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AUGMENTED IMPLICITLY RESTARTED
LANCZOS BIDIAGONALIZATION METHODS∗

JAMES BAGLAMA† AND LOTHAR REICHEL‡

Dedicated to Henk van der Vorst on the occasion of his 60th birthday

Abstract. New restarted Lanczos bidiagonalization methods for the computation of a few of
the largest or smallest singular values of a large matrix are presented. Restarting is carried out
by augmentation of Krylov subspaces that arise naturally in the standard Lanczos bidiagonaliza-
tion method. The augmenting vectors are associated with certain Ritz or harmonic Ritz vectors.
Computed examples show the new methods to be competitive with available schemes.

Key words. singular value computation, partial singular value decomposition, iterative method,
large-scale computation
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1. Introduction. Many problems in scientific computation require knowledge
of a few of the largest or smallest singular values of a matrix and associated left and
right singular vectors. These problems include the approximation of a large matrix
by a matrix of low rank, the computation of the null space of a matrix, total least-
squares problems (see, e.g., Björck [4, sections 4.6 and 7.6.5]), as well as the tracking
of signals; see, e.g., Comon and Golub [8] for a discussion of the latter.

Let A ∈ R
�×n be a large sparse matrix. We may assume that � ≥ n, because

otherwise we replace the matrix by its transpose. Let

σ
(A)
1 ≥ σ

(A)
2 ≥ · · · ≥ σ(A)

n ≥ 0(1.1)

denote the singular values of A, and let u
(A)
j ∈ R

� and v
(A)
j ∈ R

n, 1 ≤ j ≤ n, be
associated left and right singular vectors, respectively. Hence,

Av
(A)
j = σ

(A)
j u

(A)
j , ATu

(A)
j = σ

(A)
j v

(A)
j , 1 ≤ j ≤ n,(1.2)

and

A =

n∑
j=1

σ
(A)
j u

(A)
j (v

(A)
j )T .

The matrices U
(A)
n = [u

(A)
1 , u

(A)
2 , . . . , u

(A)
n ] and V

(A)
n = [v

(A)
1 , v

(A)
2 , . . . , v

(A)
n ] have or-

thonormal columns. We refer to {σ(A)
j , u

(A)
j , v

(A)
j } as a singular triplet of A. Singular
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20 JAMES BAGLAMA AND LOTHAR REICHEL

triplets associated with large (small) singular values are referred to as large (small)
singular triplets.

This paper presents new restarted Lanczos bidiagonalization methods for comput-
ing a few of the largest or smallest singular triplets. The methods compute sequences
of projections of A onto judiciously chosen low-dimensional subspaces. Restarting is
implemented by augmentation of Krylov subspaces that are determined similarly as
in the standard Lanczos bidiagonalization method.

Application of m steps of partial Lanczos bidiagonalization to the matrix A with
initial unit vector p1 ∈ R

n yields the decompositions

APm = QmBm,(1.3)

ATQm = PmBT
m + rmeTm,(1.4)

where Pm ∈ R
n×m, Qm ∈ R

�×m, PT
mPm = Im, Pme1 = p1, Q

T
mQm = Im, rm ∈ R

n,
and

PT
mrm = 0.(1.5)

Further, the matrix

Bm :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α1 β1 0
α2 β2

α3 β3

. . .

. . . βm−1

0 αm

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
∈ R

m×m(1.6)

is upper bidiagonal, Im ∈ R
m×m denotes the identity matrix, and ej denotes the

jth axis vector. We refer to the decompositions (1.3)–(1.4) as a partial Lanczos
bidiagonalization of A and to the vector rm in (1.4) as the residual vector; see Björck
[4, section 7.6] for a recent discussion on partial Lanczos bidiagonalization. The
number of bidiagonalization steps, m, is assumed to be small enough so that the
decompositions (1.3)–(1.4) with the stated properties exist.

