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Quantum Monte Carlo study of the thermodynamic properties of
argon clusters: The homogeneous nucleation of argon in argon

vapor and “magic number’ distributions in argon vapor
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Jimmie D. Doll

University of California, Chemistry Division, Los Alamos National Laboratory, MS J 569, Los Alamos, New Mexico 87545

(Received 19 July 1984; accepted 20 September 1984)

The thermodynamic properties of clusters of argon atoms are studied by a
combination of classical and quantum mechanical Monte Carlo methods. The argon
atoms are represented by Lennard-Jones interactions and internal energies, free
energies, and entropies are calculated as a function of temperature and cluster size.
For the argon system quantum effects and anharmonicity corrections are found to be
simultaneously important for a temperature range from 15 to 20 K. By examining
local minima in the free energy of formation of argon clusters as a function of cluster
size, magic numbers in the Boltzmann mass distribution are observed at n = 7, 13,
and 19 under some conditions of temperature and pressure. In some cases magic
numbers are predicted in the quantum and not in the classical calculation. The
entropy changes associated with cluster growth are found to be insensitive to cluster
size. Quantum corrections are calculated to nucleation rates and found to be very

important at low temperatures.

I. INTRODUCTION

It is well known that vapors at pressures supersatu-
rated to the formation of a condensate can have exceed-
ingly long metastable lifetimes. These long lifetimes are
frequently rationalized in terms of a free energy barrier
to the nucleation of molecular clusters in the vapor phase.
For systems undergoing homogeneous nucleation under
steady-state conditions the nucleation rate equations have
been studied and several reviews of steady-state nucleation
kinetics are available.'”? As shown in these reviews, under
several reasonable assumptions, the steady state nucleation
rate J, can be expressed as

fmax - -1
= [2 (C,.On)"] , (1)
n=1

where C, is the concentration of clusters composed of »
vapor phase monomers in a Boltzmann distribution, O,
is the average rate at which clusters of size n capture a
monomer to grow to size n + 1, and nmax is @ maximum
cluster size above which contributions to Eq. (1) are
negligible. Although the assumptions which lead to Eq.
(1) have been challenged** and are undoubtedly inappro-
priate in some cases, the expression for J given in Eq. (1)
is at least qualitatively accurate. The corrections required
to improve Eq. (1) are peripheral to this work and we
shall assume it to be appropriate. Because the sticking
probability for a monomer interacting with clusters of
size n is nearly unity, O, can be calculated accurately
from kinetic theory to give the expression

= pQxmkgT) (367 V2)'*n?, @)
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where V. is the effective volume per molecule, p is the
pressure of the vapor phase, T is the absolute temperature,
m is the mass of a monomer, and kjz is the Boltzmann
constant.

In contrast to the capture probability, the concentra-
tion of clusters of size n in a Boltzmann distribution C,
is very difficult to determine and the evaluation of C, is
one of the principal theoretical problems in the study of
homogeneous nucleation kinetics. Because the set of
cluster concentrations in a Boltzmann distribution are
equilibrium quantities, C, can be expressed in terms of
the Gibbs free energy of formation of clusters of size »,
AG(n, p, T), by the expression

C, = C, exp[—AG(n, p, T)/ksT]. 3

The validity of Eq. (3) depends upon a number of
assumptions, and to clarify those assumptions a derivation
of Eq. (3) is given in the Appendix. By application of Eq.
(3) the free energy barrier previously mentioned is seen
to be associated with clusters of minimum concentration
which give the dominant contribution to the nucleation
rate in Eq. (1).

The experimental determination of cluster size dis-
tributions in a vapor is very difficult. For small metallic
clusters shock tube measurements®® and mass spectrom-
etry techniques® have been used. For nonmetallic clusters
size distributions have been determined using cluster
beam methods.!>'4 One of the more intriguing observa-
tions from cluster beam experiments on rare gas systems
is the identification of certain cluster sizes which are local
maxima in the overall mass distribution. Cluster sizes
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which appear as local maxima have been termed “magic
numbers” and by inference have been associated with
clusters of extra stability. Some of the observed magic
numbers can be associated with the numbers of spheres
required to form regular polyhedra.!”> Examples are the
magic numbers at 13 and 55 observed for neutral xenon
by Echt, Sattler, and Recknagel,'® and also observed for
jonic argon clusters by Harris, Kidwell, and Northby.'*
Other observed magic numbers are not easily interpreted.
For example, magic number cluster sizes at 14 have been
observed for neutral argon and krypton clusters by Ding
and Hesslich.!' The clusters in these beam experiments
are formed neither at steady state nor at equilibrium, and
the relation between the observed mass distributions and
thermodynamic stability is not obvious. The evaluation
of relative size distributions in a Boltzmann distribution
for the experimentally studied cluster systems would
amplify this relation. As we indicated, the relative con-
centrations can be extracted from the free energies of
formation of clusters as a function of cluster size. Con-
sequently free energies for clusters as a function of size
provide information concerning both steady-state nucle-
ation rates and stability information useful for the inter-
pretation of cluster beam experiments. The evaluation of
the free energy of formation of clusters and the resulting
interpretation of magic numbers and nucleation rates
form central goals for the work we report here.

