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Thermodynamics of a statistically interacting quantum gas in D dimensions

Geoffrey G. Potter,1 Gerhard Müller,1 and Michael Karbach1,2

1Department of Physics, University of Rhode Island, Kingston, Rhode Island 02881, USA
2Fachbereich Mathematik und Naturwissenschaften, Bergische Universität Wuppertal, D-42097 Wuppertal, Germany

�Received 5 October 2007; published 11 December 2007�

We present the exact thermodynamics �isochores, isotherms, isobars, response functions� of a statistically
interacting quantum gas in D dimensions. The results in D=1 are those of the thermodynamic Bethe ansatz for
the nonlinear Schrödinger model, a gas with repulsive two-body contact potential. In all dimensions the ideal
boson and fermion gases are recovered in the weak-coupling and strong-coupling limits, respectively. For all
nonzero couplings ideal fermion gas behavior emerges for D�1 and, in the limit D→�, a phase transition
occurs at T�0. Significant deviations from ideal quantum gas behavior are found for intermediate coupling
and finite D.

DOI: 10.1103/PhysRevE.76.061112 PACS number�s�: 05.30.�d, 75.10.�b

I. INTRODUCTION

The wave of experimental studies that led to the first ob-
servations of Bose-Einstein condensation �BEC� and the de-
velopment of measurement and confinement technologies
have renewed strong interest in the statistical mechanics of
interacting quantum gases �1–6�. This line of research can
make good use of explicit high-accuracy results from any
type of analysis that goes beyond low-density/high-
temperature expansions and beyond mean-field theory. Of
particular interest are results for response functions, the very
quantities most directly amenable to experimental investiga-
tions.

Such results can be produced on a rigorous basis for quan-
tum gases with statistical interaction under very general cir-
cumstances as shown by Wu �7,8�. The concept of statistical
interaction introduced by Haldane �9� has proven to be a
very useful methodological device to capture the statistical
mechanical properties of degrees of freedom subject to dy-
namical interaction. For several model systems in dimension
D=1 the coupling between degrees of freedom can be sub-
stituted by a generalized Pauli principle with no loss of rigor
regarding the thermodynamic analysis �9–13�.

Whereas an equivalence between dynamical and statisti-
cal interaction is not likely to be realized in D�1 �apart
from highly contrived scenarios�, models of statistically in-
teracting degrees of freedom can stand on their own. Their
thermodynamic properties can be analyzed exactly in any
dimension D, producing a full and consistent account of
fluctuations as will be demonstrated in this work �14�. The
exact results emerging from this analysis make it possible to
connect features of the statistical interaction with features of
a corresponding dynamical interaction. The systematic study
of such connections, in turn, opens the door to the design of
�exactly solvable� models of statistical interaction for the de-
scription of thermodynamic phenomena associated with spe-
cific aspects of dynamical interaction.

In a previous paper �15� we have established a benchmark
in that regard by exploring the thermodynamics of an ideal
quantum gas with fractional statistics in D dimensions—a
thermodynamic generalization of the Calogero-Sutherland
�CS� model �16–18�—taking advantage of techniques

and results reported in previous studies �7,8,12,17,19–34�. In
that case the statistical interaction was limited to pairs of
particles with identical momenta.

Here we relax that constraint and consider a model sys-
tem, again in D dimensions, with a statistical interaction that
extends to pairs of particles with arbitrary momenta, a sys-
tem moreover, whose statistical interaction in D=1 is
equivalent to the dynamical interaction of a model that is
solvable �beyond thermodynamics� via Bethe ansatz: the
nonlinear Schrödinger �NLS� model �35–41�.

In Sec. II we review the concept of statistical interaction
and its use in statistical mechanics. We introduce the NLS
model and the generalization of its thermodynamics to D
�1. In Sec. III we describe the method of thermodynamic
analysis applied to the generalized NLS model. In Sec. IV
we discuss selected thermodynamic properties thus calcu-
lated. In Sec. V we assess the results in relation to existing
benchmarks for ideal quantum gases with fractional statis-
tics.

II. STATISTICAL INTERACTION

The statistical interaction of any given model system is
specified by a generalized Pauli principle �9�, expressing
how the number of states available to one particle is affected
by the presence of other particles.

