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ABSTRACT 

Steatosis is fat deposition in liver arising from conditions like obesity, diabetes, 

and/or alcohol consumption.  It is a benign condition with normal liver function, 

and can often be reversed.  Both alcoholic and non-alcoholic liver steatosis 

can further progress to irreversible steatohepatitis to cirrhosis and substantial 

loss of liver function.  Nuclear factor E2 related factor 2 (Nrf2) is a transcription 

factor known to combat oxidative stress in the cell.  The contribution of Nrf2 to 

other cellular functions, such as lipid homeostasis is emerging.  The work 

herein assessed how enhanced Nrf2 activity impacts progression of hepatic 

steatosis with long-term high fat diet (HFD) feeding.  C57BL/6 and Keap1-

Knockdown (Keap1-KD) mice, which exhibit enhanced Nrf2 activity, were fed a 

HFD for 24 weeks.  Keap1-KD mice had higher body weight, liver weight and 

higher hepatic fat deposition.  Lipogenic gene expression was also higher in 

livers of Keap1-KD mice fed HFD.  Next, the work herein studied effect of 

steatosis and cirrhosis on Nrf2 and drug transporter expression in human 

livers.  Transporters aid in hepatobiliary excretion of many drugs and toxic 

chemicals, and can be determinants of drug-induced liver injury.  Alcohol 

cirrhosis increased efflux transporter mRNA and protein expression in human 

livers as compared to normal non-steatotic livers.  It was observed that 

transporter expression alterations with steatosis were much less severe as 

compared to cirrhosis.  In order to demonstrate the effects of these drug 

transporter and metabolizing enzyme alterations on pharmacokinetics, we 

conducted oral Bisphenol A (BPA) disposition study in diet-induced obese 



mice.  The mice were administered deuterated BPA orally and blood levels 

were detected for BPA and BPA metabolites at times after BPA administration.  

Increased BPA clearance was observed in DIO mice, as compared to lean 

controls, attributed to increased phase II conjugation enzyme Ugt and biliary 

efflux transporter Abcc2 expression.  

In conclusion, constitutive activity of Nrf2 increases susceptibility to mice to 

develop liver steatosis; and human livers with steatosis and alcohol cirrhosis 

have altered expression of drug transporters, which may result in xenobiotic 

disposition alterations.   
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PREFACE 

The following dissertation titled “Role of nuclear factor E2 related factor 2 

(Nrf2) in development of steatosis and drug transporter alterations” is 

presented in manuscript format.  There are four manuscripts in this 

dissertation.  First manuscript is introductory and serves as a general 

background for manuscript two, three and four.  Manuscript two is formatted in 

Free Radical Biology and Medicine (FRBM) journal style, third manuscript is in 

Drug Metabolism Disposition (DMD) style, and fourth is in J Biochemical 

Molecular Toxicology (JBMT) style.  Manuscripts two and three are published 

in peer-reviewed journals as of March 2013.   
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NRF2:  

Nuclear factor E2 related factor 2, Nrf2, is a transcription factor very well 

known for combating oxidative stress by inducing a battery of antioxidant 

genes.  Nrf2 protects against oxidative stress at baseline levels, as well as, 

upon challenge by reactive oxygen species (ROS).  ROS are integral part of 

normal physiological mechanisms.  However, loss of redox balance causes 

generation of excess ROS, which can lead to cytotoxicity (1).   ROS play a 

vital role in pathogenesis of variety of diseases, such as cirrhosis, diabetes, 

hypertension, and cancer, along with neurological disorders including 

Parkinson’s disease (2), and Schizophrenia (3).  As reviewed by Naik and Dixit 

(2011), ROS can also lead to deregulated inflammation, arising from 

production of pro-inflammatory cytokines (4). 

 

Kelch like associated protein 1 (Keap1) acts as an inhibitor of Nrf2 by 

preventing its entry into nucleus to interact with antioxidant response element 

(ARE) (Fig. 1) (5).  Keap1 contains multiple cysteine residues in its structure, 

which are excellent sites for electrophillic attack.  The hinge and latch model 

described that one molecule of Nrf2 is sequestered to two molecules of 

Keap1, with one having more affinity for Nrf2 than other.  Upon induction, the 

loose interaction between Nrf2 and one of the Keap1 is broken, and stronger 

one remains intact.   Because of this structural modification of protein 

complex, degradation of Nrf2 by proteosome 26S is inhibited.  This results in 
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Nrf2 accumulation to the extent that passes sequestering capacity of Keap1, 

and excess Nrf2 moves to nucleus (6).   

 

NON-ALCOHOLIC FATTY LIVER DISEASE (NAFLD):  

Owing to increasing prevalence of obesity and diabetes, NAFLD is becoming 

the most common liver disease (7).  Youssef and McCullough reviewed the 

connections between obesity and NAFLD (8).  The prevalence of NAFLD is 

10-fold more in obese patients than in general population.  Non-alcoholic 

steatohepatitis (NASH) is severe form of NAFLD, which can progress to 

fibrosis and cirrhosis.  Insulin resistance is considered as key pathogenic 

factor in progression of NASH (9).  NASH, the most severe form of NAFLD, is 

known to develop by two “hits” (10).  The first hit is steatosis, which is fat 

deposition in liver, followed by second hit involving oxidative stress.  Even 

though progression of liver from steatosis to NASH is incompletely 

understood, it is clear that oxidative stress plays the major role in the process 

(11).  So, it is likely that Nrf2 exerts its protective actions in the second hit of 

the NASH, but acting to bolster expression of genes that encode for 

cytoprotective enzymes, which can counter oxidative stress, such as 

glutathione cysteine ligase, superoxide dismutase, and glutathione 

peroxidase.  However, very little is known about whether Nrf2 plays any role in 

steatosis, the first hit of NASH. 
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ALCOHOLIC FATTY LIVER DISEASE: 

Alcoholic liver disease is a spectrum of conditions ranging from simple 

steatosis to alcoholic steatohepatitis to alcoholic cirrhosis.  Similar to obesity 

driven steatosis, alcoholic steatosis is also a reversible condition, and can be 

suppressed by abstinence from alcohol (12).  Continued consumption of larger 

quantities of alcohol causes increase in inflammatory cytokine levels, 

increased bile acid levels in liver, leading to alcoholic hepatitis.  There is 

severe hepatocyte ballooning because of excessive amount of water (13).  

There is increase in oxidative stress in the liver, and this may lead to fibrosis of 

liver.  Excessive scar tissue formation leads to cirrhotic liver, wherein 

significant loss of liver function occurs.  Alcoholic cirrhosis is completely 

irreversible damage of the liver tissue, and eventually leads to liver failure (13).   

According to Center for Disease Control and prevention (CDC), more than 

15,000 Americans die every year from alcoholic liver cirrhosis (National Vital 

Statistics Report, Volume 60, No 3).   

About 30% of cirrhotic patients also suffer from diabetes (14).  Acute, as well 

as chronic alcohol consumption leads to development of insulin resistance, 

which can progress to diabetes mellitus (15).  Disruption of normal functions of 

the liver in cirrhosis may lead to hepatogenous diabetes (16).  Additionally, 

obesity and diabetes mellitus increase the severity of alcoholic liver disease 

(17).  Owing to interplay between diabetes and cirrhosis, the two conditions 

often co-present clinically (18).    
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2.1 Abstract 

The Nuclear factor-E2 related factor 2 (Nrf2)-Kelch-like ECH-associated 

protein 1 (Keap1) pathway upregulates antioxidant and biotransformation 

enzyme expression to counter cellular oxidative stress.  The contribution of 

Nrf2 to other cellular functions, such as lipid homeostasis is emerging.  The 

present study was conducted to determine how enhanced Nrf2 activity impacts 

progression of metabolic syndrome with long-term high fat diet (HFD) feeding.  

C57BL/6 and Keap1-Knockdown (Keap1-KD) mice, which exhibit enhanced 

Nrf2 activity, were fed a HFD for 24 weeks.  Keap1-KD mice had higher body 

weight and white adipose tissue mass compared to C57BL/6 mice on HFD, 

along with increased inflammation and lipogenic gene expression.   HFD 

feeding increased hepatic steatosis and inflammation to a greater extent in 

Keap1-KD mice compared to C57BL/6 mice, which was associated with 

increased liver Cd36, fatty acid binding protein 4 (Fabp4), and monocyte 

chemoattractant protein 1 (Mcp1) mRNA expression, as well as, increased 

acetyl CoA carboxylase 1 (Acc1) and Steroyl CoA desaturase 1 (Scd1) protein 

expression.  The HFD altered short-term glucose homeostasis to a greater 

degree in Keap-KD mice compared to C57BL/6 mice, which was accompanied 

by down regulation of Insulin receptor substrate 1 mRNA expression in 

skeletal muscle.  Together, the results indicate that Keap1 knockdown, on 

treatment with HFD, increases certain markers of metabolic syndrome.  
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2.2 Introduction 

Metabolic syndrome is described as a cluster of risk factors that increase risk 

for developing cardiovascular disease [1].  Some of the risk factors include 

central obesity, atherogenic dyslipidemia (elevated triglycerides and low HDL 

cholesterol), insulin resistance (with or without glucose intolerance), and a 

proinflammatory state.  In 2003-2009, in an analytic sample that consisted of 

3,423 adults, 20 years of age and over, 34% of American adults met the 

criteria for metabolic syndrome [2]. 

Nuclear factor E2 related factor 2 (Nrf2) is a basic leucine zipper transcription 

factor, which regulates basal and inducible expression of multiple antioxidant 

and biotransformation genes [3].  Kelch-like ECH-associated protein 1 (Keap1) 

is a cysteine rich protein that binds Nrf2 in the cytosol, and is a critical 

determinant for Nrf2 nuclear accumulation.  Dose-dependent accumulation of 

Nrf2 in nucleus and increasing Nrf2 target gene expression occurs in Nrf2-

knockout, Keap1-knockdown and liver-specific Keap1 knockout mice [4].  The 

effects of Nrf2 and Keap1 knockout/knockdown are well described in models 

of liver injury caused by acetaminophen, diquat, cadmium, alcohol, or 

oxidative stress [5-10].  But the effects are largely undescribed for 

hyperlipidemia and tissues important to metabolic syndrome, such as adipose 

tissue and skeletal muscle (SKM). 

Central obesity is a major hallmark of metabolic syndrome.  Multiple nuclear 

receptors influence stem cell differentiation to adipocytes and adipocyte 

maturation. For example, multiple CCAAT-enhancer-binding protein isoforms 
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(Cebp! and Cebp") are required at various stages of adipocyte differentiation 

[11].  Peroxisome proliferator-activated receptor-gamma (Ppar-#) is known as 

a key regulator of fat synthesis, which regulates additional genes that 

contribute to lipid storage, such as Fatty acid binding protein 4 (Fabp4), 

Cluster of Differentiation 36 (Cd36, fatty acid translocase), Lipoprotein lipase 

(Lpl) and steroyl CoA desaturase (Scd1) [12].  Acetyl CoA carboxylase 1 

(Acc1) catalyzes formation of malonyl CoA, which is a vital substrate for fatty 

acid biosynthesis [13].  Malonyl CoA also inhibits "-oxidation of fatty acids.  

Phosphorylated Acc1 (pAcc1) is an inactive form of Acc1.  Fatty acid synthase 

(Fas) uses precursors like acetyl CoA and malonyl CoA to synthesize long 

chain saturated fatty acids.  Steroyl CoA desaturase 1 (Scd1) catalyzes 

synthesis of unsaturated fatty acids from saturated fatty acids [13].  

Lipoprotein lipase (Lpl) breaks down triglycerides (TG) from lipoproteins to 

release free fatty acids [14].  In summary, all of the abovementioned enzymes/ 

enzyme complexes are responsible for fatty acid levels in the tissues as well 

as serum.     

Adipocytes function to not only store fat, but also produce and secrete 

‘adipocytokines’ that include bioactive products such as inflammatory 

mediators (e.g. Interleukin-6, IL-6; monocyte chemoattractant protein, Mcp1; 

tumor necrosis factor, Tnf), which are considered to be a cause of insulin 

resistance and non-alcoholic fatty liver disease [15, 16].  Obesity increases the 

presence of M1 pro-inflammatory macrophages in adipose tissue, increases 
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secretion of pro-inflammatory cytokines, and increases M1 hepatic 

macrophages and inflammation [17].   