Because of their importance to nucleation kinetics
there have been a number of attempts to calculate free
energies of formation of clusters theoretically. A common
approach has been the application of continuum ther-
modynamics to cluster systems assumed to be liquid
droplets.! The droplet model has been critiqued extensively
in the literature? and we make no attempt to review that
analysis here. It is clear that continuum models will be
most deficient for smaller clusters whose geometries are
not spherical and for which the atomistic nature of the
clusters is important.

To determine free energies and equilibrium cluster
distributions more realistically than in the continuum
droplet model there have been a number of studies which
take the cluster to be composed of constituent atoms and
assume the forces between the atoms to be harmonic.!¢!”
The most recent calculations which use the harmonic
model'” have taken the geometries of the clusters to be
those determined by the minimum in the two-body
additive Lennard-Jones potential surface'’ and the oscil-
lator frequencies have been obtained by diagonalizing the
Lennard-Jones force constant matrix. In the harmonic
model the translational and rotational modes of the
clusters are treated classically and the vibrational modes
are treated quantum mechanically. The harmonic models
work best at low temperatures where anharmonicity effects
are least important.

To treat cluster systems with intermolecular forces
that are more realistic than harmonic interactions there
have been a number of studies®'®-?” which have used a
combination of Monte Carlo and molecular dynamics
methods. For the rare gas systems the intermolecular
forces have been taken to be pair-wise additive Lennard-

Jones potentials, and the systems have been assumed to
obey classical mechanics. Using classical Monte Carlo
methods the free energy of formation of argon clusters as
a function of cluster size has been evaluated by Lee,
Barker, and Abraham'® and recently by Garcia and
Torroja.' In addition to the free energy barrier, Garcia
and Torroja'® determined nucleation rates for the argon
system. The classical Monte Carlo and molecular dynamics
studies are most accurate at high temperatures where the
quantum zero point motion contributes less significantly
than at low temperatures. Neither the classical Monte
Carlo method nor the normal mode method is likely to
be accurate at intermediate temperatures where cluster
systems can be expected to be simultaneously anharmonic
and quantum mechanical. An attempt has been made to
include the effect of anharmonicities in a quantum cal-
culation by Etters, Kanney, Gillis, and Kaelberer.?® Using
the self-consistent phonon approximation they calculated
the thermodynamic properties of argon clusters ranging
in size from 3 to 15 atoms. It is to be noted that clusters
formed in beam experiments are internally cold and
quantum effects are likely to be important.

In the present work we apply quantum mechanical
Monte Carlo methods to the evaluation of the free energy
and other thermodynamic quantities of clusters of Len-
nard-Jones atoms parametrized to mimic the behavior
of argon. Unlike previous work on this system the appli-
cation of quantum Monte Carlo methods will give results
which can be expected to be accurate over the temperature
range where quantum effects and anharmonicity effects
are simultaneously important. The central objectives which
have been met by this study are as follows:

(1) We determine the free energy of formation
of clusters of argon atoms as a function of temperature
to find the temperature range where both classical
Monte Carlo and normal mode calculations have
nonnegligible errors;

(2) we calculate the free energy of argon aggre-
gates as a function of cluster size at low temperatures
and seek magic numbers (local minima in the free
energy) in the Boltzmann distribution;

(3) we assess the importance of quantum cor-
rections to the nucleation rate at low temperature.

Our approach to the computation of fully quantum
mechanical thermodynamic functions utilizes the Feyn-
man path integral formulation of statistical mechanics.?
Recently a number of path integral methods have been
developed and implemented®®** to perform quantum
statistical mechanical calculations on complex interacting
many-body systems. In many of the approaches to quan-
tum statistical mechanics, the path integrals have been
discretized and short interval approximations have been
used.’“2 The discretized method (DISPI method) has
proved to be powerful both for formal and numerical
studies, and recent applications to quantum effects in a
number of systems***! attest to its potential utility. The
DISPI formulation of statistical mechanics is known to
have serious convergence difficulties when applied to
systems with potential energy functions which have strong
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short range repulsions.*® The convergence difficulties as-
sociated with DISPI studies of Lennard-Jones systems
have been overcome by application of an iterative matrix
multiplication scheme.3® This iterative method appears to
be limited to systems with only a few quantum degrees
of freedom. Another method which has been used to
improve the convergence of DISPI calculations is the
introduction of normal mode transformations.’® To our
knowledge the normal mode transformation technique
has not been applied to systems simultaneously strongly
repulsive and having a large number of quantum degrees
of freedom.

We have recently developed an alternative path
integral formulation of quantum statistical mechanics.****
In our approach the paths are expanded in a Fourier
series, and the integral overall paths is replaced by an
equivalent integration overall Fourier coefficients. As we
have shown by example,* the Fourier path integral
(FOURPI) method is well converged for Lennard-Jones
systems and does not suffer from the deficiencies of the
DISPI approach. Because of its success for Lennard-Jones
systems we have chosen the FOURPI method to evaluate
the thermodynamic properties of the argon clusters ex-
amined in this work. At this writing the number of
applications of path integral methods to the statistical
mechanics of many-body systems with large numbers of
quantum degrees of freedom is still limited. It is hoped
that the results we present here using the FOURPI
method will also be of use for comparison with alternative
techniques.

