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ABSTRACT 

 The body of this work focuses on the use and revelations of grain size 

distributions combined with age models and physical properties of sediments, 

expanding our understanding of the central Arctic Ocean in the Cenozoic Era.  The 

Integrated Ocean Drilling Program’s (IODP) Expedition 302, Arctic Coring 

Expedition (ACEX), recovered sediment cores from the Lomonosov Ridge, providing 

the most extensive geologic record of the region ever recovered.  This record provides 

the first opportunity for scientists to directly determine the paleo- ice history of the 

region, one of high importance to understanding global climate. 

 Grain size distribution analyses reveal a more consistent ice presence than 

previously believed possible for the region.  The implication suggests a simultaneous 

transition to a strong cryo-state occurring at both poles.  This differs from the previous 

paradigm of the Antarctic’s cryo-state strengthening millennia earlier than the Arctic.  

A simultaneous transition to a stronger cryo-state implies a global climatic driver, 

disavowing theories of current and continental shifts driving one pole than the other.   

 Due to the premiere opportunity to study the cryo-state of the central Arctic 

Ocean over a significant portion of the Cenozoic, proxies and analysis techniques 

needed to be developed and updated.  A series of proxies for determining the type and 

intensity of the cryo-state are presented and employed in paleo- analyses.  In addition, 

predictive relationships between grain size distributions and the physical properties of 

the sediments developed for these glacio-marine sediments allows more extensive 

analysis that can be used in the future to determine regions of interest non-

destructively to the cores.  This will be of significant benefit to future expeditions to 



 

the region.  Finally, the use of grain size to determine and remove the effects of paleo-

currents was updated for the unique depositional environment.  Interconnecting other 

elements of the global climate system to the central Arctic’s cryo-state demonstrates 

the true interconnectedness of the global system.   
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PREFACE 

 
 Expedition 302, Arctic Coring Expedition (ACEX), of the Integrated Ocean 

Drilling Program (IODP) was the initial attempt at a mission specific platform 

expedition.  It was successfully completed in the summer of 2004, retrieving ~420 m 

of core from the Lomonosov Ridge, central Arctic Ocean, recovering a substantial 

portion of the Cenozoic Era.  This was the first such extensive recovery of the region’s 

sedimentary history.  I have been investigating the sea ice history of those cores, 

looking predominantly at the < 2000 µm grain size fractions.   

 The following thesis is presented in a manuscript format, comprising of three 

chapters outlining much of the research I have completed on the ACEX cores 

sediment samples.  This work both answers some of the questions concerning the 

central Arctic’s paleo- cryo-state as well as raising new avenues of investigation.  It is 

my hope that the following chapters will provide a solid foundation for future Arctic 

cryo-state investigations, the importance of which cannot be understated to 

understanding the global climate system. 

 Chapter 1 of this thesis formulates proxies for various aspects of the cryo- 

state, particularly the form of ice and intensity of the climate’s frozen state.  These 

proxies are utilized along with published age models to determine the ages of various 

climate states.  There is particular focus on the different cryo-states present in the 

neogene and paleogene.   

 Chapter 2 of this thesis focuses on relationships between the grain size 

distributions and the non-destructive measurements of a multi-sensor core logger  
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(MSCL) or the physical properties of the sediments.  These relationships were utilized 

in the creation of predictive equations, translating the sediment’s physical properties 

into cryo-state proxies.  This permits us to investigate through the high- resolution 

nature of MSCL data, the precise timing of major cyro-state transitions.  These 

transitions are compared to the transitions in the SST record.    The methods 

formulated in this chapter are of particular interest to the conduction of future glacio- 

marine expeditions. 

 Chapter 3 of this thesis utilizes a method set forth by others for the 

investigation of paleo- current intensity.  The method commonly referred to as 

‘sortible silt’, uses the mean diameter of the silt fraction in a sample as a measure of 

current strength.  Employing this method, I was able to minimize the winnowing effect 

of a sample, translating it to a distribution more similar to that found at the original 

time of deposition.  This eliminates much of the high- frequency changes in samples’ 

grain size distributions.  It also provided a means of comparing transitions in current 

strength to those of cryo- state, demonstrating the inter-connected quality of the global 

system.  This interconnected nature was particularly examined in the late Pleistocene. 
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Chapter 1. Arctic Coring Expedition, IODP 302, Grain Size Analyses, Revealing 
Arctic Paleo- Cryo Environments. 

 
ABSTRACT 

Summer 2004 hosted an unprecedented event in Arctic research; the successful 

coring of Arctic sediments to obtain a paleo-ice record that extends through the 

Cenozoic Era. Low-resolution grain size analyses of samples taken during the Arctic 

Coring Expedition (ACEX), IODP 302, reveal five ice rafted debris (IRD) 

relationships, which we hypothesize to correspond to five distinct Arctic paleo-ice 

environments. This study defines IRD as the percentage of terrigenous grains > 63 

µm.  IRD is comprised of both sea-ice rafted debris (SIRD) and iceberg rafted debris 

(IBRD). IBRD is defined as the percentage of terrigenous grains > 250 µm. Grain size 

analyses were completed using a laser diffraction type analyzer (a Malvern 

Mastersizer 2000). The five relationships and their corresponding environments are: 1) 

low sand percentage and low coarse sand percentage, indicating a seasonally cold 

environment with little ice of glacial origin, 2) high sand percentage and low coarse 

sand percentage, an indication of a sea-ice dominated environment, 3) low sand 

percentage and high coarse sand percentage, indicative of conditions of considerable 

iceberg expulsion and low sea-ice production, 4) no sand present, corresponding to a 

warm ice-free Arctic climate, and 5) an extremely high coarse sand contribution, 

which supports a river ice dominated site. The earliest indication of IRD in the ACEX 

record occurs in the Eocene, a time much earlier than the intensification of Northern 

Hemisphere glaciation of ~3 Ma. Throughout the Neogene, IRD remains an important 

component of the sedimentary record.  Differentiating modes of IRD in terms of SIRD 
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 and IBRD is an important step in reconstructing Arctic paleo-environments and the 

Arctic paleo- albedo contribution.  

INTRODUCTION 

 The Arctic Ocean is a relatively shallow ocean basin roughly centered on the 

northern pole of the Earth, with water exchange between the Arctic and the Atlantic 

Ocean through both the Fram and Davis Straits and with the Pacific Ocean through the 

Bering Strait (Herman, 1974; Coachman and Aagaard, 1974; Aagaard, 1981) (Figure 

1.1).  This ocean has a major contributing influence on the Atlantic, Pacific Oceans, 

and global thermohaline circulation, and is strongly influenced by the Atlantic and 

Pacific intermediate and surface waters, and the production/dissolution of sea ice 

(Aagaard, 1981).  The Arctic Ocean has two key roles in the Earth’s climate system.  

It acts as a climate regulator by controlling solar insulation at high latitudes with 

changes of the ocean’s albedo through the presence or absence of ice cover and by 

influencing thermohaline circulation (Singarayer et al., 2006; Dethloff et al., 2006; 

Curry et al., 1995; Holland and Bitz, 2003; Broecker, 1997; Holland et al., 2001, 

Rennermalm et al., 2006).  It is this quality of the Arctic Ocean that makes it a 

dynamic location with global implications and of key importance to fully 

understanding global climate.  One of the goals of the Integrated Ocean Drilling 

Program (IODP) Expedition 302, the Arctic Coring Expedition (ACEX), a multi-

national study funded through the National Science Foundation (NSF), the IODP, and 

others is to investigate the paleo sea ice dynamics of the Arctic Ocean’s central region 

(Backman et al., 2004). 
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Processes within the Arctic Ocean act as controlling mechanisms for heat and 

freshwater (Coachman and Aagaard, 1974; Aagaard, 1981; Aagaard and Carmack, 

1989). The dominating presence of sea ice across the Arctic Ocean greatly increases 

the region’s albedo and facilitates the redirection of solar radial heat/energy back into 

space (Singarayer et al., 2006; Dethloff et al., 2006; Curry et al., 1995; Holland and 

Bitz, 2003).  The loss of heat feeds into the formation of ice in the region, sequestering 

freshwater and feeding back into strengthening the albedo.  This strengthening albedo 

can be the result of exclusively sea ice, whose formation has only a temperature 

dependence.  It can also be the result of continental glaciation, whose formation is 

dependent on both low temperatures and high humidity.  Sea ice formation isolates 

much of the local sources of humidity needed for glacier formation.  Alternatively, 

glacier formation sequesters water onto the continents, lowering sea level, raising 

salinities, and thus lowering the temperature required for sea ice production.  This 

means that while at the climate extremes, there can exist no ice or an abundance of 

both forms of ice, it is likely that in periods of transition or average climate the 

production of one form of ice may negatively impact the production of the other.  

With open water having a much lower albedo than ice-free terrain, the greater 

presence of sea ice has a larger effect on the Earth’s albedo than a greater presence of 

glaciers.    Through its links to the global ocean system and its considerable effect on 

the global solar insolation, the Arctic Ocean is a key component of the global climate 

system. 

Various authors had determined the transition to a perennially glaciated 

Northern Hemisphere as occurring roughly, 2.6-3.1 Ma (Shackleton et al., 1988; 



 

5 

Maslin et al., 1998; Zachos et al., 2001).  The presence of IRD in the North Atlantic 

and mid-latitude δ18O records are the evidence used for assigning the transition to the 

late Pliocene (Shackleton et al., 1988; Maslin et al., 1998; Knight et al., 2002; Raymo 

et al., 2006; Reeh, 2004; Ruddiman, 1977 a, b; Zachos et al., 2001).  The advent of the 

ACEX’s ability to retrieve deep cores from beneath the Arctic’s ice-covered waters, 

allows us to redefine the paleoclimate transition to a cold Arctic without the reliance 

upon these external Arctic proxies.   

The cores recovered during ACEX were from locations on the Lomonosov 

Ridge (Figure 1.2).  The Lomonosov Ridge is a rifted portion of the Eurasian 

continent, separated ~57 Ma by the formation of the Gakkel Ridge (Backman et al., 

2006).  Subsequently, sediments have been captured on the ridge, providing a record 

for much of the Cenozoic Era.  The sites cored were situated high on the Lomonosov 

Ridge, above the limit of the turbidite zone, providing for a usable ice rafted debris 

record.  While this record proved to be incomplete with sediment record hiatuses from 

9.4 to 11.6 Ma and 18.2 to 44.4 Ma (Backman et al., 2007), we are able to use it to 

distinguish periods of sea ice and or glacier intensity, subsequently inferring changes 

in the Arctic’s albedo contribution. 

 

METHODS 

Grain Size Analyses 

The initial step to determining the paleo-ice environment of the Cenozoic 

Arctic Ocean is to determine the grain size distribution of the cores.  To accomplish 

this, each of the sediment samples was analyzed for the individual grain size 
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distribution of terrigenous material.  The samples were chemically cleaned of 

biological components in order to isolate the terrigenous portion of each sample.  The 

cleaning process is adapted from a combination of the processes employed by Dr John 

King’s lab (personal communication) and Mortlock and Froelich (1989).  The process 

involved using acetic acid to rid the samples of biogenic carbonate, hydrogen peroxide 

to remove the lipids in each sample and sodium carbonate to eliminate the biogenic 

silicate.  Approximately 20% of the samples were visually examined to ensure that 

only terrigenous material remained.  The samples were then steeped in a solution of 

sodium hexametaphosphate for at least 48 hours to ensure that the clay particles were 

neutralized and no flocculation would occur, skewing the grain size results.  Each of 

the biologically cleaned samples were then run on the Malvern Mastersizer 2000, a 

laser diffraction particle sizing system.  The Mastersizer operates using both a red 

light laser and a blue light laser.  By operating with lasers at two different wavelengths 

of light the Mastersizer increases the accuracy and precision of the results.  The 

Mastersizer was set to analyze each sample in a general mode and not material 

specific, since each sample contained multiple mineral components, which could 

change from sample to sample.  These data were then compiled into half phi size bins 

(phi being a scale of grain size equal to –log2(diameter of grain)).  The Mastersizer 

sub-sampled each sediment sample three times, determined the grain size distribution 

and then averaged the three sub-samples.  The averaged data set was then transferred 

into a Microsoft Excel worksheet.  

