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ABSTRACT

Advances in electronics technology have enabled the
creation of malicious RF interference of GNSS signals.
For example jamming completely denies the GNSS
user of position, navigation, and time (PNT) infor-
mation. While a serious concern when we expect PNT
at all times, current generation GNSS receivers often
warn the user when PNT is unavailable. A second
threat to GNSS integrity is spoofing, the creation of
counterfeit GNSS signals with the potential to confuse
the receiver into providing incorrect PNT information.
This type of attack is considered more dangerous than
a jamming attack since erroneous PNT is often worse
than no solution at all.

A variety of approaches have been proposed in the
literature to recognize spoofing and can vary widely
based upon the assumed capabilities and a priori
knowledge of the spoofer. One method is to com-
pare the GNSS result to data from a non-GNSS sen-
sor. At the January 2016 ION ITM these authors
developed and analyzed a spoof detection algorithm

based upon measurements from an active ranging sys-
tem (distances, but no heading). This paper expands
the class of signals viable for this spoofing detection
approach to passive ranging; equivalently, to range
measurements which depend upon knowledge of pre-
cise time (effectively pseudoranges).

INTRODUCTION

Global Navigation Satellite Systems (GNSS) are well
known to be accurate providers of position, naviga-
tion, and time (PNT) information across the globe;
as such, they are commonly used to locate and navi-
gate craft in various transportation modes. Because of
high signal availabilities, capable receivers, and well-
populated satellite constellations, many GNSS users
typically believe that the PNT information provided
by their GNSS receiver is perfectly accurate. More so-
phisticated users look beyond accuracy and are also
concerned with the integrity of the PNT information;
for example, RAIM algorithms were developed to en-
sure users that the provided information is resistant to
several possible satellite failure modes.

Advances in electronics technology have enabled the
creation of malicious RF interference of GNSS signals.
Inexpensive jamming devices overpower or distort the
GNSS receivers input so as to completely deny the
GNSS user of PNT information. While a serious con-
cern when we expect PNT information at all times,
current generation GNSS receivers warn the user when
PNT is unavailable; some of the more sophisticated
receiver designs can also battle jamming. A second
threat to GNSS integrity is spoofing, the creation of
counterfeit GNSS signals [1]. This type of attack is
considered more dangerous than a jamming attack
since an erroneous PNT solution is often worse than
no solution at all.

This paper discusses a technique to detect the occur-
rence of spoofing. Previously developed methods can
be divided into two categories: those that self check
the GNSS signals themselves and those that com-
pare the PNT information to data from other trusted
sources:



• GNSS RF only – This could be advanced signal
processing of the combined GNSS and spoofed RF
signals (e.g. looking for inconsistent or additional
correlator peaks, comparing carrier phases, beam-
forming, etc., see, for example, [2–6]) or multi-
receiver methods that exploit the fact that the
spoofing signal from a point source spoofer dis-
torts the multiple receivers’ PNT in an identical
fashion (e.g. [7]).

• Other data – typically this is the comparison of
the PNT output of the GNSS receiver to secure
(i.e. non-spoofed) external measurements such as
IMU data [8,9], radar returns [10], or range mea-
surements [11].

In [11] these authors developed and analyzed a spoof
detection algorithm based upon range measurements.
For example, distance measuring equipment (DME) is
a well established system that provides slant ranges to
aircraft from fixed ground sites. In [11] we assumed
that the data used to test for GNSS spoofing was a set
of noisy range measurements from the GNSS equipped
vehicle to one or more known locations. We con-
structed the hypothesis test (spoof versus no spoof) us-
ing a composite statistical model, combining the ran-
dom errors in the GNSS and range measurements. The
additional unknowns of this formation were estimated
from the GNSS and range data as part of a general-
ized likelihood approach. We fully characterized the
hypothesis test, provided expressions for the probabil-
ities of false alarm and detection for the case of one
range, and examined several interesting examples via
simulation. It was seen that two or more moderate
quality range measurements were quite effective at de-
tecting spoofing (with only one range available, some
spoofing events are undetectable).