In applications of interest to us, m is not very large, and the singular triplets

{σ(Bm)
j , u

(Bm)
j , v

(Bm)
j }mj=1 of Bm can be computed inexpensively by the Golub–Kahan

algorithm [10]. Approximate singular triplets of A, denoted by {σ̃(A)
j , ũ

(A)
j , ṽ

(A)
j }, can

be determined from the singular triplets of Bm and the matrices Pm and Qm in the
decompositions (1.3)–(1.4); see section 2 for details.

When the matrix A is large, i.e., when � and possibly n are large, the storage
requirement of the partial Lanczos bidiagonalization (1.3)–(1.4) is large, unless the
number of Lanczos bidiagonalization steps, m, is small. However, for a small value
of m, the desired singular triplets of A may be approximated poorly by computed

approximate singular triplets {σ̃(A)
j , ũ

(A)
j , ṽ

(A)
j }. In order to circumvent this difficulty,

several methods have been proposed that are based on the computation of partial
Lanczos bidiagonalizations (1.3)–(1.4) with m small for a sequence of initial vectors
p1; see, e.g., [5, 13, 14, 15, 16, 17, 28]. These methods are commonly referred to
as restarted partial Lanczos bidiagonalization methods. We will comment on some
of these methods below. They differ in their choice of initial vector p1 used for the
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restarts and in their implementation of the restarting procedure. Ideally, we would
like p1 to be a linear combination of the right singular vectors of A associated with
the desired singular values.

Sorensen [29] proposed efficient approaches for restarting the Arnoldi and the
Lanczos tridiagonalization procedures. These approaches can be thought of as cur-
tailed QR-algorithms, and, similarly to the QR-algorithms, their performance de-
pends critically on the selection of shifts; see also [1, 7, 21, 30] for discussions and
extensions. Björck, Grimme, and Van Dooren [5] derived analogous recursion formu-
las for a restarted Lanczos bidiagonalization method and presented an application
to the solution of ill-posed problems. Recently, Kokiopoulou, Bekas, and Gallopou-
los [17] applied these recursion formulas to compute a few desired singular triplets
of a large sparse matrix. The shifts are applied by “chasing the bulge” in a cur-
tailed QR-algorithm. Other implementations of restarted Lanczos bidiagonalization
are discussed in [13, 14, 15, 16, 28]. The present paper describes mathematically
equivalent, but numerically more robust, implementations of the methods discussed
by Kokiopoulou, Bekas, and Gallopoulos [17].

This paper is organized as follows. Section 2 reviews Lanczos bidiagonalization
and introduces notation used in the remainder of the paper. Section 3 describes
our implementations of restarted Lanczos bidiagonalization. Restarting is carried out
by augmenting the Krylov subspaces that arise naturally in the standard Lanczos
bidiagonalization method by Ritz vectors or harmonic Ritz vectors associated with
desired singular triplets. A few computed examples, which compare the performance
of several methods and implementations, are presented in section 4.

2. Lanczos bidiagonalization. The following algorithm determines the partial
Lanczos bidiagonalization (1.3)–(1.4) of the large sparse matrix A ∈ R

�×n. The
number of Lanczos bidiagonalization steps, m, is typically much smaller than either
one of the matrix dimensions � and n. Throughout this paper ‖ · ‖ denotes the
Euclidean vector norm or the associated induced matrix norm. We remark that the
methods described can easily be modified to apply to matrices A with complex-valued
entries; the main modification required is that the matrices Pm, Qm, and Bm in
(1.3)–(1.4) may have complex-valued entries, and transposition has to be replaced by
transposition and complex conjugation. The MATLAB code used for the computed
examples of section 4 can be applied to matrices A with complex-valued entries.

Algorithm 2.1. Lanczos Bidiagonalization.

Input: A ∈ R
�×n or functions for evaluating matrix-vector products

with the matrices A and AT ,
p1 ∈ R

n : initial vector of unit length,
m : number of bidiagonalization steps.