The entire grain size distribution from clay through sand was collected with 

this method.  The focus of this study is on the sand portion, using the finer sediments 
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as a means of normalizing the sand contribution.  The presence of any sand sized grain 

(>63µm) is indicative of a frozen environment, whether it is sea-ice or iceberg 

(Bischof, 2000; Lisitzin, 2002).  The absence of any sand is suggestive of an Arctic 

environment where the climate was, on average, above freezing annually. 

 
Ice Rafted Debris and the Glacial Environment 

 
 Ice rafted debris (IRD) present in sediment records reveals the presence of ice 

at a deep ocean location at some time in the geologic past (Jakobsson et al., 2001; 

Poore et al., 1993; Phillips and Grantz, 1997; Thiede et al., 1989; Gyllencreutz, 2005; 

Prins et al., 2002; Clark, 1996; Ruddiman, 1977a, b; Sakamoto et al., 2005; Lisitzin, 

2002; Eldrett et al., 2007; Bischof and Darby, 1997: 1999; Darby et al., 2002; Bischof 

et al., 1996; Krissek et al., 1989; Norgaard-Pedersen et al., 1998; Heinrich, 1988; Hald 

et al., 2004; Nam et al., 1995; Bischof et al., 1999; Bischof, 2000; Winter et al., 1997).  

Ice is capable of rafting the complete range of sediment sizes from clay to boulder and 

releases them onto the seafloor in undifferentiated deposits, distinguishing them from 

turbidite deposits.  However, the entire suite of sediment sizes is not useful when 

determining the cryo- history of an ocean basin.  The fine component of sediments, 

clay and silts, may be corrupted by fluvial and eolian sources. Kotlyakov and 

Gordienko (1982) found at the Camp Century Station, a modern research station 

located on the Greenland ice sheet that the aerosol contribution to the site was 0.04 to 

8 µm in size and contributed 0.24% of the sediments entrained in the glacier core.  

Ruddiman (1977a, b), in studies of ice rafted debris in the North Atlantic, determined 

that an insignificant portion of the coarse component of sediments, gravel to boulder, 
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are included in 6 to 9 cm diameter cores, excluding them as a reliable indicator or the 

presence of ice.  This leaves the sand component (63 µm to 2000 µm) as the reliably 

collected and uncorrupted component of sediments to be used in the determination of 

paleo- ice presence and subsequently –cryo environments (Ruddiman, 1977a,b; 

Ruddiman and Glover, 1972; Ruddiman and JOIDES, 1991; Smythe et al., 1985; 

Ruddiman and McIntyre, 1976, 1977, 1981, 1984; Ruddiman et al., 1986).  A study by 

Vanney and Dangeard (1976), examining the sediment size ranges entrained in 

icebergs and iceberg-related deposits in Baffin Bay, determined that silt comprised 40-

60%, clay 20-40% (the higher values found at sites in current-protected depressions), 

and gravel/pebble 1-10%.  The combined contributions of silt and sand typically 

comprise 50-80% of both the icebergs and their deposits, showing cryo- sediments to 

be predominately laden with silt and sand size IRD.  Nurnberg et al. (1994) studied the 

sand, silt, and clay fractions of sea ice and icebergs taken in the central Arctic Ocean 

region during a 1991 research cruise.  The analyses showed similar ranges as the 

Vanney and Dangeard (1976) study (Figure 1.3).  This also shows that when analyzing 

the sand component in its totality there is no significant difference in the sand 

percentage entrained in sea ice and icebergs, illustrating the need for a method to 

reliably determine the sea ice and iceberg contributions. 

Ruddiman (1977 a, b) found that the sand fraction (63 µm to 2000 µm), 

representing ice rafted debris from sea ice and icebergs, increases during glacials and 

decreases during inter-glacials (Figure 1.4). In response to the Ruddiman (1977a, b) 

study, a number of more modern studies have adopted the use of 63 µm to 2000 µm 

for determining the Arctic’s cryo- strength (Jakobsson et al., 2001; Poore et al., 1993; 
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Phillips and Grantz, 1997; Thiede et al., 1989; Gyllencreutz, 2005; Prins et al., 2002; 

Clark, 1996; Sakamoto et al., 2005; Lisitzin, 2002; and Eldrett et al., 2007).  The 63 

µm barrier for defining ice rafted debris is also supported by analyses of the individual 

grain size distributions of the ACEX core samples (Figure 1.5).  All of the samples 

analyzed contained sediments for the entire silt range (4 to 63 µm), this included the 

samples that contained no sand contribution.  In those samples, there is consistently 

sediment up to 63 µm in size, but no larger. 

 Lisitzin (2002) and Madureira et al. (1997) employed the ratio of the number 

of ice rafted grains to total number of grains counted to normalize the IRD analysis 

(Figure 1.6).  While this particular study looked at iceberg rafted debris (IBRD), by 

defining the ice rafted grains as those particles >125 µm, the use of the ratio enhances 

small differences in the sand fraction percentages.   

 In this study of the ACEX cores, we employ a similar approach to Madureira et 

al. (1997).  Instead of a grain point count, we use the 63 µm to 2000 µm sand fraction 

percentage in a ratio to the finer sediment (silt and clay) percentage to interpret 

glacials and inter-glacials or times of more intense cryo- environments and less intense 

cryo- environments. 

 
Sea Ice versus Iceberg Rafted Debris 

 
The occurrence of IRD permits us to study the possible ice environment at the 

time of deposition.  This can be achieved with the stipulation that coarser sands 

characterize an environment dominated by icebergs and finer sands by sea-ice 

(Bischof et al., 1999; Bischof, 2000; Winter et al., 1997; Lisitzin, 2002). The 
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understanding that icebergs carry coarser sand material led Bischof and Darby (1997, 

1999), Darby et al. (2002), Bischof et al. (1996), and Krissek et al. (1989) to choose to 

utilize a minimum grain size of 250 µm in their studies of iceberg rafted debris 

(IBRD).  Icebergs carry a complete suite of sediment sizes.  However, Kotlyakov and 

Gordienko (1982) determined at the Camp Century Station, Greenland (a location of 

Arctic iceberg origin) that sediments entrained in the glacier ice typically ranged from 

2 µm to 2000 µm, a silt- sand dominance.  Ruddiman and McIntyre (1976) assigned 

sediments with >2% of particles >550 µm as iceberg rafted debris (IBRD) after 

directly investigating the sediment load of Arctic icebergs.  Lisitzin (2002) 

subsequently determined that IBRD samples have ~2.9% in the >500 µm and <1% in 

pebble or greater. Bellair et al. (1964) found the median diameter of sediments from 

icebergs calved from Adelie Land, Antarctica to be 35 µm, this value includes the silt 

and clay fraction. Mulholland (1976) found studying Massachusetts’ glacial till that 

the statistical mode of sediments was 125- 177 µm, this range of values is typically 

reduced in clay and silt, the finer fractions having been transported away.  These mean 

values are larger than that of sea ice (Table 1.1). 

Reimnitz et al. (1993a, b, 1998) compared in the Beaufort Sea sediments in sea 

ice to bottom sediments.  They found that sea ice lacked coarse material, sand 

represented <2% of any given sample, and that the samples were dominated by silt 

and clay.  Due to the circulation pattern and direction of ice drift in the Arctic Ocean 

(Figure 1.7), the ACEX IODP 302 sites in the central Arctic Ocean, Lomonosov 

Ridge, typically are covered with sea ice originating from the Siberian shelf.  Modern 

studies of the Siberian shelf sediments entrained in sea ice lack coarse-grained 
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material and are characterized by fine-grained glacial material, rarely exceeding 250 

µm in diameter (Lisitzin, 2002). Based on these earlier studies, recent studies, 

(Bischof et al., 1999; Bischof, 2000; Winter et al., 1997) have broken the sand size 

fraction into a >63 to <250 µm portion to represent sea ice and a >250 µm portion to 

represent glacial ice. 

Additional studies of the granulometric composition of sea ice compared to 

icebergs supports the use of the coarser sand fraction to represent IBRD and the finer 

sand fraction to represent sea ice rafted debris (SIRD).  Dreimanis and Vagners (1971) 

found that as one moves from a moraine (a region of sediment entrainment for 

icebergs) out over the continental shelf (a region of sediment entrainment for sea ice) 

less sand is present and more silt dominates.  Lisitzin and Chernyshova (1970) and 

Lisitzin (1961a) working in the North Pacific and Bering Sea determined the coarse 

sand in cores to be glacial in origin and the fine sand-silt sediments (missing coarser 

sand material) were sea ice in origin.  

Finally, these determinations have been further enforced through sediment trap 

studies in both the Arctic and Antarctic (Wefer et al., 1982, 1990; Honjo 1980; 

Lisitzin et al. 1994).  By examining Antarctic grain distributions from the region 

around McMurdo Bay, we can more clearly see the grain size distribution differences 

for icebergs and sea ice (Figure 1.8).  The grain size distributions of the icebergs are 

clearly skewed to the coarser sand fractions, while the sea ice is skewed to the finer 

sand fractions.  One can distinguish in the bottom sediment samples, which sample 

sites are predominately influenced by sea ice and which are influenced by icebergs 

(Barrett and Treves, 1981).  The use of 250 µm as a division between sea ice and 
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iceberg rafted debris is further supported by analysis of individual ACEX grain size 

distributions (Figure 1.9).  A number of ACEX samples with significant percentages 

of fine sand (63 to 250 µm), have either no sand contribution or diminished sand 

contributions >250 µm. 

Goldstein (1983) presents and defines a term R which is the ratio of iceberg (I) 

to sea ice (SI) and claims iceberg material is distinguished by particles > 500 µm and 

that Arctic Siberian sea ice is classified by finer material with ~90% of particles being 

<100 µm in size.  He subsequently found that samples from Alpha Ridge, Arctic 

Ocean, showed that around the white-pink layers, enriched in carbonates, 

corresponded to periods of greater iceberg presence as represented by high R values. 

By dividing the sand sized particles into sea-ice dominated contribution (63-

250µm) and iceberg dominated contribution (250µm-2000µm) and by analyses of one 

contribution compared to the other, this study of central Arctic paleo- ice 

environments classifies the type of paleo-ice environment.  These analyses are 

normalized and enhanced by using the R- value (I/SI). 

