and

creek-bank locations (JoCo 5658 6 243; Black Bank

5468 6 174) (two-way ANOVA, site effect P , 0.004,

location effect P , 0.0001, nonsignificant interaction).

The abundances of the coarse roots at depths of 10–20

cm were of similar magnitude as the abundances at

shallow depths, and the two-way ANOVA revealed

significant site (JoCo . Black Bank, P , 0.0001),

location (P , 0.0001), and site-by-location interaction

(P ¼ 0.001).

There were significant and noticeable differences in

the diameters of the rhizomes between sites and among

locations (two-way ANOVAs, shallow depth, site effect

P¼0.0014, location effect P¼0.014, site by location P¼
0.013; 10–20 cm depth, site effect P , 0.0001, location

effect P ¼ 0.008, site by location P ¼ 0.0005). The

average diameter of the rhizomes across locations at the

JoCo site was 3.38 6 0.102 mm at shallow depths and

3.40 6 0.210 mm at the 10–20 cm depth compared to

3.75 6 0.211 mm and 3.85 6 0.111 mm, respectively, at

the Black Bank site. The greatest rhizome diameters

were measured in the mid-marsh locations at shallow

depths at Black Bank (4.10 6 0.123 mm).

In contrast, there were no significant differences in the

diameters of the coarse roots between the JoCo and

Black Bank sites, although the deep coarse roots had

significantly greater diameters in the high-marsh interior

locations (JoCo 1.39 6 0.003 mm; Black Bank 1.38 6

0.006 mm) compared with the mid-marsh (JoCo 1.36 6

0.006 mm; Black Bank 1.35 6 0.003 mm) and creek-

bank locations (JoCo 1.37 6 0.012 mm; Black Bank 1.36

6 0.002 mm; two-way ANOVAs, shallow depth, site

effect P ¼ 0.067, location effect P ¼ 0.031, site by

location P¼ 0.002; 10–20 cm depth, site effect P¼ 0.16,

location effect P ¼ 0.003, site by location P ¼ 0.96).

The CT peat particle density of the Black Bank site

was significantly greater than the CT peat particle

density of the JoCo site in the mid-marsh (shallow

depth, JoCo 1.057 6 0.002 g/mL, Black Bank 1.073 6

0.003 g/mL; 10–20 cm depth, JoCo 1.071 6 0.004 g/mL,

Black Bank 1.085 6 0.002 g/mL) and high-marsh

locations (shallow depth, JoCo 1.056 6 0.003 g/mL,

Black Bank 1.075 6 0.001 g/mL; 10–20 cm depth, JoCo

1.061 6 0.003 g/mL, Black Bank 1.112 6 0.011 g/mL),

however, the CT peat particle density of the JoCo site

was greater than that of the Black Bank site in the creek-

bank locations (shallow depth, JoCo 1.114 6 0.004 g/

mL, Black Bank 1.110 6 0.003 g/mL; 10–20 cm depth,

JoCo 1.122 6 0.0005 g/mL, Black Bank 1.108 6 0.005 g/

mL; two-way ANOVAs, shallow depth, site effect P ¼
0.0009, location effect P , 0.0001, site by location P ¼
0.0025; 10–20 cm depth, site effect P ¼ 0.002, location

effect P , 0.0001, site by location P ¼ 0.0002).

There were no significant differences in mean percent

peat volume between the JoCo and Black Bank sites at

either the shallow or 10–20 cm depths. The mid-marsh

locations at the 10–20 cm depth (JoCo 77.1% 6 0.8%;