In adipose tissue, Nrf2 binds to an ARE present in the Ppar-# promoter to 

promote adipocyte differentiation [18].  Nrf2 knockout mice were protected 

against hepatic steatosis induced by high fat diet (HFD) feeding [19], indicating 

that Nrf2 presence is needed for hepatic lipid accumulation.  Huang et al. 

(2010) illustrated that targeted Nrf2 deletion protects against high fat diet 

induced steatosis through dowregulation of Cd36, Sterol regulatory element 

binding protein 1c (Srebp-1c), Fas, Ppar-# expression, and upregulation of 

Small heterodimeric partner (Shp) -dependent pathways.  Moreover, OB-

Keap1KD exhibit increased hepatic steatosis compared to OB mice [20].  In 

contrast, Kay et al. (2011) report inverse that NRF2 and SREBP1c are 

inversely regulated in human livers with steatosis [21].  Because hepatic 

steatosis is a manifestation of metabolic syndrome, better understanding of 

Nrf2 function in hepatic lipid accumulation in the face of dyslipidemia is 

needed.   

 

The study herein describes the effect of chronic HFD-feeding on markers of 

metabolic syndrome including 1) WAT mass and hepatic steatosis, 2) glucose 

clearance, and 3) WAT and liver inflammation in C57BL/6 and Keap1-

knockdown mice.  Overall, Keap1-KD mice exhibited increased markers of 

metabolic syndrome with long-term HFD feeding. 



! 13 

2.3 Materials and methods 

2.3.1 Animals. Mice with Keap1 knockdown (Keap1-KD), congenic to 

C57BL/6 background were generously shared by Dr. Curtis Klaassen (Kansas 

University Medical Center, Kansas City, KS) and Dr. Masayuki Yamamoto 

(Tohoku University Graduate School of Medicine, Sendai, Japan).  The mice 

are described in multiple publications from Yamamoto and Klaassen [22-24].  

Male age-matched C57BL/6 and Keap1-KD mice were bred in-house and fed 

diet containing either 10% kcal fat (LFD, Research Diets Inc, D12450B) or 

60% kcal fat (HFD, Research Diets Inc, D12492) starting at wean (3 weeks) 

(n=4 or 5 per group).  Body weights were measured every week starting from 

six weeks of age (3 weeks on diet).  At the age of 27 weeks, blood, liver, SKM, 

and WAT, and brown adipose tissue were collected.  The study herein was 

reviewed and approved by the University of Rhode Island Institutional Animal 

Care and Use Committee (IACUC protocol # AN11-11-007) and the number of 

mice used was based upon required power analysis. 

 

2.3.2 Glucose tolerance test (GTT). The GTT was performed on the mice at 

25 weeks of age.  Mice were fasted for 8 hours overnight and were 

administered a bolus dose of glucose solution by oral gavage (1g/kg body 

weight).  The blood glucose levels were recorded at 0, 15, 30, 60, and 120 

minutes after glucose administration from tail blood using a Contour® 

glucometer (Bayer HealthCare LLC, Tarrytown, NY).   
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2.3.3 Hepatic triglyceride (TG) quantification. Total lipids were extracted 

from liver tissue by methanol-chloroform extraction according to [25] and TGs 

were quantified using a kit from Pointe Scientific Inc (Canton, MI) according to 

manufacturer’s protocol. 

 

2.3.4 Hematoxylin and Eosin staining. After harvesting, a small section of 

liver tissue from the central lobe of the liver, WAT, or brown adipose tissue 

was stored in formaldehyde for 24 hour and then in 75 % ethanol until further 

processing for paraffin embedding.  Paraffin-embedded tissues were cut to 

approximately 5 µm sections, and then stained with hematoxylin and eosin.   

 

2.3.5 Oil red O staining. Frozen liver tissues were sectioned (5µM) on 

Vibratome UltraPro 5000 Cryostat® (GMI Inc., Ramsey, MN).  Sections were 

then fixed in 10% formalin for 5 min and slides were washed in water.  Then 

slides were immersed in 60% isopropanol five times and incubated in Oil red 

O solution for 15 min.  The slides were immersed in fresh 60% isopropanol 

solution twice and then counter stained with hematoxylin.  Excess hematoxylin 

was removed with a water wash and the slides were covered using 

Vectamount aqueous solution and coverslips.     

 

2.3.6 Neutrophil staining. Neutrophil staining of paraffin embedded liver and 

WAT sections was performed as described in [26].  Briefly, 4 µM sections on 

adhesive slides were dried, de-paraffinized and placed in TBS of pH 7.5 for 5 
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min.  Enzyme Induced Epitope Retrieval (20 minutes in 0.04% Pepsin in 

0.2NHCl) followed by subsequent rinses and blocking for endogenous 

peroxidase using 3% Hydrogen Peroxide/Methanol bath (1:4 ratio) for 20 

minutes followed by rinses with water.  Pretreatment was followed by blocking 

with rabbit serum and endogenous Biotin blocking by incubation in Avidin D 

(Vector) and d-Biotin (SigmaAldrich, St.Louis, MO) for 15 minutes.  Slides 

were then incubated with primary antibodies diluted in normal diluent for 1 hr 

(Neutrophil- NIMP R14 from Santa Cruz Biotech, CA).  Biotinylated secondary 

antibody incubation was followed by RTU VectaStain Elite ABC Reagent 

(Vector Laboratories, Burlingame, CA), reaction developed by Nova Red 

followed by counterstain Gill 2 Hematoxylin (Richard Allen, Kalamazoo, MI).  

The slides were then rinsed, dried and permanently mounted with Flotex 

media.   

 

2.3.7 Serum cytokine analysis. Serum Mcp1 levels were measured using 

Mouse Mcp1 ELISA Max kit (# 432704) from Biolegend (San Diego, CA) 

according to the manufacturer’s protocol.   

   

2.3.8 Total RNA extraction and mRNA quantification. Total RNA from liver, 

WAT and SKM was isolated by phenol-chloroform extraction using RNA Bee 

reagent (Tel-Test Inc, Friendswood, TX) according to the manufacturer’s 

protocol. RNA concentration was quantified by absorbance at 260 nm using a 

spectrophotometer (Nanodrop ND1000, Thermo Fisher Scientific, Waltham, 
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MA) and the samples were diluted to 1 µg/µL. Formaldehyde–agarose gel 

electrophoresis followed by UV illumination was used to visualize RNA and 

confirm integrity.  Messenger RNA was quantified by QuantiGene (QGP) Plex 

2.0 or 1.0 assay.   

For QGP 2.0 assay, all the reagents including capture buffer, magnetic 

capture beads, preamplifier, amplifier, label probe, diluents, and substrate 

solution were provided in the kit (Affymetrix, Santa Clara, CA).  On day one, 

1000ng of RNA was incubated with capture beads and target specific probe 

set mixture for hybridization for 18-22 hrs.  After hybridization, the beads were 

washed on BioPlex Pro wash station I (BioRad, Hercules CA), using magnetic 

plate washer.  Then beads were hybridized with preamplifier, amplifier and 

label probe for 1 hr each and with washings in-between with wash buffer.  

After incubation with label probe, the beads were washed and incubated with 

streptavidin phycoerythrin (SAPE) for 30 min.  The beads were then washed 

with SAPE washing buffer and re-suspended in it for reading on Bioplex 

microplate luminometer.  The data was processed by BioPlex Manager 

software 5.0.  Target gene expression was normalized to Hprt1 expression.  

The QGP 1.0 assay (also referred to as the Branched DNA Signal 

Amplification assay) procedure has been described in detail elsewhere [27, 

28].  All reagents for analysis including lysis buffer, amplifier/label probe 

diluent and substrate solution were supplied in the QuantiGene 1.0 assay kit 

(Panomics, Fremont, CA). Oligonucleotides were first dissolved in 10 mM Tris-

HCl (pH 8.0) containing 1 mM EDTA and were diluted 1:100 in lysis buffer 
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before use [29].  On day one, total RNA samples (10 µg, 1 µg/µL) were added 

to wells containing 50 µL of capture hybridization buffer and 50 µL of diluted 

probe set. The RNA was allowed to hybridize overnight with probe set at 53°C. 

On day two, subsequent hybridization steps were followed as mentioned in 

manufacturer’s protocol, and luminescence was measured with a 

GloRunnerTM microplate luminometer interfaced with GloRunner DXL Software 

(Turner Biosystems, Sunnywale, CA). The luminescence for each well was 

reported as relative light units (RLU) per 10 µg of total RNA.  The raw data 

was used to plot graphs for mRNA expression.    

 

2.3.9 Total protein extraction and western blotting. About 50mg of liver 

tissue was homogenized in 1mL RIPA buffer using Dounce homogenizer.  The 

homogenate was centrifuged at 12000 rpm for 10 minutes, and the 

supernatant was stored at -80°C for future use as a total protein fraction.  The 

extract was quantified for protein content by Lowry assay.  Relative protein 

expression was evaluated by western blot. Fifty microgram of total protein 

extract pre-mixed with Laemmli was loaded on polyacrylamide gel (4% 

stacking, 12% resolving), transferred on PVDF membrane, stained with 

different antibodies.  All the primary antibodies were obtained from Cell 

Signaling Inc (Danvers, MA).  The membrane was then incubated with ECL+ 

(GE Healthcare, Waukesha, WI) and chemiluminescence was exposed to X-

ray film.  The resulting bands on autoradiography films were evaluated using 

Quantity One® software from BioRad.  
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2.3.10 Statistical Analysis. Groups were analyzed by a one-way ANOVA 

followed by a Duncan’s Multiple Range post hoc test and planned comparison 

between C57BL/6 and Keap1-KD groups were performed among HFD groups 

after performing the one-way ANOVA.  Different letters indicate statistically 

significant difference between the groups (p<0.05).   
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2.4 Results 

2.4.1 Effect of Keap1-KD on body, WAT, and liver weight and food 

consumption with long-term HFD feeding.  Figure 1A depicts body weight 

change over 24 weeks. There was no significant difference in body weight 

between C57BL/6 and Keap1-KD mice fed the LFD.   Keap1-KD mice fed HFD 

had significantly higher body weight between weeks 17-24, compared to 

C57BL/6 mice fed HFD.  At weeks 8 and 9, the HFD did not increase body 

weight in Keap1-KD mice as much as C57BL/6 mice.  However, around 11th 

week feeding the HFD, the trends in body weight gain appeared to reverse, 

with Keap1-KD mice having body weight higher than C57BL/6 mice.  Food 

consumption (Fig. 1B) for the LFD groups stayed within the range of 15-20 

g/week per mouse for entire duration of the study.  For HFD fed mice, it was 

noted that food consumption appeared slightly higher in C57BL/6, as 

compared to Keap1-KD mice throughout the study (no statistical significance).  

Blood glucose levels of the mice throughout the course of study were 

observed to remain in the range of 100 to 200 mg/dL, with no significant 

difference between any of the groups (data not shown). 

HFD feeding increased WAT weight (Fig 1C) significantly higher in Keap1-KD 

compared to C57BL/6 mice.  At 24 weeks of feeding the LFD or HFD, Keap1-

KD mice also had an increased liver-to- body weight ratio as compared to 

C57BL/6 mice on the respective diet. 
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2.4.2 Keap1 knockdown increases liver steatosis with chronic HFD 

feeding.  As depicted in Fig. 2A, the HFD increased lipid accumulation in the 

liver compared to the LFD. Keap1-KD mice fed the HFD had a higher degree 

of steatosis compared to C57BL/6 mice, as seen with hematoxylin and eosin 

staining.  Oil red O staining of neutral lipids also revealed that the HFD 

significantly increased hepatic steatosis, with higher levels being observed in 

Keap1-KD mice (Fig. 2B).  Correspondingly, the HFD increased hepatic 

triglycerides (Fig. 2C); with significantly higher TG levels being detected in 

livers of Keap1-KD mice compared to C57BL/6 mice.   

 

2.4.3 Keap1 knockdown increases lipogenic gene and protein expression 

in liver.  Fig. 3A depicts lipogenic gene expression on mRNA level in liver.  