RESULTS 

 The ACEX cores are the initial attempt of the Integrated Ocean Drilling 

Program (IODP) to utilize a mission specific platform, which allowed the coring ship 

to remain on site in a dense ice flow.  This methodology allowed the recovery of 

multiple sediment cores, retrieving much of the present lithology.  ACEX attempted 

core recovery at four sites on the Central Lomonosov Ridge, recovering ~420 m of 

sediment (Figure 1.10). The four sites were chosen along a previously retrieved 

seismic line, AWI-91090.  Sediments from these sites were used to create a composite 
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record, representing the paleo-environments of the Cenozoic Central Arctic Ocean 

(Moran et al., 2006). The composite record was ultimately comprised of ~ 67% of the 

sediment present at the sites.  The majority of the recovered sediment (78%) was from 

the upper 271 m of the 428 m sediment sequence.  The recovered cores were visually 

sequestered into four lithologic units and numbered sequentially from shallowest to 

deepest.  Samples from three of the sites (sites: 2, 3, 4) were used in this study, plotted 

using a common composite depth (Figure 1.11) and configured using the established 

age model (Figure 1.12).     

Grain size analyses of the ACEX cores reveal similar classifications as those 

found in the modern ice rafting mechanisms (sea ice, iceberg).  The ACEX grain size 

classifications from 18.2 Ma to present are similar to the distribution of the modern 

grain size classifications taken directly from central Arctic Ocean sea ice samples in 

1991 (Figure 1.13).  The similarities between the deposited material and the modern 

sea ice rafted debris suggests a common sea ice environment for the last 18.2 Ma.  The 

samples are narrowly banded in the silt:clay ratio but vary significantly in the sand 

percentage.  Due to the averaging nature of sedimentation, it is not surprising that the 

geological proxy does not show any of the potential ‘extremes’ shown by the modern 

sea ice measurements.     

The ACEX grain size distributions from 44.4 to 50.4 Ma are comparable to the 

modern classification of grain size of the central Arctic Ocean sea ice and iceberg 

samples taken in 1991 (Figure 1.14).  The similarities of the Paleocene deposited 

material to the modern combination of grain size directly taken from modern icebergs 

and sea ice indicate a cryo-environment in the Paleocene with significant contributions 
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from both ice-rafting mechanisms.  The samples are widely banded in the silt:clay 

ratio, while remaining in the silt and sandy silt classifications.  The Eocene samples 

vary less significantly in the sand percentage than the Neogene samples.   The ACEX 

cores yielded a single sample during the Eocene that has a silty sand classification and 

is similar to the river ice grain size distribution taken in the Laptev Sea in 1992 

(Figure 1.14).  

Grain size and Lithology 

The ACEX record reveals the consistent presence of central Arctic ice through 

much of the Cenozoic by the regular occurrence of sand.  The intensity and type of ice 

environment is indicated by changes in the grain size distributions and are fairly 

consistent within lithologic sub-units (Figure 1.15).  ACEX lithology sub-units 1/1 – 

1/4 have low organic contributions (<1% wt) and were defined by color and texture.  

Lithologic sub-unit 1/2 is characterized by elevated coarse sand percentages.  

Lithologic sub-unit 1/3 is comprised almost entirely of diminshed sand contributions.  

Lithologic sub-unit 1/4 has a higher coarse sand contribution, while the unit directly 

below (Lithologic sub-unit 1/5), which incorporates a significant hiatus, has a more 

moderate coarse sand contributions.  Lithologic sub-units 1/6, 2, and 3 are 

characterized by organic carbon rich sediments (1-3% wt).  Units 1/6, 2, and 3 are 

distinguished predominately by their microfossil assemblages rather than visual 

changes in color (Backman et al., 2006).    Lithologic sub-units 1/6 and 2 are 

undifferentiated in their terrigenous grain size distributions, with lower sand values 

and coarse sand values that rapidly fluctuate between extremely high and low values.  
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Finally, the few samples present in lithology unit 3 show an increase in sand 

deposition.   

Closer analyses of the individual sub-units show samples that depart from the 

predominant grain size relationship, ice environment, and relative albedo contribution 

(Table 1.1).  Lithologic sub-unit 1/2 yielded 4 samples between 0 and 4 m that show 

significantly elevated sand contributions with decreased coarse sand contributions, 

which we interpret as being a vast sea ice environment (Figure 1.16).  Sub-unit 1/2 

also has 6 samples, which show elevated coarse sand components compared to the 

majority pf the unit, suggesting an iceberg influence.  The majority of this unit is 

categorized as high sand and low coarse sand contributions compared to the rest of the 

sub-unit, which we interpret as a perennial sea ice environment.  Lithologic sub-unit 

1/3 has 6 points that show significantly elevated sand contributions with decreased 

coarse sand contributions, which we interpret as being a perennial sea ice environment 

(Figure 1.17).  The majority of this unit is categorized as low sand and coarse sand 

contributions, which we interpret as being a seasonal sea ice presence.  Lithologic unit 

1/6 has 9 samples between 204 and 220 m that show no sand contributions, which we 

interpret as being an ice-free environment (Figure 1.18, Table 1.2).  Unit 1/5 has 2 

samples, which show elevated sand components with low coarse sand contributions, 

suggesting a vast sea ice environment.  The majority of these units are categorized as 

alternating between low sand- low coarse sand contributions, which we interpret as 

being a sea ice environment, and low sand- high coarse sand contributions, which we 

interpret as being iceberg influenced (Figure 1.18).  Lithologic unit 2 is categorized as 

alternating between low sand- low coarse sand contributions, which we interpret as a 
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sea ice environment, and low sand- high coarse sand contributions, which we interpret 

as being iceberg influenced (Figure 1.19).  Lithologic unit 3 has one sample that 

shows extremely elevated sand contributions with extremely coarse sand 

contributions, which with further investigation for this time period may prove to be a 

river ice environment (Figure 1.20, Table 1.3).  The unit has two samples, which show 

low sand and coarse sand contributions, which we interpret as a sea ice environment.  

The unit also has one sample with an elevated coarse sand component, suggesting an 

iceberg influence.   

Grain Size and Age 

ACEX grain size distributions can be interpreted in the context of time.  The 

ACEX age model as determined by Backman et al. (2007) defines two hiatuses of 

sediment retention in the cores. The earliest sedimentation in the ACEX cores (44.4- 

51 Ma), preceding the early, longer hiatus, shows a diminished sand component, and a 

widely varying coarse sand component.  The calculated mass accumulation rates 

(MAR) for the percentage of IRD in this region of core ranges from 0.0 to 0.23 g*ka-

1*cm-2, while the range of MAR for SIRD is 0.0 to 0.49 g*ka-1*cm-2.   Sedimentation 

between the hiatuses (11.6- 18.2 Ma) shows again a relatively steady sand component, 

but with an increasing coarse sand component.  MAR ranges for this region of core 

range from 0.01 to 0.11 g*ka-1*cm-2 for IRD and 0.01 to 0.29 g*ka-1*cm-2 for SIRD.    

Sedimentation from present to the more recent hiatus (0- 9.4 Ma) shows a relatively 

consistent sand component, with a decreasing coarse sand component (Figure 1.21).   

IRD MAR values for these samples ranged from 0.04 to 0.24 g*ka-1*cm-2, while SIRD 

ranged from 0.04 to 0.49 g*ka-1*cm-2.  The MAR ranges are consistent and similar to 
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the values determined by St. John (2008).  The general shape distribution is also 

similar t the one published in that study (St. John, 2008). 

44.4- 51 Ma has one period that shows a significantly extreme of elevated sand 

contribution with a corresponding elevated coarse sand contribution, which may prove 

to be a river ice environment (Figure 1.22).  The time range also has a period, which 

shows an elevated sand component with low coarse sand, suggesting an elevated sea 

ice environment.  The time range has three periods with no sand contribution, 

corresponding to an ice-free environment.  The majority of the time range is 

categorized as alternating between samples having low sand- low coarse sand 

contributions, indicating a sea ice environment, and low sand- high coarse sand 

contributions, interpreted as an elevated iceberg influence. 

The time range from 11.6- 18.2 Ma has two periods that show significantly 

elevated sand contributions with decreased coarse sand contributions, a sea ice 

environment (Figure 1.23).  The majority of the time range alternates between, low 

sand- elevated coarse sand components, suggesting an iceberg influence, and low 

sand- low coarse sand contributions, a diminished, but perennial sea ice environment.  

The switch between the two regimes took place around 14.5 Ma. 

The time range of 0- 9.4 Ma has six periods that show significantly elevated 

sand contributions with decreased coarse sand contributions, which we interpret as 

being a sea ice environment (Figure 1.24).  This time range also contains samples, 

which show elevated coarse sand components, suggesting an iceberg influence.  The 

majority of the time range is categorized as having low sand and coarse sand 

contributions, a diminished, but perennial sea ice environment.  
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Principle Component Analysis 

 Principle Component Analysis (PCA) is a popular statistical regression model, 

commonly used to find variable relationships in seemingly unrelated and independent 

variables.   After extensive use of PCA, it was found no statistically significant 

variables could be isolated from the ACEX grain size data set (Figure 1.25).  There 

was a slight, non-significant, reliance on the variation in the data towards coarser grain 

sizes.  This is due to the nature of grain size percentages skewing towards coarser 

grain sizes with the presence of only a few grains.  The overall lack of significant 

variables is most likely a product of the inherent inter-dependence of grain size 

distributions.  When a single grain size bin increases, all other bins naturally decrease.  

The lack of unrelated, independent variables makes grain size distributions poor 

candidates for PCA. 

DISCUSSION 

 The interpretation of the overall grain size from the central Arctic Ocean 

supports a mid-Cenozoic transition to a perennial cyro-state.  Diminished sand 

deposits between 44.4 and 51 Ma is supportive of a seasonal ice presence (Figure 

1.21).  This interpretation is further supported by the presence of a sea ice dependant 

diatom Synedropsis in the core stratigraphy from 45.5 to 46.97 Ma (Stickley et al., 

2009).  The percentage of Synedropsis has a positive correlation with the IBRD/SIRD, 

in a relationship determined between IBRD/SIRD and the diatom sampling that were 

within a centimeter in the core (Figure 1.26).  (Additional data are not available for 

this relationship determination at this time, due to sampling periodicity differences, 



 

19 

SIRD differences in Stickley et al. (2009) from this study, and fundamental 

differences in methodology.)  The relationship suggests that while the Arctic at this 

time was seasonally sea ice covered with occasional periods of iceberg presence, the 

icebergs appear at times of particularly strong seasonal sea ice (ergo strong 

Synedropsis deposition).  Since the seasonal ice presence, supported by both studies, 

would have corresponded to the winter or dark season in the Northern Hemisphere, the 

sea ice in the Early Cenozoic would have a minimal effect on global albedo.  Any 

albedo contribution would have likely been isolated to the spring season, when the 

waters had not warmed above freezing and the light had returned to the region. The 

albedo contribution drops to essentially non-existent during the time period from 44.6 

to 45.3 Ma, a time period in the ACEX cores containing sand-free samples (Table 

1.2).  After the ACEX cores’ major hiatus (18.6- 44.4 Ma), the sediment deposited in 

the late-Cenozoic supports the theory of a perennial ice environment (Figure 1.22, 

Figure 1.23).  The year-round presence of sea ice in the central Arctic in the late 

Cenozoic would have contributed to the global albedo, particularly during the 

Northern Hemisphere’s summer season, resulting in a cooler summer season further 

reducing summer ablation.  The even greater contribution of ice in the Central Arctic 

during the earliest part of the Cenozoic would have enhanced these effects.  While the 

transition from seasonal sea ice to perennial sea ice is not present in the sediments 

collected on IODP Expedition 302, we are able to limit the transition as some point 

during the hiatus, 18.6- 44.4 Ma.   

