Neither Motility nor Chemotaxis Plays a Role in the Ability of Escherichia coli F-18 To Colonize the Streptomycin-Treated Mouse Large Intestine

Beth A. McCormick

David C. Laux

University of Rhode Island

See next page for additional authors

Follow this and additional works at: https://digitalcommons.uri.edu/cels_past_depts_facpubs

Terms of Use
All rights reserved under copyright.

Citation/Publisher Attribution
Available at: https://iai.asm.org/content/58/9/2957

This Article is brought to you for free and open access by the College of the Environment and Life Sciences at DigitalCommons@URI. It has been accepted for inclusion in Past Departments Faculty Publications by an authorized administrator of DigitalCommons@URI. For more information, please contact digitalcommons@etal.uri.edu.
Authors
Beth A. McCormick, David C. Laux, and Paul S. Cohen
Neither Motility nor Chemotaxis Plays a Role in the Ability of *Escherichia coli* F-18 To Colonize the Streptomycin-Treated Mouse Large Intestine

BETH A. MCCORMICK, DAVID C. LAUX, AND PAUL S. COHEN*

Department of Microbiology, University of Rhode Island, Kingston, Rhode Island 02881

Received 12 April 1990/Accepted 25 June 1990

Escherichia coli F-18, isolated from the feces of a healthy human in 1977, is an excellent colonizer of the streptomycin-treated mouse large intestine and displays normal motility and chemotaxis ability. A chemotaxis-defective derivative of *E. coli* F-18, *E. coli* F-18 CheA−, and a nonflagellated derivative, *E. coli* F-18 Fla−, were constructed. These strains were found to colonize the streptomycin-treated mouse large intestine as well as *E. coli* F-18 when mice were fed both *E. coli* F-18 and either the CheA− or Fla− derivative at high levels (109 CFU of each strain per mouse) or low levels (105 CFU of each strain per mouse). Furthermore, *E. coli* F-18 lost motility and chemotaxis ability when grown in colonic or cecal mucus in vitro despite retaining the ability to synthesize flagella. Thus, it appears that neither motility nor chemotaxis plays a role in the ability of *E. coli* F-18 to colonize because this strain becomes functionally nonmotile upon growth in the streptomycin-treated mouse large intestine.

Evidence is accumulating that the importance of motility, chemotaxis, or both in the ability of a flagellated intestinal bacterium to colonize the mammalian intestine depends on the microorganism, whether the host has a conventional microflora, is antibiotic treated, or is gnotobiotic, and whether the microorganism colonizes the small or large intestine. For example, motility/chemotaxis appears to be important in the ability of the obligate anaerobe *Roseburia cecicola* to colonize the conventional but not the gnotobiotic mouse cecum (17) and for *Vibrio cholerae* to infect the gnotobiotic mouse cecum (8) and ligated loops of conventional rabbit and gnotobiotic mouse small intestine (8). Moreover, motility also appears to be a colonization factor for *Campylobacter jejuni* in the lower small intestine, cecum, and colon of suckling mice (14) and in the conventional adult rabbit small intestine (3). However, motility/chemotaxis does not appear to be important in the ability of *Salmonella typhimurium* to colonize the large intestines of conventional (4) or streptomycin-treated (12) mice, nor does motility appear to be important in the virulence of the organism (4, 10). Here, we show that motility/chemotaxis also does not appear to be important in the ability of a human fecal *Escherichia coli* strain, F-18, to colonize the mouse large intestine.

MATERIALS AND METHODS

Bacteria. *E. coli* F-18 was isolated from the feces of a healthy human in 1977. A streptomycin-resistant (Strr) and rifampin-resistant (RifR) derivative of *E. coli* F-18 is an excellent colonizer of the streptomycin-treated mouse large intestine (6). The strain produces type 1 pili and colicin V, and its serotype is rough:K1:H5 (11). *E. coli* F-18 (Strr RifR NalR) is a spontaneous nalidixic acid-resistant (NalR) mutant of *E. coli* F-18 (Strr RifR) which in cofeeding experiments colonizes the streptomycin-treated mouse large intestine as well as its parent. *E. coli* F-18 (Strr RifR) will hereafter be referred to as *E. coli* F-18.