Ppar-# and Cd36 mRNA expression increased significantly in Keap1-KD mice 

as compared to C57BL/6 mice, in both LFD and HFD fed groups.  Fabp4 

mRNA expression increased in Keap1-KD mice fed HFD compared to 

C57BL/6 mice.  Lpl mRNA expression was higher in C57BL/6 mice fed LFD 

compared to all other groups, whereas Scd1 expression remained unchanged 

between all the groups.  Fig. 3B and 3C depicts increased mRNA expression 

of Nrf2 and its target genes, NADPH quinone oxidoreductase (Nqo1) and 

glutamate cysteine ligase, catalytic subunit (Gclc) in livers and WAT of Keap1-

KD mice.  Expression of Nrf2 and its target genes was quantified in order to 

characterize the Keap1-KD model. 
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Protein expression of similar adipogenic targets also tended to increase livers 

of Keap1-KD mice fed HFD (Fig. 4).  HFD slightly increased Ppar$# protein 

expression in Keap1-KD mice, however the change did not reach statistical 

significance.  Phosphorylated acetyl CoA carboxylase 1 (pAcc1), Acc1, and 

Scd1 protein levels were increased in Keap1-KD mice fed HFD compared to 

C57BL/6 mice.  Fatty acid synthase (Fas) protein expression was equivalent 

among all groups; however, HFD groups displayed an increasing trend in 

expression (not statistical), as compared to LFD.   

 

2.4.4 Keap1-KD increases liver and WAT tissue inflammation. Neutrophil 

staining of paraffin-embedded liver sections revealed increased infiltration in 

the HFD fed mice, with even more neutrophils in Keap1-KD mice fed HFD 

(Fig. 5A).  Serum levels of Mcp1 tended to increase in Keap1-KD mice fed 

either LFD or HFD, but this did not achieve statistical significance (Fig. 5B).  

Quantification of relative pro-inflammatory cytokine mRNA expression in liver 

tissue supported the histological staining.  Mcp1 mRNA expression in liver was 

higher in Keap1-KD compared to C57BL/6 mice fed HFD (Fig. 5C).  Tnf mRNA 

expression remained constant between C57BL/6 and Keap1-KD mice fed 

same diet. 

Chronic feeding of the HFD caused increased cellularity in WAT (Fig. 6A), 

which is often associated with presence of neutrophils and macrophages [30].  

After chronic HFD feeding, WAT from Keap1 mice had increased cellularity 

and inflammation compared to C57BL/6 mice, as determined by 
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histopathological analysis.  Messenger RNA levels of proinflammatory 

macrophage M1-marker Tnf was elevated in WAT of Keap1-KD mice fed HFD 

as compared to C57BL/6 mice fed HFD (Fig. 6B).  Mcp1 and Cd11c mRNA 

levels were higher in HFD fed groups, but there was no significant difference 

between the C57BL/6 and Keap1-KD mice. 

 

2.4.5 Keap1-KD alters glucose clearance and insulin signaling protein 

expression in SKM.  After 23 weeks of feeding the LFD or HFD, mice were 

subjected to a glucose tolerance test (GTT), as a measure of diabetes and 

insulin resistance.  No differences in glucose levels after glucose 

administration were detected between C57BL/6 or Keap1-KD mice fed the 

LFD. Mice fed the HFD had higher blood glucose levels compared those fed 

the LFD.  After 15, 30 and 60 min of glucose administration, the blood glucose 

levels of Keap1-KD mice fed HFD were about 1.5 fold higher compared to 

C57BL/6 mice fed the HFD (Fig. 7A).  Area under the curve (AUC) for GTT 

also demonstrated that blood glucose levels remained significantly high in 

Keap1-KD mice fed HFD as compared to C57BL/6 mice fed HFD (Fig. 7B) for 

the duration of 2 hrs. 

In accordance with the GTT, the expression of insulin signaling target insulin 

receptor substrate 1 (Irs1) was also down regulated in SKM.  In HFD fed mice, 

Keap1-KD mice had decreased mRNA expression of Irs1 compared to 

C57BL/6 mice (Fig. 7C).  However, Glut4 mRNA and protein expression was 
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similar between all the groups, as determined by QGP 2.0 assay and western 

blot respectively (Fig. 7C and 7D).     
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2.5 Discussion 

Metabolic syndrome is considered to be a manifestation of obesity, 

characterized by increased central abdominal mass, dyslipidemia (e.g. 

increased serum triglycerides), increased hepatic steatosis and markers of 

systemic inflammation, and dysregulation of glucose tolerance [31].  To date, 

no study has evaluated the effect of Keap1 knockdown on development of 

metabolic syndrome.  The present study demonstrates that Keap1 knockdown 

increased some markers of metabolic syndrome after long term HFD feeding.  

Along with increased body weight and WAT mass, Keap1-KD mice fed a HFD 

displayed increased hepatic and white adipose markers of inflammation, 

hepatic steatosis, increased adipose cellularity, and altered glucose 

homeostasis.  Taken together, these data suggest that Keap1 knockdown, 

and perhaps persistent Nrf2 activation, are associated with increased 

metabolic syndrome risk with HFD challenge.   

The present data indicate that Keap1-KD mice had significantly higher body 

weight and adipose tissue mass compared to C57BL/6 mice with chronic long-

term HFD feeding, which are in line with other published findings.  Pi et al. 

described adipose tissue changes in Nrf2-/- mice [18].  The body weight of 

Nrf2-/- mice was significantly lower than wild type mice fed an ad libitum diet.  

Abdominal fat pad mass, and adipocyte size was also significantly smaller in 

mice with Nrf2-/- mice.  Nrf2-/- mice were also resistant to diet-induced obesity, 

when fed 41% kCal fat diet for 12 weeks after weaning.  Also, adipocytes 

derived from Nrf2-/- mouse embryonic fibroblasts accumulated less lipids 
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compared to those derived from Nrf2+/+ mouse embryonic fibroblasts [18]. 

Another study by Huang et al. also demonstrated that deletion of Nrf2 (Nrf2-/-) 

in mice resulted in reduced body weight in Nrf2-/- mice fed a HFD for 

approximately three months.  These mice also had lower hepatic TG content 

when challenged with HFD, compared to Nrf2+/+ mice [19].  Nrf2-/- mice 

displayed better insulin sensitivity, measured by glucose tolerance, as 

compared to wild type mice fed HFD for 180 days [32].  The data herein also 

demonstrate that Keap1-KD mice display increased hepatic steatosis 

compared to C57BL/6 mice.  It was observed that the HFD increased hepatic 

lipid accumulation along with increased lipogenic gene and protein expression 

(e.g. Fabp4 mRNA, Cd36 mRNA, pAcc1 protein), which was augmented in 

Keap1-KD mice.  This observation is consistent with a report by Huang et al., 

2010, which reported decreased hepatic lipid accumulation in livers of Nrf2-/- 

mice after long term HFD feeding.  An interesting change in body weights was 

noted in the HFD fed groups.  Up to about 8-9 weeks of feeding the HFD, 

C57BL/6 mice appeared to have significantly higher body weight as compared 

to Keap1-KD mice, which is consistent with our previous observation [33].  

However, this difference diminished at about 11 weeks of feeding HFD and 

then by 19 weeks of HFD feeding, Keap1-KD mice weighed significantly 

higher than C57BL/6.  Food consumption did not significantly differ between 

genotypes, suggesting the observed increase in metabolic syndrome markers 

in Keap1-KD mice are related to lipid metabolism and not appetite.  Zhang et 

al. recently reported no alterations in body and liver weights in Keap1-KD mice 
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fed 40% kCal fat diet for 12 weeks [34].  The results herein differ from Zhang 

et al., perhaps because our study used 60% kCal fat diet and was significantly 

longer in duration.  However, our results are consistent with Zhang et al. and 

Xu et al., when duration of feeding is considered.  For example, in the present 

study, body weights were similar between C57BL/6 and Keap1-KD mice after 

12 weeks of HFD feeding (15 weeks of age), which is consistent with Zhang et 

al. Also, our group reported that Keap1 knockdown protected against HFD-

increased weight gain [33], which on a cursory review seems inconsistent with 

the present study.  Again, when one evaluates the response of Keap1-KD 

mice with regard to duration on a HFD, the present data are also consistent 

with Xu et al.  In Xu et al., HFD feeding started at 9 weeks of age for 5 weeks 

in duration.  In the present study, Keap1-KD mice had lower body weights 

compared to C57BL/6 mice on the HFD after 5 weeks of feeding, consistent 

with Xu et al [33].  It appears that short term versus long term HFD in Keap1-

KD produce different outcomes with regard to body weight.  

In contrast to the present finding, others report that activation of Nrf2 is 

protective against HFD-induced obesity and steatosis, but this is typically 

reported in conjunction with pharmacological Nrf2 activating compounds.  

Chemical activators of Nrf2 including, oltipraz, CDDO-imidazole, and 

sulforaphane in separate studies protected mice against obesity and steatosis 

[21, 35, 36].  When administered with oltipraz, HFD feeding did not have 

obesogenic effects on mice for up to 28 weeks.  Body weight, liver weight and 

adipose tissue weight gain induced by HFD feeding was prevented with 
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oltipraz co-administration C57BL/6J mice [35].  Similarly, the synthetic 

triterpenoid CDDO-imidazole also prevented weight gain in mice fed HFD for 3 

and 13 weeks [36].  In an experiment with hepatocytes, Nrf2 activator 

sulforaphane suppressed Liver X receptor (Lxr) dependent steatosis [21].  It is 

not clear why pharmacological Nrf2 activators impact HFD feeding differently 

compared to genetic models of Nrf2 manipulation, but perhaps other receptor 

systems (e.g. Constitutive Androstane Receptor and Pregnane x receptor) 

might also be activated [24, 37].  One must also consider the absorption, 

metabolism, and disposition of the chemical inducers being administered in 

comparison to a genetically manipulated mouse model that has whole body 

Keap1 knockdown. 

The present study also demonstrated that constitutive Nrf2 activation altered 

glucose homeostasis.  As GTT is an indicator of sensitivity of cells to respond 

to insulin action, ability of pancreas to produce insulin and ability of liver to 

store glucose, expression of insulin responsive targets in the SKM could 

partially explain the reason for the insulin intolerance.  SKM is one of the major 

glucose utilizing tissues in the body and Glut4 is a predominant glucose 

transporter responsible for insulin stimulated glucose uptake in SKM [38].  

Keap1-KD mice fed the HFD had unaltered mRNA and total protein 

expression of Glut4.  However, the mRNA expression of Irs1 mRNA, a protein 

involved in molecular basis for action of insulin [39], was decreased in Keap1-

KD mice fed the HFD, supporting data obtained from GTT in Keap1-KD mice. 

It is possible that glucose uptake in skeletal muscles was not altered in Keap1-
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KD mice fed HFD due to total Glut4 protein expression.  Glut4 translocation to 

the membrane or defects in Irs-1 or Akt phosphorylation in response to 

glucose or insulin could also be potentially considered.  The Keap1-KD mice 

fed HFD demonstrate a disturbance in glucose homeostasis with glucose 

challenge, which does suggest a potential for development of insulin 

resistance.  

 

Adipocytes act as endocrine cells, secreting variety of adipocytokines 

including leptin, adiponectin, as well as interleukins [40].  In genetic and diet-

induced obese mouse models, the expression of inflammation and 

macrophage markers was increased in WAT of obese compared non-obese 

mice [41].  Inflammation is one of the most critical etiological factors in 

development of insulin resistance [42, 43].  The current data illustrate that the 

Keap1-KD mice fed the HFD had increased measures of inflammation in WAT 

and liver.  Both WAT and liver had increased inflammation, as noted by 

increased cellularity (WAT) and neutrophil staining (NIMP R14, Liver).  HFD 

fed Keap1-KD mice were found to have higher levels of cytokines levels in 

serum and higher expression of cytokine mRNA in liver, as compared to C57 

mice fed HFD.  Expression of pro-inflammatory M1 macrophage markers was 

higher in Keap1-KD mice fed HFD, indicating possible role of long term Nrf2 

activation in inflammation.   

The reason why increased Nrf2 activation might promote lipogenesis and 

inflammation with HFD feeding is intriguing.  It remains to be determined 
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whether lipid accumulation preceded inflammation, but it is likely.  Nrf2 has 

been shown to be a positive regulator of the mouse Ppar-# promoter, increase 

Ppar-# expression, and promote adipogenesis [18], with a similar mechanism 

occurring in liver [33].  Thus, the persistent Nrf2 activation in liver appeared to 

promote lipid accumulation via upstream Ppar-# activation.  Perhaps an 

increased biotransformation due increased Nrf2 activity resulted in increased 

lipids that caused tissue injury and inflammation.  The data clearly 

demonstrate increased inflammation in liver and WAT, yet an underlying 

mechanism for the increased inflammation remains to be determined. 

 

Along with Nrf2, Keap1 is also implicated to interact with Nrf1 [44].  Nrf1, like 

Nrf2, also belongs to basic leucine zipper family of transcription factors.  It 

plays a role in combating oxidative stress by increasing glutathione levels [45].  