 While the exact strengthening of the transition to a perennial sea ice cover 

most likely occurred some time during the 18.6-44.4 Ma hiatus, we do have a 
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transition from a mix of perennial ice and high iceberg influence (18.6-14.5 Ma) to a 

perennial sea ice with little to no iceberg influence (14.5 to 11.6 Ma) (Figure 1.21 and 

1.23).  This may indicate a switch at 14.5 Ma to a perennial sea ice cover of such 

extent as to make iceberg passage difficult.  This strengthening of perennial sea ice 

extent would correspond to the initiation of North Atlantic Deep Water (NADW) 

formation, global increased cooling, and the expansion of the E. Antarctic Ice Sheet, 

all occurring at ~14.5 Ma (Woodruff and Savin, 1989; Hodell and Woodruff, 1994; 

Pagani et al., 2000).  The seemingly synchronicity of all these events suggests either a 

single global driver, or a domino effect between them (i.e strengthening of Arctic 

perennial sea ice leads to formation of NADW, which causes global cooling that leads 

to the ice sheet strengthening).  Our interpreted timing of perennial sea ice and Middle 

Miocene Climate Transition (15-14 Ma) strengthening corresponds to the timing 

determined by other non-grain size distribution variables such as ice provenance and 

drift rates, 10Be/9Be ratios, and the presence of IRD at lower latitudes (Krylov et al., 

2008; Darby, 2008; Haley et al., 2008a, 2008b; Frank et al., 2008, Knies and Gaina, 

2008; O’Regan et al., 2010).  

The timing of the central Arctic’s cryo- state transition, being during the Mid- 

Cenozoic Era, corresponds to the cryo-state transition of the Antarctic (Zachos, 2001).  

While the exact timing of the central Arctic’s transition can not be determined with 

out more extensive coring efforts, the work completed in this study supports the theory 

of a simultaneous cryo-state transition in both polar regions.  The glaciation of the 

Antarctic is associated with a benthic δ18O value transition from a value of 1 to a value 

of 2.  The transition in the Arctic, being initially predominately sea ice would not 
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impact the benthic δ18O value.  However, using that as a proxy for global 

temperatures, it is likely that the Arctic transition is associated with a global 

temperature of 4- 8° C (Figure 1.25).  

Enhanced sand presence is typically interpreted as enhanced sea ice presence; 

contain an anomalous sample that is the exception to this rule.  The sample from ~50 

Ma has an extreme percentage of both sand and coarse sand when compared to the rest 

of the core.  We have associated this with river ice, which is most likely seasonal.  The 

river ice presence supports the theorized paleogeography and surface-water circulation 

proposed by Backman et al. (2006) for 50 Ma.  They propose a strong riverine 

discharge close to the IODP Expedition 302 site.   

CONCLUSION 

 Differentiating sea ice and iceberg contributions and cryo-state enhancements 

is essential for understanding the dynamics of the Arctic environment.  From this 

study of sediments from the central Arctic Ocean, we can determine and date 5 cryo-

states.  Once a cyro-state is determined, the relative albedo contribution can be 

theorized.  The Early Cenozoic is dominated by ice- free, seasonal sea ice, and riverine 

ice cryo- states, or relatively low albedo contribution.  The Late Cenozoic is 

dominated by perennial sea ice and iceberg/perennial sea ice cyro-states, or a 

relatively high albedo contribution.  This transition from low albedo contribution in 

the Arctic to high takes place much earlier than previous studies had determined.  We 

are now able to establish a transition point as having occurred at some point between 

18.6 and 44.4 Ma.  Additional, sediment retrieval in the central Arctic region is 

necessary to precisely date the transition.    
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Table 1.1:  A reference comparison of various studies cited in this paper, outlining the 
given size ranges for icebergs, sea ice, iceberg rafted debris (IBRD), and sea ice rafted 
debris (SIRD). 
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Table 1.2:  Table outlining the 5 proposed central Arctic ice environments in this 
study, their criteria, the various color combinations are how they are identified through 
the remainder of this study, and their relative albedo contribution. 
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Table 1.3:  Table indicating samples containing no sand contribution to the grain size 
distribution.  The sample identification, depths, and ages are provided.  The ‘no sand’ 
samples are found in a narrow depth and age range.  We maintain that these samples 
represent an ice-free environment. 
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Table 1.4: Table indicating the sample containing an extremely high sand and coarse 
sand contribution to the grain size distribution.  The sample identification, depth, and 
age are provided.  We maintain that this sample represents a river ice environment. 
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Figure 1.1:  Map of the Arctic Ocean showing modern ocean circulation patterns.  
There is ocean water and heat exchange between the Atlantic and Arctic Oceans 
through the Fram and Davis Straits.  Ocean water exchanges from the Pacific Ocean 
into the Arctic Ocean through the Bering Strait.  The Arctic Ocean itself is roughly 
centered on the North Pole and is almost entirely contained within the Arctic Circle.  
(Woods Hole Oceanographic Institution, 2008)  
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Figure 1.2:  Bathymetric and topographic map of the Arctic.  The IODP Expedition 
302, ACEX, core sites were on the Lomonosov Ridge, central Arctic Ocean (red dot).  
The Lomonosov Ridge separated from the Barents/Kara shelf due to the formation of 
the Gakkel Ridge.  By being elevated from the abyssal plain and separated from the 
continental shelf, the Lomonosov Ridge is an ideal setting for paleo- sea ice 
investigations of the Arctic. (IBCAO, 2008)
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Figure 1.3:  Tertiary diagrams taken from Lisitzin (2002) showing grain size 
distributions determined directly from sea ice, iceberg, and river ice samples on three 
different Arctic studies.  The location of the ARCTIC ’91 study (central diagram) is 
geographically the closest to the ACEX study.  The sea ice samples show widely 
varying grain size distributions, while icebergs typically show lower sand 
contributions.   
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Figure 1.4: Upper graph shows variation in IRD input for the last 125,000 years at 3 
locations.  Lower graph shows the variation in sea level for the same time period.  Sea 
level can be interpreted as a proxy for glacial ice extent.  Periods of lower sea level, 
greater ice extent (glacial) correspond to periods of increased IRD deposition.  
(Ruddiman, 1977a) 
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Figure 1.5:  The grain size distribution of ACEX sample, 302-2A-48X-3W-44.  This 
sample is an example showing a sediment range up to 63 µm with no > 63 µm 
contribution.  No sand presence indicates no ice rafting contribution, and therefore 
representing an ice-free Arctic environment.  Similar samples with no sand 
contribution also show sediment up to 63 µm in size. 
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Figure 1.6:  In the graph above, the IRD component was normalized and emphasized 
by plotting the ratio of IRD to finer sediments.  (Madureira et al., 1997) 
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Figure 1.7:  Map of Arctic Ocean showing circulation gyres and drift directions for sea 
ice transport (Lisitzin ,2002).  The ACEX, IODP 302, site (indicated by a star) 
experiences deposition from Arctic ice in the Transpolar Drift.  This sea ice originated 
and entrained sediment from the Siberian shelf.  Siberian shelf sediments are typically 
fine sand, silt, and some clay.   
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Figure 1.8:  Grain size distributions for samples taken from the McMurdo Sound, 
Antarctica region (Barrett and Treves, 1981).  Samples in boxes a and c are taken 
directly from glacial ice material.  Samples in box b are taken directly from sea ice.  
Samples in boxes d, e, and f are from offshore cores.  Box a and c, representing 
iceberg material, show coarse sand averages.  Box b, sea ice, shows fine sand 
averages.  Employing the ratio of coarse sand to fine sand (I/SI), box d and f are 
interpreted as being a sea ice dominated depositional environment, and box e as 
iceberg dominated.  This shows the I/SI is viable for determining ice environments 
even in Antarctica where the grain sizes are generally coarser and less distinctive 
between the two transport mechanisms than they are in the Arctic Ocean. 
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Figure 1.9:  The grain size distribution of ACEX sample, 302-2A-56X-2W-114.  This 
sample is an example showing a sediment range up to 250 µm with no > 250 µm 
contribution.  No coarse sand presence indicates no iceberg rafting contribution, and 
therefore representing a sea ice environment.  Similar samples with dominantly fine 
sand contributions also show sediment either not exceeding or considerably 
diminishing at 250 µm in size. 
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Figure 1.10:  Bathymetric map showing the location of the four ACEX drill sites on 
the Lomonosov Ridge.  Along with depth penetration of each site shown in the seismic 
reflection profile AWI-91090.  Over 420 m of sediments from the Lomonosov Ridge 
were drilled.  (Backman et al., 2007)
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Figure 1.11:  Samples for this study came from three of the four ACEX sites.  The 
sample locations are plotted on the composite depth scale.  Samples plotted in red 
came from cores taken at site 4.  Samples plotted in green came from cores taken at 
site 3.  Samples plotted in purple came from cores taken at site 2.  The samples from 
the three sites combined make a more compete history of the central Arctic Ocean 
during the Cenozoic.  Using the composite depth scale eliminates differences in 
accumulation rates between the three sites.
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Figure 1.12:  Age model for the ACEX cores as determined by Backman et al. (2007).  
Two hiatuses were found in the record, one from 9.4-11.6 Ma and the other from 18.2-
44.4 Ma.  This age model was applied to all samples used in this study.
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Figure 1.13:  The ACEX grain size distributions from 18.2 Ma to present are plotted 
on a tertiary graph (solid black dots).  This distribution compares to the distribution of 
the grain size of the central Arctic Ocean sea ice samples taken in 1991 (hallow red 
dots, large red oval represents region of many data points).  The samples are narrowly 
banded in the silt:clay ratio but vary significantly in terms of the sand percentage.   
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Figure 1.14: The ACEX grain size distributions from 44.4 to 50.4 Ma are plotted on 
the tertiary graph above (solid black dots).  This distribution compares to the 
distribution of the grain size of the central Arctic Ocean sea ice and iceberg samples 
taken in 1991 (square blue dots- icebergs).  The samples are widely banded in the silt: 
clay ratio, while remaining in the silt and sandy silt distinctions.  They vary more in 
the sand percentage than the direct iceberg samples.   The notable outlier for this time 
range is a single sample, which has a silty-sand distinction and is comparable to the 
river ice grain size distribution taken in the Laptev Sea in 1992 (triangle green dot- 
river ice).
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Figure 1.15:  Grain size distributions of the ACEX cores are plotted here using the 
ratios of sand to fine sediments and coarse sand to fine sand.  Changes in the grain size 
distributions correspond to changes in lithology.  Unit 1/2 is dominated by high coarse 
sand percentages.  Unit 1/3 is characterized by moderate sand contributions.  Unit 1/4 
has significant coarse sand contributions, while the unit directly below, which 
incorporates a significant hiatus, returns to more moderate coarse sand levels.  Units 
1/6 and 2 are undifferentiated in regard to grain size distribution, with low sand values 
and coarse sand values that fluctuate between extremely high and low values.  The few 
samples from Unit 3 show an increase in sand deposition. 
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Figure 1.16:  The plotted grain size distribution ratios are for the ACEX Lithology 
Unit 1/2.  Four samples show elevated sand percentages and decreased coarse sand 
contributions, indicative of a sea ice environment.  Numerous samples show elevated 
coarse sand components, suggesting an iceberg influence.  Overall this unit is 
categorized as low sand and coarse sand contributions.   
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Figure 1.17: The plotted grain size distribution ratios are for the ACEX Lithology Unit 
1/3.  Six samples show elevated sand with decreased coarse sand contributions, which 
we interpret as being a sea ice environment.  The majority of this unit is categorized as 
low sand and coarse sand contributions, a diminshed sea ice presence. 
 