Output: Pm = [p1, p2, . . . , pm] ∈ R
n×m : matrix with orthonormal columns,

Qm = [q1, q2, . . . , qm] ∈ R
�×m : matrix with orthonormal columns,

Bm ∈ R
m×m : upper bidiagonal matrix (1.6) with entries αj and βj,

rm ∈ R
n : residual vector.

1. P1 := p1; q1 := Ap1;
2. α1 := ‖q1‖; q1 := q1/α1; Q1 := q1;
3. for j = 1 : m

4. rj := AT qj − αjpj;
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5. Reorthogonalization: rj := rj − Pj(P
T
j rj);

6. if j < m, then
7. βj := ‖rj‖; pj+1 := rj/βj; Pj+1 := [Pj , pj+1];
8. qj+1 := Apj+1 − βjqj;
9. Reorthogonalization: qj+1 := qj+1 −Qj(Q

T
j qj+1);

10. αj+1 := ‖qj+1‖; qj+1 := qj+1/αj+1; Qj+1 := [Qj , qj+1];
11. endif

12. endfor
When the computations with Algorithm 2.1 are carried out in finite precision

arithmetic and the columns of Pm and Qm are not reorthogonalized, the computed
columns might be far from orthogonal. We therefore reorthogonalize the columns of
these matrices in lines 5 and 9 of the algorithm.

Several reorthogonalization strategies for the columns of the matrices Pm and Qm

are discussed in the literature. Larsen [18] found that when m is fairly large and one
is interested in computing a few of the largest singular triplets of A, partial reorthog-
onalization gives comparable accuracy and requires less computational work than full
reorthogonalization, but when a few of the smallest singular triplets are desired, often
(essentially) full reorthogonalization is required to achieve high accuracy. Wu and
Simon [33] report that when m is not large, full reorthogonalization should be carried
out, because due to the overhead associated with partial reorthogonalization, the lat-
ter is not competitive. Moreover, Simon and Zha [28] show that when the matrix A
is not very ill-conditioned, only the columns of one of the matrices Pm or Qm need to
be reorthogonalized. Reorthogonalization of the columns of Pm only can reduce the
computational effort required to compute the partial Lanczos bidiagonalization (1.3)–
(1.4) considerably when � � n. Algorithm 2.1 can easily be modified to implement
the latter approach.

The Lanczos bidiagonalization algorithm (Algorithm 2.1) requires the diagonal
entries αj > 0, 1 ≤ j ≤ m, as well as the superdiagonal entries βj , 1 ≤ j < m, of
Bm to be nonvanishing. Assume for the moment that αj > 0 for 1 ≤ j < m, and
αm = 0. Then the vector qm determined in line 8 of the algorithm vanishes, and the
decompositions (1.3)–(1.4) can be expressed as

APm = Qm−1Bm−1,m, ATQm−1 = PmBT
m−1,m,

where Bm−1,m denotes the leading (m − 1) × m submatrix of Bm. It follows that
A is singular and that the singular values of Bm−1,m are singular values of A. The
associated singular triplets of A can be determined from Pm, Qm−1, and the singular
triplets of Bm−1,m. The singular values of Bm−1,m are nonvanishing. Moreover, the
right singular vector of A associated with the zero singular value can be expressed as
a linear combination of the columns of Pm, e.g., by using the singular value decom-
position of Bm. However, the corresponding left singular vector of A is not readily
available. For simplicity, we will in the remainder of this paper assume that all αj are
positive.

It follows from Algorithm 2.1 that βm, the last superdiagonal element of the upper
bidiagonal matrix Bm+1 ∈ R

(m+1)×(m+1) obtained by m + 1 steps of partial Lanczos
bidiagonalization, is given by

βm := ‖rm‖(2.1)

and therefore can be computed when the decompositions (1.3)–(1.4) are available. We
may assume that βm > 0, because otherwise the singular values of Bm are singular
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values of A, and the associated singular triplets of A can be determined from the
singular value decomposition of Bm and the matrices Pm and Qm. If βm = 0 and
the determined singular triplets of A include all the desired ones, then we are done;
otherwise we proceed to compute additional singular triplets by the methods described
in this paper.