That paper assumed unbiased range measurements.
This current paper expands the class of signals viable
for this spoofing detection approach to passive rang-
ing; equivalently, to range measurements which de-
pend upon knowledge of precise time (pseudoranges).
In this class we consider any RF signal that emanates
from a known location (we will call them “beacons”)
and that can be time referenced back to UTC (so-
called signals of opportunity [12]). Examples of gov-
ernment signals could include AIS (automatic iden-
tification system) broadcasts from a base station and
eLoran (where available). Other signals of opportunity
could be considered if an alternative data link to time
reference the signal back to UTC were available.

The development in this paper envisions that m such
passive range signals are available, potentially of differ-
ent types with different levels of accuracy. To convert
the measurements to actual ranges we assume that the
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Figure 1: The configuration of a mobile and m ranging
sources.

spoof detection algorithm knows of and removes any
time offsets between UTC and transmission times at
the beacons. Further, to remove the residual time off-
set from UTC at the local receiver, we assume that the
algorithm has access to the estimate of UTC from the
GNSS receiver, removing this bias from the pseudor-
ange as well. Clearly this use of the GNSS receiver’s
time output has an impact on performance:

• Under no spoofing the error in this GNSS time
estimate, then, adds to the inaccuracy of the re-
sulting ranges and limits the resulting false alarm
probability.

• When spoofing is present the GNSS time might
not only be noisier, but might also be wrong!

The paper is organized as follows: (1) the results
from [11] are summarized; (2) computation of the
false alarm and detection probabilities for the general
case of m > 1 ranges is developed (this was missing
from [11]; (3) the extension to passive ranging is de-
veloped – performance with a single beacon, the mea-
coning case, and the general case are all considered.
The paper concludes with some final thoughts. The
Appendix includes details of material relevant to the
review of the work in [11], but not included in that
prior paper.

REVIEW OF [11] – ACTIVE RANGING

Consider a two dimensional positioning problem as de-
picted in Figure 1. The red dot represents a mobile ve-
hicle whose location is of interest; the variables e and
n represent its true east and north coordinates, respec-
tively, in some local coordinate frame. We assume that
a GNSS measurement of the position is available with
a simple circular Gaussian error model

(ê, n̂) ∼ N
(
µe, µn, σ

2
g , σ

2
g , 0
)



In our notation hats are used to represent measure-
ments, µe and µn represent the GNSS means (equal
to the true location under no spoofing; otherwise equal
to whatever the spoofer is trying to create), and σg is
the GNSS error standard deviation.

In the figure the blue dots represent ranging sources,
or beacons, at known locations (ek, nk), k = 1, 2, . . .m.
The true ranges are

rk ≡
√

(e− ek)2 + (n− nk)2

For these beacons define the matrix of direction
cosines

d =

 sin θ1 cos θ1

...
...

sin θm cos θm


whose rows consist of the unit vectors pointing from
the GNSS position to those m ranging sources. The
range measurements are assumed to be unbiased, have
Gaussian errors with variances σk, and be independent
of the GNSS measurement and each other

r̂k ∼ N (rk, σk)

For convenience, define the covariance matrix for the
vector of range measurements, r, as

Γ =


σ2

1 0 · · · 0
0 σ2

2 · · · 0
...

. . .
...

0 0 · · · σ2
m


diagonal due to the assumption of mutual indepen-
dence.

It is convenient to define the GNSS-induced ranges
as

r̃k ≡
√

(ê− ek)2 + (n̂− nk)2

or r̃ for the length m vector of these computations.
Finally, let δr represent the vector of differences be-
tween the measured ranges and the GNSS-induced
ranges

δr = r̂− r̃

Assuming a Neyman-Pearson criterion, [11] showed
that the generalized likelihood ratio test (GLRT) to
detect spoofing is of the form

|A δr|
H1

>
<
H0

λ (1)

in which the 2-by-m matrix A is

A =

(
1

σ2
g

I2 + dTΓ−1d

)−1

dTΓ−1 (2)

(e, n)

(e1, n1)

(u, v)

r1

η

Figure 2: The situation for one range.

and λ is the test threshold (Appendix A of this paper
provides some additional development of this result
missing from [11]). Effectively, the test is looking for
similarity in two vectors of ranges, one due to the range
sensor and the other based on the GNSS receiver’s out-
put; the premultiplication by A scales these differences
dependent upon the accuracies of the sensors and the
directions to the beacons.