Black Bank 71.0% 6 1.5%) had significantly greater

mean percent peat volumes than the high-marsh

locations (JoCo 65.6% 6 2.2%; Black Bank 33.9% 6

15.1%). The JoCo site had a lower mean percent peat

volume (54.6% 6 2.7%) than Black Bank (63.5% 6

9.0%) at the creek-bank location at the 10–20 cm depth

(two-way ANOVAs, shallow depth, site effect P¼ 0.17,

location effect P¼ 0.004, site by location P¼ 0.003; 10–

20 cm depth, site effect P¼0.14, location effect P¼ 0.02,

site by location P¼ 0.05). Also, there were no significant

site differences in the mean peat wet mass between JoCo

and Black Bank, but there were significant location

effects at depth (two-way ANOVAs, shallow depth, site

effect P¼ 0.07, location effect P¼ 0.17, site by location

P¼ 0.002; 10–20 cm depth, site effect P¼ 0.16, location

effect P ¼ 0.02, site by location P ¼ 0.06). Averaged

across both sites at the 10–20 cm depth, the mean peat

wet mass was greatest in the mid-marsh locations, and

the mean peat wet mass in the mid-marsh locations (77.2

kg/m2) was significantly greater than the mean peat wet

mass of the high-marsh locations (51.7 kg/m2). At the

Black Bank site at the 10–20 cm depth, the high-marsh
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interior location had the lowest mean peat wet mass

(35.9 6 15.7 kg/m2) and percent peat volume (33.9% 6

15.1%), compared with peat at the mid-marsh location

(mass 74.5 6 1.5 kg/m2, volume 71.0% 6 1.5%) and

creek bank (mass 68.0 6 9.5 kg/m2, volume 63.5% 6

9.0%).

Comparisons of the mean profiles of soil percent

organic matter showed significant site (P , 0.0001) and

location (P , 0.0001) effects, significant first order

interactions of site by depth (P , 0.0001), location by

depth (P¼ 0.025), and location by site (P , 0.0001) and

a nonsignificant second-order interaction (three-way

ANOVA; Fig. 5a). The profiles of percent organic

matter at the JoCo and Black Bank sites were similar at

the creek-bank locations. The mean percent organic

matter was lowest at the creek-bank locations compared

with the mid- and high-marsh locations (Fig. 5a). In the

high-marsh locations, there were large differences in the

profiles of the percent organic matter over depth

between the sites. The mean percent organic matter at

the Black Bank site ranged from 59.1% 6 5.7% at the

soil surface to 4.0% 6 3.4% at 21 cm depth in the high

marsh, while the mean percent organic matter at the

JoCo site ranged from 61.4% 6 4.5% at the soil surface

to 52.2% 6 0.7% at 21 cm depth in the high marsh (Fig.

5a). Generally, the means of the percent organic matter

in the Black Bank and JoCo cores at the mid- and high-

marsh locations were similar in magnitude at the soil

surface, but at depths greater than 10 cm the Black Bank

percent organic matter was lower than the JoCo percent

organic matter (Fig. 5a). Soil shear strength was

significantly greater at the JoCo site than at the Black

Bank site (two-way ANOVA, site effect P ¼ 0.004,

nonsignificant site by depth interaction) and the

differences in shear strength between sites were largest

at the 30–50 cm depths (Fig. 5b).

The depth-averaged (0–21 cm) percent phosphorus

(JoCo 0.084% 6 0.002%, Black Bank 0.074% 6

0.001%), percent nitrogen (JoCo 1.60% 6 0.08%, Black

Bank 1.12% 6 0.05%), percent carbon (JoCo 24.8% 6

1.02%, Black Bank 16.1% 6 0.98%), and the N:P molar

ratios (JoCo 44 6 3, Black Bank 31 6 1) at the mid-

marsh locations were significantly (P , 0.05) greater at

the JoCo Marsh than at Black Bank. The soil bulk

density was significantly lower at the JoCo Marsh (0.14

6 0.002 g/mL) than Black Bank (0.27 6 0.023 g/mL).

There was no significant difference between the C:N

molar ratios (JoCo 18 6 1, Black Bank 19 6 2) between

the sites.