However, a review by Biswas and Chan mentioned that functions of Nrf1 and 

Nrf2 are not completely redundant [46].  Nrf1 also plays role in regulating 

inflammatory targets including inducible nitric oxide synthase [46].  Although 

Keap1 has much lower affinity for Nrf1 compared to Nrf2 [47], it is still possible 

that Keap1-KD mice would have slightly increased levels of Nrf1.  The effect of 

Nrf1 on obesity/ diabetes is a relatively under-investigated area.  

    

Our results herein are also of relevance to the study of obesogenic 

compounds, as the Nrf2 pathway is inducible and functional in adipose tissue 

and skeletal muscle [33] and Nrf2 is activated by multiple environmental 
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chemicals [48].  Thus, it is of potential interest to better understand whether 

Nrf2 activation via environmental chemical could intersect with obesogenic or 

pro-metabolic syndrome effects via environmental chemical exposure [49].  In 

summary, the data herein demonstrate that Keap1-KD mice, which have 

Keap1 knocked down and constitutive Nrf2 activation, were susceptible to 

increased markers of metabolic syndrome, such as diet-induced obesity, 

hepatic steatosis, and glucose intolerance concomitant with increased in 

inflammation in liver and adipose tissue, after long-term HFD feeding.  Overall, 

this study suggests that Nrf2 has a role beyond combating oxidative stress 

and further investigation is needed to better understand Nrf2-Keap1 

interactions with chronic HFD challenge.
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2.7 Figure legends 

Figure 1. Body, liver and WAT weight and adipocyte size of C57BL/6 and 

Keap1-KD mice fed a 10% kCal low fat diet (LFD) or 60% kCal high fat 

diet (HFD). A) Body weights (starting from age 6 weeks) and B) food 

consumption of C57BL/6 (C57) and Keap1-KD mice fed a LFD or HFD from 

weaning age to 27 weeks (starting at age 6 weeks).  C) Abdominal adipose 

tissue weight and liver to body weight ratio.  Differences between the groups 

were analyzed by a one-way ANOVA followed by a Duncan’s post hoc test.  

Different letters indicate statistically significant difference between the groups 

(p<0.05).  For example, letter “a” is significantly different from “b”, but not 

different from “a”.  Also, “a” is significantly different from “b,c” but not different 

from “a,b”. 

 

Figure 2. Hepatic lipid accumulation and triglyceride (TG) content in 

C57BL/6 (C57) and Keap1-KD mice fed a 10% kCal low fat diet (LFD) or 

60% kCal high fat diet (HFD).  A) Hematoxylin and eosin staining of 

formaldehyde fixed paraffin embedded liver tissues (200X magnification).  B) 

Oil red O staining of liver sections.  Frozen liver tissues were sectioned in 5µm 

sections, stained with Oil red O, and counter stained with hematoxylin (200X 

magnification).  C) Hepatic TG content.  Lipids were extracted using a 

methanol-chloroform based protocol and the resulting TG content was 

assayed using kit from Pointe Scientific (Canton, MI).  Differences between the 

groups were analyzed by a one-way ANOVA followed by a Duncan’s post hoc 
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test.  Different letters indicate statistically significant difference between the 

groups (p<0.05).   

Figure 3. Lipogenic, Nrf2, and Nrf2 target gene expression in livers and 

white adipose tissue (WAT) of C57BL/6 (C57) and Keap1-KD mice fed a 

10% kCal low fat diet (LFD) or 60% kCal high fat diet (HFD).  Total RNA 

was extracted from the livers by phenol-chloroform extraction and mRNA was 

quantified using Quantigene Plex 2.0 or Branched DNA Signal Amplification 

assay (Affymetrix, Santa Clara, CA).  A) Peroxisome proliferator activated 

receptor ! (Ppar-#), Steroyl CoA desaturase (Scd1), Fatty acid binding protein 

4 (Fabp4), Lipoprotein lipase (Lpl), and Cluster of differentiation (Cd36) mRNA 

expression.  B) Nrf2, NADPH:quinone oxidoreductase (Nqo1), glutamate 

cysteine ligase (Gclc) mRNA expression in liver.  C) Nrf2 and Nqo1 mRNA 

expression in WAT.  Differences between the groups were analyzed by a one-

way ANOVA followed by a Duncan’s post hoc test.  Different letters indicate 

statistically significant difference between the groups (p<0.05).  For example, 

letter “a” is significantly different from “b”, but not different from “a”.  Also, “a” is 

significantly different from “b,c” but not different from “a,b”. 

  

 

Figure 4. Protein expression of lipogenic enzymes in livers of C57BL/6 

(C57) and Keap1-KD mice fed a 10% kCal low fat diet (LFD) or 60% kCal 

high fat diet (HFD).  A) Western blots for lipogenic enzymes in liver.  Total 

protein extracts were separated on polyacrylamide gel, immunoblotted, and 
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chemiluminescence was captured on X-ray films.  B) Western blot 

quantification.  The resulting blots obtained were evaluated using Quantity 

One® software (Biorad, Hercules, CA) and band density is plotted as percent 

of C57BL/6 fed LFD.  Differences between the groups were analyzed by a 

one-way ANOVA followed by a Duncan’s post hoc test.  Different letters 

indicate statistically significant difference between the groups (p<0.05).   

 

Figure 5. Inflammatory markers in liver and serum of C57BL/6 (C57) and 

Keap1-KD mice fed a 10% kCal low fat diet (LFD) or 60% kCal high fat 

diet (HFD).  A) Neutrophil (NIMP R14) staining of paraffin embedded liver 

sections.  Images displayed in 200X magnification.  B) Serum cytokine 

Monocyte chemoattractant protein 1 (Mcp1) levels C) mRNA expression of 

inflammatory cytokine markers Mcp1, Tumor necrosis factor (Tnf) and Cd11c 

in liver.  Total RNA was extracted from liver tissue by phenol-chloroform 

extraction and mRNA was quantified using Quantigene Plex 2.0 assay 

(Affymetrix, Santa Clara, CA).  For statistical significance, groups were 

compared by one-way ANOVA followed by a Duncan’s post hoc test.  Different 

letters indicate statistically significant difference between the groups (p<0.05). 

 

Figure 6. White adipose tissue (WAT) cellularity and inflammation in 

C57BL/6 (C57) and Keap1-KD mice fed a 10% kCal low fat diet (LFD) or 

60% kCal high fat diet (HFD).  A) Hematoxylin and eosin stained sections of 

paraffin embedded WAT.  Images displayed in 200X magnification.  B) 
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Messenger RNA expression of proinflammatory macrophage markers 

monocyte chemoattractant protein 1 (Mcp1), tumor necrosis factor (Tnf) and 

Cd11c in WAT.  Differences between the groups were analyzed by a one-way 

ANOVA followed by a Duncan’s post hoc test.  Different letters indicate 

statistically significant difference between the groups (p<0.05). 

 

Figure 7. Glucose tolerance test (GTT) and expression of insulin 

signaling molecules in skeletal muscle (SKM) of C57BL/6 (C57) and 

Keap1-KD mice fed a 10% kCal low fat diet (LFD) or 60% kCal high fat 

diet (HFD).  A) GTT after 23 weeks of LFD or HFD treatment.  Mice were 

fasted overnight and challenged with an oral glucose bolus (1g/kg).  Blood 

glucose levels were recorded at 0, 15, 30, 60, and 120-minute time points 

using Contour® glucose meter (Bayer HealthCare LLC, Tarrytown, NY).  

*Represents statistically significant difference of glucose levels between 

C57BL/6 and Keap1-KD mice fed same diet.  B) Area under the curve (AUC) 

plotted for the GTT.  C) Messenger RNA expression of insulin receptor 

substrate 1 (Irs1) and glucose transporter Glut4 in SKM.  Total RNA was 

extracted from liver tissue by phenol-chloroform extraction and mRNA was 

quantified using Quantigene Plex 2.0 assay (Affymetrix, Santa Clara, CA).  For 

parts Differences between the groups were analyzed by a one-way ANOVA 

followed by a Duncan’s post hoc test.  Different letters indicate statistically 

significant difference between the groups (p<0.05).  For example, letter “a” is 

significantly different from “b”, but not different from “a”.  Also, “a” is 
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significantly different from “b,c” but not different from “a,b”.  D) Protein 

expression of Glut4 from skeletal muscle of C57BL/6 and Keap1-KD mice fed 

LFD and HFD by western blot (n=2 per group).   
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3.1 Abstract 

Unsafe use of alcohol results in approximately 2.5 million deaths worldwide, 

with cirrhosis contributing to 16.6% of reported deaths.  Serum insulin levels 

are often elevated in alcoholism, which may result in diabetes; which is why 

alcoholic liver disease and diabetes often are co-present.  Because there is a 

sizable population that presents with these diseases alone or in combination, 

the purpose of this study was to determine whether transporter expression in 

human liver is affected with alcoholic cirrhosis, diabetes, and alcohol cirrhosis 

co-existing with diabetes.  Transporters aid in hepatobiliary excretion of many 

drugs and toxic chemicals, and can be determinants of drug-induced liver 

injury.  Drug transporter and transcription factor relative mRNA and protein 

expression in normal, diabetic, cirrhotic and cirrhosis with diabetes human 

livers were quantified.  Cirrhosis significantly increased ABCC4, 5, ABCG2 

and SLCO2B1 mRNA expression, and decreased SLCO1B3 mRNA 

expression in liver.  ABCC1, 3-5, ABCG2 protein expression was also 

upregulated by alcohol cirrhosis.  ABCC3-5, and ABCG2 protein expression 

was also upregulated in diabetic-cirrhosis.  Cirrhosis increased NRF2 mRNA 

expression, whereas it decreased PXR and FXR mRNA expression in 

comparison to normal livers.  Hierarchical cluster analysis indicated that 

expressions of ABCC2, 3 and 6; SLCO1B1 and 1B3; and ABCC4 and 5 were 

more closely related in the livers from this cohort.  Overall, alcohol cirrhosis 

altered transporter expression in human liver.   
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3.2 Introduction 

Hepatobiliary excretion is an integral function necessary to excrete bile acids, 

bilirubin, conjugated hormones, as well as, drugs and chemicals from liver 

(Klaassen and Aleksunes, 2010).  The process of biliary excretion relies upon 

membrane bound transporters localized to hepatocytes, which extract 

chemicals from blood and efflux chemicals into bile.  The solute carrier organic 

anion (SLCO) and ATP-Binding Cassette (ABC) transporter families comprise 

two major families that mediate hepatic uptake and efflux processes. 

 

SLCO transporters are often described as “uptake transporters”, because they 

are predominantly localized to the sinusoidal membrane and typically extract 

chemicals from blood into hepatocytes (reviewed by (Klaassen and Aleksunes, 

2010)).  In humans, SLCO1B1, 1B3, 2B1 and 1A2 have relatively high 

expression in liver.  SLCO1B1, 1B3, and 2B1 transport a diverse range of 

drugs including benzylpenicillin, statins, and estradiol glucuronide (Klaassen 

and Aleksunes, 2010).  Identification of SNPs in the SLCO1B1 gene and 

resulting SLCO1B1 polymorphisms results cause altered disposition of statins 

(Generaux et al., 2011).  Human SLCO mRNA expression is regulated through 

transcription factor-mediated pathways, such as Liver-X-Receptor (LXR), 

Farnesoid-X-Receptor (FXR), Constitutive Androstane Receptor (CAR), 

Pregnane-X-Receptor (PXR) (Svoboda et al., 2011). 
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The ATP-binding cassette (ABC) transporter superfamily facilitates chemical 

efflux; and includes Multidrug Resistance Proteins (ABCB), Multidrug 

Resistance-Associated Proteins (ABCC), Bile Salt-Export Pump (ABCB11), 

and Breast Cancer Resistance Protein (ABCG2).  In liver, ABCC2, ABCG2 

and ABCBs are localized to the canalicular membrane and facilitate biliary 

excretion of chemicals.  ABCC1, 3-6 are localized sinusoidally and/or 

basolaterally, and efflux chemicals from hepatocytes into blood. Similar to 

SLCOs, human ABCC expression is modulated by transcription factors, such 

as Nuclear Factor-E2 related factor 2 (NRF2), CAR, PXR, and FXR (Klaassen 

and Slitt, 2005).   