Nonchemotactic derivatives of *E. coli* F-18 (i.e., nonspreading on semisolid L motility agar and nonmotile but motile microscopically) were selected on L-agar plates containing tetracycline (10 μg/ml) after bacteriophage P1 cotransduction of a defective cheA gene and a closely linked Tn10 insertion from *E. coli* RP1781 into *E. coli* F-18, as described previously (11). Tn10 was lost from the nonchemotactic transductants at high frequency in the absence of tetracycline selection (90% loss in 10 generations); however, the tetracycline-sensitive segregants remained nonchemotactic. A spontaneous NalR mutant was selected from one such nonchemotactic *E. coli* F-18 segregant as described previously (6) and designated *E. coli* F-18 CheA−. In cofeeding experiments, *E. coli* F-18 CheA− (Strr RifR NalR) colonized the streptomycin-treated mouse large intestine as well as its nalidixic acid-sensitive CheA− parent. Furthermore, it grew in Davis broth minimal (Difco Laboratories, Detroit, Mich.) with glucose as the sole source of carbon, as does *E. coli* F-18. *E. coli* RP1781 does not grow in this medium.

Nonflagellated derivatives of *E. coli* F-18 were selected on L-agar plates containing streptomycin (100 μg/ml), rifampin (50 μg/ml), and kanamycin (40 μg/ml) after P1 transduction from an *E. coli* MC1000 strain that contains a kanamycin cassette in the _flhD_ gene, making it nonflagellated. All kanamycin-resistant (KanR) colonies were Strr RifR and nonmotile (i.e., nonspreading on semisolid L motility agar and showing only Brownian motion microscopically). One colony was selected for further work and was designated *E. coli* F-18 Fla−. *E. coli* F-18 Fla− also grew in Davis broth minimal with glucose as the sole source of carbon. *E. coli* MC1000 does not grow in this medium.

Media and antibiotics. L broth was made as described by Revel (36). L agar is L broth containing 12 g of Bacto-Agar (Difco) per liter. MacConkey agar (Difco) was prepared according to package instructions. L motility agar is L broth containing 3.5 mg of Bacto-Agar per ml of water. Cecal mucus motility agar is cecal mucus (2 mg of protein per ml in N-hydroxyethylpiperazine-N'-2-ethanesulfonic acid [HEPES]-Hanks buffer, pH 7.4) containing 3.5 mg of...
Difco agar purified per ml of water. In some experiments, L-
motility and cecal mucus motility agars were supplemented
adenosine 3',5'-cyclic AMP (cAMP; Sigma Chemical Co., St. Louis, Mo.) to a final concentration of 2 mM.

Mouse colonization experiments. The method used to
distinguish the relative colonizing abilities of E. coli strains in
mice has been described in detail previously (6, 11). Briefly,
after 1 day of being fed streptomycin sulfate in their drinking
water (5 g/liter), three male CD-1 mice (5 to 8 weeks old)
were starved from 18 to 24 h for food (Charles River Valley
Rat, Mouse, and Hamster Formula) and water and fed either
10^10 or 10^11 CFU each of the L-broth-grown E. coli strains to
be tested in 1 ml of sterile 20% (wt/vol) sucrose, as described
previously (6, 11). The mice drank the bacterial suspension
immediately and were then given food and streptomycin-containing drinking water. The next day and at 48-h
intervals, fecal samples, no older than 24 h, were collected,
membrane-diluted, and plated on selective media as
described below. In all colonization experiments, plates
were incubated at 37°C for 18 to 24 h. Colonizing ability was
assessed by the level at which a strain persisted in feces.
Each experiment was performed at least twice, with