 
 
 
 



 

54 

 
 
 
 
 
 



 

55 

 
 
 
 
 
 
 
 
 
Figure 1.18: The plotted grain size distribution ratios are for the ACEX Lithology 
Units 1/4- 1/6.  Unit 1/6 has nine samples between 204 and 220 m with no sand, 
indicative of an ice-free environment (Table 1.2).  Unit 1/5 has two samples, with 
elevated sand and low coarse sand contributions, a sea ice environment.  Most samples 
alternate between low sand- low coarse sand contributions, and low sand- high coarse 
sand contributions, going from sea ice to periods of iceberg influence. 
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Figure 1.19: The plotted grain size distribution ratios are for the ACEX Lithology Unit 
2. This region alternates between low sand- low coarse sand, and low sand- high 
coarse sand contributions, iceberg inclusions. 
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Figure 1.20: The plotted grain size distribution ratios are for the ACEX Lithology Unit 
3.  This unit has a sample that shows elevated sand with extremely coarse sand 
contributions.  This may be a river ice environment (Table 1.3).  There are two 
samples with low sand and coarse sand contributions, a seasonal sea ice presence.  The 
sample with elevated coarse sand, suggests iceberg influence.  
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Figure 1.21:  The ACEX grain size distribution ratios are plotted in time.  The 
darkened portions of the graphs represent hiatuses in the deposition record.  0- 9.4 Ma 
shows a relatively steady sand component, with a decreasing coarse sand component.  
11.6- 18.2 Ma shows again a relatively steady sand component, but with an increasing 
coarse sand component.  44.4- 51 Ma shows a diminished, but present sand 
component, and a widely varying coarse sand component. 
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Figure 1.22: The plotted grain size distribution ratios are for the ACEX cores 44.4- 51 
Ma.  This time range has a period that shows a significantly extremely elevated sand 
contribution with a corresponding elevated coarse sand contribution, possibly a river 
ice environment (Table 1.3).  This time has a period with elevated sand component, 
low coarse sand, a sea ice environment.  The time range has three periods with no 
sand, an ice-free environment (Table 1.2).  The majority of the time range is 
categorized as alternating between having low sand- low coarse sand contributions, 
seasonal sea ice, and low sand- high coarse sand contributions, iceberg influenced. 
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Figure 1.23: The plotted grain size distribution ratios are for the ACEX cores 11.6-
18.2 Ma.  This time range has two periods that have elevated sand, decreased coarse 
sand contributions, a sea ice environment.  The majority of the time range alternates 
between, low sand- elevated coarse sand components, suggesting an iceberg influence, 
and low sand- low coarse sand contributions, diminished sea ice presence. 
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Figure 1.24: The plotted grain size distribution ratios are for the ACEX cores 0- 9.4 
Ma.  This time range has six periods of elevated sand, decreased coarse sand 
contributions, a sea ice environment.  The time range also has samples that display 
elevated coarse sand components, suggesting an iceberg influence.  The majority of 
the time range is categorized as having low sand and coarse sand contributions, a 
seasonal sea ice presence. 
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Figure 1.25:  The solid black line superimposed on the grain size distributions of this 
study, is the global benthic δ18O compiled by Zachos et al. (2001) and interpreted as 
global mean temperature.  There has been an overall decrease in global mean 
temperature for the Cenozoic Era.  The transition from seasonal sea ice to perennial 
sea ice took place at a time when the global mean temperature was between 4° and 8° 
C. 
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Principle Component Fraction of variance explained 

1 0.439665 

2 0.247123 

3 0.139087 

4 0.0647166 

5 0.0466547 

 
 
 
Table 1.5:  The first 5 principle components (components of greatest significance) for 
the ACEX grain size distribution data set.  For statistically significant principle 
components, the fraction of variance explained by the first principle component needs 
to exceed 0.5.  None of the principle components for the ACEX grain size data set 
meet the requirements of being statistically significant.  The principle component 
analysis was completed using the Molegro Data Modeller software. 
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Figure 1.26:  Samples of lithography unit 2 where both the determination of the 
percentage of sea ice dependant diatom, Synedropsis, and grain size profiles from this 
study were taken within 10 centimeters (± 4,115 yrs) of each other graphed showing a 
positive correlation.  This relationship suggests that at periods in unit 2 when icebergs 
were present there was also a strengthening in the presence of seasonal sea ice.  The 
Synedropsis percentages were obtained from Stickley et al. (2009). 
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Chapter 2.  Physical Properties and Grain Size of Glacio-marine Sediment as 

Predictors of Cryo-States in the Arctic Ocean 
 
ABSTRACT 

 We present the results of grain size analyses performed on glacio-marine 

sediment from IODP Expedition 302, Arctic Coring Expedition (ACEX), at the 

Lomonosov Ridge and the relationships to physical properties determined from 

nondestructive measurements.  Analyses of the sand (>63 µm), silt (<63 µm, >4 µm), 

and clay (<4 µm) fractions show varying relationships to the physical properties of 

acoustic compressional wave velocity, bulk density, and color reflectance.  Sand 

percentages were found to have relationships to density, acoustic compressional wave 

velocity and color.  Silt percentages were found to have relationships to color, and 

density.  Clay percentages were also found to only have relationships to density, and 

color. Equally weighting these relationships can be utilized to predict a ratio of sand 

(>63 µm) to fine grained material (<63µm) that shows regions of significant 

differences in grain size distributions.  These differences in the ratio have been 

previously determined (Chapter 1) to indicate major changes in the cryo-state of the 

Arctic polar region.  The prediction of the sand to fine-grained material ratio from the 

physical properties better resolves the ages of the climate transitions than is possible 

with the coarse resolution of the direct grain size analyses, permitting increased 

correlation with other high resolution factors.  Utilizing the method we outline would 

aid future coring expeditions to high latitudes to determine nondestructively sections 

of core of particular climatic interest. 
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INTRODUCTION 

 Physical properties of glacio- marine sediments are practically employed in 

determining grain size distributions.  Grain size distributions have been linked in past 

studies to porosity, permeability, bulk density, and acoustic compressional wave 

velocity (Bachman, 1985; Boggs, 1995; Fetter, 2001; Hamilton, 1970; Hein, 1991; 

Schreiber, 1968; Steurer and Underwood, 2003; Moran et al., 2007).  These physical 

properties, as well as gamma-ray attenuation, electrical resistivity, magnetic 

susceptibility, are measurements that can be completed in minimal time and at low 

cost, shipboard, and in a manner that does not destructively impact the core.  

 The nature of the physical properties obtained from a multi-sensor core track, 

while continuous; act as a smoothing filter to the contributions of grain size 

distribution changes.  This reduces the potential for misinterpretation from aliasing 

inherent in discrete sampling at low frequency (Bendat and Piersol, 2000).  This also 

highlights low frequency changes or modifications to the deposited grain size 

distributions.   

 Grain size distributions can be particularly helpful in the interpretation of high- 

latitude, paleo- cryo-climate in marine sediments (Chapter 1).  The ability to predict 

low frequency modifications of grain size distributions in field would aid in reducing 

the cost and time associated in the analysis of such cores.  To this end, we investigated 

the empirical relationships between the grain size distributions of the glacio- marine 

cores of Integrated Ocean Drilling Program (IODP) Expedition 302 and the physical 

properties of those cores.  This was then extended out to the reinterpretation of other 

high- latitude, glacio- marine cores.  Thus developing reliable, predictive, empirical 
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equations that can be utilized for the interpretation of other such cores.  IODP 

Expedition 302, Arctic Coring Expedition (ACEX), targeted the Lomonosov Ridge, 

central Arctic Ocean, for the interpretation of the dynamics of the deposited sediments 

found at that location and are used as the glacio- marine sediments that are the basis of 

this study. 

Geologic Setting 

 The Lomonosov Ridge is a rifted section of the Eurasian continental shelf 

dividing the Arctic Basin.  Drilling during ACEX focused on four sites, recovering 

sediments from three of the sites, penetrating ~420 m (Figure 2.1).  The sediments 

recovered at the three sites reveal much of the Cenozoic Era, with the noticeable 

exclusion of two depositional hiatuses.   

 Following the coring process, three major units of lithology were identified  

(Backman et al., 2004).  The upper lithology unit was composed mainly of sandy silt, 

devoid of most biological deposition.  The bottom two lithologies are composed 

mainly of clayey silt and are richly abundant in biological material.  They are 

distinguished from each other by changes in biological components.  The sites were 

influenced by drifting ice, as evidenced by the presence of sand for most of the 

recovered record.   

METHODS 

Grain Size Analyses 

Samples were collected and sealed aboard ship and refrigerated until grain size 

analyses could be performed.  Sediment samples were analyzed for the individual 

grain size distribution of terrigenous material.  To isolate the terrigenous material, the 
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samples were placed in a beaker and treated with acetic acid to rid the samples of 

biogenic carbonate, hydrogen peroxide to remove the lipids in each sample and 

sodium carbonate to eliminate the biogenic silicate (Dr John King, personal 

communication; Mortlock and Froelich, 1989).  The samples were then dispersed 

using a solution of sodium hexametaphosphate for a minimum of 48 hours; further 

dispersion was achieved by exposing the samples to an ultrasonic bath for 10 minutes. 

Grain size distributions from the samples were obtained on a Malvern 

Mastersizer 2000, a laser diffraction particle sizing system. The system determined the 

sand, silt, and clay fractions present in each sample.  These data were compiled into 

half phi size bins (phi being a scale of grain size equal to –log2(diameter of grain)).  

These data and the subsequent physical properties used in this study can be found in 

Table 2.1. 

Acoustic Compressional Wave Velocity 

 Acoustic compressional wave velocity (Vp) was measured utilizing a Geotek 

Multi Sensor Core Track (MSCL) p-wave logger.  A p-wave logger generates an 

ultrasonic wave pulse.  The pulse’s dominant frequency is 500 kHz.  The pulse is 

transmitted through an unopened, undisturbed core.  The p-wave logger records the 

travel time.  The diameter of the core is divided by the travel time, determining the 

velocity.  The p-wave velocity was corrected for transducer and core liner time delays 

and core diameter deviations (Schulthesis and McPhail, 1989).  The data were then run 

through a detrending program to remove the influence of depth.   
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Bulk Density 

 Bulk density was measured utilizing a gamma-ray attenuation porosity 

evaluator (GRAPE) on the MSCL (Evans, 1965).  The measurement of bulk density in 

this matter is based on the concept of Compton scattering and attenuation.  A parallel, 

monoenergetic beam of gamma rays produced from a sample of 137Cs pass though the 

core and is detected on the opposite side by a scintillation counter.  During passage 

gamma rays are absorbed and or scattered, loosing energy and direction.  The energy 

loss and the attenuation are used to determine the bulk density (Boyce, 1976).   

Color Reflectance 

 Color reflectance was measured utilizing a high-resolution color image camera 

on the MSCL.  The image was then processed to determine both the percentage of 

color contribution from every 10-nm wavelengths (from 400 nm to 700 nm) and the 

color coefficient for each of the red, green, blue (RGB) contributions.   

Approach 

   We investigated correlation relationships between physical properties of 

sediments, determined nondestructively from core logging techniques, and grain size 

distributions, determined from discrete samples.  From these relationships, we were 

able to formulate predictive empirical equations for grain size distributions, ultimately 

determining changes in cryo-state.   

Principle component analysis (PCA), a multi-variable statistical regression 

model, was initially employed to determine possible relationships for this study.  

