University of Rhode Island [DigitalCommons@URI](https://digitalcommons.uri.edu/)

[PHY 204: Elementary Physics II -- Slides](https://digitalcommons.uri.edu/phy204-slides) PHY 204: Elementary Physics II (2021)

2020

12. Effects of a magnetic field: magnetic force

Gerhard Müller University of Rhode Island, gmuller@uri.edu

Robert Coyne University of Rhode Island, robcoyne@uri.edu

Follow this and additional works at: [https://digitalcommons.uri.edu/phy204-slides](https://digitalcommons.uri.edu/phy204-slides?utm_source=digitalcommons.uri.edu%2Fphy204-slides%2F37&utm_medium=PDF&utm_campaign=PDFCoverPages)

Recommended Citation

Müller, Gerhard and Coyne, Robert, "12. Effects of a magnetic field: magnetic force" (2020). PHY 204: Elementary Physics II -- Slides. Paper 37. [https://digitalcommons.uri.edu/phy204-slides/37](https://digitalcommons.uri.edu/phy204-slides/37?utm_source=digitalcommons.uri.edu%2Fphy204-slides%2F37&utm_medium=PDF&utm_campaign=PDFCoverPages)

This Course Material is brought to you by the University of Rhode Island. It has been accepted for inclusion in PHY 204: Elementary Physics II -- Slides by an authorized administrator of DigitalCommons@URI. For more information, please contact digitalcommons-group@uri.edu. For permission to reuse copyrighted content, contact the author directly.

Electricity

- Electric charges generate an electric field.
- The electric field exerts a force on other electric charges.

Magnetism

- Electric currents generate a magnetic field.
- The magnetic field exerts force on other electric currents.

Capacitor

The parallel-plate capacitor generates a near uniform electric field provided the linear dimensions of the plates are large compared to the distance between them.

Solenoid

The solenoid (a tightly wound cylindrical coil) generates a near uniform magnetic field provided the length of the coil is large compared to its radius.

Right-Hand Rule

Electric and Magnetic Forces on Point Charge

Electric Force

- $\vec{F} = q\vec{E}$
- electric force is parallel to electric field
- SI unit of *E*: 1N/C=1V/m

- $\vec{F} = q\vec{v} \times \vec{B}$, $F = qvB\sin\phi$
- magnetic force is perpendicular to magnetic field
- SI unit of *B*: 1Ns/Cm=1T (Tesla)
- \cdot 1T=10⁴G (Gauss)

Magnetic Force on Current-Carrying Conductor

Consider drift of Na⁺ and Cl[−] ions in a plastic pipe filled with salt water.

- $v_{1x} > 0$, $v_{2x} < 0$: drift velocities: $q_1 > 0$, $q_2 < 0$: charge on ions
- \cdot n_1 , n_2 : number of charge carriers per unit volume

- Electric current through A: $I = A(n_1q_1v_1x_1 + n_2q_2v_2x_1)$
- Force on Na⁺: $\vec{F}_1 = q_1 \vec{v}_1 \times \vec{B} \Rightarrow F_{1z} = q_1 v_{1x} B_y$
- Force on Cl⁻: $\vec{F}_2 = q_2\vec{v}_2 \times \vec{B} \Rightarrow F_{2z} = q_2v_{2x}B_y$
- Force on current-carrying pipe: $F_z = (n_1q_1v_{1x} + n_2q_2v_{2x})ALB_y = ILB_y$
- Vector relation: $\vec{F} = I \vec{L} \times \vec{B}$

Direction of Magnetic Force (1)

Direction of Magnetic Force (2)

 $\vec{F} = I\vec{L} \times \vec{B}$

Magnetic Force Application (1)

A wire of length *L* = 62cm and mass *m* = 13g is suspended by a pair of flexible leads in a uniform magnetic field $B = 0.440T$ pointing in to the plane.

• What are the magnitude and direction of the current required to remove the tension in the supporting leads?

Magnetic Force Application (2)

A metal wire of mass *m* = 1.5kg slides without friction on two horizontal rails spaced a distance *d* = 3m apart.

The track lies in a vertical uniform magnetic field of magnitude $B = 24$ mT pointing out of the plane.

A constant current *I* = 12A flows from a battery along one rail, across the wire, and back down the other rail. The wire starts moving from rest at $t = 0$.

 \cdot Find the direction and magnitude of the velocity of the wire at time $t = 5$ s.

Fancy solution:

- Uniform magnetic field \vec{B} points out of the plane.
- Magnetic force on segment *ds*: *dF* = *IBds* = *IBRdθ*.
- Integrate $dF_x = dF \sin \theta$ and $dF_y = dF \cos \theta$ along semicircle.

•
$$
F_x = IBR \int_0^{\pi} \sin \theta d\theta = 2IBR
$$
, $F_y = IBR \int_0^{\pi} \cos \theta d\theta = 0$.