Carbon dioxide emission rates at the creek-bank

locations were significantly greater at the Black Bank

site than at the JoCo site in 2006 and 2007, with greater

rates at both sites in 2007 (two-way ANOVA on the log-

transformed creek-bank data, site effect P¼ 0.006, year

effect P , 0.05, nonsignificant interaction; Fig. 6). We

measured significantly greater rates in the high-marsh

locations (5.30 6 0.63 lmol CO2�m�2�s�1) than the

creek-bank locations (3.40 6 0.51 lmol CO2�m�2�s�1)

across sites in 2007 (Fig. 6). Carbon dioxide emission

rates at the Black Bank site (5.15 6 0.52 lmol

CO2�m�2�s�1) were significantly greater than at the JoCo

site (3.56 6 0.66 lmol CO2�m�2�s�1) averaged across all

three locations in 2007 (two-way ANOVA on the log-

transformed data, site effect P¼ 0.02, location effect P¼
0.03, nonsignificant interaction; Fig. 6).

DISCUSSION

Historic nutrient trends

We successfully used radiometric dating, stable

isotopes, and human census data to identify a cultural

FIG. 5. Profiles over depth of (a) soil organic matter (mean;
n ¼ 3) determined with dry samples after ashing and reported
every 3 cm for the creek bank, mid marsh, and high marsh, and
(b) soil shear strength (mean 6 SE) at the JoCo and Black
Bank marshes.
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eutrophication signal (Fig. 3) in the Jamaica Bay marsh

soils, which is similar to that described in other estuarine

studies (Maren and Struck 1997, Struck et al. 2000,

Castro et al. 2007). Doubling of the nitrogen isotope

ratio between the 1770s and the 1790s (Fig. 3b) may be

explained by the 40 000 troops occupying this area

during the U.S. Revolutionary War (McCullough 2005).

Furthermore, the analyses suggest a rapid increase in

wastewater nutrients beginning in the late 1840s, and a

tapering off in the 1930s when WWTPs were first

installed (O’Shea and Brosnan 2000, Benotti et al. 2007).

The Great Irish Potato Famine brought hundreds of

thousands of immigrants to New York City in the late

1840s (Bayor and Meagher 1996), and after the U.S.

Civil War (1861–1865) the rate of immigration from

Europe grew steeply in NYC and the surrounding

counties (Damon 1981). This large influx of European

immigrants and the wastewater associated with human

settlements and activities likely explain the rapid rise in

the nitrogen isotope ratios from the 1850s to the 1940s

(Fig. 3b). In the second half of the 20th century, the

migration of people out of NYC and into more

suburban areas of New Jersey and New York (Jackson

1985) may explain the dip in the population by about

250 000 people in the 1980s, and the reduction in the

stable nitrogen ratio during the 1960s–1980s (Fig. 3a, b).

Our study suggests nutrient enrichment as a probable

factor contributing to marsh loss in urban estuaries,

such as Jamaica Bay, but it is certainly recognized that

other factors also influence elevation dynamics of salt

marshes. Conceptual models (e.g., Cahoon et al. 2009)

identify the numerous processes and complex interac-

tions that influence salt marsh vertical development,

including frequency and duration of flooding, salinity,

marsh surface sedimentation and erosion, above- and

belowground plant biomass and decomposition, nutri-

ent supply (Nþ P), and others. Given that Jamaica Bay

is part of a densely urban watershed with a history of

human-induced nitrogen loading (Fig. 3) estimated to

have increased over 400 times since the pre-1900s

(Benotti et al. 2007), it is reasonable to consider nutrient

loading as an important factor. In addition to nitrogen

loading, increases in phosphorus loading associated with

WWTP inputs will stimulate microbial transformations,

especially decomposition processes that may contribute

to coastal salt marsh deterioration (Sundareshwar et al.