�di � − �
j

gij�nj . �1�

The indices i , j refer to particle species and the gij are statis-
tical interaction coefficients. For bosons we have gij =0 and
for fermions gij =�ij. Integrating Eq. �1� yields the holding
capacity for particles of species i in the presence of a specific
number of particles from each species as follows:

di = Ai − �
j

gij�nj − �ij� , �2�

where Ai are statistical capacity constants. The number of
many-particle states composed of �ni� statistically interacting
particles is
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W��ni�� = �
i
	di + ni − 1

ni

 . �3�

The three principal specifications of a system of particles
subject to a statistical interaction are sets of �i� energies �i,
�ii� capacity constants Ai, and �iii� interaction coefficients gij.
The grand potential of such a system can be expressed in the
form �7�

� = − kBT�
i

Ai ln�1 + wi

wi
� , �4�

where the wi are determined by the nonlinear algebraic equa-
tions,

�i − 	

kBT
= ln�1 + wi� − �

j

gji ln	1 + wj

wj

 . �5�

The control variables are T �temperature� and 	 �chemical
potential�. The average numbers of particles, ni�, are related
to the wi by the linear equations,

�
j

��ijwj + gij�nj� = Ai. �6�

If gij =gi�ij then all Eqs. �5� and �6� are decoupled and the
statistical interaction reduces to a �fractional� exclusion con-
dition. This case was the focus of a previous study �15�,
which includes a simple illustration of the link between com-
binatorics, Eqs. �1�–�3�, and statistical mechanics, Eqs.
�4�–�6�.

A. Application to quantum gas

For a nonrelativistic quantum gas in a box of dimension-
ality D and volume V=LD the aforementioned specifications
are encoded in the energy-momentum relation �0�k�= �k�2 �in
units where 
2 /2m=1� and in a function g�k ,k��. The grand
potential �4� becomes

� = − kBT	 L

2�

D� dDk ln

1 + wk

wk
, �7�

where wk is the solution of the nonlinear integral equation

�k�2 − 	

kBT
= ln�1 + wk� −� dDk�g�k�,k�ln

1 + wk�

wk�
. �8�

The particle density in k space, nk�, is the solution of the
linear integral equation

nk�wk +� dDk�g�k,k��nk�� = 1. �9�

The fundamental thermodynamic relations �thermodynamic
and caloric equations of state� depend on the solutions of
Eqs. �8� and �9� as follows:

pV

kBT
= 	 L

2�

D� dDk ln

1 + wk

wk
, �10�

N = 	 L

2�

D� dDknk� , �11�

U = 	 L

2�

D� dDk�k�2nk� . �12�

If the statistical interaction is of the form g��k−k� � � then the
solutions of Eqs. �8� and �9� only depend on the magnitude
of the particle momenta.

B. Nonlinear Schrödinger model

Consider the boson gas in D=1 with a repulsive contact
interaction of strength c as described by the NLS Hamil-
tonian

H = − �
i=1

N
�2

�xi
2 + 2c�

j�i

��xi − xj� . �13�

The thermodynamic Bethe ansatz �TBA� solution �37–40� of
the NLS model expresses the grand potential in the form

��T,L,	� = − kBT	 L

2�

�

−�

+�

dk ln�1 + e−��k�/kBT� , �14�

where ��k� is the solution of the Yang-Yang equation �37�,

��k� = k2 − 	 −
kBT

2�
�

−�

+�

dk�K�k − k��ln�1 + e−��k��/kBT� ,

�15�

with kernel

K�k − k�� =
2c

c2 + �k − k��2 . �16�

The particle density nk� is the solution, for given ��k�, of the
Lieb-Liniger equation �35,37�,

nk��1 + e��k�/kBT� = 1 +
1

2�
�

−�

+�

dk�K�k − k��nk�� . �17�

Bernard and Wu �12� showed that this TBA solution is
equivalent to the thermodynamics of a statistically interact-
ing gas in D=1 if the following identifications are made:

wk = e��k�/kBT, �18a�

g�k − k�� = ��k − k�� −
1

2�
K�k − k�� . �18b�

C. Generalization of NLS model

The generalized NLS model is a quantum gas in D dimen-
sions with the statistical interaction expressed by the kernel

K�k − k�� =
2�D�

�D/2−1�D/2�
cD

�c2 + �k − k��2�D
�19�

of the Yang-Yang equation �15� and Lieb-Liniger equation
�17� generalized to D�1 and designed to reproduce the ex-
act thermodynamics of the dynamically interacting NLS
model in D=1. The kernel �19� has the properties
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lim
c→�

K�k� = 0, �20a�

lim
c→0

K�k� = 2���k� , �20b�

� dDkK�k� = 2� . �20c�

This model interpolates between the ideal Fermi-Dirac �FD�
gas in the strong-coupling limit �c= � � and the ideal Bose-
Einstein �BE� gas in the weak-coupling limit �c=0� in all
dimensions D�1. In the limit D→� it turns into the ideal
FD gas for all c�0.

For the further analysis of the generalized NLS model we
reduce Eqs. �8� and �9� into integral equations for the func-
tions

��k� � kBT ln wk, n�k� � nk� , �21�

where k� �k�. We also introduce scaled quantities

k̄ �
k

�kBT
, c̄ �

c
�kBT

, �22a�

�̄�k̄� �
��k�
kBT

, n̄�k̄� � n�k� . �22b�

Equations �15� and �17� thus thermodynamically generalized
to D�1 become

�̄�k̄� = k̄2 − ln z − �
0

�

dk̄�K̄�k̄, k̄��ln�1 + e−�̄�k̄��� , �23�

n̄�k̄��1 + e�̄�k̄�� = 1 + �
0

�

dk̄�K̄�k̄, k̄��n̄�k̄�� , �24�

with fugacity z=e	/kBT and reduced kernel

K̄�k̄, k̄�� =
2c̄D�D�
��D/2��2

�
k̄�D−1�c̄2 + k̄2 + k̄�2�

�c̄4 + 2c̄2�k̄2 + k̄�2� + �k̄2 − k̄�2�2��D+1�/2
.