 

Alterations in transporter expression and function due to hepatic stress have 

been noted and can have significant implications on the fate of numerous 

drugs.  Hepatic steatosis resulting from obesity and/or diabetes resulted in 

significant alterations in transporter expression in hepatocytes, as 

demonstrated in mouse models (Cheng et al., 2008; More and Slitt, 2011; 

More et al., 2012).  As compared to steatosis, cirrhosis is a significant hepatic 

stress with replacement of normal functional tissue by scar tissue, which is 

unable to maintain the functions of the liver.  According to Center for Disease 

Control and prevention (CDC), more than 15,000 Americans die every year 

from alcoholic liver cirrhosis (National Vital Statistics Report, Volume 60, No 3).  

Other major causes of cirrhosis include chronic viral hepatitis, non-alcoholic 

steatohepatitis (NASH), and damaged or blocked bile flow (Anand, 1999).  
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About 30% of cirrhotic patients also suffer from diabetes (Hickman and 

Macdonald, 2007).  Acute, as well as chronic alcohol consumption leads to 

development of insulin resistance, which can progress to diabetes mellitus 

(Kim and Kim, 2012).  Disruption of normal functions of the liver in cirrhosis 

may lead to hepatogenous diabetes (Garcia-Compean et al., 2009).  

Additionally, obesity and diabetes mellitus increase the severity of alcoholic 

liver disease (Raynard et al., 2002).  Owing to interplay between diabetes and 

cirrhosis, the two conditions often co-present clinically (Baig et al., 2001).  

 

Since many human Phase-I and -II biotransformation enzymes are 

coordinately regulated by transcription factors that regulate transporter 

expression, representative cytochrome p450 (CYP), UDP glucuronosyl 

transferase (UGT), and Nad(p)h:quinone oxidoreductase (NQO1) mRNA 

expression was also determined.  The purpose of this study was to determine 

whether alcohol cirrhosis alone, or in combination with diabetes, alter 

transporter expression in intact human liver, as transporters are integral for the 

hepatobiliary clearance of drugs, bile acids, and bilirubin.  Our study has 

included analysis of livers from subjects who presented with steatosis or 

diabetes without cirrhosis, as these diseases are sometimes present in 

alcoholics.  Our findings herein illustrate coordinated alterations in the 

expression of certain SLCO and ABC transporter members in human alcohol 

cirrhotic liver tissues.   
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3.3 Materials and Methods 
 
3.3.1 Human liver tissues.  Liver tissues from normal healthy, alcohol 

cirrhotic, steatotic, and diabetic-cirrhotic (co-existence of alcohol cirrhosis and 

diabetes) subjects were obtained from Liver Tissue Cell Distribution System 

(LTCDS), University of Minnesota (Minneapolis, MN).  Additional liver lysates 

in Trizol reagent from normal and diabetic subjects were purchased from 

Xenotech LLC (Lenexa, KS) and were only analyzed for mRNA expression.  

The details of subject age, gender and ethnicity are mentioned in table 1.  

Exemption approval from the University of Rhode Island Institutional Review 

Board was granted before tissues were procured.    

 

3.3.2 RNA Extraction.  Total RNA from liver was isolated by phenol-

chloroform extraction using RNA Bee (Tel-Test Inc, Friendswood, TX) 

according to the manufacturer’s protocol.  Tissue lysates obtained in Trizol 

were directly homogenized and subject to chloroform extraction.  RNA 

concentration was quantified by absorbance at 260 nm (Nanodrop ND1000, 

Thermo Fisher Scientific, Waltham, MA).  Agarose gel electrophoresis 

followed by UV illumination was used to visualize RNA and confirm integrity.  

 

3.3.3 Quantigene Plex 2.0 assay for mRNA quantification.  Only samples in 

which total RNA looked intact and not degraded were subjected to analysis the 

QuantiGene Plex 2.0 assay (Affymetrix, Santa Clara, CA).  However, a benefit 

to this technology according to the manufacturer is that it allows for detection 
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of partially degraded mRNA transcripts, which is desirable for RNA isolated 

from human tissue.  The protocol for the assay is described elsewhere 

(Aleksunes et al., 2009).  Briefly, 1.1 µg total RNA was incubated with beads 

with capture probe, label extender and blocker.  On day two, the beads were 

washed and incubated with amplifier, and subsequently with label.  Then 

incubation with streptavidin containing substrate was used for detection on 

BioPlex Luminometer.   

 

3.3.4 Tissue fractionation.  Approximately 100mg of tissue was 

homogenized in Sucrose-Tris (ST) buffer (250 mM sucrose, 10 mM Tris-HCl 

buffer, pH 7.4) and containing protease inhibitor cocktail (2 µg/mL, Sigma-

Aldrich, Co, St. Louis, MO).  Homogenates were centrifuged at 100,000 xg for 

60min at 4°C.  The resulting pellet is a typical fraction used to detect 

transporter expression as described by our previous publications as well as 

multiple other research groups (Trauner et al., 1997; Aleksunes et al., 2006; 

Campion et al., 2008; Cheng et al., 2008; Maher et al., 2008).   The 

supernatant was saved as a cytosolic fraction to measure NQO1 and GPX1 

protein expression.  ST buffer (200 µl) was used to re-suspend the resulting 

pellet.  Nuclear fractions from approximately 100 mg of liver tissue were 

isolated using a NE-PER nuclear extraction kit (Thermo Scientific, Rockford, 

IL) according to the manufacturer’s instructions.  Protein concentration of the 

membrane fractions was determined using the DC protein assay (Bio-Rad 

Laboratories, Hercules, CA). 
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3.3.5 Western blot analysis.  Western blots were used to quantify the relative 

expression of transport proteins in human liver tissues, as described in our 

previous publication (More and Slitt, 2011; More et al., 2012).  Briefly, the 

membrane/ nuclear extracts were separated on polyacrylamide gel (10% 

resolving, 4% stacking), transblotted on PVDF membrane, and blocked with 

2% non-fat dry milk in phosphate buffered saline with Tween 20 (PBS/T).  The 

membranes were then incubated with specific primary and secondary antibody, 

and then with ECL+ fluorescence reagent.  The blots were then developed on 

X-ray films; protein bands on the resulting autoradiographs were quantified 

using Quantity One! software v4.6.3 (Biorad, Hercules, CA).  Table 2 

provides the antibody source and western blot conditions.  OATP1B1 and 1B3 

protein expression by Western blot was not determined due to lack of high 

quality commercially available antibodies. 

 

3.3.6 Statistical analysis.  Raw data from mRNA quantification was 

normalized to housekeeping gene hypoxanthine phosphoribosyl transferase 1 

(HPRT1).  Log transformed normalized data was more approximately normally 

distributed as compared with non-transformed data.  Within each gene, 

pairwise comparison of expression between disease groups was tested a one-

way ANOVA followed by a Tukey Honestly Significant Difference (HSD) test. 

Data from protein quantification was plotted as percent expression and 

analyzed by one-way ANOVA followed by Dunnett’s post hoc test.  Difference 
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of p! 0.05 was considered statistically significant.  Asterisks (*) represent a 

statistical difference (p!0.05) from normal non-steatotic livers, and dots (") 

represent outliers.  Hierarchical clustering analysis with Pearson correlation as 

a similarity measurement was also done to discover potential groups of genes 

with high correlation.     
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3.4 Results 

3.4.1 Transporter mRNA expression in liver is altered by alcohol 

cirrhosis and diabetic-cirrhosis.  Alcohol cirrhosis altered mRNA expression 

of some transporters (Fig. 1A).  SLCO1B1 mRNA expression was similar 

among all groups examined.  SLCO1B3 mRNA expression was significantly 

decreased in livers from alcohol cirrhosis patients compared to normal non-

steatotic livers.  In contrast, SLCO2B1 mRNA expression was increased with 

alcohol cirrhosis compared to normal non-steatotic livers.   

In liver, ABCC transporters are localized to the canalicular (ABCC2 and 

ABCG2) or sinusoidal membranes (ABCC1, 3-6) of hepatocytes, and mediate 

organic anion efflux from hepatocytes (Klaassen and Aleksunes, 2010).  

ABCC1, 4 and 5 mRNA expression was increased in alcohol cirrhotic livers 

compared to normal non-steatotic livers (Fig. 1B).  ABCC2 mRNA expression 

remained unchanged between the groups compared, whereas ABCG2 

expression was increased in livers from subjects with alcohol cirrhosis (Fig. 

1B).  Diabetic-cirrhosis decreased ABCC3 expression compared to normal 

non-steatotic livers.  ABCC6 mRNA expression was similar among from 

normal, steatotic, alcohol cirrhotic, diabetic-cirrhotic, and diabetic livers.   

 

3.4.2 Transporter protein expression is altered in livers from subjects 

with steatosis, alcohol cirrhosis, and diabetic-cirrhosis.  Fig. 2 illustrates 

the effect of steatosis, alcoholic cirrhosis, and diabetic-cirrhosis on transporter 

protein expression in fractions from intact human liver tissue (representative 
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blots).  Alcoholic cirrhosis and diabetic-cirrhosis increased ABCC1, 3, and 5 

protein expression compared to normal non-steatotic livers.  ABCC2 protein 

remained unchanged between all the groups.  ABCC4 and ABCG2 protein 

expression was increased in livers with steatosis, alcohol cirrhosis and 

diabetic cirrhosis.  In contrast to other ABC transporters, ABCC6 protein 

expression decreased in livers with alcohol cirrhosis and diabetic cirrhosis.   

 

3.4.3 Alcoholic cirrhosis and diabetic-cirrhosis affect transcription factor 

expression in intact human liver.  Studies in recent years have revealed 

several transcription factor-mediated pathways (e.g. PXR, CAR, and FXR), as 

well as the antioxidant response (e.g. NRF2), are important mediators of 

SLCO and ABC transporter regulation in liver (Klaassen and Aleksunes, 2010).  

Therefore, NRF2, PXR, CAR, and FXR expression was also evaluated and 

correlated with transporter expression.  Fig. 3A depicts the PXR, CAR FXR, 

and NRF2 mRNA expression in human liver.  NRF2 mRNA expression was 

increased in alcohol cirrhotic and diabetic-cirrhotic livers compared to normal 

non-steatotic livers.  PXR mRNA expression was decreased in livers with 

diabetic-cirrhosis, as compared to normal livers.  CAR mRNA expression 

remained unchanged between all groups analyzed.  FXR mRNA expression 

was decreased in livers with alcohol cirrhosis and diabetic-cirrhosis.  

 

3.4.4 Alcohol cirrhosis affects phase-I and phase-II drug metabolizing 

enzymes mRNA expression.  Correspondingly, Figure 3B depicts mRNA 
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expression for representative CYP and UGTs, along with FXR target gene, 

Small Heterodimer Protein (SHP).  UGT1A3 mRNA expression was increased 

in steatotic livers compared to normal livers.  CYP3A4 mRNA expression was 

increased in livers with steatosis, but similar to normal livers in the other 

disease conditions.  CYP2B6 mRNA expression was decreased in livers with 

diabetic-cirrhosis compared to normal non-steatotic livers.  SHP mRNA 

expression was similar among all the disease conditions tested in the study.  

Other CYP and UGT isoforms including CYP2D6, UGT1A1, 1A4 mRNA 

expressions were also studied, and remained unchanged between the groups 

(data not shown). 

 

3.4.5 Alcohol cirrhosis increases NRF2, NQO1, and Glutathione 

Peroxidase protein expression.   NRF2 protein expression in liver fractions 

was correspondingly increased in alcohol cirrhotic and diabetic-cirrhotic livers 

compared to normal non-steatotic livers (Fig. 3C and 3D).  NQO1 and 

Glutathione Peroxidase 1 (GPX1), enzymes, which are regulated via NRF2, 

were also quantified at protein level.  NQO1 protein expression was increased 

in steatotic, alcohol cirrhotic and diabetic-cirrhotic livers compared to normal 

livers, with the most prominent increase present in alcohol cirrhosis.  GPX1 

protein expression was increased in liver fractions from subjects with alcohol 

cirrhosis and diabetic-cirrhosis. 
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3.4.6 Alcohol cirrhosis increases inflammatory cytokine mRNA 

expression.  Fig. 4 demonstrates mRNA expression of inflammatory 

cytokines tumor necrosis factor " (TNF"), and interleukin 1# (IL1#) in livers.  

TNF" mRNA expression was increased in both steatosis and alcohol cirrhosis 

groups, as compared to normal non-steatotic livers.  IL1# expression was 

increased only with steatosis as compared to normal livers.   