When βm > 0, the last column of Pm+1 := [Pm, pm+1] is given by

pm+1 := rm/βm,(2.2)

and the relation (1.4) can be expressed as

ATQm = Pm+1B
T
m,m+1,(2.3)

where the matrix Bm,m+1 ∈ R
m×(m+1) is obtained by appending the column βmem

to Bm. In particular, the matrices in the decomposition (2.3) are available after m
Lanczos bidiagonalization steps. We also note that Bm,m+1 is the leading m×(m+1)
submatrix of the matrix Bm+1 obtained after m+1 steps of Lanczos bidiagonalization.

We will use the connection between partial Lanczos bidiagonalization (1.3)–(1.4)
of A and partial Lanczos tridiagonalization of the matrix ATA. Multiplying (1.3) by
AT from the left-hand side yields

ATAPm = PmBT
mBm + rmeTmBm = PmBT

mBm + αmrmeTm,(2.4)

where the last equality follows from the fact that Bm is upper bidiagonal. The matrix

Tm := BT
mBm ∈ R

m×m(2.5)

is symmetric and tridiagonal, and the expression (2.4) is a partial Lanczos tridiag-
onalization of ATA with initial vector p1 = Pme1; see, e.g., [11, section 9.1.2] for a
discussion on Lanczos tridiagonalization. Since Tm is tridiagonal, (2.4) shows that
the columns of Pm satisfy a three-term recurrence relation; the columns form an
orthonormal basis of the Krylov subspace

Km(ATA, p1) = span{p1, A
TAp1, (A

TA)2p1, . . . , (A
TA)m−1p1}.(2.6)

Similarly, multiplying (1.4) by A from the left-hand side yields

AATQm = QmBmBT
m + ArmeTm.(2.7)

The columns of Qm form an orthonormal basis of the Krylov subspace

Km(AAT , q1) = span{q1, AAT q1, (AAT )2q1, . . . , (AAT )m−1q1}(2.8)

with q1 := Ap1. We remark that since the columns of Qm are not, in general, orthog-
onal to Arm, the decomposition (2.7) typically is not a Lanczos tridiagonalization of
AAT .

Let {σ(Bm)
j , u

(Bm)
j , v

(Bm)
j }, 1 ≤ j ≤ m, be the singular triplets of Bm enumerated

so that

σ
(Bm)
1 ≥ σ

(Bm)
2 ≥ · · · ≥ σ(Bm)

m ≥ 0.(2.9)

Then, analogously to (1.2),

Bmv
(Bm)
j = σ

(Bm)
j u

(Bm)
j , BT

mu
(Bm)
j = σ

(Bm)
j v

(Bm)
j , 1 ≤ j ≤ m,(2.10)
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and the m×m matrices of left and right singular vectors

U (Bm)
m := [u

(Bm)
1 , u

(Bm)
2 , . . . , u(Bm)

m ], V (Bm)
m := [v

(Bm)
1 , v

(Bm)
2 , . . . , v(Bm)

m ]

are orthogonal.

We determine approximate singular triplets {σ̃(A)
j , ũ

(A)
j , ṽ

(A)
j }, 1 ≤ j ≤ m, of A

from the singular triplets of Bm by

σ̃
(A)
j := σ

(Bm)
j , ũ

(A)
j := Qmu

(Bm)
j , ṽ

(A)
j := Pmv

(Bm)
j .(2.11)

Combining (2.10) with (1.3)–(1.4) shows that

Aṽ
(A)
j = σ̃

(A)
j ũ

(A)
j , AT ũ

(A)
j = σ̃

(A)
j ṽ

(A)
j + rmeTmu

(Bm)
j , 1 ≤ j ≤ m.(2.12)