To differentiate between E. coli F-18 (Str'T Rif') and E. coli
F-18 CheA- (Str'T Rif' NaI'), fecal samples were plated on
MacConkey agar containing 100 µg of streptomycin sulfate
and 50 µg of rifampin per ml and on MacConkey agar
containing 100 µg of streptomycin sulfate, 50 µg of rifampin,
and 50 µg of nalidixic acid per ml. The numbers of E. coli
F-18 CheA- were determined directly from the plates con-
taining nalidixic acid. The numbers of E. coli F-18 were
determined each day by transferring by toothpick 50 colo-
nies from the plates without nalidixic acid to plates contain-
ing nalidixic acid and determining the fraction of the total
that was nalidixic acid sensitive. The numbers of E. coli F-18
CheA- per gram of feces calculated from the results of
the toothpick transfer agreed very well with the numbers deter-

To differentiate E. coli F-18 (Str'T Rif' NaI') from E. coli
F-18 Fla- (Str'T Rif' Kan'), fecal samples were plated on
MacConkey agar containing 100 µg of streptomycin sulfate,
50 µg of rifampin, and 50 µg of nalidixic acid per ml and on
MacConkey agar containing 100 µg of streptomycin sulfate,
50 µg of rifampin, and 40 µg of kanamycin monosulfate per
ml.

Microscopic observation of E. coli F-18 grown in intestinal
mucus in vitro. Jejunal, cecal, proximal colonic, midcolonic,
and distal colonic mucus preparations (2 mg of protein per
ml) were prepared from male CD-1 mice (5 to 8 weeks old) in
HEPES-Hanks buffer, pH 7.4, as described previously (6,
12, 19). E. coli F-18 in HEPES-Hanks buffer, pH 7.4, was
inoculated into each mucus preparation at about 10^7 CFU
per ml and incubated standing for 18 h at 37°C. E. coli F-18
routinely grew to about 10^8 CFU per ml in each preparation.
Unoinoculated mucus preparations remained bacteria free
when examined microscopically. As a control, L broth was
inoculated with 10^4 CFU of E. coli F-18 per ml. Routinely, E.
coli F-18 grew to about 2 x 10^4 CFU/ml upon standing for 18
h at 37°C. Wet mounts were examined for motility by

Viable counts of E. coli F-18 in the intestinal mucus of
streptomycin-treated mice colonized with E. coli F-18. Three
streptomycin-treated mice were each fed 10^10 CFU of E. coli
F-18. Eight days later the mice were sacrificed, and the
jejunal, cecal, proximal colonic, midcolonic, and distal co-
lonic mucus of each mouse was scraped separately into 5 ml
of HEPES-Hanks buffer, pH 7.4. Each preparation was then
incubated and plated on L agar containing 100 µg of
streptomycin chloromycetin (Sigma Chemical Co., St. Louis, Mo.) to a final concentration of 2 mM.

Motility of cecal mucus-grown E. coli F-18 suspended in L
broth. E. coli F-18 grown in cecal mucus as described above
was centrifuged at room temperature at 3,000 x g for 5 min,
washed once in HEPES-Hanks buffer, pH 7.4, and
suspended at the same concentration in L broth. Similarly,
E. coli F-18 grown in L broth was centrifuged, washed, and
suspended in fresh cecal mucus (2 mg per ml of protein in
HEPES-Hanks buffer, pH 7.4) and in spent cecal mucus, i.e.,
ecal mucus centrifuged free of E. coli F-18 that had
grown in it. Motility of E. coli F-18 in each preparation was
observed microscopically as described above.

Electron microscopy. Bacterial suspensions in either L
broth or cecal mucus were stained for 10 s with 1% phos-
photungstic acid as described by Arthur et al. (1) on copper
grids coated with Formvar and carbon. The samples were
examined in a JEOl 1200 SX microscope.

Chemicals. All chemicals were reagent grade.