 

3.4.7 Hierarchical cluster analysis of transporter and transcription factor 

mRNA expression.  Fig. 5 depicts the correlations between transcription 

factor and transporter mRNA expression.  ABCG2 and SLCO2B1 expression 

were closely related to CAR expression. Similarly, expression of ABCC4, 

ABCC5 and NRF2 were closely related. Expression of ABCC2 and PXR were 

also closely related, and more distantly related to SLCO1B3 and 1B1 

expression.    
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3.5 Discussion 

This study demonstrated predominant increased mRNA and protein of efflux 

transporters, such as ABCG2, ABCC1, 3-5 in intact livers of human subjects 

with alcohol cirrhosis.  Uptake transporter expression was less consistent, with 

decreased SLCO1B3 and increased SLCO2B1 mRNA expression occurring in 

livers with alcoholic cirrhosis.  Transcription factors that regulate transporter 

expression were also correspondingly altered.  NRF2 mRNA and protein 

expression was increased in alcoholic cirrhotic livers, whereas FXR mRNA 

expression was decreased. 

Hierarchical cluster analysis of transcription factors and transporters obtained 

in this study is in agreement with the findings in literature.  In rodents as well 

as in humans, NRF2 is known to regulate expression of efflux transporters 

ABCC2-5 (Klaassen and Slitt, 2005).  In the cluster analysis in the present 

study, ABCC4 and 5 were expressed together with NRF2.  Similarly, 

SLCO2B1 and CAR were expressed together, as observed in rodents (Cheng 

et al., 2005).  ABCC2 and PXR were also clustered together, as also 

described (Klaassen and Slitt, 2005).  SLCO1B1 and 1B3 are reported to be 

regulated by same transcription factors hepatocyte nuclear factor (HNF) 1#, 

aryl hydrocarbon receptor (AHR) and CAR (Klaassen and Aleksunes, 2010),  

and were clustered together in present data.  CAR and PXR activation have 

been shown to increase ABCC2 and 3 expression in hepatocytes (Teng and 

Piquette-Miller, 2005), indicating that these two transporters also have 

significant correlation in expression.  CAR is known to regulate ABCC2, 3 as 
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well as SLCO1B1, indicating significant correlation in the expression of these 

three transporters.   

Transporter expression in human livers with alcohol cirrhosis has not been 

characterized comprehensively before this study.  Rodent models for alcohol-

induced liver disease display steatosis and some degree of fibrosis, but no 

model fully progresses to the human level of cirrhotic liver (Lieber et al., 1965; 

Tsukamoto et al., 1986).  Previous studies with hepatic transporter expression 

are with small sample size and/or different liver pathologies like hepatitis C, 

hepatocellular carcinoma, NASH, or from non-diseased human livers 

(Nishimura and Naito, 2005; Hilgendorf et al., 2007; Ogasawara et al., 2010; 

Doi et al., 2011).  Hepatitis C virus-related cirrhosis was reported to increase 

mRNA and protein expression of ABCC4 in human livers (Ogasawara et al., 

2010), which is consistent with alcohol cirrhosis and diabetic-cirrhosis findings 

from the present study.  Another study reported a patient having lowered 

SLCO1B3 expression in hepatocellular carcinoma nodule (Doi et al., 2011), 

which is consistent with the present data that illustrate decreased SLCO1B3 

mRNA expression in alcohol cirrhosis too.  Efflux transporter expression in 

human livers with primary billiary cirrhosis (PBC) was also similar to alcohol 

cirrhotic livers in this study (Zollner et al., 2003).  ABCC3 protein expression 

was increased in PBC and alcohol cirrhosis.  Uptake transporter SLCO1B1, 

however, remained unchanged with alcohol cirrhosis, but went down with PBC 

(Zollner et al., 2003).  Fatty and non-fatty NASH also enhanced the mRNA and 

protein expression of ABCC1, 4 and 5 in human livers (Hardwick et al., 2011).  
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As other models of liver injury (e.g. acetaminophen, carbon tetrachloride, 

cholestasis) also increase efflux transporter expression, we acknowledge that 

the observation was anticipated.  However, because alcohol cirrhosis plagues 

about 20% of the alcoholic people worldwide, knowing whether aberrant 

transporter and nuclear receptor expression is present in liver is of 

toxicological significance because it can provide mechanistic understanding of 

drug-induced liver injury or altered drug efficacy in patients with alcoholic liver 

disease. 

 

Transporters facilitate absorption, distribution and elimination of xenobiotics, 

as well as endobiotics such as bile acids, cholesterol, and conjugated 

hormones (e.g. estrogens and thyroid hormones) (Klaassen and Aleksunes, 

2010).  Alterations in the transporter expression or polymorphisms have been 

associated with alterations in disposition and adverse effects/ protection 

against adverse effects of certain xenobiotics.  Simvastatin-induced myopathy, 

which is concentration dependent side effect, was found associated with 

SLCO1B1 polymorphism in human subjects (reviewed by (Niemi et al., 2011)).  

In another study with methotrexate, it was observed that variants of SLCO1B1 

were associated with increased clearance and gastrointestinal toxicity as a 

side effect in children with acute lymphoblastic leukemia (Trevino et al., 2009).  

In a different study, mice with increased Abcc3 and 4 expression in liver had 

enhanced metabolite excretion and were protected against acetaminophen 

induced hepatocyte injury (Slitt et al., 2003; Aleksunes et al., 2008) and mice 
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lacking Abcc2, 3 and Abcg2 demonstrate mild hepatotoxicity when 

administered diclofenac (Lagas et al., 2010).  The present study illustrates that 

intact livers from subjects with alcohol cirrhosis have alterations in major drug 

transporter mRNA and protein expression in liver.  As transporters play a vital 

role in drug disposition, the findings in this study imply that subjects with above 

mentioned disease conditions need a consideration while administering drugs 

that form glucuronide, which are pharmacologically active.  

With progression of NAFLD, the expression of Nrf2 and its target genes 

increases, as determined by immunohistochemistry in human livers (Hardwick 

et al., 2010).  Alcohol-induced oxidative stress also activates Nrf2 in human 

hepatocytes (Nussler et al., 2010).  Alcohol induces lipid deposition in liver; 

and metabolism of fatty acids as well as ethanol causes generation of 

oxidative stress in liver (Syn et al., 2009).  Alcohol cirrhotic livers in the current 

study also displayed increased Nrf2 protein levels in nuclear fractions, which is 

likely a response to increased oxidative stress in the alcoholic liver.  PXR is 

indicated in therapeutic applications against inflammatory liver diseases.  PXR 

activation by pregnenolone-16-alpha carbonitrile leads to decreased carbon 

tetrachloride induced fibrogenesis in rats (Marek et al., 2005).  The decreased 

PXR expression may be an indicator that PXR deficiency correlates with 

increased risk for liver disease.  FXR regulates bile acid homeostasis, TG and 

cholesterol metabolism, glucose homeostasis and fibrogenesis in liver 

(reviewed by (Fuchs, 2012)).  FXR activation by bile acids induces PPAR# 

expression, and this increases $-oxidation of fatty acids (Pineda Torra et al., 
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2003).  Thus FXR activation may protect liver from fat deposition in both 

alcoholic, as well as, non-alcoholic liver diseases.  In present study, FXR 

mRNA expression was decreased in alcohol cirrhosis, suggesting that FXR 

suppression might occur during alcoholic liver disease, which could be a 

mechanism for alcoholic liver injury.  Inflammation could be a possible factor 

contributing to the alterations in nuclear receptors analyzed in this study.  

Lipopolysaccharide treatment of mice resulted in decreased PXR signaling 

and target gene expression in mice (Moriya et al., 2012).  Similarly, treatment 

of Huh7 cells with inflammatory cytokines TNF" and IL6 resulted in marked 

decrease in FXR target transporter BSEP (Chen et al., 2012).  As disease 

progression of cirrhosis involves increase in inflammation, decreased mRNA 

expression of PXR/ FXR in alcohol cirrhosis/ diabetic cirrhosis could possibly 

be explained.  Further studies are necessary in order to elucidate why PXR 

and FXR expression is decreased in alcohol cirrhosis, and whether the 

decreased expression contributes to the development of alcohol cirrhosis. 

Elbekai et. al., in 2004 reported that certain Phase-I biotransformation enzyme 

expression was altered expression in livers of cirrhotic subjects.  CYP1A and 

CYP3A showed reduced expression with cirrhosis, whereas CYP2C, 2A and 

2B remained unaltered (Elbekai et al., 2004).  The present data display little or 

no change in CYP isoform mRNA expression.  Similarly, glucuronidation 

activity in liver is reported to be unaltered with cirrhosis (Elbekai et al., 2004). 

The present study had results consistent with this observation – UGT1A1, 1A3, 

1A4, and 2B7 expression was remained unchanged between normal and 
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alcohol cirrhotic livers, although it should be noted that UGT1A3 was 

decreased in diabetic-cirrhosis livers and UGT2B7 was decreased in diabetic 

livers. 

In summary, we demonstrate that alcohol cirrhosis significantly alters 

transporter expression in human liver, most notably altering ABCC3, ABCC4, 

and, ABCC5, which was associated with altered NRF2, CAR, and FXR mRNA 

expression.  Significant correlations between transporter and nuclear receptor 

expression were observed in the cohort of livers analyzed.  Overall, the data 

herein illustrate alterations in hepatic transporter expression in the alcohol 

cirrhotic liver that correlates to changes in nuclear receptor expression.  

Alterations in nuclear receptor and drug transporter expression in alcoholic 

liver should be given consideration when evaluating altered drug toxicities.   
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3.7 Figure Legends 

Fig. 1. Transporter mRNA expression in livers from normal, steatotic, 

alcohol cirrhotic, diabetic-cirrhosis, and diabetic subjects.  (A) SLCO1B1, 

1B3 and 2B1 mRNA expression, (B) ABCC1-6, and ABCG2 mRNA expression.  

Total RNA was isolated from intact human donor liver tissue (Normal, n=22; 

Steatosis, n=8; Alcohol cirrhosis, n=19; Diabetes, n=20; Diabetic-cirrhosis, 

n=9) and relative mRNA expression was quantified.  Raw data was normalized 

to HPRT1 and log transformed before comparison.  Asterisks (*) represent a 

statistical difference (p!0.05) from normal non-steatotic livers and dots (") 

represent outliers.  SLCO1B3 mRNA expression was decreased, whereas 2B1 

was increased in alcohol cirrhosis compared to normal non-steatotic livers.  

ABCG2, ABCC4 and 5 mRNA expression was increased in livers from donors 

with alcohol cirrhosis compared to normal non-steatotic livers.  ABCC3 

expression decreased in diabetic-cirrhosis livers.   

Fig. 2. Protein expression of transporters in livers from normal, steatotic, 

alcohol cirrhotic, and diabetic-cirrhosis subjects by western blot.  (A) 

Relative ABCC1-6, and ABCG2 protein expression was determined in 

fractions isolated from intact human liver by Western blot.  Lanes 1-5 (normal, 

non-steatotic), 6-10 (steatosis), 11-20 (alcohol cirrhosis), and 21-25 (diabetic-

cirrhosis) represent samples analyzed.  (B) Quantification of western blots.  

Protein bands were quantified using Quantity One! software v4.6.3 (Biorad, 

Hercules, CA).  Asterisks (*) represent a statistical difference (p!0.05) from 

normal non-steatotic livers and dots (") represent outliers.  Steatosis 
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increased ABCC4 and ABCG2 protein expression compared to normal livers.  

ABCC1, 3, 5 protein expression was increased, whereas ABCC6 was 

decreased in alcohol cirrhotic and diabetic-cirrhotic livers as compared to 

normal non-steatotic livers.  ABCC4 and ABCG2 expression was increased in 

livers with steatosis, alcohol cirrhosis and diabetic-cirrhosis. 

Fig. 3. Transcription factor and biotransformation enzyme expression in 

livers from normal, steatotic, alcohol cirrhotic, diabetic-cirrhotic, and 

diabetic subjects.  (A) Relative PXR, CAR, FXR and NRF2 mRNA 

expression in human liver. Total RNA was isolated from intact human donor 

liver tissue (Normal, n=22; Steatosis, n=8; Alcohol cirrhosis, n=19; Diabetes, 

n=20; Diabetic-cirrhosis, n=9) and relative mRNA expression was quantified.  