Several simulation examples appeared in [11] form = 2
beacons showing the effectiveness of this spoof detec-
tion approach. The case of one range was analyzed
in [11] in detail. It was argued that while r̃1 strictly
follows a Rician distribution, it could be well approxi-
mated by a Gaussian distribution. Specifically, under
H0

r̃1 ∼ N (r1, σg)

while under H1

r̂1 ∼ N (r1 + η, σk)

in which η equals the amount by which the spoofer
has distorted the true position in the direction toward
the ranging source (see Figure 2). With this approxi-
mation expressions for the probabilities of false alarm
and detection of this test are

Pfa ≈ 2Q

 λ√
σ2
g + σ2

1

 (3)

in which Q(x) is the standard Gaussian tail probability
and

Pd ≈ Q

 λ+ η√
σ2
g + σ2

1

+Q

 λ− η√
σ2
g + σ2

1

 (4)

Finally, it was noted in [11] that if the spoofed position
results in η = 0 (i.e. along the circle of constant ra-
dius from the beacon, the dotted curve in Figure 2) a
single range measurement cannot detect spoofing. Ad-
ditional range measurements make all spoofing events
detectable.



COMPUTING PERFORMANCE, m > 1

The test statistic in Eq. (1) is based on

δr = r̂− r̃

the vector difference between the measured range and
the range due to the GNSS position. Let’s first char-
acterize this vector statistically:

• By assumption the measured ranges include inde-
pendent Gaussian noise variates

r̂k = rk + εk

with
εk ∼ N

(
0, σ2

k

)
• Writing the GNSS measurements as ê = µe + εe

and n̂ = µn + εn, the means plus errors, the ele-
ments of the GNSS derived range vector are

r̃k =
√

(ê− ek)2 + (n̂− nk)2

=
√

(µe + εe − ek)2 + (µn + εn − n1)2

≡ fk(εe, εn)

functions of the position errors. These errors are
Gaussian variates

(εe, εn) ∼ N
(
0, 0, σ2

g , σ
2
g , 0
)

• Assuming that εe and εn are small with respect
to the actual ranges (so that d is approximately
constant), expand the definition of r̃k in a Taylor
series on these two variables and keep only the
linear terms

r̃k = fk (εe, εn)

= fk(0, 0) + εe
∂fk (εe, εn)

∂εe

∣∣∣∣
0,0

+ εn
∂fk (εe, εn)

∂εn

∣∣∣∣
0,0

+ . . .

≈ fk(0, 0) + εe
e− ek
rk

+ εn
n− nk
rk

≈ fk(0, 0) + sin θkεe + cos θkεn

so the difference is

r̂k − r̃k ≈ rk + εk − fk(0, 0)− sin θkεe − cos θkεn

≈ rk − fk(0, 0)︸ ︷︷ ︸
bias

+ εk − sin θkεe − cos θkεn︸ ︷︷ ︸
noise

The result is that each element of the differential
range vector is a Gaussian random variable; the
bias represents the mean of each:

– Under H0 fk(0, 0) = rk and the bias is zero
for all k.

– Under H1 this bias is the amount that the
spoofer has moved the GNSS position in the
direction toward the kth ranging source; par-
alleling the development above define these
shifts as the ηk (or vector η).