As we have indicated in this work we carry out a
fully quantum mechanical Monte Carlo study of the
thermodynamic properties of clusters of argon atoms
using the FOURPI method. The contents of the remainder
of this paper are as follows. In Sec. II we develop the
procedure used to calculate the free energy of formation
of argon clusters and other thermodynamic quantities as
a function of cluster size. We utilize a state integration
scheme similar to that introduced by Lee, Barker, and
Abraham'® but with a continuous constraining potential
more appropriate for quantum calculations. In Sec. III
we present the results of our calculations on the energy,
entropy and free energy of formation of argon clusters as
a function of cluster size. We also determine the nucleation
rates. In Sec. IV we present our conclusions.

H. METHOD

In this section we present and develop the working
expressions used in the calculation of the thermodynamic
properties of argon clusters. In Sec. II A we define the
interaction potential used both for the intermolecular
forces and in the definition of the physical clusters
reported in this work. In Sec. II B we review the calculation
of the thermodynamic energy when classical Monte Carlo
methods are used and when the FOURPI method is used.
In Sec. II C we discuss the state integrations required for
the evaluation of the partition function and the Gibbs
free energy.

A. The interaction potential

The subtleties associated with defining physical clus-
ters in a vapor are well known, and working definitions
have been given by Stillinger*® and by Lee, Barker, and
Abraham.'® In the Lee, Barker, and Abraham'® approach
the clusters are defined with respect to an infinitely
reflecting constraining potential about the center of mass
of the system. As shown in Ref. 18, the free energies
calculated with the constraining potential are insensitive
to its radius with the exception of small clusters at high
temperatures. The same definition of physical clusters as
used by Lee, Barker, and Abraham'® was recently used
by Garcia and Torroja.'’

In the current work we use a definition of physical
clusters related to that introduced by Lee, Barker, and
Abraham.'® Because the FOURPI approach requires twice
differentiable potential energy functions [see Eq. (12)], we
constrain the clusters with a continuous but strongly
repulsive potential centered about the center of mass. For
an n-particle cluster of atoms interacting with two-body
additive Lennard-Jones potentials the potential energy
function V is given by

Vy, ..., 1) = 2 o(ry)) + 2 v(r), 4)
i<j i=1
where
u(r) = 4e[(o/n)'* — (o/1)f], (5)
and
vi(r) = (Jr = Reml/R)™. (6)

In Egs. (4)—(6) r; is the coordinate of particle i in the
cluster, e and ¢ are the standard Lennard-Jones parameters,
R.., is the coordinate of the center of mass of the cluster,
given by

M =

r. Q)

X |-

Rem =

1

R, is the constraining radius and r;; is the distance between
particles i and j. For the calculations presented here we
take € = 119.40 K and o = 3.405 A. The constraining
potential v,(r) acts to reflect particles reaching a coordinate
[r — R.,| near R. and is essentially zero for bound
particles. We have calculated the classical free energy of
13 particle clusters using the potential function defined
in Eq. (4) and using the infinitely repulsive hard wall of
Lee, Barker, and Abraham'® and found complete agree-
ment in the computed low temperature free energies to
the statistical significance of the calculations.

B. Internal energy calculations

In the present work the internal energies of argon
clusters are calculated using a combination of quantum
and classical Monte Carlo techniques. In the classical
calculations the energies are calculated from the standard
expression
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{Uculn, B)
= (3n/2) + f d&ri o dPrapem(ry, . . ., 1)

X V(rl,...,r,,)/f d3rye o cdPrapordry, . .., ),

(®
where the classical density is given by
pCA{(rl’ ceey rn)
= (m/2xh?B)’"” exp{—-BV(r,, ..., ta)}, )]

and V is defined in Eq. (4). In Eqgs. (8) and (9) r; is the
coordinate of particle /, m is the mass of an argon atom
and 8 = 1/kgT. Equation (8) is evaluated by standard
Monte Carlo methods using importance sampling.*’

The quantum mechanical internal energies computed
in this work are calculated using the FOURPI method
|

3n

described in detail in Ref. 45. In the FOURPI method
the internal energy is calculated from the expression

(U)om(n, B) = f d’ri+ + ~d’rupom
X('l;---’rn; lJl,-'-9r’n)H]n=r'|/

ra=rn

fd3r1 Y .d3ranb’(l'], e ey rn;

T,..., ),
where H is the Hamiltonian operator for the system,

(10)

H=—h*12m) S Vi+ V,...