However, due to the often-strong correlation of the nondestructive physical properties 

of the cores to each other, correlations to a particular grain size were indistinguishable 
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and mostly insignificant (Tables 2.2-2.6).  PCA proved to be an analysis tool of 

limited usefulness for this data set due to its over-all interdependent nature.  PCA 

requires a complete independent variable data set.  It lacks usefulness for grain size 

and direct measurements of the physical properties of those grains analysis.  

Ultimately, the relationships reported in this study were determined by direct one-to-

one comparison of various grain size ranges to their corresponding physical properties.  

This is a longer, but much more reflective, accurate, and revealing process that ensures 

no significant relationship is missed. 

 

RESULTS 

 A previous study of grain size distributions and physical properties (Steurer 

and Underwood, 2003) compared clay fraction percentages and the physical properties 

of bulk density and porosity (Figure 2.2).  Since porosity is calculated from the 

GRAPE-derived bulk density, assuming a specific gravity of 2.7, any relationship that 

exists for bulk density also exists for porosity.  Therefore, in this study, we ignored the 

porosity relationships as a redundancy, focusing only on the bulk density.  Additional 

studies (Bachman, 1985; Hamilton, 1971) compared the grain size distribution in 

terms of median grain diameter to the physical properties of compressional wave 

velocity and impedance.  Again, since the impedance is calculated by multiplying 

velocity and bulk density, any relationship that exists for either one, should also result 

in a relationship with impedance.  Therefore, in this study, we ignored the impedance 

relationships as a redundancy, focusing on the velocity and bulk density only.  Studies 

of color and glacial/interglacial cycles have been completed on similar Arctic 
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sediments (Jakobsson et al., 2000; Jakobsson et al., 2001; Poore et al., 1993; Phillips 

and Grantz, 1997).  The studies claimed that brown sediments, made so by additional 

Manganese content, were interglacial periods and contained an absence of larger grain 

size distributions.  We found color relationships to grain size as well, however, the 

level of brown did not correspond to any of the size fractions. 

 In this study, we found relationships with physical properties for all three 

relevant categories of sediment (clay, silt, and sand).   The Udden-Wentworth size 

classification system was employed for this study.  This system defines sand as 

particles with diameters between 2000 µm and 63 µm.  Silt is defined as particles with 

diameters between 63 µm and 4 µm.  Clay is defined as all particles with diameters <4 

µm.  Using the grain size distribution samples that had reliable MSCL data at the same 

location (with the exception of the one major outlier in grain size distributions), linear 

regressions were fit to the various datasets of sand, silt, clay, and fines.  The best 

correlations are used in this study for prediction purposes.   

Sand was found to have strong positive correlations to acoustic compressional 

wave velocity (Vp; R = 0.79), bulk density (ρ; R = 0.67), and color reflectance at a 

570 nm wavelength (570λ; R = 0.55) (Figure 2.3).  Multiple color reflectance λs were 

found to have correlating relationships with the percentage of sand.  A λ of 570 nm 

was chosen for prediction purposes since it produced the highest correlation 

coefficient (R) (Figure 2.4).  Equally weighting all three relationships increases the 

accuracy of the predictive equation for sand: 

 

Sand % = -25.6686 + 1/3*(1.1*[570λ] + 0.05*[Vp] + 16ρ)   (2.1) 
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   Silt was found to have strong negative correlations to bulk density (ρ; R = 

0.82) and color reflectance at the 660 nm wavelength (660λ; R = 0.73) (Figure 2.5).  

Again multiple color reflectance λs were found to have a correlating relationship with 

the percentage of silt.  A λ of 660 nm was chosen for prediction purposes since it 

produced the highest correlation coefficient (R) (Figure 2.6).  Equally weighing both 

relationships increases the accuracy of the predictive equation for silt: 

 

Silt % = 5*(13 - 4ρ + 11*[660λ]^(-0.32))     (2.2) 

 

Clay was found to have a positive correlation to bulk density (ρ; R = 0.61) and 

a negative correlation to the green contribution on the RGB scale (G; R = 0.57) 

(Figure 2.7).  All three color contributions (red, green, and blue) were found to have a 

correlation to the percentage of silt.  Green was chosen for prediction purposes since it 

produced the highest correlation coefficient (R) (Figure 2.8).  Equally weighing both 

relationships increases the accuracy of the predictive equation for clay: 

 

Clay % = 44.5- 0.24*[G] + 24ρ      (2.3) 

 

The predictive equations for silt and clay were added together, resulting in an 

equation for the prediction of the percentage of fine material in a sample (< 63 µm):  

 

Fines % = 109.5 + 4ρ + 0.24*[G] + 55*[660λ]^(-0.32)   (2.4) 
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By combining the silt and clay percentages in this manner, we are able to increase the 

accuracy of the predictions (Figure 2.9) and employ the cryo-state ratio of sand 

percentages to fines percentages (S/F) established in previous studies (Chapter 1).  

Higher values of the S/F ratio are indicative of a strong, perannial cyro-state with 

multi year sea ice (of some combination of frozen sea water and or icebergs).  Lower 

values of the S/F ration are indicative of a weak, seasonal cryo-state with a diminished 

sea ice presence (of either frozen sea water and or icebergs). 

While the individual relationships inherently missed percentage changes present in the 

samples, compounding relationships decreased these occurrences (Figure 2.9).  When 

the predictive equations are applied to the entire high-resolution MSCL dataset with 

quality data acquisition, the S/F ratio eliminates the high frequency changes present in 

the physical samples and highlights the low frequency, major shifts in the central 

Arctic’s cryo-state (Figure 2.10 and 2.11).  The extended predicted S/F ratio matches 

the measured S/F ratio remarkably well.  Major shifts in the predicted data occur at 

~220mcd or 44.5 Ma, ~300mcd or 48.75 Ma, and ~315mcd or 50 Ma.  A drawback of 

this predictive approach is that short isolated points were no sand was present in the 

direct sample is missed in the smoothing effect of the prediction.  Times between 45.5 

and 48 Ma, when through direct grain size analyze there is an ice free Arctic Ocean 

are predicted as a weakened, seasonal sea ice presence, but not as ice free. 

DISSCUSSION 

 By utilizing the predictive relationships outlined in this study to determine the 

S/F ratio, future central Arctic coring expeditions will be able to determine if the three 
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cyro-state shifts found in the Expedition 302 cores are the only major shifts in the 

Arctic during the Cenozoic Era.  Additionally, this can be used as a correlation feature 

between cores.  If the uniqueness of the three cryo-state shifts persists with future 

exploration and research, it would indicate a fairly consistent cryo-state has existed in 

the central Arctic Ocean for the last 44.5 Ma.  There was a weakened cryo-state 

previous to the 44.5 Ma transition, with an excursion into a stronger cryo-state from 

50 to 48.75 Ma (Figure 2.11). 

 By comparing the timing and direction of the cryo-state transitions to the 

published paleogene temperature record of Weller and Stein (2007) for the same cores, 

we are able to determine a rough estimate for the Sea Surface Temperature that marks 

the boundary between a strong cryo-state and a weak cryo-state.   Weller and Stein 

(2007) reported a warming of ~7° C across the transition present at 44.5 Ma, a cooling 

of ~10° C across the transition present at 48.75 Ma, and a warming of ~4° C across the 

transition present at 50 Ma (Figure 2.14).  The transitions in cryo-state occur more 

rapidly than the warming and cooling periods, indicating a potential “tipping 

temperature” from one cryo-state to the other.  This sea surface temperature appears to 

be in the 13 to 14° C range.  This number can be refined with further SST work, both 

with increasing frequency of determination and increased accuracy.  In addition to the 

significance of a “tipping temperature” to paleo- Arctic studies, this work can be of 

importance to the predictions of future Arctic cryo-states.  

As of early August 2008, the SST 13° C isotherm was present south of Iceland 

in the North Atlantic and well south of the Artic Circle in the Pacific Ocean.  SST 

temperatures at the present ice edge are 2-4° C (NCEP, 2008).  There remains a 
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significant amount of energy left to be added to the Arctic surface waters to raise the 

central Arctic Ocean to the 13-14° C “tipping temperature”.  A potential avenue of 

research for ocean modelers will be how and when that threshold of energy reaches 

the central Arctic Ocean and changes the cryo-state. 

CONCLUSIONS 

 Correlations between the data acquired from the non-destructive Multi- Sensor 

Core Logger (MSCL) and grain size distributions were developed in this study for the 

central Arctic region.  These correlations can be used to predict core locations that 

represent shifts in the Arctic’s cryo-state.  We show that by obtaining acoustic wave 

velocity, bulk density, and color reflectance from split glacio-marine cores and 

employing empirical relationships, major shifts in ice presence can be predicted.  This 

prediction can aid in the sampling and study of the cores. The methods outlined in this 

study have the potential to be developed for additional sedimentary environments, 

broadening the use and reach of MSCL data.   

 The utilization of the techniques within the Arctic environment yielded 

noticeable sharp/fast transitions from one cryo-state to another.  All the retrieved 

transitions from the ACEX cores are older than 44.4 Ma, indicating a reasonably 

stable cryo-state in the neogene.   The possible Sea Surface Temperature associated 

with the shift from one cryo-state to another may exist around 14 ° C.  This study 

opens multiple avenues for future research in both paleo- and predictive studies. 
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Table 2.1:  Grain size distributions and multi-sensor core logging data from IODP 
Exp. 302 (ACEX) used in this study. 
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Table 2.2 
Sand Correlation Coefficient  

Acoustic Wave Velocity 0.352 
Bulk Density 0.246 
Color 570 0.245 
Color 580 0.244 
Color 590 0.202 
Table 2.3 

Table 2.4 

 
Table 2.5 

 
 
Table 2.6 

 
 
 
 

Silt Correlation Coefficient 
Bulk Density 0.626 
Acoustic Wave Velocity 0.316 
Color 610 0.179 
Color 620 0.103 
RGB Reflectance (Green) 0.023 

Acoustic Wave Velocity Correlation Coefficient 
Color 600 0.806 
Color 610 0.803 
Bulk Density 0.658 
Color 550 0.352 
Color 540 0.316 

Clay Correlation Coefficient 
Bulk Density 0.368 
Acoustic Wave Velocity 0.069 
RGB Reflectance (Green) 0.031 
RGB Reflectance (Red) 0.027 
Acoustic Wave Amplitude 0.002 

Bulk Density Correlation Coefficient 
Acoustic Wave Velocity 0.658 
Resistivity 0.615 
Reflectance at 600 0.558 
Reflectance at 610 0.557 
Reflectance at 590 0.556 



 