Being linear functions of Gaussian variates, the
vector versions of the measured ranges and the
GNSS ranges are jointly Gaussian. Their differ-
ence is also Gaussian so can be characterized by
its mean vector

E {δr} =

{
0 ; H0

η ; H1

and covariance matrix

Cov(δr) = Γ + σ2
gddT

More generally, allowing for correlated errors in
the GNSS measurements, this is

Cov(δr) = Γ + dΣgnssd
T

Next, let’s consider the linear transformation of this
difference vector

y = Aδr

with A defined in Eq. (2). Noting that A is 2-by-m
and that δr is m-by-1, then this product is 2-by-1;
i.e. y is bivariate Gaussian. Since this is a linear
transformation the mean of y is

E {y} =

{
0 ; H0

Aη ; H1

and its covariance matrix is

Cov(y) = A Cov(δr)AT

= A
(
Γ + dΣgnssd

T
)
AT ≡ Σy

(Note that the development of the test in Eq. (1) did
not use knowledge of the covariance of the GNSS mea-
surements. This development of the performance does;
hence, we have a somewhat sub-optimum test but ac-
cept this suboptimality as we expect that the GNSS
covariance is changing more quickly than does d.) We
note that under H0 this is a bivariate Gaussian random
variable with zero mean and covariance Σy; under H1

the mean changes.

The test in Eq. (1) compares the magnitude of y
against a threshold; squaring both sides the equiva-
lent test is

|y|2 = yTy
H1

>
<
H0

λ2

a test of a quadratic form in δr

yTy = (A δr)
T

(A δr) = δTr ATA δr
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Figure 3: Typical density functions for y.
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Figure 4: Typical density functions for z.

Figure 3 portrays the situation, showing contours of
constant probability for y (variables y1 and y2) under
both H0 (red) and H1 (blue); the black dotted circle
has radius λ. The false alarm probability is the vol-
ume of the red pdf outside of the circle; the detection
probability is the volume under the blue pdf.

To facilitate doing these computations, it is convenient
to rotate the data so that the major axis of the ellipses
are parallel to the horizontal axis. Specifically, defining
the rotated coordinates

z = Φy with Φ =

[
cos ζ − sin ζ
sin ζ cos ζ

]
and

ζ = −1

2
tan−1 2ρσ1σ1

σ2
1 − σ2

2

in which σ1, σ2, and ρ are the standard deviations and
correlation coefficient of y (this is the negative of the
angle of the major angle of the ellipse in the pdf of
(y1, y2) [13]). The pdfs for z under the two hypotheses

are still both Gaussian with parameters

E {z} =

 0 ; H0

ΦAη =

[
µa
µb

]
; H1

and

Σz = ΦΣyΦT =

[
σ2
a 0

0 σ2
b

]
With this change of variables the equivalent picture in
terms of the random variables z is shown in Figure 4.
(As intended, the ellipses are now aligned with the
horizontal axis.)

With this representation the false alarm probability
is

Pfa = 1−
∫∫
Ω

1

2πσaσb
e
− 1

2

[
z21
σ2a

+
z22
σ2
b

]
dz1dz2

in which Ω is the disk about the origin of radius λ.
This can be evaluated as

Pfa = 1 + exp

(
−σ

2
1 + σ2

2

4σ2
1σ

2
2

λ

)
I0

(
σ2

1 − σ2
2

4σ2
1σ

2
2

λ

)
− 2Q

(
σ1 − σ2

2σ1σ2

√
λ,
σ1 + σ2

2σ1σ2

√
λ

)
(5)

using results in [14]. Similarly, the detection probabil-
ity is

Pd = 1−
∫∫
Ω

1

2πσaσb
e
− 1

2

[
(z1−µa)2

σ2a
+

(z2−µb)
2

σ2
b

]
dz1dz2

(6)
While considerably more complicated, several infinite
series representations of this probability are available
(see [14–16]).

PASSIVE RANGING

The results above assumed unbiased range measure-
ments as might result from an active ranging system.
As mentioned in the Introduction, our interest is in ex-
tending these concept to passive ranging; equivalently,
pseudorange measurements.