RESULTS

Relative colonizing abilities of E. coli F-18, E. coli F-18
F-, and E. coli F-18 CheA-. When E. coli F-18 (Str'T Rif'
NaI') and E. coli F-18 Fla- (Str'T Rif' Kan') were fed
simultaneously (10^10 CFU each) to streptomycin-treated
mice, both colonized the large intestine in equal numbers, i.e.,
approximately 5 x 10^5 CFU/g of feces (Fig. 1). Each
day, several presumptive Fla- colonies were tested for
motility on L motility agar, and all remained nonmotile. Both
E. coli F-18 and E. coli F-18 CheA- also cocolonized the
streptomycin-treated mouse large intestine, i.e., each at
about 5 x 10^5 CFU/g of feces (data not shown). Several
E. coli F-18 CheA- colonies were tested each day as described
above, and all remained noncholamotic.

To determine whether motility/chemotaxis might be
important when small numbers of E. coli F-18 are fed to mice,
streptomycin-treated mice were fed 10^8 CFU of E. coli F-18
and E. coli F-18 F-. Both strains grew rapidly in the
streptomycin-treated mouse large intestine and cocolonized at
about 10^5 CFU/g of feces (data not shown). E. coli F-18 CheA-
was fed to streptomycin-treated mice (data not shown). E. coli
F-18 Fla- and E. coli
E. coli

F-18 CheA⁻ colonies isolated from feces at all times during the duration of the experiments remained nonmotile and nonchemotactic, respectively.

Motility after growth in intestinal mucus. E. coli F-18 grows well in cecal mucus but poorly in cecal luminal contents in vitro (19), suggesting that E. coli F-18 derives its nutrition for growth in and colonization of the streptomycin-treated mouse large intestine from intestinal mucus. When E. coli F-18 was grown overnight in L broth, it was actively motile; however, when grown in mucus containing 2 mg of protein per ml isolated from either the cecum, proximal colon, midcolon, or distal colon, E. coli F-18 did not tumble and did not show any translational swimming movement. When grown in jejunal mucus, E. coli F-18 showed reduced but observable tumbling and swimming activity.

When E. coli F-18 was transferred by toothpick from L agar to L motility agar, it spread rapidly, indicative of normal motility/chemotaxis activity (9) (Table 2). In contrast, when E. coli F-18 was transferred by toothpick from L agar to mucus motility agar made from either jejunal, cecal, proximal colon, midcolon, or distal colon mucus, it grew but did not spread (Table 2). Furthermore, addition of 2 mM cAMP to each of the motility agar plates did not result in increased spreading (Table 2). Typical spread of E. coli F-18 on L motility agar and cecal mucus motility agar is illustrated in Fig. 2.

It might be argued that E. coli F-18 was nonmotile after growth in intestinal mucus because mucus is too viscous to allow normal tumbling and swimming. However, when E. coli F-18 grown in L broth was centrifuged and suspended in cecal mucus (2 mg/ml with respect to protein), it remained as motile as in L broth, suggesting that mucus viscosity was not responsible for the loss of E. coli F-18 tumbling and swimming activity when the cells were grown in cecal mucus. Furthermore, E. coli F-18 grown in L broth and suspended in spent cecal mucus also retained full tumbling and swimming activity.

Numbers and motility of E. coli F-18 in intestinal mucus throughout the intestine. Mucus isolated from the jejunum, cecum, proximal colon, midcolon, and distal colon of streptomycin-treated mice colonized with E. coli F-18 for 8 days was assayed for the numbers of E. coli F-18 in each preparation (Table 3). The cecal and proximal colon mucus preparations contained about equal numbers of E. coli F-18. Twenty times fewer E. coli F-18 were found in the jejunal mucus preparation, and two to three times fewer were found in the midcolon and distal colon mucus preparations (Table 3). E. coli F-18 colonies isolated from each of the mucus preparations proved to be just as motile as E. coli F-18 that had not been in a mouse (Table 3).

Electron microscopy of E. coli F-18 grown in L broth and cecal mucus. E. coli F-18 cells grown in L broth and in cecal mucus were examined by electron microscopy for the presence of flagella. Of 150 L-broth-grown E. coli F-18 cells examined, 30 (20%) had flagella. Similarly, of 98 cecal mucus-grown E. coli F-18 cells examined, 18 (18%) had flagella. Since all L-broth-grown cells are motile when

![FIG. 1. Relative colonizing abilities of E. coli F-18 (Str⁻ Rif⁻ NaI⁺) and E. coli F-18 Fl⁻ (Str⁻ Rif⁻ Kan⁺). Three streptomycin-treated mice were fed 10⁸ CFU each of E. coli F-18 (○), and E. coli F-18 Fl⁻ (●). Symbols and bars represent the Log₁₀ mean number of CFU per gram of feces and standard error of the Log₁₀ mean, respectively.