i=1

> Tn) (1)
and pop(T1, . . ., a3 I, . . ., Iy) iS the quantum mechanical
coordinate space density matrix. As shown in Ref. 45, in
the FOURPI method Eq. (10) takes the form [correcting
the notational error in Eq. (16) of Ref. 45]

kmax n 8h
(H iy = %t f &’ri- o diry | [] dPagy - - - P exp{—Z a%.ﬂo%.} X exp{— % f Vin@), ..., rn(u)]du}
i=1 0

k=1

A2 1 ((1 (°* u
X[V(rl,...,r,,)—ii:zl;i({gﬁ (l_ﬂ_h

)ViV[rl(u), o r,,(u)]aru}2 -1

8h 2
(1 —i) 2%

h Jo Bh

Knax
X [rw), ..., r,,(u)]du)]/f d&rye s d’r, | T] dPaa+ + - dPas
k=1

h Jo

n Bh
X exp{-z ais/2o%i}exp{- L f Vin), ..., rn(u)]du} ,
i=1

where

o = [28h%/m(xk)?]'.

kmax is the number of Fourier coefficients included in the
expansion of the paths and the a,; are the expansion
coefficients. The integrations over r, to r, and az, to ag,
are evaluated by Monte Carlo importance sampling tech-
niques*’ and the one-dimensional u integrations are eval-
uated by Gauss-Legendre quadrature. Both Egs. (8) and
(12) can be evaluated in center of mass coordinates.
Center of mass coordinates were used in the classical
calculation. For the quantum calculations center of mass
coordinates resulted in sampling errors in some cases and
Eq. (12) was evaluated directly.

C. Free energy caiculations

In this subsection we derive the expressions used to
calculate the free energy of formation of the argon clusters.
As shown in the Appendix for the reaction

n Aty — Arlpg (14)
the change in the Gibbs free energy is given by
AG(n, p, T)/ksT = ~(n — Din(p/ksT)
—1In Q(n, T) + In \73Y(T), (15)

where the parameters are defined in the Appendix.

(12)

(13)

[

In this work we use internal energies computed from
the methods described _in Sec. II B to calculate the
partition function Q(n, V, T), from the expression

InQn, V, T
(U, T) = kgrz(%)y.

In Eq. (16) V is the volume. If we integrate Eq. (16) with
respect to temperature we obtain

In O(n, T»)
T2
= In O(n, T0) + (1/ks) fﬂ @y ar,

where Q(n, T) is defined in the Appendix [Eq. A5)]. This
same state integration procedure was used by Garcia and
Torroja.’® To evaluate the partition function at tempera-
ture T, we integrate Eq. (17) from a high temperature T,
where the system is completely classical and the intera-
tomic forces can be ignored. If we write

(16)

(17)

3

On, V, Too) = N"(T.,) % a(n, V, Tw), (18)
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466 D. L. Freeman and J. D. Doll: Thermodynamic properties of argon clusters

where T, is a very high temperature, we obtain for the
configurational integral

an, V, T,)

= [@ne - -aon exvf-p. 3 (- RaliRI®} ., (19)

i=1

where 8, = 1/kgT..
If we transform Eq. (19) to center of mass coordinates
=1 —Rem (20)
we obtain
g(n, V, T.,)

Vf d’rye o o d’ry exp{—ﬂm > (r?/Rc)z"}
i=1

n—1 20
174 f d’rie « +d?rh- exp{—ﬂw (Z ri-/Rc) } ¥3))

i=1
n—1

X TI exp{—Bo(riyR)"}. (22)
i=1

If we define

% 1) = f &rie - drey exv{ (El ri/R. )20}

X ﬁ exp{—B(r//R.)*°} / f a&rye - dir,

n—1

X T exp{—=B(ri/R)*}. (23)
i=]
Equation (22) becomes
q(n, V, T.)
= Va(n, T.) f dary. - d’,_,
n—1
X [T exp{—Bw(ri/R)}, (24)
i=1
- n—1
= Vi(n, Too)[ f a’r exp{—ﬂ(r’/Rc)”}] , (25)
= Vo(n, T)(x/5)1/ksTRY T ()", (26)

where I'(x) is the Gamma function.*® The function &(n,
T) can be evaluated by Monte Carlo numerical integration.

With Eq. (26) the high temperature partition function
needed for Eq. (17) is available and the partition function
at lower temperatures can be evaluated by numerical
integration of calculated internal energies. The calculated
partition function is then introduced into Eq. (15) to
calculate the free energies of formation of n-particle
clusters.

lii. RESULTS

In this section we present the results of our Monte
Carlo investigations of the thermodynamic properties of

clusters of argon atoms represented by Lennard-Jones
potentials. The primary calculations were of the internal
energies of the clusters from which the Gibbs free energy
and other thermodynamic properties could be obtained
as described in Sec. I

For each cluster of size n an initial configuration
was chosen to match the minimum energy structure
reported by Hoare and Pal.!’ For the classical internal
energy approximately one hundred thousand Monte Carlo
moves were made followed by approximately one-million
moves where data was accumulated in the evaluation of
Eq. (8). In the Monte Carlo calculations the Metropolis
box size*” was chosen so that approximately 50% of the
attempted moves were accepted. The constraining radius
R, required to evaluate Eq. (6) was taken to be 3¢ for 2,
3, and 4 particle clusters, 40 for cluster sizes from 5 to
16 and 5o for cluster sizes from 17 to 20. As shown by
Lee, Barker, and Abraham'® the calculated free energies
are insensitive to the choice of R..