2003, Deegan et al. 2012). The percent nitrogen and

percent phosphorus were on average about 56% and

22% greater, respectively, in salt marshes of Jamaica Bay

than reported by Craft (2007) for northeastern Atlantic

coast U.S. salt marshes. The enriched percent nitrogen

and percent phosphorus in the Jamaica Bay salt marsh

soil might be due to wastewater inputs of N and P over

the last century. However, multi-parameter mesocosm

and field manipulation studies, coupled with the

continued development of process-driven models with

dynamic feedbacks (e.g., Fagherazzi et al. 2012, Kirwan

et al. 2010), will be essential to quantifying the relative

importance of the many interacting factors that influ-

ence marsh loss. The information presented in this paper

on marsh soil processes under a regime of high nutrient

(N þ P) loading should prove useful to future model

development.

Other anthropogenic impacts on the Jamaica Bay Estuary

In addition to the stressor of increasing nutrient (Nþ
P) loads, extensive dredging associated with navigational

improvements and the construction of the J. F. Kennedy

(initially named Idlewild) Airport, altered sediment

delivery patterns and increased the tidal range within

Jamaica Bay (Swanson and Wilson 2008). Prior to major

reconfiguration for improved navigation, the tidal range

throughout the bay varied by only 0.12 m in 1899

(Swanson and Wilson 2008). Physical alterations to the

bay beginning in the early part of the 20th century

resulted in an increase of the mean depth of the bay from

1 m to 5 m (Swanson et al. 1992). The J. F. Kennedy

Airport was originally constructed in the 1940s on fill

dredged from what is now known as Grassy Bay, the

deepest part of the Jamaica Bay system (Swanson and

Wilson 2008). The dredged areas in the bay may trap

sediments that might have deposited on the marsh

surface prior to development (Hartig et al. 2002).

Urbanization of Brooklyn, Queens, and Nassau counties

also may have diminished upland sediment sources and

blocked some sediment overwash deposition (Hartig et

al. 2002). These modifications to the Jamaica Bay

Estuary could ultimately result in an increase in the

frequency and duration of flooding of the marshes,

which could contribute to erosional processes, fragmen-

tation, and sulfide toxicity.

Changes in the belowground marsh structure

and marsh loss

The soil N:P ratios, percent carbon, percent nitrogen,

and percent phosphorus were greater at the JoCo site

FIG. 6. Marsh soil carbon dioxide emission rates (mean and
SE; n ¼ 5 replicates per site) for 2006 (creek bank) and 2007
(creek bank, mid marsh, high marsh) at Black Bank and JoCo
marsh sites.

CATHLEEN WIGAND ET AL.644 Ecological Applications
Vol. 24, No. 4



than Black Bank suggesting that the JoCo Marsh may

have enhanced belowground productivity that adds

carbon and organic nutrients to the soil and/or lower

decomposition rates than Black Bank. We measured

lower belowground mass and abundance of roots and

rhizomes and elevated above/belowground ratios at the

deteriorating Black Bank site. The above/belowground

ratio is about threefold greater at the creek-bank

location in the disappearing Black Bank site compared

with the stable JoCo site. We also reported a decrease in

the soil percent organic matter (Fig. 5a) and shear

strength (Fig. 5b) at the Black Bank site compared to the

stable JoCo site. Other investigators report similar

findings in response to field-based fertilization experi-

ments in northeastern U.S. salt marshes (e.g., Valiela et

al. 1976, Turner et al. 2009, Turner 2011, Deegan et al.

2012), supporting the hypothesis that long-term pulsing

of nutrient (N þ P) inputs may be an important

contributing factor to deterioration of Black Bank, Big

Egg, and other marsh islands within Jamaica Bay.

At the creek bank of Plum Island (Massachusetts),

where the marsh has undergone 9 years of a long-term

fertilization experiment (Deegan et al. 2012), carbon

dioxide emission rates (4.02 6 0.60 lmol CO2�m�2�s�1, n
¼ 20; C. Wigand, unpublished data) were similar in

magnitude to the 2007 emission rates at the disappearing

Black Bank creek-bank marsh (4.28 6 0.75 lmol

CO2�m�2�s�1; Fig. 6). Likewise, the carbon dioxide

emission rates at the stable JoCo creek bank (2.52 6

0.46 lmol CO2�m�2�s�1, Fig. 6) and the Plum Island

control rates (1.90 6 0.20 lmol CO2�m�2�s�1; C.