![FIG. 2. Spread of E. coli F-18 on L motility agar (a) and cecal mucus motility agar (b) after 12 h of incubation at 37°C.

| TABLE 1. Relative colonizing abilities of E. coli F-18 and E. coli F-18 Fl⁻ in streptomycin-treated mice fed 10⁸ CFU of each strain |
|-----------------------------|-----------------------------|
| Day | Log₁₀ no. of CFU/g of feces (mean ± SE)¹ |
| | E. coli F-18 | E. coli F-18 Fl⁻ |
| 1 | 7.93 ± 0.92 | 8.01 ± 0.74 |
| 3 | 8.43 ± 0.36 | 8.57 ± 0.37 |
| 5 | 7.90 ± 0.28 | 8.04 ± 0.20 |

¹ Three streptomycin-treated mice were each fed 10⁸ CFU of E. coli F-18 and 10⁸ CFU of E. coli F-18 Fl⁻. Fecal samples were diluted and plated as described in the text.

| TABLE 2. Diameter of spread of E. coli F-18 on intestinal mucus motility agars |
|---------------------------------|---------------------------------|
| Type of motility agar | Diam of E. coli F-18 spread (mean ± SE)² |
| Unsupplemented | +2 mM cAMP |
| L | 29.5 ± 0.5 | 29.5 ± 0.5 |
| Jejunal | 9.3 ± 0.8 | 11.5 ± 0.5 |
| Cecal | 8.0 ± 1.0 | 6.5 ± 0.5 |
| Proximal colonic | 8.3 ± 0.3 | 8.8 ± 0.8 |
| Midcolon | 7.0 ± 1.0 | 7.8 ± 0.3 |
| Distal colonic | 9.5 ± 0.5 | 7.5 ± 0.5 |

² Spread of E. coli F-18 on the various motility agars was performed in duplicate, and measurements were made after incubation at 37°C for 18 h.
TABLE 3. Determination of numbers and motility of E. coli F-18 isolated from intestinal mucus in vivoa

<table>
<thead>
<tr>
<th>Intestine section</th>
<th>CFU (107) per section (mean ± SE)</th>
<th>Diam of spread (mean mm ± SE)b</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jejunum</td>
<td>3.5 ± 2.2</td>
<td>24.9 ± 2.8</td>
</tr>
<tr>
<td>Cecum</td>
<td>56.7 ± 16.6</td>
<td>21.1 ± 3.1</td>
</tr>
<tr>
<td>Proximal colon</td>
<td>58.2 ± 28.7</td>
<td>26.4 ± 2.3</td>
</tr>
<tr>
<td>Midcolon</td>
<td>26.6 ± 18.7</td>
<td>29.8 ± 3.1</td>
</tr>
<tr>
<td>Distal colon</td>
<td>15.9 ± 7.0</td>
<td>21.6 ± 2.1</td>
</tr>
</tbody>
</table>

a Mucus preparations were isolated from three mice colonized with E. coli F-18.

b Three colonies from each section of each mouse were tested for spread on L motility agar. The diameter of spread of E. coli Flá- in this experiment was 7.2 ± 0.3 mm.

viewed by phase-contrast microscopy, it appears likely that preparation of specimens for electron microscopy shears flagella from E. coli F-18. In any case, these data suggest that the cecal mucus-grown E. coli F-18 cells were indeed flagellated.