In the quantum calculations the number of included
Fourier coefficients in the expansion of the paths [kax in
Eq. (12)] was taken to be one and 4 Gauss-Legendre
points were used in the u integrations. In Ref. 45 the
energy of a 13 particle cluster of argon atoms at 10 K
was found to be —0.01411 + 0.0001 a.u. when k., was
set to 1 and —0.01413 = 0.0002 a.u. when k., was set
to two. Consequently one Fourier component can be
expected to be sufficient in the current calculations. In
the quantum calculations the Metropolis box size*’ was
chosen so that approximately 50% of the attempted
moves were accepted. Moves were made in the particles
and the associated Fourier coefficients simultaneously
with oy; taken as the box size for the coeflicients. As in
the classical calculation, approximately one-hundred-
thousand Monte Carlo moves were made for each cluster
at each temperature from a Hoare and Pal'® initial
configuration followed by approximately one-million
Monte Carlo moves to accumulate data in the evaluation
of Eq. (12).

The partition functions required to determine the
Gibbs free energy were evaluated from Eq. (17). The high
temperature reference temperature [7), in Eq. (17)] was
taken to be 10 000 K, which was the reference temperature
used by Garcia and Torroja.'* We extended the temper-
ature to 20 000 K for 13 particle clusters and found no
change in the calculated Gibbs free energy to the statistical
accuracy of the calculation. The temperature points and
weights used in the numerical evaluation of the integral
in Eq. (17) were obtained from a FORTAN translation
of an ALGOL program given by Gautschi.*’ The factor of
T7% in the integrand was incorporated into the weight
function. It was found that best convergence was obtained
by dividing the integration into two regions; one from 7
to 160 K and the other from 160 to 10000 K. Six
quadrature points in the first region and two in the
second gave convergence of the integral to within the
statistical errors in the calculations. In the quantum free
energy calculations only energy points below 40 K were

calculated with the quantum algorithm.
To assess the temperature region over which the

J. Chem. Phys., Vol. 82, No. 1, 1 January 1985
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TABLE 1. The Gibbs free energy of formation of a 13 particle cluster of
argon atoms at | atm pressure.

T AGCM/k,T AGQM/kBT AGpr/kgT‘
10 —408.2 + 0.3 —383.6 £ 0.4 —383.8
15 —2444 + 0.6 —2320 0.6 —220.3
20 —161.6 £ 0.5 -158.2 £ 0.5 —137.6
25 -1174 £ 04 -115.7 £ 0.4 —81.7
30 —88.1 £0.5 —86.9 + 0.5 —54.4

* Reference 17.

classical and normal mode approaches to the calculation
of the free energy are valid, we calculated AG(n, p, T) as
a function of T for the 13 particle clusters. The results of
this series of calculations are given in Table I. In Table I
the pressure was taken to be 1 atm, the free energies are
given in units of k3T, AGcy, is the classical result, AGgy
is the quantum result, and AGypw is the resuit of the
quantum normal mode calculation of Hoare, Pal, and
Wegener.'” The reported error bars are single standard
deviation error bars, and the same error bars will be used
throughout the remainder of this paper. The Monte Carlo
results agree with the normal mode results at 10 K. At
10 K the classical calculation is in error by approximately
8%. By 15 K the quantum Monte Carlo results deviate
significantly from the normal mode free energies and the
classical and quantum free energies agree by 30 K. We
did not extend the calculation below 10 K or above 30
K because the normal mode method can be expected to
be accurate below 10 K and the classical results should
be sufficient above 30 K.

In Table IT we give the calculated free energies in
units of kgT for argon at 10 K and | atm pressure as a
function of cluster size. As in Table I AGcy, is the classical
result, AGgy, is the quantum result, and AGppw is the
normal mode result.'” There is reasonable agreement
between the quantum Monte Carlo results and the normal

TABLE II. The Gibbs free energy of formation as a function of cluster
size n at 10 K and 1 atm pressure.

n AGCM/kyT AGQM/kBT AGpr/kBT‘
2 —8.19 = 0.02 —8.03 £ 0.03 -1.59
3 -24.98 + 0.05 ~23.39 £ 0.05 —23.19
4 —50.12 + 0.08 —46.99 + 0.08 —46.67
5 775102 -729 £ 0.2 —72.64
6 -108.6 + 0.2 —101.5 £ 0.2 —99.30
7 -1434+0.3 —1349 + 0.3 —134.93
8 —1758 03 —1652 £ 0.3 —164.13
9 ~214.8 £ 0.5 —200.5 + 0.8 —201.35
10 —254.6 £ 0.4 —239.1 £ 0.4 —238.94
11 —294.5 + 0.6 —276.6 + 0.6 —271.76
12 —346 + 1.00 -326 + 1.0 —324.55
13 —408.2 + 0.3 —383.6 + 0.4 —383.79
14 —441.1 + 04 —4153 = 04. —414.73
15 —483.1 £ 0.7 —453.1 £ 0.7 —453.99
16 —526.6 + 0.6 —495.7 £ 0.6 —494.18
17 —569 = 1.00 —5364 £ 0.9 —528.59
18 —620.1 £ 0.9 —5839 £ 09 —581.96
19 —682.2 £ 0.8 —642.9 £ 0.8 —641.36
20 —7235 £ 0.7 —681.4 £ 0.6 —684.23

