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Thermodynamics of ideal quantum gas with fractional statistics in D dimensions
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2Fachbereich Mathematik und Naturwissenschaften, Bergische Universität Wuppertal, D-42097 Wuppertal, Germany
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We present exact and explicit results for the thermodynamic properties �isochores, isotherms, isobars, re-
sponse functions, velocity of sound� of a quantum gas in dimensions D�1 and with fractional exclusion
statistics 0�g�1 connecting bosons �g=0� and fermions �g=1�. In D=1 the results are equivalent to those of
the Calogero-Sutherland model. Emphasis is given to the crossover between bosonlike and fermionlike fea-
tures, caused by aspects of the statistical interaction that mimic long-range attraction and short-range repulsion.
A phase transition along the isobar occurs at a nonzero temperature in all dimensions. The T dependence of the
velocity of sound is in simple relation to isochores and isobars. The effects of soft container walls are
accounted for rigorously for the case of a pure power-law potential.

DOI: 10.1103/PhysRevE.75.061120 PACS number�s�: 05.30.�d, 75.10.�b

I. INTRODUCTION

A new arena for the study of effects of dimensionality has
opened up in the wake of the advances in instrumentation
achieved in the research that led to the observation of Bose-
Einstein condensates �1,2�. The magnetic and optical traps
that were developed and perfected in this and related re-
search can also be made in shapes that effectively constrain
the kinematics of trapped gas atoms to fewer than D=3 di-
mensions �3–6�.

In cigar-shaped traps, for example, the energy states of
single particles with nonzero momentum components per-
pendicular to the axis are frozen out at low enough tempera-
ture. In disk-shaped traps, the only energy states with signifi-
cant occupancy at low T are those with zero momentum
component perpendicular to the plane. We are then dealing,
effectively, with quantum gases in dimensions D=1 and 2,
respectively. A further effective change in dimensionality can
be produced by controlling the firmness of the trap walls
�7,8�.

No less important than effects of dimensionality are ef-
fects of interaction. Here the thermodynamic analysis of sta-
tistically interacting quantum gases presents itself as a prom-
ising alternative to mean-field theory or perturbation
calculations. Statistical interaction grew out of the concept of
fractional exclusion statistics, introduced as a tool to inter-
pret the quasiparticle composition of the eigenstates in ex-
actly solvable quantum many-body systems �9�.

The thermodynamics of statistically interacting degrees of
freedom is amenable to exact analysis under very general
circumstances �10�. A most remarkable link exists between
the dynamical interaction in the form of a coupling term in
the many-body Hamiltonian and the statistical interaction in
the form of a generalized Pauli principle. For certain solv-
able models in D=1, one can replace the former by the latter
and arrive at equivalent thermodynamic properties �11�.

The chances for extending any known exact solution for a
dynamically interacting quantum gas to D�1 are slim be-
cause the criteria for purely nondiffractive scattering �12� are
unlikely to be satisfied apart from highly contrived scenarios.
By contrast, extending the exact solution for a statistically

interacting quantum gas to higher dimensions has proven
possible.

Notwithstanding the absence of an exact correspondence
between dynamical and statistical interactions in D�1, the
thermodynamic analysis of statistically interacting degrees of
freedom is expected to yield valuable new insights because it
incorporates a full and consistent account of fluctuations.

Here we consider a statistical interaction limited to par-
ticles with identical momenta, in which case it reduces to a
statistical exclusion condition. The two parameters of the
system explored here are the coefficient of exclusion statis-
tics, 0�g�1, which forms a bridge between bosons �g=0�
and fermions �g=1�, and the dimensionality D�1. While
this system does exhibit the attributes typical for an ideal
quantum gas, several of the highlighted features are indica-
tive of specific aspects of the statistical interaction including
features of long-range attraction and short-range repulsion.
Selected results are known from previous work �10–22� with
emphasis on D=2.

There exist alternative quantum gas models with exotic
statistics that interpolate between free fermions and free
bosons, such as those surveyed in Ref. �23�. Some schemes
are based on exchange statistics, others on exclusion statis-
tics, and yet others on orbital occupation capacities. Frac-
tional statistics as used here is one particular scheme.

The fundamentals of fractional exclusion statistics and its
use in statistical mechanics are reviewed in Sec. II, along
with a description of how this statistical mechanical tool is
adapted to the quantum gas model system under consider-
ation. The exact thermodynamics of the ideal quantum gas
with fractional exclusion statistics in a D-dimensional box
with rigid walls is presented in Sec. III. The impact of soft
container walls as might be relevant in the context of atomic
traps is discussed in Sec. IV. The results are assessed in Sec.
V as benchmarks for research on quantum gas models with
less constrained statistical interactions �24�.