DISCUSSION

We have previously used the streptomycin-treated mouse as a model for large intestine colonization of nonpathogenic gram-negative bacteria and have shown it to be a sensitive tool. For example, lipopolysaccharide-defective mutants of an avirulent S. typhimurium strain will not colonize when fed to streptomycin-treated mice together with their smooth parent, although they colonize at normal levels (i.e., about 5 × 107 CFU/g of feces) when fed to mice alone (12, 15). Furthermore, we have shown that a derivative of E. coli F-18, E. coli F-18 Col-, cannot grow in mouse cecal mucus in vitro in the presence of its parent, although it grows well when inoculated alone and cannot colonize the streptomycin-treated mouse when fed together with its parent, but colonizes in normal numbers when fed to mice alone (6, 19). Moreover, we have shown that E. coli F-18 settling to the bottom of culture tubes when grown in nutrient broth containing glucose (1%, wt/wt) and that a nonsettling mutant, E. coli F-18 Set-, is a poor colonizer of the streptomycin-treated mouse large intestine when fed to mice together with its parent but not when fed to mice alone (5). These results suggest that the streptomycin-treated mouse large intestine can be used to determine whether a specific defect either in E. coli F-18 or in avirulent S. typhimurium strains renders them poor colonizers or has no effect on their colonizing abilities and therefore whether the wild-type bacterial component involved is or is not a major colonization factor. It would, of course, be better if we could avoid the use of streptomycin; however, in this case the presence of the normal facultative flora prevents colonization of incoming microorganisms (2, 7, 18).

In this investigation, we have shown that motility/chemotaxis ability does not appear to be a colonization factor for E. coli F-18. That is, both a nonflagellated and a nonchemotactic derivative of E. coli F-18 colonized the streptomycin-treated mouse large intestine as well as E. coli F-18 when either strain was fed to mice together with E. coli F-18 (Fig. 1 and Table 1).

We have previously shown that the ability of E. coli F-18 to colonize appears to depend on its ability to grow in large intestine mucus (19), and here we have shown that as E. coli F-18 grows in large intestine mucus in vitro, it becomes nonmotile (Fig. 2 and Table 2). If the same is true in vivo, i.e., growth in mucus renders E. coli F-18 nonmotile, the reason that motility/chemotaxis plays no role in E. coli F-18 colonization is clear. Unfortunately, it is difficult to ascertain whether E. coli F-18 is nonmotile in mucus in vivo, since it is an extremely small part of the total large intestine mucus flora in streptomycin-treated mice. It should be noted, however, that microscopic examination of the large intestine mucus flora in streptomycin-treated mice reveals that many of the microorganisms are motile and many are nonmotile (unpublished observations).

Flagellar synthesis in E. coli is catabolite repressible and as such is relieved by the addition of cAMP (13). In the study presented here, addition of 2 mM cAMP did not cause increased E. coli F-18 spread on cecal or colonic mucus motility agar plates (Table 2), suggesting that glucose or glucoselike components present in large intestine mucus were not inhibiting E. coli F-18 flagellar synthesis. Indeed, as determined by electron microscopy, E. coli F-18 grown in cecal mucus was flagellated, suggesting the possibility that mucus viscosity limited E. coli F-18 movement. However, this also appears not to be the case, since actively motile E. coli F-18 grown in L broth remained fully motile when suspended in either fresh or spent cecal mucus, and E. coli F-18 grown in cecal mucus remained nonmotile when suspended in L broth. Therefore, when grown in cecal mucus, E. coli F-18 acts as if it has paralyzed flagella, a phenotype previously described (13).

Finally, we do not know how E. coli F-18 travels through mucus in vivo in a nonmotile state to initiate the colonization process. It is possible, however, that as water is resorbed in the intestine to form the fecal pellets found in the proximal colon, E. coli F-18 Flá- or CheA- cells are passively taken into the mucus layer, where they can then replicate and colonize.

ACKNOWLEDGMENTS

We thank J. S. Parkinson of the University of Utah for sending us E. coli RP1781 and Philip Matsumura of the University of Illinois at Chicago for sending us E. coli MC1000, containing a kanamycin cassette in the fliD gene.

This work was supported by Public Health Service grant AI16370 to P.S.C. and D.C.L. from the National Institute of Allergy and Infectious Diseases.

LITERATURE CITED