Wigand, unpublished data) were of similar magnitude.

In addition to the Plum Island experiment, increases in

soil carbon dioxide emission rates have been reported in

other marsh fertilization experiments (Morris and

Bradley 1999, Anisfeld and Hill 2012) and in an

observational study along a watershed nitrogen loading

gradient (Wigand et al. 2009). The increased soil carbon

dioxide emission rates measured in nutrient-enriched (N

þP) systems may be due to enhanced decomposition and

microbial mineralization processes, which can cause

losses in soil organic matter (Morris and Bradley 1999,

Sundareshwar et al. 2003, Mack et al. 2004, Qualls and

Richardson 2008). Deegan et al. 2012 reported increased

microbial decomposition at the deteriorating, nutrient-

enriched Plum Island creek-bank site. Since the JoCo

marsh does not show the elevated soil carbon dioxide

emission rates, the JoCo marsh (8 cm above MHW) may

not receive the same magnitude of nutrients or pulsing

regime that the Black Bank marshes receive at the

presently lower elevations (17 cm below MHW). Sources

and types of sediment deposited on these two Jamaica

Bay marsh sites may also differ, which could affect

carbon dioxide emissions, decomposition, and mineral-

ization rates.

In contrast to our findings of lower belowground

biomass, lower abundances of roots and rhizomes, and

lower organic matter accumulation (Fig. 5) in disap-

pearing organic-rich marshes, an increase in coarse

roots, rhizomes, and peat was quantified in a 12-year

nitrogen-fertilized salt marsh in the southeastern United

States that was dominated by depositional processes

(Goat Island, South Carolina; Davey et al. 2011). In

minerogenic marshes dominated by sediment deposition,

nutrient additions may stimulate biogenic processes

(e.g., coarse root and rhizome production) and the

buildup of refractory organic matter (Day et al. 2008,

Davey et al. 2011). Whereas in organic rich marshes

dominated by biogenic processes, nitrogen fertilization

often results in elevated decomposition rates, decreased

root and rhizome production, and loss of organic matter

and peat (Darby and Turner 2008, Turner et al. 2009,

Davey et al. 2011, Deegan et al. 2012).

A loss in the root and rhizome belowground mass and

more waterlogged peat could contribute to local

subsidence, and ultimate marsh drowning (DeLaune et

al. 1983a, b, Fagherazzi et al. 2012, Kirwan and

Guntenspergen 2012). When stress (e.g., elevated nutri-

ents, increases in the duration and frequency of flooding,

elevated sulfides) becomes too extreme, plants die, which

PLATE 1. Cross sections of marsh cores showing roots and rhizomes at 10 cm depth sampled at the (a) deteriorating Big Egg, (b)
deteriorating Black Bank, and (c) stable JoCo marshes in the Jamaican Bay Estuary. Computer-aided tomography was used to
quantify coarse roots and rhizomes and create three dimensional images. Photo credit: E. Davey.
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results in rapid loss of root volume and mass due to loss

of root turgor and belowground decomposition (De-

Laune et al. 1994). At the high-marsh interior locations

of Black Bank, the lowest values of peat volume (33.9%)

and peat wet mass (51.7 kg/m2) were reported at the 10–

20 cm depth, supporting the hypothesis that peat

deterioration contributes to marsh loss at interior

locations. Hartig et al. (2002) earlier reported acceler-

ated loss in interior locations of Jamaica Bay marshes,

and attributed it to expanding channel networks and

ponding.

The deteriorating Black Bank site showed significant

differences in above- and belowground morphology of

stems and rhizomes compared to the stable JoCo site.