�25�

Any particular solution �̄�k̄� , n̄�k̄� at fixed z , c̄ describes the
system over a range of temperature T, chemical potential 	,
and coupling constant c. For couplings 0� c̄�� the solu-
tions of Eqs. �23� and �24� also depend on D. High-precision

data for �̄�k̄� , n̄�k̄� can be obtained from an iterative solution.
The sample of data shown in Fig. 1 exhibit the main charac-
teristic features of these functions.

The function �̄�k̄�+ln z is monotonically increasing from a

minimum at k̄=0. The dependence on z, c̄ �not shown�, and

D is strongest at small k̄ and weakens rapidly at k̄�1. The
presence of a shoulder combined with a deep minimum at

k̄=0 signals a BEC ordering tendency �weakly evident here

in the D�2 data�. The function n̄�k̄� is monotonically de-

creasing from a maximum at k̄=0. Again there is a signifi-

cant dependence on z, c̄, and D at small k̄. The function itself

vanishes rapidly at k̄�1.

The dependence on k ,	 ,T of the functions �̄�k̄� and n̄�k̄�
is not reducible, for 0� c̄��, to a dependence on a single
variable, �k2−	� /kBT. This represents a major deviation
from a signature property of ideal gases.

D. Limiting cases

In the strong-coupling and weak-coupling limits, which
are fixed points of the scaling relation for the coupling con-
stant, we recover the familiar FD and BE results as follows:

�̄�k̄� = k̄2 − ln z, n̄�k̄� = 	1

z
ek̄2

+ 1
−1

, �26�

for c̄=�, and

�̄�k̄� = ln	1

z
ek̄2

− 1
, n̄�k̄� = 	1

z
ek̄2

− 1
−1

�27�
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FIG. 1. Iterative solutions �a� �̄�k̄�+ln z of Eq. �23�, and �b� n̄�k̄�
of Eq. �24� for c̄=0.25, z=3, and various values of D. The curves
for D=� are solutions of Eqs. �29� and �30�.
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for c̄=0. The D independence of these functions is another
signature property of ideal gases, a property upheld in the
presence of fractional statistics �15�. The parabolic curve,

�̄�k̄�+ln z= k̄2, may serve as the baseline for the solutions of
Eq. �23�. It is exact in the strong-coupling limit for all z
�0, but only for z→0 in the weak-coupling limit. For 0

�z�1 the deviations of �̄�k̄�+ln z from k̄2 and of n̄�k̄� from

zero are suppressed by factors �e−k̄2
as k̄ increases. We have

noted very similar behavior in the numerical results for 0
�c��.

In the limit D→� the reduced kernel �25� acquires a
much simpler structure,

lim
D→�

K̄�k̄, k̄�� = ��k̄� − �k̄2 + c̄2� , �28�

but the c̄ dependence is retained and �for c̄�0� also the
statistical coupling of particles with distinct momenta. Equa-
tions �23� and �24�, with reduced kernel �28� turn into the
implicit functions

�̄�k̄� = k̄2 − ln z − ln�1 + e−�̄��k̄2+c̄2�� , �29�

n̄�k̄��1 + e�̄�k̄�� = 1 + n̄��k̄2 + c̄2� . �30�

The solution of Eq. �29� is

e−�̄�k̄� = �
l=0

�

zl+1e−�l+1�k̄2
e−c̄2l�l+1�/2, �31�

and the solution of Eq. �30� is

n̄�k̄� = �
l=0

�

�lz
l+1e−k̄2�l+1�, �32�

with the recursion

�l = e−�c̄2/2�l�l+1� − �
j=1

l

��l−je
−�c̄2/2�j�j−1�

− � j−1e−�c̄2/2���l−j��l−j+1�+2j�� . �33�

For c̄→� Eqs. �26� are recovered, and for c̄→0 Eqs. �27�
are recovered.

III. THERMODYNAMIC ANALYSIS OF GENERALIZED
NLS MODEL

Exact results for the thermodynamics of the generalized
NLS model in D�1 and across the range 0�c�� of cou-

pling strengths can now be calculated from the solutions �̄�k̄�
and n̄�k̄� of Eqs. �23� and �24�, respectively.