Alcohol cirrhosis and diabetic cirrhosis increased NRF2, but decreased FXR 

mRNA levels.  Diabetic-cirrhosis also decreased PXR mRNA levels.  (B) 

CYP3A4, 2B6, UGT1A3, and 2B7 mRNA expression in liver.  Total RNA was 

isolated from intact human donor liver tissue (Normal, n=22; Steatosis, n=8; 

Alcohol cirrhosis, n=19; Diabetes, n=20; Diabetic-cirrhosis, n=9).  Steatosis 

increased CYP3A4 and UGT1A3 mRNA expression as compared to normal 

non-steatotic livers.  CYP2B6 mRNA expression was decreased in diabetic 

livers as compared to normal non-steatotic livers.  (C) Relative NRF2, NQO1, 

and GPX1 protein expression in nuclear (NRF2) and cytosolic (NQO1, GPX1) 

fractions in livers of normal, steatotic, cirrhotic and diabetic-cirrhotic subjects.  

Lanes 1-5 (normal, non-steatotic), 6-9 (steatosis), 10-16 (alcohol cirrhosis), 

and 17-21 (diabetic-cirrhosis) represent samples analyzed.  (D) Quantification 
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of NRF2, NQO1, and GPX1 western blots.  Asterisks (*) represent a statistical 

difference (p!0.05) from normal non-steatotic livers and dots (") represent 

outliers.  Nuclear NRF2 (approximately 110 kDa) and cytosolic NQO1, GPX1 

protein (31 kDa and 23 kDa) levels were increased in livers of alcohol cirrhosis 

and diabetic-cirrhosis subjects as compared to normal livers.  NQO1 was also 

increased in steatotic livers.  

Fig. 4. Inflammatory cytokine mRNA expression in livers from normal, 

steatotic, alcohol cirrhotic, diabetic-cirrhotic, and diabetic subjects.  

Inflammatory cytokine tumor necrosis factor " (TNF") and interleukin 1# 

(IL1#) mRNA expression.  Steatosis increased mRNA expression of both 

TNF" and IL1#, and alcohol cirrhosis increased expression of only TNF", as 

compared to normal non-steatotic livers.  

Fig. 5. Hierarchical cluster analysis of different transporters and 

transcription factors.  Target gene expression was normalized to HPRT1 

and log transformed to use for cluster analysis. Cluster analysis was 

performed by using squared Pearson’s correlation ( ) as a similarity measure. 

Genes were clustered as a group with bigger .  ABCG2 and SLCO2B1 

expression were closely related to CAR expression. Similarly, expression of 

ABCC4, ABCC5 and NRF2 were closely related to each other. 

Expression of ABCC2 and PXR were also closely related, and further related 

to SLCO1B3 and 1B1 expression. 
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3.8 Tables 

Table 1: Gender, ethnicity, and age information of the human liver samples used in the study 

No. Condition Gender Ethnicity Age in years 

1 Normal M Unknown 49 

2 Normal M Unknown 45 

3 Normal F African American 61 

4 Normal F Caucasian 57 

5 Normal F Caucasian 76 

6 Normal F Caucasian 39 

7 Normal F Caucasian 55 

8 Normal F Caucasian 49 

9 Normal M African American 48 

10 Normal M Caucasian 21 

11 Normal M Caucasian 35 

12 Normal M Caucasian 59 

13 Normal M Caucasian 44 

14 Normal M Caucasian 69 

15 Normal M Caucasian 55 

16 Normal M Caucasian 73 

17 Normal F Caucasian 60 

18 Normal F Caucasian 51 

19 Normal M Caucasian 56 

20 Normal M Caucasian 69 

21 Normal M Caucasian 22 

22 Normal M Caucasian 62 

23 Steatosis M Caucasian 37 

24 Steatosis M Caucasian 31 
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25 Steatosis M Caucasian 46 

26 Steatosis F Caucasian 48 

27 Steatosis F Unknown 46 

28 Steatosis M Caucasian 46 

29 Steatosis M Caucasian 45 

30 Steatosis M Caucasian 40 

31 Alcohol Cirrhosis  F Caucasian 47 

32 Alcohol Cirrhosis  F Caucasian 47 

33 Alcohol Cirrhosis  F Caucasian 44 

34 Alcohol Cirrhosis  F Caucasian 36 

35 Alcohol Cirrhosis  F Unknown 48 

36 Alcohol Cirrhosis  F Unknown 51 

37 Alcohol Cirrhosis  F Unknown 33 

38 Alcohol Cirrhosis  F Unknown 52 

39 Alcohol Cirrhosis  M Caucasian 52 

40 Alcohol Cirrhosis  M Caucasian 50 

41 Alcohol Cirrhosis  M Caucasian 44 

42 Alcohol Cirrhosis  M Caucasian 48 

43 Alcohol Cirrhosis  M Caucasian 63 

44 Alcohol Cirrhosis  M Caucasian 56 

45 Alcohol Cirrhosis  M Caucasian 55 

46 Alcohol Cirrhosis  M Unknown 42 

47 Alcohol Cirrhosis  M Unknown 33 

48 Alcohol Cirrhosis  M Unknown 46 

49 Alcohol Cirrhosis  M Caucasian 56 

50 Diabetes  F Caucasian 68 

51 Diabetes  F Asian 42 
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52 Diabetes  F African American 49 

53 Diabetes  F Caucasian 51 

54 Diabetes  F Caucasian 39 

55 Diabetes  F Caucasian 72 

56 Diabetes  F Caucasian 46 

57 Diabetes  F Caucasian 74 

58 Diabetes  F Caucasian 53 

59 Diabetes  F Caucasian 38 

60 Diabetes  M Caucasian 57 

61 Diabetes  M Caucasian 48 

62 Diabetes  M African American 44 

63 Diabetes  M Caucasian 66 

64 Diabetes  M Caucasian 55 

65 Diabetes  M Caucasian 74 

66 Diabetes  M Caucasian 39 

67 Diabetes  M Caucasian 70 

68 Diabetes  M Caucasian 46 

69 Diabetes  M Caucasian 33 

70 Diabetic Cirrhosis  M Caucasian 39 

71 Diabetic Cirrhosis  M Caucasian 52 

72 Diabetic Cirrhosis  M Caucasian 36 

73 Diabetic Cirrhosis  M Caucasian 65 

74 Diabetic Cirrhosis  M Caucasian 50 

75 Diabetic Cirrhosis  M Caucasian 57 

76 Diabetic Cirrhosis  M Unknown 56 

77 Diabetic Cirrhosis  M Unknown 62 

78 Diabetic Cirrhosis  M Caucasian 52 
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Table 2: Type, dilution, molecular weight and source of primary antibodies for 

western blot analysis 

Antibody Type Dilution Mol wt Source 

ABCC1 MRPr1 1:2000 ~190 
Dr. G. Scheffer, VU Medical Center, 

Amsterdam 

ABCC2 M2III-5 1:600 ~190 Chemicon International- Millipore, MA 

ABCC3 M3II-2 1:2000 ~180 
Dr. G. Scheffer, VU Medical Center, 

Amsterdam 

ABCC4 M4I-10 1:2000 ~160 
Dr. G. Scheffer, VU Medical Center, 

Amsterdam 

ABCC5 M5I-60 1:1000 ~160 
Dr. G. Scheffer, VU Medical Center, 

Amsterdam 

ABCC6 M6II-68 1:1000 ~165 
Dr. G. Scheffer, VU Medical Center, 

Amsterdam 

ABCG2 BXP-53 1:2000 ~75 
Dr. G. Scheffer, VU Medical Center, 

Amsterdam 

NQO1 Ab2346 1:5000 ~30 Abcam, Cambridge, MA 

GPX1 

AB1679

8 1:2000 ~27 Abcam, Cambridge, MA 

NRF2 

SC1303

2 1:1000 ~110 Santa Cruz Biotech. Inc, Santa Cruz, CA 

GAPDH D16H11 1:2000 ~37 Cell Signaling Technology, Danvers, MA 



! 84 

3.9 Figures 
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4.1 Abstract: 

Obesity is a global pandemic, spanning over 35% of the US population.  

Various mouse models of obesity have been proposed and are used in the 

pharmacokinetic studies.  Diet-induced obese (DIO) mice are diet containing 

60% kCal fat since the weaning.  These mice are overweight, moderately 

hyperglycemic and mildly hyperinsulinemic.  It was demonstrated that these 

mice have altered hepatic transporter expression.  The purpose of this study 

was to study disposition of environmental chemical Bisphenol-A (BPA) in DIO 

mice and compare it with lean controls.  The DIO mice were administered 

100mg/kg body weight dose of BA-d6 orally, and the blood was collected at 

0.25, 0.5, 1, 2, 4 and 8-hour time points.  The serum was analyzed for BPA 

and its major metabolite monoglucuronide.  DIO mice cleared BPA-

glucuronide from the blood at much faster rate as compared to lean mice.  

Although BPA aglycone levels were high in DIO mice serum, total BPA levels 

remained lower that lean mice owing to extensive metabolism.  However, 

enterohepatic recirculation was increased in DIO mice, causing higher total 

BPA in serum at later time points.  These alterations in BPA disposition can be 

attributed to increase in hepatic apical efflux transporter Abcc2 expression, 

along with increased conjugation enzymes Ugt expression in DIO mice.   
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4.2 Introduction:  

Bisphenol A (BPA) is an industrial chemical used in the polycarbonate plastic 

and epoxy resins manufacture.  Plastic water bottles, food and beverage cans 

and dental sealant liners made with epoxy resins release the monomer BPA in 

the contents of the container in smaller amounts that leads to human exposure 

(1).  Polyvinyl chloride plastics and thermal paper recycling also uses BPA.  

Although consumption through diet and water is the primary source of human 

exposure, BPA can also get into body through skin contact with dust, water 

and air (2).  Owing to use of baby bottles, and other plastic products, infants 

and children have higher exposure as compared to adult population (2).     

There are multitudes of evidences in the literature reporting harmful effects 

after exposure to BPA.  Richter et al., reviewed toxicity of BPA after exposure 

to adults, as well as developmental effects when exposed from gestation 

through puberty (3).  Harmful effects of BPA, depending on varying doses and 

different times of exposure, range from neuroendocrine disturbances, 

behavioral effects, reproductive abnormalities, gonadal development and 

fertility alterations in both genders and developmental effects on metabolism 

and immunity (3).   

As toxic effects of BPA depend largely on dose and route of administration, its 

pharmacokinetics is under investigation in various rodent models as well as 

humans.  According to Center for Disease Control and prevention (CDC), 
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more than 90% of the US population is chronically exposed to BPA (4).  

Therefore, in order to assess the susceptibility of all population groups, 

knowing the metabolism and disposition pathways of BPA becomes important 

(4).   

Absorption of BPA to blood is very rapid and thorough, as peak concentrations 

of total BPA were obtained within 20 minutes of administering orally in rats.  It 

is absorbed from small intestine, and there is conjugation of BPA to BPA 

glucuronide in the enterocytes (5).  Plasma protein binding of BPA is extensive 

with the unbound fraction measuring as low as 0.046 in rats after oral 

administration (6).  Monoglucuronide is the major metabolite of BPA.  When 

studied in human liver microsomes, and in recombinant human UGT isoforms, 

it was demonstrated that UGT2B7 and 2B15 were the isoform primarily 

involved in BPA glucuronidation (7).  In rats, BPA is predominantly conjugated 

by Ugt2b1 isoform (8).  Membrane transporters involved in disposition of BPA-

glucuronide are multidrug resistance associated protein 3 (ABCC3) in humans 

and Abcc2 in rats (9).  As reviewed by Willhite et al (2008), as much as 80% of 

administered BPA is excreted in bile in rodents, as opposed to urine in 

humans, and there is marked enterohepatic recirculation (10).      

Obesity and the complications associated with it are widespread pandemics of 

the modern time.  Dietary and lifestyle changes are causing the positive 

energy balance leading to overweight and obesity (11).  According to National 

Health and Nutrition Examination Survey (NHANES) for 2009-2010, about 

36% of the adult and 17% of the young US population was obese.  Diet-
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induced obese (DIO) mouse is one of the commonly used rodent models of 

obesity.  The mice are fed diet containing high fat content (60% kCal) starting 

from 6 weeks of age.  By 13 weeks of age, the mice have about 15% more 

body fat content as compared to respective lean controls fed 10% kCal fat 

(12).  These mice present with mild to moderate hyperglycemia and 

hyperinsulinemia.   