89 

Tables 2.2-2.6: The first principle components (components of greatest significance) 
for the ACEX MSCL data set and various grain size percentages were all statistically 
significant (explained more than 0.5 percent of the variance in the data set.   For all of 
the principle component analyses (PCAs) run for each of the sediment sizes of sand, 
silt, and clay only the first principle component was significant.  Once the existence 
between variables was established, the correlation coefficients were examined for each 
run.  Tables 2.2-2.6 display the correlation coefficients for some of the variables.   Too 
many of the variables qualified as being statistically significant to each other, 
diminishing the correlation to the grain size.  Without any standout variables, this 
approach prohibited a narrowing down of the variables, which had statistically 
meaningful relationships with the grain size being analyzed. Tables 2.2-2.6 are the 
correlation coefficient for sand, silt, and clay respectively and various physical 
properties.  Each of these show significantly lower correlation coefficients than the 
correlations the physical properties had to each other, examples of which are displayed 
in table 2.5 for acoustic wave velocity and table 2.6 for bulk density.  The noticeable 
exception to this is the significantly strong correlation silt has with bulk density. The 
PCA was completed using the Molegro Data Modeller software. 
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Figure 2.1:  IODP Exp. 302 (ACEX) drill sites were located in the central Arctic 
Ocean, on the Lomonosov Ridge (red dot).  These sediments were entirely from the 
Cenozoic Era and are primarily glacio-marine in origin. (IBCAO, 2008)
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Figure 2.2:  Steurer and Underwood (2003) found positive relationships between bulk 
density and percentage of clay by weight.  Sites 1173 and 1174 were located at the 
Nankai Trench.  While a vastly different depositional environment than the sediments 
analyzed in this study, the positive relationship is true in both studies.
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Figure 2.3:  The three significant linear relationships between percentage of sand (% 
volume) and the physical properties of the sediments are color reflectance at the 570 
nm wavelength, acoustic wave velocity, and bulk density.  The positive linear 
regressions are combined and used as a predictor of sand contributions. 
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Figure 2.4:  Multiple reflectance wavelengths were found to have significant 
relationships to the percentage of sand (% volume).  The wavelength of 570 nm was 
chosen to be used for prediction purposes since it had the greatest R-value of all the 
wavelengths. 
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Figure 2.5:  Percentage of silt (% volume) has a power relationship with 660 nm 
wavelength color reflectance and a linear relationship to bulk density.  These negative 
relationships are combined for the purpose of predicting the contribution of silt non-
destructively. 
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Figure 2.6:  All of the color reflectance wavelengths had significant power relationship 
to the percentage of silt (% volume).  The wavelength of 660 nm was chosen for 
prediction purposes since it had the greatest R-value of all the wavelengths. 
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Figure 2.7:  The percentage of clay (% volume) has a negative linear relationship with 
RGB reflectance coefficient of green and a positive linear relationship bulk density.  
These relationships were combined to establish predicting equations.  
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Figure 2.8:  Of the three RGB color coefficients, green had the greatest R-value.  
Green was therefore chosen for the predicting equations.    
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Figure 2.9:  The four graphs show the measured percentages (% volume) of silt, clay, 
fine material (silt + clay), and sand and compares to each locations predicted 
percentage.  The predicted fine material eliminates much of the inaccuracy of the silt 
and clay predictions. 
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Figure 2.10:  The graphs are of the predicted clay, silt, and sand percentages from the 
high-resolution MSCL data set.  Clay, silt, and sand percentages all stay fairly 
consistent for the top 220 mcd of the ACEX cores.  Below 220 mcd, clay percentages 
decrease (with increases with greater depth), silt percentages increase (with decreases 
with greater depth), and sand percentages decrease consistently with an exception at 
~300 mcd when the sand percentages greatly increases.  The changes in percentages 
above and below 220 mcd are most likely indicative of a change in cryo-state from 
seasonal sea ice (lower cores) to perennial sea ice.  The sharp change in sand 
percentages may correspond to a strong river influence at that time.  
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Figure 2.11:  The graphs show the predicted sand to fine material ratio (S/F), which is 
a cryo-state proxy, for all the usable, high-resolution physical properties from the 
ACEX cores.  These are compared to the measured ratio from discrete samples.  The 
predicted ratio is fairly consistent until ~220m, 45.5 Ma.  The cryo-state then weakens, 
with one possible excursion.  This analysis of the cryo-state of the central Arctic 
Ocean correlates well with determined SST from the same cores.  The use of high-
resolution in the prediction of S/F in these graphs expands and extends the grain size 
analysis of the cores and helps improve confidence that the discrete samples are not 
being aliased due to sampling intervals. 
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Chapter 3.  Late Pleistocene Changes in Ice and Currents from the Central 

Lomonosov Ridge, Arctic Ocean 
 
 
ABSTRACT 
 
 The Arctic Coring Expedition (ACEX), a milestone research endeavor that 

took place during the summer of 2004, obtained a sediment core record from the 

central Lomonosov Ridge, Arctic Ocean. Grain size analyses of samples from the 

ACEX cores are complemented in the Holocene by high-resolution grain-size 

sampling taken from an ARCTIC ’91 piston core and physical properties from Arctic 

Ocean-96 cores, both from locations near the ACEX site. This study is concerned with 

our ability to resolve and decouple paleo-currents from the paleo-ice climate. Relative 

paleo-current magnitudes can be ascertained using a measure of ‘sortable silt’ (SS), 

the mean of the silt fraction in a sample (McCave et al., 1995a,b).  Paleo-ice climate 

can be estimated from the ice rafted debris (IRD), specifically the sand fraction 

percentage of a sample. The grain size analysis shows a linear relationship between SS 

and IRD.  The linear relationship suggests that paleo-ice climate intensity can be 

overestimated with higher paleo-current speeds.  Employing the linear relationship, 

the contribution of paleo-currents can be removed from the IRD record and the two 

paleo-indicators examined separately.  The late Pleistocene has a strong paleo-ice 

climate and a strong, narrow range of paleo- bottom current speeds.  There is a strong, 

noticeable change at the MIS 6 boundary (~200 ka), where the ice climate was 

significantly strengthened to levels higher than at any other time in the Cenozoic 

record recovered from ACEX and the central Arctic Ocean, a strengthening not 

observed in the paleo-current speeds, which stay in the pre-MIS 6 range. 
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INTRODUCTION 

 The use of the silt fraction (<63 µm) from grain-size distribution to obtain 

speeds of paleo- bottom currents is becoming a well-established practice (Prins et al., 

2002; McCave et al., 1995a).  Silt, which in most glacio- marine influenced regions is 

deposited from icebergs, bottom currents, and sea ice can not be separated into paleo-

climate (IRD) influenced silt deposition and non- paleo-climate influenced deposition 

in most circumstances due to the multiple deposition mechanisms (McCave et al., 

1995b).  However, the Lomonosov Ridge, being significantly raised from the Arctic’s 

abyssal plain, removes the influence of bottom-current silt deposition (Clark and 

Hansen, 1983).  This unique bathymetric feature allows for both the interpretation of 

the paleo-current and –climate.  For this reason, the coring study of the Arctic Coring 

Expedition (ACEX), which took place during the summer of 2004, along with the 

previous Arctic ’91 and Arctic Ocean –96 were ideally suited for examining the paleo-

current and –ice climate of the late Pleistocene Arctic Ocean (Figure 3.1).   

Aagaard (1981) showed bottom current speeds across the central Lomonosov 

Ridge that are sufficient for active sediment transport, particularly of the finer grain 

sizes.  Previous studies of the central Lomonosov Ridge have noted that cores from the 

ridge show increased sand and suggest the effect of bottom currents in winnowing 

finer sediments from the site (Bjork et al., 2007; Darby et al., 1989, 1997).  The 

measure of paleo-current speed is the mean size of the silt fraction, or ‘sortable silt’ 

(SS).  Coarser SS sizes indicate stronger current speeds acting on the sediment in both 

the depositional process and post-deposition winnowing (McCave et al., 1995b; Hall 

et al., 2001). The work has been further developed by Prins (2002) and Moros et al 
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(2002) to be used in examining the relationship between the IRD and SS components.  

The initial work of Prins (2002) and Moros et al. (2002) indicates that the intensity or 

percentage of IRD in a sample may be increased by the removal of fine-grained 

sediment by paleo-currents. 

Ice Rafted Debris (IRD), commonly considered the sand fraction in glacio-

marine sediments, has been well established as a paleo- ice climate indicator (Chapter 

1 and 2). Jakobsson et al. (2001), Poore et al. (1993), Phillips and Grantz (1997), 

Gyllencreutz (2005), Prins et al. (2002), Clark (1996), Ruddiman (1977), and 

Sakamoto et al. (2005), have all employed a definition of IRD as being the >63 µm 

grain size component.  The use of the 63 µm minimum limit permits the most 

complete analysis of IRD, specifically including sediment deposited from sea ice 

along with icebergs. 

A number of Arctic studies have evidence of mega-iceburgs originating from 

the grounded ice shelves of the Laurentide ice sheet (Polyak et al., 2007).  These 

studies place the first erosional horizon of icebergs on the Lomonosov Ridge in MIS 6, 

~150 ka (Jakobsson et al., 2001).  The collapse of this ice sheet has a chronology of 

14-34 ka (Darby et al., 2002).  The timing of all this evidence of increased iceberg 

presence in the central Arctic Ocean correlates to the reconstruction of a massive 

northern Eurasian ice sheet (Svendsen et al., 2004).  The work of this study, by 

decoupling the influence of winnowing on IRD fractions, provides further evidence 

for the strengthened paleo- ice climate at the MIS 6 boundary. 
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METHODS 

  
The sites used in this study can be interpreted to represent the paleo-climate of 

the central Cenozoic Arctic Ocean because the Lomonosov Ridge separated from the 

Eurasian shelf, limiting sedimentation influences to those from mid-ocean deposition.  

All of the core sections were run through a multi-sensor core logger (MSCL) to 

measure high resolution physical properties, including p-wave velocity, image/color 

analyses, gamma ray attenuation, magnetic susceptibility, and electrical resistivity.  

The initial step to determining the paleo-ice environment of the Cenozoic Arctic 

Ocean is to determine the grain size distribution of the cores.  To accomplish this, each 

of the sediment samples taken from the cores was analyzed for its individual grain size 

distribution of terrigenous material. The samples were steeped in a solution of sodium 

hexametaphosphate for at least 48 hours to ensure that the clay particles were 

neutralized and that no flocculation occurred.  Each of the sediment samples was run 

on the Malvern Mastersizer 2000, a laser diffraction particle sizing system. These data 

were then compiled into half phi size bins (phi being a scale of grain size equal to –

log2 (diameter of grain)).   

The SS of each sample was obtained by determining the mean of each 

sample’s silt component (10 – 63 µm) as a proxy of the paleo-current intensity. Linear 

regression analysis was performed on the SS and sand % (IRD) components.  Once a 

relationship between the mean silt size and the percentage was established for each 

data set, the SS contribution to each sand percentage was removed, revealing paleo-ice 

presence to a greater accuracy.  
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In addition, an examination of the ability of data from the Malvern Mastersizer 

2000 to accurately and precisely determine silt and sand percentages was completed.  

For the ACEX sediment samples, 10 percent of the samples were compared for their 

grain size distribution percentages obtained from the Malvern Mastersizer 2000 to a 

more traditional procedure for determining grain size distributions.  For the 

comparative procedure, samples were prepared in an identical fashion as the sample 

preparation for the Mastersizer and then hydrometer readings taken at set prescribed 

times to determine sand and silt percentages (Bouyoucos, 1962).   The comparisons 

between silt and sand grain size distributions obtained by each process show no 

statistical difference (Figures 3.2-3.3).  The small differences that do exist between the 

two methods (<3% of values) are within the range of error due to rounding 

differences, human error, and the possible discrepancy in comparing percent volume 

(Malvern Mastersizer 2000) and percent weight (hydrometer method).  Differences in 

the percentages due to looking at either weight or volume, only exist if there is a 

difference in the mineral density of the sand, silt, and clay fractions.  In addition, 10 

percent of the samples were run 3 times on the Malvern Mastersizer 2000 with less 

than a 1 % difference between the runs.  It was suggested by McCave et al. (2006) that 

laser diffraction was not a reliable means of determining grain size distributions (they 

used a Malvern Mastersizer 2600 in the study, a previous generation to the 2000 

series).  Our methodology supports the analyzes of others that have not only 

demonstrated the accuracy and precision of laser diffraction in grain size distributions, 

but concluded it as the preferred method for grain size distributions of clay, silt, and 

sand (Jonkers et al., 2009; Wen et al., 2002; Sperazza et al., 2004; Goossens, 2008).  
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In fact, the most comprehensive of the studies conducted by Goossens (2008), which 

examined and compared 10 of the most widely used and accepted methodologies for 

determining grain size distributions, found that McCave et al.’s (2006) preferred 

methodology involving the Sedigraph, grossly overestimates the silt fraction due to the 

nature and assumptions of the methodology. 