A. NLS functions

The fundamental thermodynamic relations �10�–�12� are
rewritten in the form

p�T
D

kBT
= Fp

�D��z, c̄� , �34�

N�T
D

V
= FN

�D��z, c̄��+
z

1 − z
� , �35�

U�T
D

V
� D

2
kBT = FU

�D��z, c̄� , �36�

where

�T �� h2

2�mkBT
→


2/2m=1� 4�

kBT
�37�

is the thermal wavelength and the term in Eq. �35� enclosed
by square brackets is relevant only if c̄=0 and D�2. The
NLS functions in Eqs. �34�–�36� are defined as follows:

Fp
�D��z, c̄� �

2

�D/2��0

�

dk̄k̄D−1 ln�1 + e−�̄�k̄�� , �38�

FN
�D��z, c̄� �

2

�D/2��0

�

dk̄k̄D−1n̄�k̄� , �39�

FU
�D��z, c̄� �

2

�D/2 + 1��0

�

dk̄k̄D+1n̄�k̄� , �40�

where the additional dependence of �̄�k̄� , n̄�k̄� on D, c̄, z is
implied.

In the strong-coupling and weak-coupling limits, the NLS
functions turn into the familiar FD functions,

fn�z� �
1

�n��0

� dxxn−1

z−1ex + 1
, z � 0, �41�

and BE functions,

gn�z� �
1

�n��0

� dxxn−1

z−1ex − 1
, 0 � z � 1, �42�

respectively,

Fp
�D��z, � � = FU

�D��z, � � = fD/2+1�z� , �43a�

FN
�D��z, � � = fD/2�z� , �43b�

and

Fp
�D��z,0� = FU

�D��z,0� = gD/2+1�z� , �44a�

FN
�D��z,0� = gD/2�z� . �44b�

Furthermore, for D�1 fermionic behavior results for any c̄
�0 as follows:

Fp
�D��z, c̄�,FU

�D��z, c̄� �
D�1

fD/2+1�z� , �45a�

FN
�D��z, c̄� �

D�1

fD/2�z� . �45b�

With increasing D the factor k̄D±1 pushes all significant con-
tributions to the integrals �38�–�40� toward larger and larger

k̄, where the deviations of �̄�k̄� and n̄�k̄� from their �c̄= � �
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values �26� become smaller and smaller �42�.
A characteristic ideal-gas property is that the dependence

of the fugacity on the thermodynamic variables T ,V ,N is
expressible as a function of a single variable,

x � �Tv−1/D, v � V/N . �46�

In the Maxwell-Boltzmann �MB� gas we have xD=z, in the
FD gas xD= fD/2�z�, and in the BE gas xD=gD/2�z�. A unique
functional relation persists in the case of fractional statistics
�15�. In the generalized NLS model, however, we have xD

=FN
�D��z , c̄� with a separate T dependence contained in c̄. For

ideal quantum gases, including those with fractional statis-
tics, there also exists a unique functional dependence of
pV /NkBT on z. Again this no longer holds in the generalized
NLS model, where we have pV /NkBT=Fp

�D��z , c̄� /FN
�D��z , c̄�.

B. Reference values

We introduce reference values for the thermodynamic
variables v ,T , p based on the thermal wavelength �T and the
MB equation of state pv=kBT in the presentation of our data
below.

kBTv =
4�

v2/D , pv =
4�

v2/D+1 �v = const� , �47�

vT = 	 4�

kBT

D/2

, pT =
�kBT�D/2+1

�4��D/2 �T = const� , �48�

kBTp = 4�	 p

4�

2/�D+2�

, vp = 	4�

p

D/�D+2�

�p = const� .

�49�

They are especially useful in comparative plots that encom-
pass the full range of c̄ at finite D.

For the thermodynamic analysis we must adapt the NLS
functions to the type of process under consideration. Each
function has a different z dependence at fixed c, depending,
for example, on whether we consider v=const, T=const, or
p=const. To this end we introduce three kinds of reduced
coupling constants for use in isochoric, isothermal, and iso-
baric processes, respectively,

cv �
c

�kBTv

= c̄� T

Tv
=

c̄

x
�v = const� , �50�

cT �
c

�kBT
= c̄ �T = const� , �51�

cp �
c

�kBTp

= c̄� T

Tp
�

c̄

y
�p = const� , �52�

where x and y are the solutions of

xD = FN
�D��z,cvx� , �53�

yD+2 = Fp
�D��z,cpy� , �54�

respectively.

Reference values based on the chemical potential of the
FD gas present themselves as an alternative in some situa-

tions. Defining ln z� T̄v /T in isochoric processes and ln z

� T̄p /T in isobaric processes, we have

T̄v

Tv
=

p̄v

pv
= �	D

2
+ 1
�2/D

�
D�1 D

2e
�55�

for v=const, and

T̄p

Tp
=

v̄p

vp
= �	D

2
+ 2
�2/�D+2�

�
D�1	D

2
+ 1
1

e
�56�

for p=const. The divergence of these ratios in the limit D
→� has some surprising consequence as will be discussed in
Sec. IV B.