II. FRACTIONAL EXCLUSION STATISTICS

A. Fundamentals

The core relation of exclusion statistics is a generalized
Pauli principle as introduced by Haldane �9�. It expresses

PHYSICAL REVIEW E 75, 061120 �2007�

1539-3755/2007/75�6�/061120�13� ©2007 The American Physical Society061120-1

http://dx.doi.org/10.1103/PhysRevE.75.061120


how the number of states available to one particle is affected
by the presence of other particles:

�di = − gi�ni, �1�

where the index i enumerates distinct particle species �a flex-
ible notion� and the gi are coefficients of �fractional� exclu-
sion statistics. For free bosons we have gi=0 and for free
fermions gi=1. Integrating Eq. �1� yields the dimensionality
of the one-particle Hilbert space in the presence of ni par-
ticles of species i

di = Ai − gi�ni − 1� , �2�

where Ai are constants. The dimensionality of the many-
particle Hilbert space is

W = �
i
�di + ni − 1

ni
� , �3�

where each factor represents the simple combinatorial prob-
lem of placing ni particles among di+ni−1 distinct states
available to them.

A system of �dynamically� free quasiparticles with frac-
tional exclusion statistics has two principal specifications: �i�
a set of orbitals at energies �i and �ii� a set of statistical
exclusion coefficients gi. The grand partition function is of
the form �10,17,25�

Z = �
i
�1 + wi

wi
�Ai

, �4�

where the wi are determined by the nonlinear algebraic equa-
tions

�i − �

kBT
= ln�1 + wi� − gi ln�1 + wi

wi
� . �5�

The energy level occupancies �ni	 are inferred from the wi as

�ni	 =
1

wi + gi
. �6�

To illustrate the link between the combinatorial expres-
sion �3� and the statistical mechanical expression �4� we con-
sider an open system of M orbitals populated by �dynami-
cally� free particles with �uniform� exclusion coefficients g
�0. The number of distinct n-particle configurations implied
by �3� is

Wn�M� =
�„A + n − g�n − 1�…

��n + 1���A − g�n − 1��
, �7�

where A is to be adjusted so as to yield integer values for
Wn�M� and a meaningful maximum capacity nmax. For inte-
ger g we use A=M. For g=1/2 we use A=M if M is odd and
A=M +1/2 if M is even. This scheme is naturally extended
to other fractional values of g, limiting the maximum capac-
ity to nmax	 �M +g� /g.

The dimensionality of the Fock space,

Wtot�M� = 

n=0

nmax

Wn�M� , �8�

can be expressed, for integer g, as a �higher-order� Lamé
sequence Wtot�M�=M +1 for M =0,1 , . . . ,g−1 and Wtot�M�
=Wtot�M −1�+Wtot�M −g� for M =g ,g+1, . . .. In the case of
fermions �g=1� we obtain Wtot�M�=2M and for g=2 a string
of Fibonacci numbers: Wtot�M�=FM =1,2 ,3 ,5 ,8 , . . .. For
semions �g= 1

2
� we use �7�. The result is a string of alternate

Fibonacci numbers: Wtot�M�=F2M+1=1,3 ,8 , . . ..
The quantity we investigate for our illustration is the limit

M→
 of the proportion by which the number of many-
particle states increases if we add one orbital to the system:
RM �Wtot�M +1� /Wtot�M�. For fermions we have RM =2 in-
dependent of M as expected. For semions we obtain the
square of the golden section:

RM =
F2M+3

F2M+1
——→

M→
 �1

2
��5 + 1��2

. �9�

Now we derive R
 directly from �4� and �5� at T=
:

R
 =
1 + w

w
, wg�1 + w�1−g = 1. �10�

The solution for fermions is w=1, yielding R
=2 as before
via combinatorics. In the semion case the asymptotic result
in �9� is recovered from the solution of the quadratic equa-
tion in �10�.