The allocation of resources to the aboveground stems

was enhanced, as evidenced by the significantly longer

stems and greater above-to-belowground biomass ratios

in the Black Bank marsh samples. The Black Bank site is

17 cm below MHW. It has been shown in mesocosms

and model simulations that a natural feedback of marsh

vegetation to low elevation is increased aboveground

production and stem elongation, which traps mineral

and organic particulates and adds plant litter to the

surface, contributing to vertical accretion (Morris et al.

2002, Kirwan et al. 2008, Mudd et al. 2009, Fagherazzi

et al. 2012). The diameters of the rhizomes were

significantly larger at the Black Bank site, perhaps to

support the increased aboveground biomass in the

waterlogged, mucky soils. The deteriorating marshes

have more waterlogged and reduced soils, and the

increase in diameter of the rhizomes may also facilitate

oxygen release into the rhizosphere (Teal and Kanwisher

1966). Last, the volume of large rhizomes (see Plate 1)

could also contribute physically to marsh surface

elevation.

Salt marsh islands throughout the Jamaica Bay

Estuary are converting to unvegetated intertidal and

subtidal habitat at an alarming rate (over 60% of

vegetated marsh islands between 1951 and 2003 has been

lost [National Park Service 2007, Hartig et al. 2002]), yet

we note that the estuary’s JoCo marsh appears stable,

and is composed mostly of vegetated habitat. The JoCo

Marsh is presently at a higher elevation than at the

Black Bank and Big Egg marshes, and this may have

been the case historically, thus the frequency and

duration of flooding by nutrient-enriched waters is less;

the JoCo sediments, however, do reflect a long history of

nitrogen loading (Fig. 3). The system-wide variability in

hydrodynamics, bathymetry, and sediment transport,

coupled with an intense history of urban activities

throughout the estuary (e.g., dredging, filling, urban

runoff ), are undoubtedly contributing to differences in

marsh platform elevations and responses of the marsh

islands to sediment delivery, nutrient loading, flooding

and drainage, and other factors that influence marsh

development processes (Hartig et al. 2002, Kolker 2005,

Peteet et al. 2006, Swanson and Wilson 2008).

Marsh elevation and changes in peat composition

The rates of marsh surface elevation change for the

JoCo (5.1 mm/yr) and Black Bank (4.9 mm/yr) marshes

approximated or were greater than the long-term

relative rate of sea level rise estimated from the tide

gauge at Sandy Hook, New Jersey (1932–2011; 4.1 mm/

yr; data available online).9 Apparently the Black Bank

marsh is keeping pace with sea level rise (2002–present)

due to accretion of material on the marsh surface and

swelling (dilation) of peat. The inventories (2004–2006)

of particle-reactive natural radionuclides 7Be and 234Th

suggest that there is an import of sediment from the New

York Bight into Jamaica Bay, which may contribute to

accretion on the marsh surface (Renfro et al. 2010). In

addition, peat swelling and production of large diameter

rhizomes at Black Bank may allow for the marsh to keep

pace with sea level rise. Marsh surface elevation can rise,

at least temporarily, in direct response to sediment

dilation or swelling (Cahoon et al. 2011); when marsh

sediment dilates, the bulk volume of the sediment

increases by an amount equal to the volume of water

added (Nuttle et al. 1990). However, continuous

waterlogging results in a lack of consolidation, lower

shear strength, and anoxic conditions with sulfide

toxicity, all likely contributing to ultimate elevation loss

and peat collapse as observed at Big Egg and portions of

the Black Bank marshes. We think these results are

similar to those reported for the Bayou Chitigue marsh

in Louisiana (Day et al. 2011). Although it appears the

Jamaica Bay marshes are keeping pace with historic sea

level rise rates, in the northeastern United States over

the past three decades increases in the sea level rise rates

are three to four times higher than the global average

(Boon 2012, Sallenger et al. 2012). It is expected that an

accelerated rate of sea level rise will further stress the

ability of marshes to maintain elevation.