IV. RESULTS

In Ref. �15� we presented a panoramic view of the ther-
modynamics of the generalized CS model �ideal quantum
gas with fractional statistics� in D dimensions. The emphasis
was on the crossover between bosonlike and fermionlike fea-
tures in isochores, isotherms, isobars, response functions,
and the speed of sound as caused by aspects of the statistical
interaction that reflect long-range attraction and short-range
repulsion.

The generalized NLS model considered here exhibits
some similarities with the generalized CS model regarding
thermodynamic properties, especially their dependence on
the coupling constants of the two models. However, there are
notable differences, many of which can be identified as sig-
nificant deviations from ideal gas behavior. In our presenta-
tion of results we highlight these deviations and the role of
dimensionality.

A. Isochores, isobars, and isotherms

The dependences of p on T at v=const, of v on T at p
=const, and of p on v at T=const are determined by Eqs.
�34� and �35� in parametric representations,

p

pv
=

Fp
�D��z,cvx�

�FN
�D��z,cvx��1+2/D ,

T

Tv
= �FN

�D��z,cvx��−2/D, �57�

v
vp

=
�Fp

�D��z,cpy��D/�D+2�

FN
�D��z,cpy�

,
T

Tp
= �Fp

�D��z,cpy��−2/�D+2�,

�58�

p

pT
= Fp

�D��z,cT�,
v
vT

= �FN
�D��z,cT��−1, �59�

respectively, with the fugacity z in the role of the parameter.
Here x and y are the solutions of Eqs. �53� and �54�, respec-
tively.

In Fig. 2 we show isochores, isobars, and isotherms for
various coupling strengths cv,p,T in D=3. The variation of the
curves between the �weak-coupling� boson limit and the
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�strong-coupling� fermion limit is similar to what was ob-
served in the generalized CS model �15�: the convergence of
all curves toward the MB line at high T or large v, and the
fanning out at low T or small v. Corresponding plots in other
D show similar trends in the two models.

The shape of the curves for cv,p,T�0 in Fig. 2 yield some
insight into the physical interpretation of the statistical inter-
action. For weak couplings �cv,p,T�1� the curves exhibit
bosonlike features at high T or large v and fermionlike fea-
tures at low T or small v. These observations translate into a

long-range attractive part and a shorter-range repulsive part
of the statistical interaction. The attractive tail is only present
for small cv,p,T, whereas the repulsive core is conspicuous for
all cv,p,T�0.

Among all the curves only the ones pertaining to the bo-
son limit �cv,p,T=0� have a singularity. This singularity sig-
nals the presence of a phase transition, the onset of BEC. In
the D=3 case shown, the phase transition occurs at Tc /Tv
�0.527, pc / pv�0.271 along the isochore, at Tc /Tp�0.889,
vc /vp�0.456 along the isobar, and at vc /vT�0.383, pc / pT
�1.341 along the isotherm.

The bosonic isochore has a singularity at Tc /Tv�0 only
in D�2. In 2�D�4 it has a discontinuity in curvature. In
D�4 it becomes a discontinuity in slope. In the limit D
→� the bosonic isochore itself becomes discontinuous. By
contrast, the bosonic isobar has a singularity at Tc /Tp�0 in
all dimensions D�1, but with vc /vp�0 only in D�2. The
bosonic isotherm has a horizontal portion at v /vT�vc /vT in
D�2 �see Ref. �15� for more details on the bosonic curves.�

We have already noted that all three NLS functions
�38�–�40� converge toward the corresponding FD functions
as D→� provided we have c̄�0. One reflection of this fact
in the data for isochores, isobars, and isotherms is that all
curves for cv,p,T�0 move closer together as D increases.
They coalesce into the universal curve �isochore, isobar, or
isotherm� representing the ideal FD gas in D=�. Only the
bosonic curves at T�Tc or v�vc stay apart.

In Fig. 3 we show two sets of isochores, isobars, and
isotherms for the generalized NLS model in D=1,2 ,3, one
set for weak coupling, the other for strong coupling. Also
shown �dashed� are the corresponding curves pertaining to
D=�, which will be derived in Sec. IV B. For the most part,
the weak-coupling and strong-coupling curves are located on
opposite sides of the dashed line in each frame.

Convergence of the data for D=1,2 ,3 toward the line
representing D=� is only apparent at high T or large v and
more clearly in the strong-coupling data than in the weak-
coupling data. This is not surprising in view of the observa-
tion made earlier in the context of Fig. 2 that for weak cou-
plings the �effectively� long-range attractive part and short-
range repulsive part of the statistical interaction are
responsible for opposing trends and a crossover between
them. However, convergence becomes manifest in higher D
�not shown� as the NLS functions gradually turn into FD
functions first for strong couplings and then also for weak
couplings.

B. Phase transition in D=�

It is well known that no phase transition at T�0 exists for
free fermions in D��. No transition is expected to exist in
the generalized NLS model in finite D except in the boson
limit. However, a curious transition does emerge in the limit
D→�, where the generalized NLS model with c̄�0 effec-
tively turns into an ideal FD gas.