B. Calogero-Sutherland model

Before we go on to discuss how Eqs. �4�–�6� are applied
to a quantum gas in D dimensions, we turn to an exactly
solved model in D=1. The Calogero-Sutherland �CS� model
describes massive particles on a ring of circumference L with
a �dynamical� pair interaction �in units where �2 /2m=1�
�13,26–28�

H = − 

i=1

N
�2

�xi
2 + 


j	i

2g�g − 1�

� L

�
sin��

L
�xi − xj���2 . �11�

The spectrum and thermodynamics of the CS model can
be described by an asymptotic coordinate Bethe ansatz �12�.
The thermodynamic Bethe ansatz inferred therefrom ex-
presses the grand potential in the form

�T,L,�� = − kBT� L

2�
�

−


+


dk ln�1 + e−��k�/kBT� , �12�

where ��k� is determined by the Yang-Yang-type equation
�29�

��k� = k2 − � −
kBT

2�


−


+


dk�K�k − k��ln�1 + e−��k��/kBT�

�13�

with kernel
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K�k − k�� = 2��1 − g���k − k�� . �14�

The distribution of particles, �P�k�, is found to be the solu-
tion, for given ��k�, of the Lieb-Liniger-type equation �30�

2��P�k��1 + e��k�/kBT� = 1 + 
−


+


dk�K�k − k���P�k�� .

�15�

C. Generalization of CS model

Returning to statistical interaction, we consider a nonrel-
ativistic gas in a rigid box of dimensionality D and volume
V=LD with energy-momentum relation �0�k�= �k�2 and exclu-
sion statistics �18–21�

g�k − k�� = g��k − k�� . �16�

The grand potential derived from �4� becomes

 = − kBT� L

2�
�D dDk ln

1 + wk

wk
, �17�

where wk is the solution of

�k�2 − �

kBT
= ln�1 + wk� − g ln

1 + wk

wk
. �18�

The particle density in k space is represented by the function

�nk	 =
1

wk + g
. �19�

The fundamental thermodynamic relations, from which most
thermodynamic properties are conveniently derived, are in-
tegrals involving wk and �nk	:

pV

kBT
= � L

2�
�D dDk ln

1 + wk

wk
, �20�

N = � L

2�
�D dDk�nk	 , �21�

U = � L

2�
�D dDk�k�2�nk	 . �22�

These relations state the dependence of the pressure p, the
average number of particles N, and the internal energy U on
fugacity z, temperature T, and volume V.

It was recognized �11,25,31� that the thermodynamic Be-
the ansatz solution �12�–�15� of the CS model is equivalent
to the solution of a statistical interacting gas as presented
above for D=1 if we make the following identifications:

wk = exp� ��k�
kBT

�, �nk	 = 2��P�k� , �23�

g�k,k�� = ��k − k�� −
1

2�
K�k − k�� . �24�

For the thermodynamic extension to D�1 of the CS model
we use the statistical interaction �16� and the density of one-

particle states of the nonrelativistic ideal gas,

D0��0� = � L

2�
�D

�D/2

��D/2�
�0
D/2−1, �25�

to rewrite Eqs. �17�–�19� in the forms �18,19�

 = − kBT
0




d�0D0��0�ln
1 + w��0�

w��0�
, �26�

1

z
exp� �0

kBT
� = �w��0��g�1 + w��0��1−g, �27a�

z = exp��/kBT� , �27b�

�n��0�	 =
1

w��0� + g
, �28�

and to simplify Eqs. �20�–�22�.
In ideal quantum gases the average level occupancy

�n��0�	 is a unique function of ��0−�� /kBT independent of
D. The exact analytic solution of �27� with 0	g	1 is
known in a series representation �16�. The asymptotic level
occupancy for ��0−�� /kBT→−
 is 1 /g. In other statistical
models that interpolate between fermion and boson gases the
midpoint is associated with Maxwell-Boltzmann �MB� statis-
tics �23�.

III. THERMODYNAMICS OF THE GENERALIZED
CS MODEL

Exact and explicit results for the thermodynamics of the
generalized CS model can now be calculated from the gen-
eral expressions derived in Sec. II.

A. CS functions

Introducing the CS functions

Gn�z,g� �
1

��n�0




dx
xn−1

w̄�x� + g
, �29�

�w̄�x��g�1 + w̄�x��1−g =
ex

z
, �30�

for n�0 we rewrite Eqs. �20�–�22� as �20�

p�T
D

kBT
= GD/2+1�z,g� , �31�

N�T
D

V
= GD/2�z,g� �+

z

1 − z
� , �32�

U�T
D

V
��D

2
kBT� = GD/2+1�z,g� , �33�

where
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�T �� h2

2�mkBT
——→
�2/2m=1 � 4�

kBT
�34�

is the thermal wavelength and the term in �32� enclosed by
square brackets is relevant only if g=0 and D�2. For g=0
and g=1 the CS functions become the Bose-Einstein �BE�
functions and Fermi-Dirac �FD� functions, respectively. The
range of fugacity is 0�z�1 for bosons. For all other cases z
has no upper bound.