The equations (2.12) suggest that an approximate singular triplet {σ̃(A)
j , ũ

(A)
j , ṽ

(A)
j }

be accepted as a singular triplet of A if rmeTmu
(Bm)
j is sufficiently small. Specifically,

our numerical method accepts {σ̃(A)
j , ũ

(A)
j , ṽ

(A)
j } as a singular triplet of A if

βm|eTmu
(Bm)
j | ≤ δ‖A‖(2.13)

for a user-specified value of δ, where we have used (2.1). The quantity ‖A‖ in (2.13) is

easily approximated by the singular value σ
(Bm)
1 of largest magnitude of the bidiagonal

matrix Bm. The computation of σ
(Bm)
1 is inexpensive because the matrix Bm is

small. During the computations of the desired singular triplets of A, typically, several
matrices Bm and their singular value decompositions are computed. We approximate
‖A‖ by the largest of the singular values of all the matrices Bm generated. This
generally gives a good estimate of ‖A‖.

3. Augmented Lanczos bidiagonalization methods. It is well known that
the implicitly restarted Arnoldi and Lanczos tridiagonalization methods described
by Sorensen [29] can suffer from numerical instability due to propagated round-off
errors. The instability can delay or prevent convergence of desired eigenvalues and
eigenvectors; see Lehoucq and Sorensen [21] for a discussion and remedies. Morgan
[25] showed that the implicitly restarted Arnoldi method by Sorensen [29] can be im-
plemented by augmenting the available Krylov subspace basis by certain Ritz vectors.
Such an implementation can be less sensitive to propagated round-off errors than the
implementation in [29]. Recently, Wu and Simon [33] described a so-called thick-
restarted Lanczos tridiagonalization method for the symmetric eigenvalue problem.
The method is based on augmenting Krylov subspaces by certain Ritz vectors; it is
simple to implement and is mathematically equivalent to the implicitly restarted Lanc-
zos tridiagonalization method of Sorensen [29]. This paper presents thick-restarted
Lanczos bidiagonalization methods. We remark that thick-restarting techniques have
also been used in the context of the Jacobi–Davidson and Arnoldi methods for eigen-
value computations; see Stathopoulos and Saad [31] and Stathopoulos, Saad, and Wu
[32] for discussions and analyses.

3.1. Augmentation by Ritz vectors. Let the partial Lanczos bidiagonaliza-
tion (1.3)–(1.4) be available, and assume that we are interested in determining the k
largest singular triplets of A, where k < m. Note that the approximate right singular
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vector ṽ
(A)
j of A, defined by (2.11), is a Ritz vector of ATA associated with the Ritz

value (σ̃
(A)
j )2. We have

ATAṽ
(A)
j − (σ̃

(A)
j )2ṽ

(A)
j = αmrmeTmv

(Bm)
j , 1 ≤ j ≤ m.(3.1)

The observation that the right-hand sides are parallel to rm for all j forms the basis
of the restarted Lanczos tridiagonalization method by Wu and Simon [33], as well as
of the restarted Lanczos bidiagonalization method of this subsection.

We derive decompositions of the form (1.3)–(1.4) which allow us to choose the first
k columns of the matrix Pm as Ritz vectors. The accuracy of these approximate left
singular vectors and available approximate right singular vectors is then improved by
restarting the computations. It follows from the orthonormality of the columns of the

matrices Pm and V
(Bm)
m that the Ritz vectors ṽ

(A)
j defined by (2.11) are orthonormal.

Moreover, (1.5) shows that the ṽ
(A)
j are orthogonal to rm.