Clever solution:

- Replace the semicircle by symmetric staircase of tiny wire segments.
- Half the vertical segments experience a force to the left, the other half a force to the right. The resultant horizontal force is zero.
- All horizontal segments experience a downward force. The total length is 2*R*. The total downward force is 2*IBR*.
- Making the segments infinitesimally small does not change the result.

Magnetic Force Application (5)

Inside the cube there is a magnetic field \vec{B} directed vertically up.

Find the direction of the magnetic force experienced by a proton entering the cube

- (a) from the left,
- (b) from the front,
- (c) from the right,
- (d) from the top.

Charged Particle Moving in Uniform Electric Field

- Electric field \vec{F} is directed up.
- Electric force: $\vec{F} = a\vec{E}$ (constant)
- Acceleration: $\vec{a} = \frac{\vec{F}}{m}$ $\frac{F}{m} = \frac{q}{m}$ $\frac{q}{m}\vec{E}$ = const.
- Horizontal motion: $a_x = 0 \Rightarrow v_x(t) = v_0 \Rightarrow x(t) = v_0 t$
- Vertical motion: $a_y = \frac{q}{w}$ $\frac{q}{m}E \Rightarrow v_y(t) = a_y t \Rightarrow y(t) = \frac{1}{2}a_y t^2$
- The path is parabolic: $y = \left(\frac{qE}{2}\right)$ 2*mv*² 0 \setminus *x* 2
- \cdot \vec{F} changes direction and magnitude of \vec{v} .

Charged Particle Moving in Uniform Magnetic Field

- Magnetic field \vec{B} is directed into plane.
- Magnetic force: $\vec{F} = q\vec{v} \times \vec{B}$ (not constant)
- $\cdot \vec{F} \perp \vec{v} \Rightarrow \vec{F}$ changes direction of \vec{v} only $\Rightarrow v = v_0$.
- \cdot \vec{F} is the centripetal force of motion along circular path.

• Radius:
$$
\frac{mv^2}{r} = qvB \Rightarrow r = \frac{mv}{qB}
$$

• Angular velocity:
$$
\omega = \frac{v}{r} = \frac{qB}{m}
$$

• Period:
$$
T = \frac{2\pi}{\omega} = \frac{2\pi m}{qB}
$$

Velocity Selector

A charged particle is moving horizontally into a region with "crossed" uniform fields:

- \cdot an electric field \vec{E} pointing down,
- \cdot a magnetic field \vec{B} pointing into the plane.

Forces experienced by particle:

- electric force $F = qE$ pointing down,
- magnetic force $B = qvB$ pointing up.

Forces in balance: *qE* = *qvB*. \mathbf{v} X X X X \times \times \mathbf{x} Selected velocity: $v = \frac{E}{R}$ $\frac{1}{B}$. \mathbf{x} $\triangle qvB$ $\overline{\mathbf{x}}$ \mathbf{x} $\bar{\mathbf{x}}$ Trajectories of particles $\overline{\mathbf{x}}$ $\bar{\mathbf{x}}$ × × \mathbf{x} $q($ + with selected velocity $\overline{\mathsf{x}}$ $\overline{\mathsf{x}}$ are not bent. IqE \mathbf{x}

Measurement of *e*/*m* **for Electron**

First experiment by J. J. Thomson (1897)

Method used here: velocity selector

Equilibrium of forces: $eE = evB \Rightarrow v = \frac{E}{R}$ *B* Work-energy relation: $eV=\frac{1}{2}$ $rac{1}{2}mv^2$ $\Rightarrow v = \sqrt{\frac{2eV}{m}}$ *m* Eliminate *v*: *e* $\frac{e}{m} = \frac{E^2}{2VB^2} \simeq 1.76 \times 10^{11} \text{C/kg}$

Measurement of *e* **and** *m* **for Electron**

First experiment by R. Millikan (1913)

Method used here: balancing weight and electric force on oil drop

```
Radius of oil drop: r = 1.64 \mu m
```

```
Mass density of oil: \rho = 0.851g/cm<sup>3</sup>
```

```
Electric field: E = 1.92 \times 10^5N/C.
```

```
Mass of oil drop: m = \frac{4\pi}{2}\frac{\partial^2}{\partial^2} r^3 \rho = 1.57 \times 10^{-14} \text{kg}
```

```
Equilibrium of forces: neE = mg
```
Number of excess elementary charges (integer): $n = 5$

Elementary charge: $e = \frac{mg}{nE} \simeq 1.6 \times 10^{-19} \text{C}$ Mass of electron: $m \simeq 9.1 \times 10^{-31}$ kg

Mass Spectrometer

Purpose: measuring masses of ions.