The CS functions have the following power series expan-
sions �16�:

Gn�z,g� = 

l=1



zl

ln

��l − lg�
��l���1 − lg�

= z +
z2

2n �1 − 2g� +
z3

3n �1 − 3g�

��1 −
3

2
g� + O�z4� . �35�

The radius of convergence depends on g �19�:

r�g� =
1

gg�1 − g�1−g . �36�

The first two terms of the asymptotic expansion for large z at
g�0 are �15,16�

Gn�z,g� �
z→
 �ln z�n

g��n + 1��1 +
�2

6

gn�n − 1�
�ln z�2 + ¯ � . �37�

The familiar recurrence relation for FD and BE functions is
valid for the CS functions in general:

z
�

�z
Gn+1�z,g� = Gn�z,g� . �38�

We also use �38� to extend the definition �29� to n�0.

B. Equation of state

The functional relationship between pV /NkBT and fugac-
ity z,

pV

NkBT
=

GD/2+1�z,g�
GD/2�z,g�

, �39�

as inferred from �31� and �32�, highlights the deviations from
Maxwell-Boltzmann behavior. Numerical results of
pV /NkBT versus z are presented in Fig. 1. Increasing z
means, for example, decreasing T at fixed N /V or increasing
N /V at fixed T. Any downward �upward� deviation from
pV /NkBT=1 is suggestive of a bosonlike �fermionlike� fea-
ture.

The curves for g�
1
2 exhibit a fermionlike monotonic in-

crease over the entire range of z. The curves for 0	g	
1
2
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FIG. 1. Equation of state �39� in D=1,2 ,3 ,5 for g=0,0.01,0.1,0.25,0.5,0.75,1 �from bottom up�. Note the different vertical scales.
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start out with �bosonlike� negative slope. They reach a
smooth minimum and then grow without bound in fermion-
like manner. The case g=0 is exceptional. Here the curve
ends in a cusp singularity at z=1. In D=1 and 2 the pressure
is zero at the singularity. The end point of the curve occurs at
T=0 or N /V=
. In D�2 the pressure is nonzero at the
singularity, and the end point of the curve signals the onset of
a Bose-Einstein condensate �BEC�. For fixed N /V this hap-
pens at T�0. The condensation proceeds along the dashed
line.

The physics underlying the crossover between bosonlike
and fermionlike behavior may be interpreted by attributing to
the statistical interaction of the generalized CS model a long-
range attractive part and a shorter-range repulsive part. The
repulsive core is present for all g�0. The attractive part is
perceptible only for g	

1
2 . The former prevents the collapse

of the system into a BEC at g�0. The latter causes a nega-
tive interaction pressure for g	

1
2 �a reduction of p relative to

the kinetic pressure of the MB gas� if the average interpar-
ticle distance in units of the thermal wavelength is suffi-
ciently large �10,17�. A crossover from effective attraction to
effective repulsion was also found in other models that inter-
polate between bosons and fermions �23�.

The interplay between the two parts of the statistical in-
teraction upon variation of the parameters g and D produces
a host of interesting thermodynamic effects. Their appear-
ance in isochores, isotherms, isobars, response functions, and
in the velocity of sound will be discussed in the following.
For this purpose we introduce reference values for tempera-
ture T, reduced volume v�V /N, and pressure p, based on
the equation of state pv=kBT of the MB gas and the criterion
that the average reference volume per particle is a hypercu-
bic box with sides equal to the thermal wavelength �34�. For
isochoric, isothermal, and isobaric processes we thus use

kBTv =
4�

v2/D , pv =
4�

v2/D+1 �v = const� ,

vT = � 4�

kBT
�D/2

, pT =
�kBT�D/2+1

�4��D/2 �T = const� ,

kBTp = �4��D/�D+2�p2/�D+2�, vp = �4�/p�D/�D+2� �p = const� .

These reference values are well behaved in the boson limit,
which is an advantage for our comparative plots. For some
purposes �limited to g�0� an alternative choice, based on
the chemical potential at T=0, will be more convenient.

C. Isochores

The dependence of p on T at constant v can be extracted
from �31� and �32�:

p

pv
=

GD/2+1�z,g�
�GD/2�z,g��1+2/D , �40a�

T

Tv
=

1

�GD/2�z,g��2/D , �40b�

with no restriction on z for 0	g�1. In Fig. 2 we show
isochores for various g and D. Each curve represents a uni-
versal isochore, valid for arbitrary values of v.