RESULTS 

Sortable Silt- Sand Relationship 

 Linear regression analysis, performed on both the ACEX and the ARCTIC ’91 

sediment distributions for the quaternary period, revealed a strong relationship 

between the mean silt fraction (SS) and the percentage of sand (IRD).  The 

relationship determined for the ACEX quaternary samples is: 

 Sand % = 204.65 – 37.572*SS    (3.1) 

with an R-value of 0.94352, showing highly strong correlation (Figure 3.4).  The 

relationship for the ARCTIC ’91 quaternary samples is: 

 Sand % = 344.67 – 58.87*SS     (3.2) 

with an R-value of 0.79399, showing strong correlation (Figure 3.4).  The strength of 

the relationships supports the concept that the measure of the mean silt size (SS) is a 

proxy for paleo-current intensity for a particular depositional environment.  The 

mechanism that is most likely responsible for both the increased sand presence and the 

larger mean silt size (lower phi value) is the winnowing of the deposited sediments by 

paleo-currents.  These relationships are then used as projection transforms to 

reconfigure the sand percentage, as it would have been prior to the winnowing effects.   
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Changes in Ice and Current Velocities 

 
 The transformed sand percentages for the quaternary period of the ACEX 

samples and the corresponding mean silt sizes (SS) show a dynamic environment in 

the central Arctic Ocean for the Quaternary period, particularly in the late Pleistocene 

epoch (Figure 3.5).  While prior to MIS 6 in the late Pleistocene (~200 ka), the sand 

percentage (IRD) is shown to be fairly consistent. This indicates a consistent ice 

intensity presence.  Post-MIS 6, the sand percentage increases by roughly 15%.  The 

implication is a significantly strengthened ice presence following the MIS 6 boundary.  

This alteration in ice intensity was expected from the physical property analysis for 

both the ACEX cores and other cores previously taken from the Lomonosov Ridge 

(Figure 3.6). The physical properties of the sediments all indicated that significant 

changes in depositional environment took place at the MIS 6 boundary.  Bulk density, 

inclination, and magnetic susceptibility all showed sharp increases at the  ~200 ka 

date.  This transition corresponds to a time of global instability in the cryosphere as 

determined from global benthic δ18O data that shows a gradual increase in δ18O values 

from 4-1.5 Ma (strengthening cryosphere) followed by high frequency changes in the 

values from 1.5 Ma to present (Zachos et al., 2001; Lisiecki and Raymo,  2005; 

O’Regan et al., 2010). 

 While physical properties and sand percentage (IRD) show two distinct 

regimes pre- and post- MIS 6, the mean silt size (SS), a proxy for current intensity, 

shows no such pattern (Figure 3.5).  Current intensity does vary over the Quaternary 

period, but with no pre/post MIS6 distinction.  There is no discernable pattern in the 

paleo-current velocities as determined by the SS proxy.  This indicates a decoupling 
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between the climate of the Arctic as indicated by the sand % (IRD) and the physical 

oceanography of the Arctic Ocean.  This supports O’Regan et al. (2010) hypothesis 

that the increase in IRD at the start of MIS 6 is due to an increase in the amount of 

heat available for basal ice melt from the opening of the Bering and Fram Straits 

introducing lower-latitude water bodies to the Arctic.   

DISCUSSION 

The emerging use of the ‘sortable silt’ proxy for paleo-currents can be of 

significant use for raised, isolated, depositional features, such as the Lomonosov 

Ridge.  Further development of the proxy through the analyses of additional samples 

from multiple sites of similar physical characteristics will lead to a clearer 

understanding of both paleo-physical and geological oceanography conditions.  The 

use of such methods will prevent future misinterpretations of sand percentage (IRD) 

strengthening that may have been due to increased current velocities and not to 

changes in climate.  The full potential of such methodologies will develop with time 

and data volume.  

In its limited use, mean silt size (SS) provides intriguing glimpses of the paleo-

Arctic, particularly in the ACEX cores’ Quaternary samples.  They clearly indicate 

that even with the effects of paleo-current winnowing on sediments, there was a 

distinct strengthening of the IRD presence in the late Pleistocene.  The timing of the 

sand presence shift corresponds to the MIS 6 boundary and suggests a strengthened ice 

climate or as suggested by O’Regan et al. (2010) an increase in basal ice melt.  The 

timing of strengthened ice climate observed in this study further support the theory of 

a pan-Arctic ice sheet (Mercer, 1970; Hughes et al., 1977; Grosswald and Hughes, 
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1999).  There is also a suggestion from the most recent sample and a sample taken at 3 

MCD that the Arctic climate may have resumed an ice climate similar to the pan-

Arctic ice sheet recently and that there may have been previous decays and regrowths 

of the pan-Arctic ice sheet (Figure 3.5).  Future high-resolution sampling of Arctic 

cores which date from the period, should reveal whether the pan-Arctic ice sheet was 

stable or if it was cyclical in nature and we have an unintended sampling bias in the 

ACEX grain size distribution data set. 

Lack of a discernable pattern in the paleo-current intensity may also be a 

reflection of true Arctic dynamics or a symptom of too few samples.  Either way, we 

have enough samples in this study to determine that while sediments are effected by 

paleo-currents, paleo-currents are unaffected by the Arctic climate as indicated by 

sand percentages (IRD).  This suggests the paleo-current strengths are also 

independent of sea level, which is effected by ice volume and surface winds, effected 

by ice capping.  Further investigations in paleo-current strengths along the Lomonosov 

Ridge may allow for paleo-current mapping.  Once paleo-current dynamics in terms of 

both time and space are resolved, an understanding of the forces driving these currents 

may be determined. 

CONCLUSIONS 

 Variations in ice intensity can be enhanced through the ‘sortable silt’ method 

of removing the winnowing contribution of paleo-currents.  By employing the proxy 

of the mean silt size of a sample (SS) as a measure of relative current velocity, sand 

percentage variability can be reset to pre- winnowing patterns.  By using these proxies 

and techniques on Quaternary period samples from the ACEX cores, we determine a 
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consistent ice presence for the early and mid Pleistocene.  This ice presence sharply 

intensified in the late Pleistocene, corresponding to MIS 6.  Current velocities 

remained inconsistent and dynamic throughout the Quaternary era.    

 The strong correlative relationships between sand percentages (IRD) and mean 

silt fractions (SS) for the Lomonosov Ridge, show that the methods used in this study 

will be of further value in future coring endeavors of the ridge and similar depositional 

sites.  The variability found in the paleo-current proxy (SS) suggests the need for high-

resolution grain size analyses in future cores to determine if there is a discernable 

pattern in Arctic Ocean current intensity. 
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Figure 3.1:  A map produced by the IBCAO of the bathymetry of the Arctic Ocean 
basin.  The Lomonosov Ridge is the raised bathymetric feature fractioning the basin in 
two.  The ridge provides a silt deposition site that is uninfluenced by bottom current 
deposition, while being affected by bottom current winnowing.  This provides an ideal 
location for paleo-studies separating ice climate from bottom current speeds.  The 
central Arctic Ocean coring locations of ACEX, ARCTIC ’91, and Arctic Ocean-96 
used in this study are identified on the map.  PS-2185-6 is the site of the ARCTIC ’91 
study.  96/12-PC is the site of the Arctic Ocean-96 study. 
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Figure 3.2:  Graphs showing the comparison of sand percentages determined from the 
hydrometer method to the Malvern (laser diffraction) method.  For the direct 
comparison graph (left) the Y=X line is displayed for reference purposes to the ideal 
comparison. The graph on the right plots the difference in percentage between the two 
methods (Malvern – hydrometer) versus an arbitrary sample number.  The mean 
difference in the methods ( ~ -0.2) is plotted as a vertical line for reference, suggesting 
an slight bias of the Malvern method to under estimate sand percentages.  There is a 
good correlation between the two methods concerning the percentage of sand, with no 
sample with more than a 3% difference between the methods. 
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Figure 3.3:  Graphs showing the comparison of silt percentages determined from the 
hydrometer method to the Malvern (laser diffraction) method.  For the direct 
comparison graph (left) the Y=X line is displayed for reference purposes to the ideal 
comparison. The graph on the right plots the difference in percentage between the two 
methods (Malvern – hydrometer) versus an arbitrary sample number.  The mean 
difference in the methods ( ~ 0.2) is plotted as a vertical line for reference, suggesting 
an slight bias of the Malvern method to over estimate silt percentages.  There is a good 
correlation between the two methods concerning the percentage of sand, with no 
sample with more than a 3% difference between the methods. 
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Figure 3.4:  Graphs of sortable silt versus Sand % (IRD) for sediment samples taken 
from the late Pleistocene of the ACEX and Arctic ’91 cores.  The sediments from both 
coring projects show a strong linear relationship between the two variables.  
Significant outliers from the line indicate significant changes in the paleo- ice 
environment, altering the depositional regime.  Larger sortable silt values indicate 
finer mean silt fractions, corresponding to weaker current speeds over the Lomonosov 
Ridge.  Using these linear relationships, the paleo- bottom current speeds and –ice 
climate can be decoupled. 
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Figure 3.5:  Graphs covering the late Pleistocene as gained from the ACEX core 
sediments.  The boundary of MIS 6 (~200 ka) is found at ~4.85 MCD.  The graph of 
sand% after it has been decoupled from winnowing affects of paleo- bottom currents, 
as previously established in the linear relationship, shows a significant increase in sand 
% (IRD) after the MIS 6 boundary.  This indicates a strengthening paleo- ice climate 
and corresponds to the presence of ‘mega-iceburgs’ in the central Arctic Ocean.  The 
variation in the adjusted sand % from the beginning of MIS 6 to present corresponds 
to marine isotope stages with interglacials showing decreased sand % and glacials 
increased sand %.  While paleo- bottom currents have varied over time for the ~500ka 
shown in the graph of sortable silt, the range of current speeds has not deviated greatly 
and shows no significant strengthening or weakening after the MIS 6 boundary.  The 
larger sortable silt phi sizes correspond to finer silt fractions, indicating weaker bottom 
current speeds.  The two most recent interglacials do show possible current 
strengthening.   
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Figure 3.6:  The graphs are of some of the physical properties of the ACEX cores and 
two previous studies of the Lomonosov Ridge, Arctic Ocean.  Coring sites are shown 
on the Figure 3.1 map.  The bulk density, inclination, and magnetic susceptibility of 
these studies all show a change in deposition occurring at ~4.7 on the migrated depth 
scale, a depth which corresponds to MIS 6.  This change is more clearly visible in the 
transformed sand percentages in this study.  Mean silt size (SS) shows no such change. 
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APPENDIX I:  Data and statistical variables for IODP Exp. 302, ACEX, samples 
taken from neogene sediments.  Samples exclusively contained sand, silt, and clay.  
Sample identifications are the expedition-site-core-section.  The samples are presented 
in descending order.
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APENDIX II:  Data and statistical variables for IODP Exp. 302, ACEX, samples taken 
from paleogene sediments.  Samples exclusively contained sand, silt, and clay.  
Sample identifications are the expedition-site-core-section.  The samples are presented 
in descending order.
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