We previously demonstrated that DIO mice are characterized by alterations in 

the hepatic drug transporter expression (13).  As reviewed by Klaassen and 

Aleksunes, drug transporters are the membrane proteins, which aid in 

exchange of drugs, endogenous chemicals and/or metabolites exchange 

across the cell membrane (14).  Alterations in transporter expression are 

known to cause differences in disposition of certain xenobiotics including 

acetaminophen, ezetimibe, morphine, and raloxifene (15-18).  In the present 

study, we have characterized differential metabolism and disposition of BPA in 

DIO mice.  In order to address the reasons for the altered BPA disposition, we 

have also characterized hepatic conjugation enzyme and intestinal transporter 

expression in DIO mice.    
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4.3 Materials and methods: 

4.3.1 Animals: Twenty one week old C57BL/6 male mice fed 10% (Lean) or 

60% kCal (DIO) fat diet (Research Diets Inc, New Brunswick, NJ) since 

weaning, were purchased from Jackson Laboratories (Bar Harbor, ME).  The 

animals were allowed to acclimate for 2 week, while maintaining the same 

diets.  For the BPA disposition study, the study design is described in table 1.  

Another group of mice (n=6 lean and 6 DIO) were euthanized at 23 weeks of 

age and liver and intestine tissues were collected.   

4.3.2 BPA disposition study: As described in table 1, study used n=6 mice 

per group per time point.  The mice were housed in individual cages, with ad 

libitum food and water.  Deuterated BPA (BPA-d6) solution was prepared as 

previously described (19).  Briefly, the weighed amount of BPA-d6 was 

dissolved in 95% ethanol before dilution in water.  The solution was 

administered by oral gavage to mice to get 100µg/kg body weight.  For each 

time point, the blood was collected from mice and spun to get serum.  

4.3.3 BPA-d6 analysis by LC-ES/MS/MS: The detailed method for the 

detection of BPAd-6 is described elsewhere (20).  Briefly, labeled internal 

standard (13C12) was added to each thawed serum sample.  The samples were 

the purified by supported liquid extraction and analyzed by LC-ES/MS/MS in 

the multiple reaction-monitoring mode by monitoring specific transitions for d-6 

and 13C12 -BPA.  Conjugated BPA was hydrolyzed by using H. pomacia 

glucuronidase/ sulfatase (Sigma Chemical Co., St. Louis, MO) incubation, and 
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then total amount of BPA-d6 was quantified.  Subtraction of total and 

conjugated BPA-d6 values provided conjugated amounts.  Limit of detection 

for BPA-d6 with this method was approximately 0.2nM (19).    

4.3.4 Total RNA extraction and mRNA quantification: Total RNA was 

extracted from liver and intestinal tissues by phenol-chloroform extraction as 

described previously (21).  One microgram of total RNA was converted to 

single-stranded cDNA by using oligo(dT)18 primers.  Quantitative real-time 

PCR with Roche LightCycler 480 was used to quantify mRNA expression 

levels.  Samples were run using SYBR green and 18S was used as a 

housekeeping gene to normalize the raw data.  The primers used are listed in 

the table 2.  All the oligonucleotides were synthesized by Life Technologies 

(Grand Island, NY).   
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4.4 Results and discussion: 

As demonstrated in fig. 1, oral administration of BPA-d6 caused rapid 

absorption.  Cmax was achieved at earliest time point (t=0.25hrs) for both 

aglycone and glucuronide.  Aglycone declined rapidly after achieving Cmax, 

indicating rapid distribution/ conjugation.  AUC values for aglycone were much 

lower as compared to total and glucoronide form, indicating extensive 

metabolism.  When disposition in lean and DIO mice was compared, it was 

observed that total BPA amounts in serum were lower in DIO mice over a 

period of 8 hrs after oral dosing.  Lower amounts of total BPA in serum of DIO 

mice can be attributed to lower amounts of BPA-conjugate, as BPA is 

extensively metabolized.  BPA conjugate measured in this study includes both 

BPA-glucuronide and BPA-sulfate metabolites, however as reviewed 

elsewhere, BPA-glucuronide is the dominant metabolite (10).   

Lower levels of total BPA in DIO mice could result from the combination of 

multiple factors.  This experiment was conducted with parallel dosing of 6 lean 

and 6 DIO mice per time point.  So the blood levels are not from serial draws 

from same animal, rather these are different animals at each time point.  The 

mice had access to food throughout the duration of the study.  As mentioned 

earlier, DIO mice are fed a 60% kCal fat diet, whereas lean mice get diet 

containing only 10% kCal fat.  BPA is a moderately hydrophobic with its n-

octanol/ water partition coefficient more than 3.  Presence of high fat diet in the 

gut lumen may play a role in lowered absorption of orally administered BPA.  

After absorption, the BPA may undergo glucoronidation within the enterocytes.  
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It was reported that rat intestinal microsomal preparations possessed higher 

conjugation activity for BPA as compared to human intestinal microsomes 

(22).  However, little is known about extent to which mouse enterocytes 

glucuronidate BPA.   

Because of hydrophobic nature of BPA, its transport through the membrane is 

thought to occur by passive diffusion (23).  However, there are reports of BPA 

aglycone being a substrate for rat Abcc2, human ABCC2, ABCG2 and ABCC3 

(24).  BPA-glucuronide is a substrate for rat Abcc2, human ABCC3, but is a 

non-substrate/ inhibitor for human ABCC2, ABCB1, ABCG2, rat Abcb1a, 

Abcb1b, and Abcg2 (24).  As reviewed by Willhite et al., BPA-glucuronide is 

preferentially excreted in bile in rats, whereas in urine in humans.  This can be 

attributed to localization of rat Abcc2 on the apical membrane and human 

ABCC3 on the basolateral membrane in hepatocytes (14).   

Figure 2A demonstrates alterations in efflux transporter expression in 

duodenum of lean and DIO mice.  It was demonstrated that DIO mice have 

increased expression of Abcc3 and 4, and decreased expression of Abcb1, 

Abcc2 and Abcg2.  Whether these duodenal transporters will play a role in 

altered disposition of BPA in DIO mice depends on extent of glucuronidation 

that takes place in enterocytes.  In a study with segmented everted rat 

intestine, it was noted that increase in concentration of BPA on mucosal side 

increases transfer of unconjugated form to serosal side (25).  Little to no 

information is available on intestinal BPA glucuronidation in mice.   
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After entering the portal circulation, BPA aglycone or glucuronide, enter the 

liver.  In the hepatocytes, the Ugt1b isoforms specific for BPA will convert it to 

BPA-glucuronide, with minor sulfate conjugate formation.  As demonstrated in 

fig. 2B, DIO mice have increased mRNA expression of Ugt1a1, 3a1 and 3a2, 

and increasing trend in Ugt2a3 and 2b1 as compared to lean mice.  This 

suggests higher glucuronide formation in DIO mice as compared to lean.  

However, the glucuronide levels in the blood remained considerably lower in 

DIO mice as compared to lean.  This can be attributed to possible substrate 

specificity on mouse Abcc2, and its significantly increased expression in DIO 

mice livers (13).  Excretion of BPA-glucuronide in intestine through bile results 

in drop of serum glucuronide levels.  At a later time point, DIO mice show 

slight increase in levels of BPA-glucuronide in blood, caused due to 

enterohepatic recirculation.  When conjugated BPA reaches small intestine, it 

undergoes hydrolysis by intestinal b-glucuronidase enzyme, and release BPA 

aglycone.  This aglycone is then absorbed back into the enterocytes.  Now as 

this concentration of BPA will be much lower than original orally administered 

concentration, the extent of intestinal glucuronidation will me more (25).  After 

intestinal glucuronidation, the conjugate will be preferably transported to 

serosal blood supply with the aid of increased basolateral efflux transporters 

Abcc3 and 4.  This may explain why DIO mice have better enterohepatic 

recirculation of BPA as compared to lean mice.   
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4.5 Conclusion:  

Overall body burden of BPA in DIO mice was significantly less as compared to 

lean mice.  Enhanced expression of hepatic UGTs and apical efflux 

transporter Abcc2 can account for higher formation and excretion of BPA-

glucuronide in feces, which results in lower levels of BPA-glucuronide in 

serum.  Enhanced basolateral efflux and decreased apical efflux transporter 

expression in intestines of DIO mice may contribute to higher enterohepatic 

recirculation as compared to lean mice.      
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4.7 Figure legends: 

Figure 1. Serum BPA-d6, conjugates, and total time-concentration profile 

in lean and DIO mice after oral administration of 100mg/kg body weight 

BPA-d6.  Dosing of animals from all six time-points was completed within 45 

minutes.  The serum was extracted and BPA-d6 (before and after incubation 

with glucuronidase/sulfatase mix) was quantified by LC-ES/MS/MS using 13C12 

as an internal standard.  * indicates statistical significance in AUC between 

lean and DIO mice (p<0.05). 

Figure 2. Messenger RNA expression of UDP glucuronosyl transferases 

(Ugts) in liver and efflux transporters in duodenum of lean and DIO mice.  

Total RNA was isolated from liver/ duodenal tissue by phenol-chloroform 

extraction, and mRNA was quantified by Quantitative Real-Time PCR, using 

SYBR green.  A) Canalicular efflux transporters Abcc2, Abcb1, Abcg2 and 

basolateral efflux transporters Abcc3 and 4 mRNA expression in duodenum.  

B) Ugt1a1, 1a6, 2a3, 2b1, 2b5, 3a1, and 3a2 mRNA expression in liver.  

*indicates statistical significance in AUC between lean and DIO mice (p<0.05).   
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4.8 Tables: 

Table 1: Number of animals used in Bisphenol-A (BPA) disposition study#.    

 15 min 30 min 60 min 2 hrs 4 hrs 8 hrs 

Lean 6 6 6 6 6 6 

DIO 6 6 6 6 6 6 

 

#All the animals were age-matched (23 weeks). 
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Table 2: Oligonucleaotide primers used in Quantitative Real-Time PCR$  

mUgt1a1 forward GCTTCTTCCGTACCTTCTGTTG 

mUgt1a1 reverse GCTGCTGAATAACTCCAAGCAT 

mUgt1a6 forward GTTTCTCTTCCTAGTGCTTTGGG 

mUgt1a6 reverse CCTCGTTCACTGAGATGTTCTAC 

mUgt2b1 forward GTGCTGGTGTGGCCTACAG 

mUgt2b1 reverse ATTGCTCGGCCCAATGAGG 

mUgt2a3 forward CGTGTGGCCCTGTGATATGAG 

mUgt2a3 reverse GTGCAGTGGAATACGTTTACTCT 

mUgt2b5 forward ACGAGGCGATCTATCATGGAA 

mUgt2b5 reverse GACCTCCTCCAGTGCATTGAG 

mUgt3a1 forward AAACGCCCCCTTGTCATATG 

mUgt3a1 reverse CCTTCGCTTCTTGGTGAAATG 

mUgt3a2 forward CACTCATGGAGGGATGAACAGT 

mUgt3a2 reverse TGGTGAGCGCAAATGACTCTG 

$Synthesized by Life Technologies (Grand Island, NY)  
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4.9 Figures: 
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Figure 1: Serum BPA-d6, conjugates, and total time-concentration profile in 
lean and DIO mice after oral administration of 100mg/kg body weight BPA-d6   
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SUMMARY AND CONCLUSION 

1. Constitutive activation of Nrf2 makes mice susceptible to development of 

diet-induced obesity, steatosis and glucose intolerance.   

2. Along with role in combating oxidative stress, it appears that Nrf2 also 

regulates some key events in steatosis of the liver, and more studies are 

needed to clarify the mechanism behind these observations.   

3. Alcohol cirrhosis increases the expression of efflux transporters in 

human liver.  Alterations in expression of these transporters may alter the 

disposition of xenobiotics that are substrates for the transporters.  Expression 

of nuclear factors NRF2, FXR and PXR was also altered and a correlation 

was observed between nuclear factors and transporter expression with 

disease conditions.  Altered disposition abilities of patients with alcohol 

cirrhosis should be taken into consideration when addressing adverse drug 

events and drug-drug interactions. 

4. Diet-induced obesity alters phase II conjugation enzymes and intestinal 

drug transporter expression in mice.  DIO mice have enhanced clearance and 

high enterohepatic recirculation environmental chemical Bisphenol A.  This 

can be attributed to alterations in hepatic phase II conjugation enzymes, 

hepatic transporters and intestinal transporter expression alterations in this 

model. 

5. In summary, two distinct roles of Nrf2 were demonstrated- a role in 

development of steatosis with HFD treatment; and regulation of transporter 

expression in response to disease conditions like alcohol cirrhosis.    
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