The shape of the curves at high T reflects the emerging
MB behavior. The leading correction term in the high-T ex-
pansion of �40�,

p

pv
�

T→
 T

Tv
�1 −

1/2 − g

2D/2 �Tv

T
�D/2� , �41�

describes bundles of isochores whose vertical separations in-
crease with increasing T /Tv if D	2, stay constant if D=2,
and decrease if D�2. The deviation from the MB isochore,
p / pv=T /Tv, is negative for g	

1
2 and positive for g�

1
2 , de-

creasing in magnitude as D increases. For semions the de-
viation is of higher order in Tv /T.

The intercept of the isochore at T=0 as extracted from the
leading term in the asymptotic expansion of �40� is

p0

pv
=

T̄v

Tv

1

D/2 + 1
, �42a�

T̄v

Tv
= �g��D/2 + 1��2/D, �42b�

where �0=kBT̄v is the chemical potential at T=0. If we replot

the data for g�0 in Fig. 2 as p / p̄v versus T / T̄v with p̄v

= pv�T / T̄v� we obtain the MB isochore in the limit D→
.
In the boson case, Eq. �40� is still valid for z	1. This

covers the full T range in D�2. In D�2 the limit z→1
occurs at

pc

pv
=

��D/2 + 1�
���D/2��2/D+1 , �43a�

Tc

Tv
=

1

���D/2��2/D , �43b�

where Gn�1,0�=��n� is the Riemann zeta function. The val-
ues pc and Tc mark the onset of a BEC. Note that Tc begins
to rise from zero at D=2 and approaches the value Tv as
D→
. The bosonic isochore in the coexistence region is

p

pv
= � T

Tv
�D/2+1

��D/2 + 1� �T 	 Tc� . �44�

The singularity at Tc�0 becomes stronger as D increases.
For 2	D�4, there is a discontinuity in curvature. It turns
into a discontinuity in slope for D�4 and becomes a discon-
tinuity in the function itself for D=
.
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D. Isotherms

The dependence of p on v at constant T in a parametric
representation follows again from �31� and �32�:

p

pT
= GD/2+1�z,g� , �45a�

v
vT

=
1

GD/2�z,g�
, �45b�

applicable for 0	g�1 with unrestricted z and for g=0 with
z�1. In Fig. 3 we show isotherms for various g and D. The
convergence of the curves in the low-density regime reflects
the emerging MB behavior.

The leading correction to Boyle’s law,

p

pT
�

v→
vT

v
�1 −

1/2 − g

2D/2 �vT

v
�� , �46�

is negative for g	
1
2 and positive for g�

1
2 . It weakens in

magnitude as D increases. The divergence of the isochores
for g�0 in the high-density limit is of the form

� p

pT
�� v

vT
��D+2�/D

= g2/D ���D/2 + 1��2/D

D/2 + 1
, �47�

consistent with MB behavior for g�0 in the limit D→
, if
we switch to alternative reference values based on the chemi-
cal potential.

For bosons the pressure p / pT remains finite as v /vT→0.
In D�2 the limit z→1 implies

v
vT

→ 0,
p

pT
→ ��D

2
+ 1� , �48�

whereas in D�2 at z=1 we have

vc

vT
=

1

��D/2�
,

pc

pT
= ��D/2 + 1� . �49�

The intercept of the bosonic isotherm decreases with increas-
ing D and approaches unity for D→
. In D�2 the bosonic
isotherm is a smooth curve. Its slope at v /vT=0 is negative
in D	2 and zero in D=2. In D�2 the pressure is constant
at pc for 0�v�vc along the isotherm. In the limit D→
 we
have the MB isotherm p / pT=vT /v at v�vT, joined by the
constant p / pT=1 at v /vT	1.
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E. Isobars

The dependence of v on T at constant p is to be calculated
from

v
vp

=
�GD/2+1�z,g��D/�D+2�

GD/2�z,g�
, �50a�

T

Tp
=

1

�GD/2+1�z,g��2/�D+2� , �50b�

applicable for 0	g�1 with unrestricted z and for g=0 with
z�1. In Fig. 4 we show isobars for various g, D.