* Reference 17.

mode results for most cluster sizes. For some cluster sizes
the differences between the normal mode and quantum
Monte Carlo results are outside the statistical significance
of the calculation. In the normal mode method the
geometry of the cluster is taken from the lowest reported
energy structure in the potential surface.'’ It has been
argued that this structure is representative of all the other
contributing structures.!” In the Monte Carlo calculations
in principle all contributing structures are included in the
evaluation of Eq. (12). In practice only a fraction of the
total possible structures are actually included in a Monte
Carlo calculation with a finite number of points. However,
the variety of structures reached in the Monte Carlo
calculation may account for the differences between AGgy
and AGypw observed in Table II. The differences between
our results and those of Hoare, Pal, and Wegener'” for
the 17 particle structure seem somewhat large and we are
unable to account for this difference. In scanning the 17
particle structure to seek an explanation for the discrep-
ancy we discovered a 17 particle structure lower in
energy than that reported by Hoare and Pal.'* The old
and new 17 particle minimum energy structures are
shown in Fig. 1.

The Gibbs free energy of formation of argon clusters
at pressures other than 1 atm can be obtained from Table
II by the expression'’

AG(n,p, T) = AG(n,p = 1 atm, T)
+ (1 — n)ksT In p. 27

To examine AG(n, p, T) at pressures where the free
energy maximum occurs at approximately n = 10, we
calculated AG(n, p, T) from Eq. (27) and Table II at p
=3.34 X 10714, 3.34 X 1075, and 3.34 X 107! atm. The
results are shown in Figs. 2—-4. In examining these figures
it is useful to recall that local maxima in the Boltzmann
mass distribution at a given temperature and pressure
will be associated with local minima in the free energy of
formation. At p = 3.34 X 107'* atm a local minimum in
AG(n, p, T) is observed in the quantum calculation at
n = 7. No local minimum is seen in the classical curve.
At p = 3.34 X 107'® atm a local minimum is observed at
n = 13 in both the quantum and classical calculations.
At p=334X10""® atm, classical and quantum local
minima are observed at » = 13 and a quantum Ilocal
minimum is observed at n = 19. The magic numbers we
observe in the Boltzmann mass distribution occur for
cluster size where the minimum energy structures have
high symmetry. As shown by Hoare and Pal,'* the mini-

FIG. 1. The minimum en-
ergy structure for a 17 par-
ticle cluster as found by
Hoare and Pal (Ref. 15)
is shown in (a) [E/e
= 61.307] and the struc-
ture slightly lower in en-
ergy found in this work
is shown in (b) [E/e

(A) (8) = 61.318}.

Phys., Vol. 82, No. 1, 1 January 1985



468 D. L. Freeman and J. D. Doll: Thermodynamic properties of argon clusters

AG(n,p,T)/K,T

FIG. 2. The Gibbs free energy of formation as a function of cluster size
at T = 10K and p = 3.34 X 107" atm. The circles are the quantum
results and the triangles are the classical results. The points are connected
by straight lines. In no case is the error bar larger than the circle or
triangle.

mum energy structure for n = 7 is a pentagonal bipyramid,
for n = 13 is an icosahedron and for » = 19 is a “capped”
icosahedron.

The sensitivity of the occurrence of magic numbers
to conditions of temperature and pressure is a result of
the change in the free energy of formation with temper-
ature and pressure. At low supersaturations (pressures
only slightly above the vapor pressure of pure argon) the
free energy of formation rises very rapidly with cluster
size and no local minima are observable for small clusters.
At high supersaturated pressures the free energy of for-
mation decreases rapidly with cluster size and no magic
numbers are observable. This is seen in Table II at 1 atm
pressure. Only for cluster sizes in the vicinity of the free
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FIG. 3. The Gibbs free energy of formation as a function of cluster size
at T = 10K and p = 3.34 X 107'¢ atm. The circles are the quantum
results and the triangles are the classical results. The points are connected
by straight lines. In no case is the error bar larger than the circle or
triangle.
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FIG. 4. The Gibbs free energy of formation as a function of cluster size
at T = 10K and p = 3.34 X 10”'® atm. The circles are the quantum
results and the triangles are the classical results. The points are connected
by straight lines. In no case is the error bar larger than the circle or
triangle.

energy barrier are the changes in the free energy of
formation small enough to observe magic numbers. At
T = 0 K there is no barrier to nucleation and no local
minima are observable in the potential energy as a
function of cluster size.'