Imagine a set of pseudoranges, ρ̂k, one to each beacon.
The model for each is

ρ̂k = rk + tk + b+ εk

in which rk is the true range, tk is the offset of the
time of transmission of the beacon signal with respect
to UTC, b is the offset of the local receiver with re-
spect to UTC, and εk is the noise on the estimate.
We include tk in that the beacon signal might not be
directly synchronized to UTC (e.g. eLoran), but has



a deterministic time relationship; we assume that tk
is known. The GNSS receiver’s clock offset, b, is in-
cluded in that it provides a link back to UTC at the
local vessel platform. Specifically, we assume that the
receiver converts a specific pseudorange to a range by
subtracting out both tk and the GNSS receiver’s esti-
mate of b, b̂. Clearly this use of the GNSS receiver’s
time output has an impact on performance:

• Under no spoofing the error in this GNSS re-
ceiver’s time offset, then, adds to the inaccuracy
of the resulting ranges and must be taken into ac-
count when selecting the threshold for the desired
false alarm probability. For simplicity we assume
that this time estimate’s error is Gaussian with
zero mean and variance σ2

b ,

b̂ ∼ N
(
0, σ2

b

)
and is independent of the receiver’s East and
North errors.

• When spoofing is present the GNSS time might
also be wrong! Our model in this case is also
Gaussian, but with non-zero mean g

b̂ ∼ N
(
g, σ2

b

)
Algebraically, the range measurements are

r̂k = ρ̂k − tk − b̂

= rk + tk + b+ εk − tk − b̂

= rk +
(
b− b̂

)
+ εk

Including the statistical model for b̂, under H0

r̂k ∼ N
(
rk, σ

2
k + σ2

b

)
while under H1

r̂k ∼ N
(
rk − g, σ2

k + σ2
b

)
Further, since all of the psuedoranges are corrected
by this same clock estimate, the vector of ranges are
correlated with covariance matrix

Γ =


σ2

1 + σ2
b σ2

b · · · σ2
b

σ2
b σ2

2 + σ2
b · · · σ2

b
...

. . .
...

σ2
b σ2

b · · · σ2
m + σ2

b

 (7)

Finally, since the pseudoranges have been converted
to ranges, we conjecture that the optimum test is still
of the form presented in Eq. (1) but with the new Γ

taking into account the impact of b̂.

One Pseudorange

For a single pseudorange measurement the test again
simplifies to the form

| r̂1 − r̃1 |
H1

>
<
H0

λ

Under hypothesis H0

r̂1 − r̃1 ∼ N
(
0, σ2

g + σ2
1 + σ2

b

)
while under H1

r̂1 − r̃1 ∼ N
(
η + g, σ2

g + σ2
1 + σ2

b

)
in which η still describes the position offset toward
the beacon and g represents the time offset (in units
of distance) due to the spoofer.

With these characterizations the false alarm probabil-
ity is

Pfa ≈ 2Q

 λ√
σ2
g + σ2

1 + σ2
b


just a slight modification of Eq. (3). The detection
probability is

Pd ≈ Q

 λ+ η + g√
σ2
g + σ2

1 + σ2
b


+Q

 λ− η − g√
σ2
g + σ2

1 + σ2
b


a slight modification of Eq. (4). In general spoofing
is detectable by one pseudorange unless the time dis-
tortion cancels the location change (g + η = 0); with
more than one pseudorange this is, of course, impossi-
ble.

Meaconing

Meaconing, both innocent and malicious, is when a
valid GNSS signal from one location is reradiated
to nearby GNSS receivers (as has occurred at some
airports with open hanger doors). In this case the
“spoofed” GNSS position is the position of the source
of the reradiated signal and the time offset, g, is equal
to the additional propagation time from the reradia-
tor to the receiver on the vessel of interest. Figure 5
describes the geometry.

First, we notice that the position offset is limited by
the distance to the meaconer

−g ≤ η ≤ g

Further, when the meaconer is between the mobile and
the beacon it is easiest to detect as η+g = 2g; similarly,
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Figure 5: The geometry of meaconing.

when the meaconer is opposite to the direction to the
beacon, it is undetectable (η + g = 0).

Two or More Pseudoranges

The test statistic for detecting spoofing using pseudo-
ranges is of the same form as above in Eq. (1) except
that the new definition of Γ in Eq. 7 includes the cor-
relation due to the use of b̂; hence, the expressions for
the probabilities of false alarm and detection in Eqs.
(5) and (6), respectively, still hold after that modifica-
tion.