To determine the thermodynamic equation of state,
f�p ,v ,T�=0, of the generalized NLS model in D=� we re-
call Eq. �45� and rewrite Eqs. �57�–�59� for D�1 with the
FD functions substituted for the NLS functions. A singularity
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at T�0 results as a consequence of the fact that the two
limits D→�, z→� are not interchangeable. The emergence
of the singularity is apparent in the isochores and isobars in
D�1 as shown in Fig. 4.

The isochore at z�� in the limit D→� yields a straight-
line segment with unit slope and zero intercept in the
�T /Tv , p / pv� plane over a nonzero interval Tc�T�� as fol-
lows:

p

pv
�

D�1 T

Tv

fD/2+1�z�
fD/2�z�

→
D→� T

Tv
. �60�

The reference values �47� become kBTv=4�, pv=4� /v in the
limit D→�. The same isochore in the limit D→�, z→�
with D /2=r ln z, r�0 yields a horizontal line segment over
a nonzero interval 0�T�Tc as follows:

p

pv
�

D�1 fD/2+1�z�
�fD/2�z��1+2/D �

z�1 e−1

1 + 2/D
, �61�

T

Tv
�

D�1

�fD/2�z��−2/D�
z�1D

2

e−1

ln z
, �62�

where we have used the leading term in the asymptotic ex-
pansion of the FD function �43�. The value of Tc is deter-
mined by the intersection point of the two line segments. The
equation of state thus reads �44�

pv = �kBT , T � Tc

kBTc, T � Tc,
kBTc =

4�

e
. �63�

This same universal relation can also be inferred from Eq.
�58� for the isobar or from Eq. �59� for the isotherm by
performing the appropriate limits. All isotherms are hyperbo-
las, including the transition line at T=Tc. All the isochores
and isobars consist of two straight-line segments with the
singularity at T=Tc as already shown in Fig. 4.

This somewhat unusual phase transition from a fully in-
tact Fermi sea at T�Tc to an ideal MB gas at T�Tc results
from the conspiracy of two opposing effects, one suppressing
thermal excitations at low T and the other enhancing them at
high T. Both effects grow stronger in higher dimensions.

We know from Eq. �55� that as D increases the reference
temperature Tv becomes smaller and smaller compared to the

Fermi temperature T̄v in isochoric processes �considered here
for specificity�. This suppresses any rise in pressure at suffi-
ciently small but nonzero T /Tv more and more strongly. In
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the limit D→�, as Tv / T̄v→0, the pressure will remain con-
stant over a nonvanishing interval of T /Tv at the value
p / pv=e−1 exerted by the perfect Fermi sea.

We also know �e.g., from analogies to microcanonical en-
sembles� that as D increases the energy density of one-
particle states is progressively thinned out inside the surface
of the Fermi hypersphere except close to the surface. The
consequence is that a smaller and smaller amount of thermal
energy is needed to knock out the vast majority of particles
from the Fermi sea. Moreover, the density of vacancies near
the Fermi edge becomes so large that the constraint on oc-
cupancy imposed by the Pauli principle is negligible.

In D�1, therefore, if T /Tv is raised gradually, no signifi-

cant thermal excitations take place initially because Tv / T̄v
�1. The isochore stays flat. Once T has reached a certain
threshold the Fermi sea is emptied quickly because of its
shallowness and the abundance of vacancies close by. The
system thus crosses over from a near perfectly degenerate
Fermi sea to a nearly ideal MB gas on a very short interval of
T /Tv as documented in Fig. 4. In D=� this crossover has
sharpened into a phase transition. There is no latent heat
involved in that transition and there is no sudden increase in
pressure �45�.

Note that on the alternative temperature scale T̄v the emer-
gent crossover between near perfect Fermi sea and almost
ideal MB gas is pushed to lower and lower values of T as D
increases, ultimately to T / T̄v=0 for D=�. The resultant iso-
chore is then that of the ideal MB gas all the way down.

It is interesting to recall the phase diagram of the ideal BE
gas in D=� for comparison. The thermodynamic equation of
state inferred from the scaled isochores, isobars, or isotherms
as derived, for example, in Ref. �15� has the form

pv = �kBT , T � Tc

0, T � Tc,
kBTc = 4� . �64�

As in the FD case there are two phases separated by a tran-
sition line at constant T. The high-T phase is again an ideal
MB gas. The low-T phase is a pure BEC. The transition is of
first order and occurs at a higher temperature than in the FD
case. Whereas the FD transition disappears in D��, the BE
transition persists down to D�2, but is of second order in
D�� and occurs along a line in �p ,v ,T� space that is no
longer an isotherm.