To gain further insight into the origin of the observed
magic numbers in the Boltzmann distribution, we calcu-
lated the free energy change AG(n, p, T), for the reaction

Ar, i t Arg — Aryg (28)
which is given by
AG(n, p, T) = AG(n, p, T) — AG(n — 1, p, T)
— AG(1, p, T). (29)

A graph of AG(n, p, T) is given in Fig. 5 for p = 3.34
X 107'¢ atm. Statistically significant local minima in the
graph of AG(n, p, T) are observed at n = 7, 13, and 19.
These local minima match the observed magic numbers
in the Boltzmann distribution.

To assess the origin of the observed magic numbers
we have calculated the internal energy and enthalpy of
argon clusters at 10 K as a function of cluster size and
resolved the calculated free energies into their enthalpy
and entropy components. The internal energy as a function
of cluster size is given in Table IIl. Comparisons of the
results given in Table III can be made with the self-
consistent phonon approximation results of Ref. 28. In
general the FOURPI results shown in Table III are higher
than the self-consistent phonon results by approximately
5%. For example, the energy of the 13 particle cluster in
the self-consistent phonon approximation is —463.6 in

J. Chem. Phys., Vol. 82, No. 1, 1 January 1985



D. L. Freeman and J. D. Doll: Thermodynamic properties of argon clusters 469

20} e QM -
A CM
10} -
58
[ ]
K3
=
- Or
d
£ 5
12 -10

-20

-30

0

4

! —l
8

12

16 20

FIG. 5. The free energy change for the process Ar,.iq + Ar — Al at
T = 10K and p = 3.34 X 1076 atm. The circles are the quantum
results and the triangles are the classical results. The points are connected
by straight lines. In no case is the error bar larger than the circles or
triangle.

units of kT at 10 K. The self-consistent phonon results
do net include translational and rotational contributions.
The additional discrepancies between the FOURPI results
and the self-consistent phonon results may be caused by
the lack of contributions from cubic corrections in the
latter case.”® The enthalpy change for the process given
in Eq. (28) is plotted in Fig. 6 in units of kgzT. The
internal energy change for the system as a function of
cluster size has a similar form and is related to AH(n, T)
by (ideal gas law assumed)

AH(n, T) = AU(n, T) — ksT. (30)
As with the free energy change associated with Eq. (28),
the enthalpy change has local minima at the magic

numbers of 7, 13, and 19. The entropy change for the
process expressed in Eq. (28) is given by

TABLE II1. The internal energy as function of cluster size at 10 K.

n <U>cu/k3T <U>QMIkBT
2 —8.32 = 0.01 ~7.23 £ 0.03
3 —29.55 = 0.03 —26.29 + 0.02
4 —62.14 = 0.03 —55.52 £ 0.03
5 —95.93 x 0.06 ~85.9 +0.2
6 —1342 + 0.6 -120.7 = 0.2
7 —178.18 = 0.06 -159.0 + 0.3
8 —2142 + 0.1 -191.7 £ 0.3
9 —262.65 = 0.06 -235.5 + 0.3
10 —311.05 = 0.06 -278.5 0.3
11 —359.8 £ 0.1 -323.0+02
12 —419.1 = 0.1 ~376.2 £ 0.1
13 —491.9 £+ 0.1 —441.4 + 0.2
14 —530.82 £ 0.06 —477.5 £ 0.3
15 —581.02 + 0.06 ~523.8 + 0.3
16 ~631.7 + 0.1 -567.7 £ 0.3
17 —682.48 + 0.06 -613.6 £ 0.3
18 —741.7 £ 0.2 —665.8 + 0.2
19 -811.7 = 0.1 -730.3 £ 0.3
20 —862.7 x 0.1 -773.9 + 0.6

o7 T T T
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FIG. 6. The enthalpy change for the process Ar, i + Ar — Arggat T
= 10K and p = 3.34 X 107 atm. The circles are the quantum results
and the triangles are the classical results. The points are connected by
straight lines. In no case is the error bar larger than the circle or triangle.

AS(n, p, T) = [AH(n, T) — AG(n, p, DYT  (31)

and is plotted in units of kz in Fig. 7. Unlike the enthalpy
the entropy is rather flat and shows no unusual structure
at the magic numbers. It appears that the magic numbers
in the Boltzmann mass distribution are associated with
the favorable energies which occur for structures of high
symmetry and entropic effects are relatively unimportant.

From the free energy functions plotted in Figs. 2-4,
a nucleation rate can be obtained by application of Egs.

'20 T T T T T 1 T T T
. o QM
X -30}- A CM =
—
Lt i
a
E -40} .
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P~ p
-50} ]
A L o 1 A ) i i A
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FIG. 7. The entropy change for the process Ar, i + Ar — Aryy at T
= 10K and p = 3.34 X 107'® atm. The circles are the quantum results
and the triangles are the classical results. The points are connected by
straight lines. In no case is the error bar larger than the circle or triangle.
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(1)-(3). We calculated the nucleation rate at 7 = 10 K
and p = 3.34 X 107! atm. From the classical free energy,
we calculated a rate of Jop = (2.3 = 0.8) X 1072 m™3
s~' and a quantum rate of Joi = (3 £ 2) X 1073 m™®
s~!. The ratio of the quantum to classical rates is

JomlJem = (1.3 £ 0.8) X 107°

indicating a large quantum contribution to the rates
under these conditions.