CONCLUSIONS/FUTURE WORK

This paper shows how pseudorange measurements can
be used to detect spoofing of GNSS position measure-
ments:

• The Neyman-Pearson detection was characterized
and analyzed; this included the case of one pseu-
dorange, meaconing, and multiple pseudoranges.

• Note that signals of opportunity whose time of
transmission offsets, the tk, must be estimated
can also be included in these results if the ad-
ditional error of this estimate is combined with
the measurement error.

Future work includes:

• Proving that correcting the pseudoranges is the
best use of b̂ toward spoof detection.

• Modify the performance expressions to allow for
correlation between the error in b̂ and the errors
in ê and n̂.

APPENDIX A

This appendix develops the MLE solution for the more
general m ranges case by casting the problem as one
involving the position solution from a combination of
range and pseudorange measurements. The develop-
ment in [11] referenced this result to an unpublished
paper; hence, is included here for completeness.

For convenience we work in three dimensions, recog-
nizing that the reduction to two dimensions is easily
accomplished.

Recall that GNSS pseudorange measurements include
the actual range to the satellite plus the receiver clock
bias

ρk = dk + b+ wk

in which ρk is the pseudorange measurement for satel-
lite k, b is the clock bias, and wk represents the white
Gaussian measurement noise (assumed to be indepen-
dent over k with zero means and common variance σ2

s).
The unknowns in the standard 3-dimensional GNSS
problem are the receiver’s position and the clock’s
bias

x =
[
x y z b

]T
and the observables are the n pseudoranges

ρ =
[
ρ1 ρ2 . . . ρn

]T
Starting at an assumed solution

x0 =
[
x0 y0 z0 b0

]T
the nonlinear range equations can be linearized yield-
ing a set of n linear equations in the pseudorange per-
turbation δρ (equal to the ranges from the satellites to
(x0, y0, z0) plus the clock estimate minus the measured
ranges) and the solution perturbation δx (the correc-
tion to the current position and the clock term)

δx =
[
δx δy δz δb

]T
In vector form the equations are

δρ = H δx

where H is the geometry matrix

H =


cosψ1 sinφ1 cosψ1 cosφ1 sinψ1 1
cosψ2 sinφ2 cosψ2 cosφ2 sinψ2 1

...
...

...
...

cosψn sinφn cosψn cosφn sinψn 1


with ψk the elevation and φk the azimuth of the kth

satellite from the assumed solution.



The weighted least squares solution (with typical
weight matrix W = 1

σ2
s
In) for the correction to the

assumed solution is

δx0 =
(
HTWH

)−1
HTW δρ0

so the actual solution is

x1 = x0 + δx0

New pseudorange residuals, say δρ1, can be computed
at this new solution and H can be recomputed in terms
of the new elevations and azimuths for solution x1. If
H has changed then a new correction can be found; if
not the iteration stops and the residuals satisfy(

HTWH
)−1

HTW δρ = 04

where 0m is a column vector of m zeros.

Returning to the problem of spoof detection with range
measurements, a set of range measurements to m fixed
locations can be treated as additional pseudoranges,
but with zero clock bias. To include this in the position
solution the observation vector is augmented with the
additional measurements

ρ+ =
[
ρ1 . . . ρn r̂1 . . . r̂m

]T
=
[
ρT r̂T

]T
in which r̂ is a column vector of the measured ranges.
The direction matrix also gets additional rows; in par-
titioned form, this is

H+ =

[
D 1n
d 0m

]
in which D is the first three columns of H,

d =

 cosψr,1 sinφr,1 cosψr,1 cosφr,1 sinψr,1
...