The leading correction to MB behavior at high T,

v
vp

�
T→
 T

Tp
�1 −

1/2 − g

2D/2 �Tp

T
�D/2+1� , �51�

explains the observation that the vertical separations of the
curves in Fig. 4 decrease with increasing T /Tp in all D.
Again, the deviation from MB behavior switches sign at g
= 1

2 . The intercept at T=0 of the isobars for g�0 is

lim
T→0

v
vp

= g2/�D+2� ���D/2 + 1��2/�D+2�

�D/2 + 1�D/�D+2� , �52�

again consistent with MB behavior for g�0 in the limit D
→
, provided we use alternative reference values based on
the chemical potential.

The isobaric curves for bosons end in a critical point at

vc

vp
=

���D/2 + 1��D/�D+2�

��D/2�
, �53a�

Tc

Tp
=

1

���D/2 + 1��2/�D+2� . �53b�

Note that the critical �reduced� volume is nonzero only in
D�2 whereas the critical temperature is nonzero in all D
�1. At T	Tc the boson gas is unable to maintain the pre-
scribed pressure. In D�2 the bosonic isobar terminates in a
cusp at v /vp=0. A transition takes place from a pure gas at
T�Tc to a state of zero volume and zero entropy at T	Tc. It
is a sort of condensation but without phase coexistence. In
D�2 the bosonic isobar terminates in a cusp at T=Tc�0
and v=vc�0. Here the gas and the condensate do coexist.
During condensation v /vp gradually goes to zero along the
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vertical dashed line. With increasing D both vc /vp and Tc /Tp
increase toward unity.

F. Isochoric heat capacity

From �32� and �33� we know that the scaled internal
energy U /NkBTv differs from the isochore �40� by a
mere overall factor D /2. The isochoric heat capacity Cv
�N−1��U /�T�v, derived from that expression reads

Cv

kB
=

D
2
��D

2
+ 1�GD/2+1�z,g�

GD/2�z,g�
−

D
2

GD/2�z,g�
GD/2−1�z,g�� . �54�

In Fig. 5 we show plots of Cv /kB versus T /Tv from �40� for
various g and D. In D=2 the heat capacity is independent of
g, a result known since 1964 for the FD and BE gases and
recently extended to 0	g	1 �20,22,32–36�:

Cv

kB
=

�2

3

T

Tv
−

Tv

T


n=1


 �2

n

T

Tv
+

2

n2

T2

Tv
2 + 1�e−nTv/T. �55�

In D	2 only the curves for g�
1
2 have a local maximum

and in D�2 only the curves for g	
1
2 . This double switch

is reflected in the leading correction to the MB behavior at
high T:

Cv

kB
�

T→
D
2
�1 +

�1/2 − g��D/2 − 1�
2D/2 �Tv

T
�D/2� . �56�

The leading low-T behavior of Cv is linear for g�0 �20�:

Cv

kB
�

T→0�2

6

Dg�D−2�/D

���D/2 + 1��2/D
T

Tv
. �57�

In D	2 �D�2�, the initial slope increases �decreases� with
decreasing g, in agreement with the numerical results of Fig.
5.

The well-known power-law behavior of the bosonic heat
capacity at low T reads

Cv

kB
�

T→0D
2
�D

2
+ 1���D

2
+ 1�� T

Tv
�D/2

. �58�

It represents the leading singularity of the exact result in D
�2 and, at the same time, the exact result itself for 0�T
�Tc in D�2. The latter result can be rewritten in the form

Cv

kB
=

D
2
�D

2
+ 1� ��D/2 + 1�

��D/2�
� T

Tc
�D/2

�59�

for 0�T�Tc with Tc from �43�.
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Inspection of the bosonic heat capacity results �54� and
�59� for T→Tc from above and below, respectively, in D
�2 shows a qualitative change of behavior in D=4. In 2
	D�4 the heat capacity Cv has a local maximum at Tc with
a discontinuous slope. In D�4 the function itself becomes
discontinuous at Tc as is evident in Fig. 5. The size of the
discontinuity is

�Cv

kB
=

D2

4

��D/2�
��D/2 − 1�

�D � 4� . �60�

There is no latent heat. Only in the limit D→
 does a first-
order transition emerge. In large D the heat capacity stays
very close to zero from T=0 up to the near vicinity of Tc,
where it shoots up to a high value of O�D2�. At Tc it drops
back to a value of O�D� and remains nearly constant. In the
limit D→
 this spike turns into a � function, and its weight
determines the latent heat.

G. Isothermal compressibility

We obtain the following parametric representation of �T
�−v−1��v /�p�T from �45�:

pT�T =
v
vT

GD/2−1�z,g�
GD/2�z,g�

, �61�

with v /vT from �45�. In Fig. 6 we plot pT�T versus v /vT for
various g and D.