IV. CONCLUSIONS

In this study we have carried out a combination of
quantum and classical Monte Carlo calculations on the
thermodynamic properties of clusters of Lennard-Jones
atoms parametrized to mimic the behavior of argon. Our
purposes in performing these calculations were to assess
the importance of quantum effects on cluster systems and
to search for magic numbers in the Boltzmann mass
distribution. Additionally we wished to present a number
of detailed results obtained with the FOURPI method
that we hope will be of use for comparison with alternative
techniques. Our principle conclusions are as follows:

(1) There is a temperature range over which
both the quantum normal mode approximation and
classical mechanics are in significant error for cluster
systems. For the argon system both quantum and
anharmonicity effects are important in the range of
15 to 20 K.

(2) Magic numbers do occur in the Boltzmann
mass distribution for the argon system modeled by
Lennard-Jones interactions. The magic numbers are
observed by local minima in the free energy of
formation of the clusters as a function of cluster size.
The existence of magic numbers is very sensitive to
conditions of temperature and pressure, and under
some conditions is only observed in the quantum
calculations. For the range of cluster sizes from 2 to
20 magic numbers have only been observed for high
symmetry clusters (n = 7, 13, 19). The existence of
magic numbers appears to be driven by energetic
contributions, and entropic effects seem to be rather
small.

(3) At low temperatures nucleation rates are
sensitive to quantum effects. At 10 K and a pressure
of 3.34 X 107! atm, the classical approximation
overestimates the nucleation rate by over four orders
of magnitude.

We wish to emphasize that the accuracy of our
calculations is very sensitive to our ability to sample
contributions from all contributing structures. The sam-
pling problems exist for classical and quantum Monte
Carlo studies and are inherent in any cluster calculation.
We know of no technique to assess the extent to which
all structures have been sampled efficiently. Monte Carlo
calculations are likely to be more accurate than normal
mode calculations which assume one contributing struc-
ture. We believe the differences between our results and
those of Hoare, Pal, and Wegener'” are at least partially

explained by sampling errors inherent in the normal
mode approach.

The results presented here are only one example of
possible applications of the FOURPI method to quantum
statistical mechanics. Other studies are currently in prog-
ress.
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APPENDIX

In this appendix we derive the expression for the
free energy of formation of n-particle clusters at temper-
ature T and pressure p and the expression for the concen-
tration of n-particle clusters in terms of the free energy
of formation. The expressions given are not new'® and
are elementary. We present this derivation for complete-
ness and to clarify the assumptions used to obtain Eq.
(3). We also hope to avoid confusion with similar expres-
sions which have led to controversy in work with the
liquid droplet models of nucleation.?

For the reaction given in Eq. (14) the change in the
molar Gibbs free energy is given by

AGp(n,p, T) = Guin, p, T) — nG,(1,p, T), (Al)

where G, (n, p, T) is the molar Gibbs free energy of n-
particle clusters. For an ideal gas of n-particle clusters the
molar Gibbs free energy is given by

Gu(n, p, T) = —RT In[Q(n, V., T)/L], (A2)

where L is Avogadro’s number, R is the gas constant, V,,
is the molar volume, and Q(n, V, T) is the canonical
partition function for ideal gas n-particle clusters. For
monomers

o, Vi, T) = V, A D), (A3)
where A(T) is given by

NT) = (W /2xmkpT)', (A4)
If we write

Qn, V, T) = VQ(n, T) (AS)
and use Eq. (A2), then Eq. (Al) becomes
AGu(n, p, T)

n— n Vy, T)

= -RTln{L ! “——[QQ<(1, v T)],,} (A6)

= —RT In{(L/V,,)""'[Q(n, T)/A\>(T)]} (A7)

= —(n — DRT In(p/ksT) — RT In O(n, T)

+ RT In A\73%(T). (A8)

In Eq. (A8) we have introduced the ideal gas law for L/
V.
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We now wish to relate the molar Gibbs free energy
change in Eq. (A8) to cluster concentrations. From a
grand canonical distribution it is elementary to show
that!

C,/Cy = (C,VY~{Qn, V, T)/[V"\3(T)]} (A9)
or
C./Cy = (CIVY™'{Qn, V, TY[V'AY(T)]},  (A10)
= CT'[Qn, T)/A>(T)), (All)
= (p/ksT)" ' [Q(n, TH/A>(T)). (A12)
In obtaining Eq. (A12) we have assumed that
Ci = p/ksT, (A13)

i.e., the vapor is an ideal gas consisting almost entirely of
monomers. From Eqgs. (A8) and (A12) it is clear that

C,/C\ = exp{—AG(n, p, T)/RT}. (Al14)
Equation (3) follows from Eq. (A14) by expressing the
molar Gibbs free energy change as the Gibbs free energy
change per cluster.
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