...
...

cosψr,m sinφr,m cosψr,m cosφr,m sinψr,m


ψr,j and φr,j corresponding to the additional ranging
sources (the m-by-3 matrix consisting of the unit vec-
tors pointing to the ranging sources), and 1n is a col-
umn vector of n ones. Similarly, write the differential
observations in partitioned form

δρ+ =

[
δρ
δr

]
Consider the situation under H0 in which the measured
ranges r̂j are nearly correct for the GNSS location
(ê, n̂ ). The actual GNSS pseudoranges have yielded
a solution x0 so H is essentially correct. With the ad-
ditional range measurements the perturbation in the
solution that results in the MLE (the MLE matching
the solution to this Gaussian problem) is

δx+ =
(
HT

+W+H+

)−1
HT

+W+ δρ+

where W+ takes into account the unequal weighting
due to the range measurements

W+ =

[ 1
σ2
s
In 0n,m

0m,n Γ−1

]
In this expression the notation 0j,k corresponds to a j-
by-k matrix of zeros and the bottom right submatrix,
Γ−1, is a diagonal matrix with entries equal to the
reciprocals of the range measurement variances

Γ−1 = diag

(
1

σ2
1

, . . . ,
1

σ2
m

)
Using the form of H+ and multiplying matrices

δx+ =

[
1
σ2
s
DTD + dTΓ−1d 1

σ2
s
DT1n

1
σ2
s
1TnD 1

σ2
s
n

]−1

×

[
1
σ2
s
DT dTΓ−1

1
σ2
s
1Tn 0

]
δρ+

To continue this development the inverse of the first
matrix is needed. Consider the (n + m)-by-(n + m)
partitioned matrix

A =

[
A11 A12

A21 A22

]
Assuming that the diagonal submatrices are them-
selves square (A11 being n-by-n, A22 being m-by-m)
and that their inverses exist, then there is the iden-
tify

A−1 =

[
B11 B12

B21 B22

]
with

B11 =
(
A11 −A12A

−1
22 A21

)−1

B12 = −
(
A11 −A12A

−1
22 A21

)−1
A12A

−1
22

B21 = −
(
A22 −A21A

−1
11 A12

)−1
A21A

−1
11

and
B22 =

(
A22 −A21A

−1
11 A12

)−1

Using this result, and mixing notation for a few
lines

δx+ =

 1
σ2
s
B11D

T + 1
σ2
s
B121

T
n B11d

TΓ−1

1
σ2
s
B21D

T + 1
σ2
s
B221

T
n B21d

TΓ−1

 δρ+

or in terms of the differentials
δx
δy
δz
δb

 =

 1
σ2
s
B11D

T + 1
σ2
s
B121

T
n B11d

TΓ−1

1
σ2
s
B21D

T + 1
σ2
s
B221

T
n B21d

TΓ−1


×
[
δρ
δr

]



Of this vector result the position differential is δx
δy
δz

 =

(
1

σ2
s

B11D
T +

1

σ2
s

B121
T
n

)
δρ

+B11d
TΓ−1 δr

It can be shown that the first of these terms is zero.
Substituting the sub matrices, this is δx

δy
δz


=

(
1

σ2
s

DTD + dTΓ−1d− 1

nσ2
s

DT1n1TnD

)−1

× dTΓ−1 δr

Furthermore part of this expression can be related to
the underlying GNSS position performance

1

σ2
s

DTD− 1

nσ2
s

DT1n1TnD = Σ−1
xyz

in which Σxyz is the covariance in (x, y, z) of the GNSS
solution (assumed to be σ2

gI3 for the work above). The
result, then, becomes δx

δy
δz

 =
(
Σ−1
xyz + dTΓ−1d

)−1
dTΓ−1 δr

Interestingly, while this Appendix began with the goal
of computing the MLE in the range domain (imagining
that the pseudoranges were available), the result only
needs the direction vectors to the ranging sources and
the GNSS covariance matrix.

Finally, reducing this development to the two dimen-
sional equivalent with variables e and n instead of x
and y [

∆e

∆n

]
=
(
Σ−1
en + dTΓ−1d

)−1
dTΓ−1 δr

For independent and identically distributed GNSS er-
rors in e and n (covariance Σen = σ2

gI2) this be-
comes[

∆e

∆n

]
=

(
1

σ2
g

I2 + dTΓ−1d

)−1

dTΓ−1 δr

This final result leads directly to the test statistic in
Eq. (1).
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