The leading correction to MB behavior at low density,
v /vT�1,

pT�T �
v→
 v

vT
�1 +

1/2 − g

2D/2−1

vT

v
� , �62�

is strongest in low D. The compressibility curves for g�
1
2

display fermionlike behavior across the entire range of v /vT.
The value of �T stays below the MB value and decreases
monotonically with decreasing v /vT, approaching zero in the
limit v→0, reflecting the repulsive core of the statistical in-
teraction. For g	

1
2 , by contrast, the curves start out above

the MB line. Here the long-range attractive part of the statis-
tical interaction is dominant, producing bosonlike behavior.
As the particle density increases a crossover from bosonlike
behavior at low density to fermionlike behavior at high den-
sity manifests itself as a shoulder or as a precipitous drop
after a smooth local maximum. The leading high-density
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term of all compressibility curves for g�0 is a power law
with D-dependent exponent,

pT�T �
v→0 D

2g2/D���D/2 + 1��2/D� v
vT
��D+2�/D

. �63�

The uppermost curve in each panel of Fig. 6 is for bosons.
It shares with all the other curves a decreasing initial trend as
v /vT is lowered in the low-density regime. Then it goes
through a smooth minimum �a property shared with curves
for g�1� and rises to either a divergence or a cusp at vc. In
D�2, we have vc=0. Here the isothermal compressibility
exhibits a power-law divergence �T��v /vT�−D/�2−D� in 1
�D	2, and an exponential divergence �T��v /vT�2ev/vT in
D=2. In 2	D�4 we have vc�0 as given in �49�, and �T
still diverges. However, in D�4 the divergence turns into a
cusp at pTc�Tc=��D /2−1� / ���D /2��2. At v	vc we have
�T=
.

H. Isobaric expansivity

We calculate �p�v−1��v /�T�p from the general relation
�p=�T��p /�T�v and the CS-specific relation Cv
= �D /2�v��p /�T�v to arrive at

Tp�p =
Tp

T
��D

2
+ 1�GD/2+1�z,g�GD/2−1�z,g�

GD/2�z,g�GD/2�z,g�
−

D
2
�

�64�

with T /Tp from �50�. In Fig. 7 we show expansivity curves
Tp�p versus T /Tp for various g and D. We observe that the
correction to MB behavior at high T is such that the expan-
sivity is suppressed for g�

1
2 and enhanced for g	

1
2 :

Tp�p �
T→
Tp

T
�1 +

�1/2 − g��D/2 + 1�
2D/2 �Tp

T
�D/2+1� . �65�

The characteristic features of all compressibility curves
for 0	g	1 are a smooth maximum and a linear approach to
zero in the low-T limit. The maximum is flat near the fer-
mion limit and becomes increasingly high and narrow as the
boson limit is approached. For g�1 the position of the maxi-
mum is close to the bosonic Tc as given in �53�. The slope of
the linear low-T behavior of �p depends on g and D:

Tp�p �
T→0�2

6

Dg�D−2�/�D+2�

���D/2 + 1��4/�D+2�
T

Tp
. �66�
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Note the absence of any g dependence in D=2 and the op-
posite trends regarding g dependence in D	2 and D�2,
reminiscent of trends seen in the heat capacity.

The bosonic expansivity increases monotonically with de-
creasing T and ends in a singularity as Tc is approached from
above. In D�4 the singularity is a divergence, and in D
�4 it is a cusp.

I. Velocity of sound

We start from the relation c= ���S�−1/2 for the velocity of
sound, where �=m /v is the mass density and �S the adia-
batic compressibility. We use standard relations between re-
sponse functions to arrive at the following expression, all in
terms of dimensionless entities previously determined �37�:

mc2

kBT
=

�v/vT�
�pT�T��1 +

�T/Tp�2�v/vT��Tp�p�2

�pT�T��Cv/kB� � . �67�

For the CS model the right-hand side of �67� can be greatly
simplified:

mc2

kBT
= �

GD/2+1�z,g�
GD/2�z,g�

, � � 1 +
2

D
. �68�

How does the velocity of sound c vary with temperature T if
we keep the �average� particle density 1/v or the �average�
pressure p fixed? Remarkably, we find very simple universal
relations between c and the isochore or isobar itself for the
two situations, respectively,

mc2

kBTv
= �

p

pv
�v = const� , �69�

mc2

kBTp
= �

v
vp

�p = const� , �70�

with the dependence of p / pv on T /Tv as discussed in Sec.
III C and the dependence of v /vp on T /Tp as discussed in
Sec. III E.