C. Response functions

The three major response functions for a gas of spinless
particles are the isochoric heat capacity, Cv�N−1��U /�T�v,
the isobaric expansivity, �p�v−1��v /�T�p, and the isother-
mal compressibility, �T�−v−1��v /�p�T. For the generalized
NLS model we must evaluate the expressions

Cv

kB
= 	D2

4
+

D
2

FU

�D��z,cvx�
FN

�D��z,cvx�
−

D2

4

�

�z
FU

�D��z,cvx�

�

�z
FN

�D��z,cvx�
, �65�

Tp�p =
Tp

T �	D
2

+ 1
Fp
�D��z,cpy�

�

�z
FN

�D��z,cpy�

FN
�D��z,cpy�

�

�z
Fp

�D��z,cpy�
−

D
2 � ,

�66�
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pT�T =
v
vT

�

�z
FN

�D��z,cT�

�

�z
Fp

�D��z,cT�
, �67�

versus the independent variables T /Tv, T /Tp, and v /vT, re-
spectively, from Eqs. �57�–�59�.

In Fig. 5 we show the dependence of each response func-
tion on the coupling strength in D=3. The variation of the
curves between the BE and FD limits shows some resem-
blance to that observed in an ideal gas with fractional statis-
tics �generalized CS model� �15�. All three response func-
tions depend only weakly on the statistical interaction at high
temperature or low density. The dominant trends there reflect
MB behavior, Cv= �3 /2�kBT, �p=1 /T, �T=v /kBT. Distinct
bosonlike and fermionlike features and crossovers between
them emerge at low temperatures and high densities. The
exact analytic behavior of the response functions in any D
for the FD and BE limits was described in Ref. �15�.

The heat capacity in D=3 for strong coupling is domi-
nated by fermionlike features at all T, exhibiting a monotonic
descent from the MB asymptote as T is lowered and a linear
approach to zero. For weak-coupling the initial increase, the

smooth maximum followed by a steep descent is a bosonlike
feature. The ultimate linear approach to zero signals the
crossover to fermionlike behavior.

The expansivity in D=3 depends only weakly on T for
strong coupling and approaches zero linearly as T→0, which
is a characteristic fermionlike behavior. For weak coupling
the pronounced rise in expansivity is a bosonlike feature.
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However, the repulsive core of the statistical interaction for
c̄�0, no matter how weak, prevents the expansivity from
diverging and forces the fermionlike behavior at low T.

Stiff resistance to compression, perhaps the most out-
standing fermionlike feature, makes itself manifest with
growing strength in the strong-coupling compressibility
curves in D=3 as the density is increased. In the weak-
coupling curves, on the other hand, we observe trends remi-
niscent of bosonic behavior at moderate densities. While the
BE curve diverges at v=vc, the repulsive core of the statis-
tical interaction prevents the transition from taking place if
c̄�0. The compressibility curve bends into a smooth maxi-
mum or a mere shoulder down to fermionic stiffness.

Similarities to the response functions of an ideal quantum
gas with fractional statistics are also manifest in other dimen-
sions D. However, there are two notable exceptions. In Fig. 6
we show the heat capacity for D=1,2 in the same format as
the data for D=3 in Fig. 5.

In D=2 the isochoric heat capacity of an ideal quantum
gas is well known not to depend on the exclusion statistics
�23–27,31,34�. That is no longer the case in the presence of a
statistical interaction such as realized in the generalized NLS
model. Only the two curves representing the weak-coupling
and strong-coupling limits coincide. The curves at interme-
diate coupling are subject to shifting trends caused by the
long-range attractive and short-range repulsive parts of the
statistical interaction.

In D=1 the heat capacity curves are monotonically in-
creasing functions near the BE limit and functions with one
smooth maximum near the FD limit. Upon variation of the
exclusion statistical parameter between the two limits in the
quantum ideal gas the appearance of the smooth maximum
coincides with a switch in sign of the leading correction to
the high-T asymptote �15�. Upon variation of the statistical
coupling strength between the same limits in the generalized
NLS model, the smooth maximum at low T appears before
the approach to the asymptote switches sides from below the
asymptote to above it. In consequence there is a range of
coupling strengths where the heat capacity has a smooth
maximum followed by a smooth minimum.

In Fig. 7 the focus is on the D dependence of the three
response functions at cv,p,T=0.25 �weak coupling� and cv,p,T
=3 �strong coupling�. The goal is to gain further insight into
how gases with bosonlike, fermionlike, and crossover fea-
tures in D=1,2 ,3 evolve into one and the same FD system
as D→� with an emergent singularity at T /Tv=T /Tp=e−1 in
isochoric and isobaric processes.

For the scaled heat capacity we show weak-coupling re-
sults in the main plot and strong-coupling results in the inset.
The dependence on coupling strength of the results in D
=1,2 ,3 is conspicuous but becomes imperceptibly small for
D�20. The universal FD result for D=� �dashed line� is a
simple step function,

lim
D→�

Cv

�D/2�kB
= ��T − Tc�, Tc/Tv = e−1. �68�

The decrease in initial slope with increasing D is clearly
visible in the curves for D=1,2 ,3 but overall convergence
toward the step function is slow. The scaled heat capacity of
the ideal BE gas in D=� also consists of two terms, one
being a step function as in Eq. �68� but with Tc /Tv=1 and the
other being a � function representing the latent heat �15�.