- Charged particle is accelerated by moving through potential difference |∆*V*|.
- Trajectory is then bent into semicircle of radius r by magnetic field \vec{B} .
- Kinetic energy: $\frac{1}{2}mv^2 = q|\Delta V|$.
- Radius of trajectory: $r = \frac{mv}{qB}$.
- Charge: $q = e$

• Mass:
$$
m = \frac{eB^2r^2}{2|\Delta V|}
$$
.

Cyclotron

Purpose: accelerate charged particles to high energy.

- Low-energy protons are injected at *S*.
- Path is bent by magnetic field \vec{B} .
- Proton is energized by alternating voltage ∆*V* between *Dee₁* and *Dee₂*.
- Proton picks up energy ∆*K* = *e*∆*V* during each half cycle.
- Path spirals out as velocity of particle increases: Radial distance is proportional to velocity: $r = \frac{mv}{eB}$.
- Duration of cycle stays is independent of *r* or *v*: cyclotron period: $T = \frac{2\pi m}{eB}$.
- Cyclotron period is synchronized with alternation of accelerating voltage.
- High-energy protons exit at perimeter of \vec{B} -field region.

Moving charged particle confined by inhomogeneous magnetic field. Van Allen belt: trapped protons and electrons in Earth's magnetic field.

Loudspeaker

Conversion of electric signal into mechanical vibration.

Intermediate Exam II: Problem #4 (Spring '05)

Consider a charged particle moving in a uniform magnetic field as shown. The velocity is in *y*-direction and the magnetic field in the *yz*-plane at 30◦ from the *y*-direction.

- (a) Find the direction of the magnetic force acting on the particle.
- (b) Find the magnitude of the magnetic force acting on the particle.

Intermediate Exam II: Problem #4 (Spring '05)

Consider a charged particle moving in a uniform magnetic field as shown. The velocity is in *y*-direction and the magnetic field in the *yz*-plane at 30◦ from the *y*-direction.

- (a) Find the direction of the magnetic force acting on the particle.
- (b) Find the magnitude of the magnetic force acting on the particle.

Solution:

(a) Use the right-hand rule: positive *x*-direction (front, out of page).

Intermediate Exam II: Problem #4 (Spring '05)

Consider a charged particle moving in a uniform magnetic field as shown. The velocity is in *y*-direction and the magnetic field in the *yz*-plane at 30◦ from the *y*-direction.

- (a) Find the direction of the magnetic force acting on the particle.
- (b) Find the magnitude of the magnetic force acting on the particle.

Solution:

- (a) Use the right-hand rule: positive *x*-direction (front, out of page).
- (b) $F = qvB\sin 30^\circ = (5 \times 10^{-9} \text{C})(3 \text{m/s})(4 \times 10^{-3} \text{T})(0.5) = 3 \times 10^{-11} \text{N}$.

Intermediate Exam II: Problem #4 (Spring '06)

A current loop in the form of a right triangle is placed in a uniform magnetic field of magnitude $B = 30$ mT as shown. The current in the loop is $I = 0.4$ A in the direction indicated.

- (a) Find magnitude and direction of the force \vec{F}_1 on side 1 of the triangle.
- (b) Find magnitude and direction of the force \vec{F}_2 on side 2 of the triangle.

Intermediate Exam II: Problem #4 (Spring '06)

A current loop in the form of a right triangle is placed in a uniform magnetic field of magnitude $B = 30$ mT as shown. The current in the loop is $I = 0.4$ A in the direction indicated.

- (a) Find magnitude and direction of the force \vec{F}_1 on side 1 of the triangle.
- (b) Find magnitude and direction of the force \vec{F}_2 on side 2 of the triangle.

Solution:

(a) $\vec{F}_1 = I\vec{L} \times \vec{B} = 0$ (angle between \vec{L} and \vec{B} is 180°).

Intermediate Exam II: Problem #4 (Spring '06)

A current loop in the form of a right triangle is placed in a uniform magnetic field of magnitude $B = 30$ mT as shown. The current in the loop is $I = 0.4$ A in the direction indicated.

- (a) Find magnitude and direction of the force \vec{F}_1 on side 1 of the triangle.
- (b) Find magnitude and direction of the force \vec{F}_2 on side 2 of the triangle.

Solution:

(a) $\vec{F}_1 = I\vec{L} \times \vec{B} = 0$ (angle between \vec{L} and \vec{B} is 180°).

(b)
$$
F_2 = ILB = (0.4A)(0.2m)(30 \times 10^{-3}T) = 2.4 \times 10^{-3}N
$$
.
Direction of \vec{F}_2 : \otimes (into plane).

Magnetic Force Application (3)

The dashed rectangle marks a region of uniform magnetic field \vec{B} pointing out of the plane.

• Find the direction of the magnetic force acting on each loop with a ccw current *I*.