We conclude that c has a monotonic dependence on T, no
matter whether we keep v or p constant. For g�0 the veloc-
ity of sound stays nonzero in the limit T→0. In the boson
gas c is affected by the onset of BEC. There are no sound
waves in the condensate. The isochores at T	Tc in Fig. 2 or
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the vertical portions of the isobars at T=Tc in Fig. 4 give us
information about c in the gas coexisting with the conden-
sate.

IV. EFFECTS OF SOFT TRAP WALLS

Consider an ideal quantum gas in D�1, trapped by a
spatially isotropic power-law potential �7,8�,

U�r� � U0� r

R
��

, �71�

where r is the radial coordinate in D-dimensional space. The
size of the trap is determined by the “width” R and the
“depth” U0 of the potential well. The softness of the confine-
ment is controlled by the exponent �. Harmonic traps have
�=2. Lowering the value of � makes the surrounding wall
softer, increasing it makes the wall harder. For �→
, the
wall becomes rigid and the bottom of the potential becomes
flat, which corresponds to the situation considered in Sec. III.

Softening the trap walls affects the density of energy lev-
els. For the power-law potential �71�, expression �25� must
be replaced by

D��0� =
V

2D�D/2��D/2�
�0
D/2−1� �0

U0
�D/�

QD��� �72�

with

V =
�D/2

��D/2 + 1�
RD, QD��� �

��D/� + 1���D/2�
��D/� + D/2�

.

�73�

In soft-wall traps it makes sense to consider processes at V
=const instead of isochoric processes. Under these circum-
stances the gas expands when heated up. In generalization of
relations �32� and �33� we now have

N =
V
�T

D��D/� + 1�� kB

U0
�D/�

GD/2+D/��z,g� , �74�

U =
VkBT

�T
D � kBT

U0
�D/�

��D
�

+ 1��D
�

+
D
2
�GD/2+D/�+1�z,g� .

�75�

As before, an additive term z / �1−z� has to be considered in
�74� if g=0. We now use the reference temperature

Tv = �N
V �1/�D/�+D/2��4�

kB
��D/2�/�D/�+D/2��U0

kB
��D/��/�D/�+D/2�

� ���D/� + 1��−1/�D/�+D/2�. �76�

For bosons the onset of BEC occurs at Tc�0 in D�Dm

=2� / �2+��. The marginal dimensionality decreases from
Dm=2 to Dm=1 as the rigid-wall container softens into a
harmonic trap. The transition temperature in units of Tv is

Tc

Tv
= ���D/� + D/2��−1/�D/�+D/2�. �77�

V. CONCLUSION AND OUTLOOK

We have explored the thermodynamics of the generalized
CS model in D�1 dimensions. In this model the statistical
interaction is limited to pairs of particles with identical mo-
menta. This reduces the coupling, effectively, to a statistical
exclusion condition. Several observed phenomena suggest
the presence of a long-range attractive part and a short-range
repulsive part in this particular statistical interaction.

The generalized CS model is found to preserve several
attributes that are characteristic of the familiar ideal BE and
FD gases—attributes which may very well count as hall-
marks of ideal quantum gases in general. �i� The average
level occupancy �n��0�	 is a unique function of ��0−�� /kBT
for given g, independent of D. �ii� The fundamental thermo-
dynamic relations �31�–�33� for given g and with the pre-
scribed structure on the left-hand side are unique functions of
the fugacity z. �iii� The right-hand sides of Eqs. �31� and �33�
are identical.

The consequences include that the isochore and the �prop-
erly scaled� internal energy have the same dependence on T,
that the quantity pV /NkBT has a unique dependence on z for
given D, and that the square of the �properly scaled� velocity
of sound at constant v �constant p� has the same T depen-
dence as the isochore �isobar�. The thermodynamics of the
generalized CS model as described in Sec. III is thus ideally
suited in the role of benchmark for the thermodynamics of
gases with more generic statistical or dynamical interactions.
From work in progress on several model systems in D di-
mensions with statistical interactions not restricted as in �16�,
we have compelling evidence that none of the ideal quantum
gas hallmarks �i�-�iii� are upheld any longer. The stage is
thus set for the exact analysis of qualitatively new thermo-
dynamic phenomena including phase transitions in non-
bosonic quantum gases.
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