Averaged across both sites, the creek-bank locations

had significantly lower peat volume and percent soil

organic matter (Fig. 5a) than the mid- and high-marsh

interior locations. We observed fracturing and disinte-

gration of the creek-bank peat, especially at Black Bank

and Big Egg sites, which may be a source of organic

particulates that accrete on surviving marsh surfaces.

Deegan et al. (2012) reported fracturing and slumping of

the creek-bank edge and a corresponding increase in fine

organic matter in tidal channels associated with the

fertilized marsh creek. Sediment erosion from one

portion of a marsh system (e.g., creek-bank edge, tidal

channel) can be a source of sediment to a surviving

marsh area, thereby contributing to vertical accretion

(Kirwan et al. 2008, Fagherazzi et al. 2012).

The CT peat particle density was significantly greater

at the Black Bank marsh compared to the JoCo marsh,

suggesting that peat at the Black Bank marsh is highly

waterlogged and decomposed. Similarly, others have

9 http://tidesandcurrents.NOAA.gov
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reported the disappearing marshes at Jamaica Bay as

having excessive peat porosity and a ‘‘soupy’’ consisten-

cy (Hartig et al. 2002). Peat swelling might contribute to
the positive elevation trend at the Black Bank marsh.

Although the rate of elevation change, accretion rates,

and peat volume (Fig. 4b) at Black Bank were similar to

the JoCo marsh, the Black Bank marsh had significantly

lower soil shear strength (Fig. 5b), especially at the 30–
50 cm depths. Even though the Black Bank marsh is

currently keeping pace with sea level, both it (17 cm

below MHW) and Big Egg marsh (55 cm below MHW)

have diminishing elevation capital (i.e., the marsh
surface is becoming lower relative to MHW; Cahoon

and Guntenspergen 2010). Given the low soil shear

strength and saturated conditions that contribute to

reduced root production due to sulfide toxicity (King et

al. 1982, Mendelssohn and Morris 2000, Kolker 2005),
peat collapse is likely leaving some Jamaica Bay marshes

(e.g., Black Bank, Big Egg) at suboptimal elevations,

exacerbating the effects of increased decomposition rates

and losses of organic matter that may be related to
nutrient enrichment.

At the restored Big Egg site, sediment was added to

raise the elevation of the deteriorating marsh (i.e., gain

elevation capital). Our CT imaging and morphological

soil observations at the restored Big Egg site in 2006
showed roots, rhizomes, and 10% fresh soil organic

materials accumulating in the surface sediments (Table

1, Fig. 4), contributing to the recovery of the marsh. In

addition, more intense restoration efforts in the Jamaica

Bay Estuary are ongoing using dredge material that was
slurried and pumped onto the marsh surface at Elders

Point East (15.8 ha) and Elders Point West (13.4 ha;

Rafferty et al. 2010). The reported rates of marsh loss in

the Jamaica Bay Estuary average 13 ha/yr, and even the
apparently stable JoCo marsh has begun to show

accelerated rates of marsh loss, losing 2 ha/yr from

1989–2003, five times higher than the average rate for

the prior period 1974–1989 (0.4 ha/yr; National Park
Service 2007).

Cultural eutrophication, climate change (e.g., accel-

erated sea level rise; rising air and soil temperatures;

increases in storm and drought events), and human

activities that alter the sediment supply and hydrody-

namics of salt marshes in urban watersheds may result in
accelerated losses of marsh area as is now occurring

within Jamaica Bay and elsewhere (e.g., Hartig et al.

2002, Turner et al. 2009, Rafferty et al. 2010, Deegan et

al. 2012). Understanding the effects of multiple stressors,
including nutrient (nitrogen and/or phosphorus) enrich-

ment, on soil structure, organic matter accumulation,

and marsh elevation will afford managers and stewards

an informed opportunity to maintain and restore coastal
marshes in urban estuaries.
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