For the isobaric expansivity the weak-coupling and
strong-coupling curves are shown in the same plot. There is
very little variation between D=1 and D=3 for the strong-
coupling case �cp=3�. Somewhat larger and more systematic
variation occurs in the weak-coupling case �cp=0.25�. The
universal FD result for D=� �shown dashed� is

Tp�p =
Tp

T
��T − Tc�, Tc/Tp = e−1. �69�

Convergence is slow, but evident in the curves for D
=40,300. Comparing the result �69� for the ideal FD gas with
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that of the ideal BE gas, both in D=�, we find that the latter
also has the form �69� at T�Tc but with Tc /Tp=1. The ex-
pansivity of the FD gas is zero at T�Tc; in the BE gas it is
undefined �15�.

For the isothermal compressibility the universal FD line
for D=� �dashed line�,

pT�T =
v
vT

, �70�

is indistinguishable from the MB result. The weak-coupling
and strong-coupling curves are located on opposite sides of
that line. Convergence is apparent in the curves for D
=1,2 ,3 in the strong-coupling case �cT=3� but not in the
weak-coupling case �cT=0.25�. The isothermal compressibil-

ity of ideal BE gas is also described by the result �70� but
only for v /vT�vc /vT=1. At v /vT�1 the bosonic result is
infinite �15�.

D. Speed of sound

The speed of sound as inferred from c= ���S�−1/2, where
�=m /v is the mass density and �S is the adiabatic compress-
ibility, can be brought into the form �46�

mc2

kBT
=

�v/vT�
�pT�T��1 +

�T/Tp�2�v/vT��Tp�p�2

�pT�T��Cv/kB� � , �71�

which only involves dimensionless quantities previously de-
termined in terms of the NLS functions,

mc2

kBT
=

�

�z
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�D��z, c̄�
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2 � � . �72�

Here c̄ must be replaced by cT, cvx, or cpy depending on
whether we are considering an isothermal, isochoric, or iso-
baric process, respectively. In Fig. 8 we present data for the
T dependence of the speed of sound of a weak-coupling sys-
tem under isobaric and isochoric conditions.

It is well known that in ideal gases the curves for mc2 /kBT
differ from those of the isobars or isochores only by a mul-
tiplicative factor �1+2 /D�. We have seen that this relation
still holds in the presence of fractional statistics �15�. The
data shown here for the generalized NLS model demonstrate
that no such relation holds any longer in the presence of a
statistical interaction that is not reducible to a simple exclu-
sion principle.

The deviations appear to be strongest in D=1. All devia-
tions are expected to fade away in the limit D→� when
ideal gas behavior is restored as explained in Sec. IV B. Par-
ticularly noteworthy is the observation that the T dependence
of the speed of sound in D=1 at constant �average� pressure
undergoes a minimum as highlighted in the inset. No such
minimum exists in the isobar.

We attribute this effect to the crossover between bosonlike
features at high T and fermionlike features at low T. The
general trend, realized in ideal gases is that the speed of
sound decreases monotonically upon cooling. Superimposed

on this is another trend that signals softness when bosonlike
features are predominant and stiffness when fermionlike fea-
tures are predominant.

For stronger coupling �e.g., cv,p=3� the deviations of the
speed-of-sound data from the scaled isobar or isochore are of
a similar kind and size. We have detected no minimum at
T�0 in these data. If such a minimum exists at all it must
occur at very low T, out of reach of our numerical analysis.

V. CONCLUSION

The exact thermodynamic analysis of the generalized
NLS model, a quantum gas in D dimensions with a statistical
two-body interaction, has yielded significant deviations from
characteristic ideal quantum gas behavior in several respects.

For given coupling strength 0�c�� �i� the average level
occupancy n�k�� is no longer a unique function of �k2

−	� /kBT and independent of D; �ii� the quantities p�T
D /kBT,

N�T
D /V, and �U�T

D /V� / �kBTD /2� are no longer unique func-
tions of the fugacity z; and �iii� the two quantities p�T

D /kBT
and �U�T

D /V� / �kBTD /2� are no longer identical.
Among the consequences are �i� that the T dependence of

the internal energy is no longer of the same shape as the
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isochore; �ii� that the quantity pV /NkBT is no longer a func-
tion of z alone in given D; �iii� that there is no longer
anysimple relation between the speed of sound and the iso-
chore or isobar.

In any finite D the statistical interaction of the generalized
NLS model smoothly interpolates between an ideal BE gas
in the weak-coupling limit �c=0� and an ideal FD gas in the
strong-coupling limit �c= � �. In the limit D→� the system
behaves like an ideal BE gas for c=0 and like an ideal FD
gas for c�0. In D=� both quantum gases feature a phase
transition at Tc�0 along isochores or isobars. The transition

is of first order in the BE case and of second order in the
FD case.
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