Let the Ritz vectors ṽ
(A)
j , 1 ≤ j ≤ k, associated with the k largest Ritz values be

available, assume that rm �= 0, and introduce the matrix

P̃k+1 := [ṽ
(A)
1 , ṽ

(A)
2 , . . . , ṽ

(A)
k , pm+1].(3.2)

In view of (2.2), the last column of P̃k+1 is parallel to the residual error (3.1). It
follows from (2.11) that

AP̃k+1 = [σ̃
(A)
1 ũ

(A)
1 , σ̃

(A)
2 ũ

(A)
2 , . . . , σ̃

(A)
k ũ

(A)
k , Apm+1].(3.3)

Orthogonalization of Apm+1 against the vectors ũ
(A)
j yields

Apm+1 =

k∑
j=1

ρ̃j ũ
(A)
j + r̃k,(3.4)

where the remainder r̃k is orthogonal to the vectors ũ
(A)
j , 1 ≤ j ≤ k. The coefficients

ρ̃j := (ũ
(A)
j )TApm+1 can be evaluated inexpensively by using the right-hand side of

(ũ
(A)
j )TApm+1 = pTm+1A

T ũ
(A)
j = pTm+1(σ̃

(A)
j ṽ

(A)
j + rmeTmu

(Bm)
j ) = βmeTmũ

(Bm)
j .

We may assume that the vector r̃k is nonvanishing, because otherwise we can termi-
nate the iterations; see below. Introduce the matrices

Q̃k+1 :=

[
ũ

(A)
1 , ũ

(A)
2 , . . . , ũ

(A)
k ,

r̃k
‖r̃k‖

]
(3.5)

and

B̃k+1 :=

⎡
⎢⎢⎢⎢⎣

σ̃
(A)
1 0 ρ̃1

. . .
...

σ̃
(A)
k ρ̃k

0 α̃k+1

⎤
⎥⎥⎥⎥⎦ ∈ R

(k+1)×(k+1).(3.6)

Thus, B̃k+1 may have nonvanishing entries only on the diagonal and in the last column.
Substituting (3.4) into (3.3) now yields the decomposition

AP̃k+1 = Q̃k+1B̃k+1,(3.7)
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which is analogous to (1.3).
We turn to the matrix

AT Q̃k+1 =

[
AT ũ

(A)
1 , AT ũ

(A)
1 , . . . , AT ũ

(A)
k , AT r̃k

‖r̃k‖

]
,(3.8)

which we would like to express in terms of P̃k+1 and B̃T
k+1. This will give an analogue

of the decomposition (1.4). The first k columns of (3.8) are linear combinations of

the vectors ṽ
(A)
j and pm+1; specifically,

AT ũ
(A)
j = σ̃

(A)
j ṽ

(A)
j + rmeTmu

(Bm)
j = σ̃

(A)
j ṽ

(A)
j + pm+1ρ̃j , 1 ≤ j ≤ k,(3.9)

where we have used (2.2). The last column of (3.8) is orthogonal to the Ritz vectors

ṽ
(A)
j ,

(ṽ
(A)
j )TAT r̃k

‖r̃k‖
= σ̃

(A)
j

(ũ
(A)
j )T r̃k

‖r̃k‖
= 0, 1 ≤ j ≤ k,

and therefore it can be expressed as

AT r̃k
‖r̃k‖

= γ̃1pm+1 + f̃k+1,(3.10)

where f̃k+1 ∈ R
n is orthogonal to the vectors ṽ

(A)
j , 1 ≤ j ≤ k, as well as to pm+1.

Since

pTm+1A
T r̃k
‖r̃k‖

=
r̃Tk
‖r̃k‖

Apm+1 =
r̃Tk
‖r̃k‖

⎛
⎝ k∑

j=1

ρ̃j ũ
(A)
j + r̃k

⎞
⎠ = ‖r̃k‖,

it follows from (3.10) that γ̃1 = ‖r̃k‖. This observation, together with (3.9) and (3.10),
gives the expression

AT Q̃k+1 = P̃k+1B̃
T
k+1 + f̃k+1e

T
k+1,(3.11)

which is the desired analogue of the decomposition (1.4). We remark that f̃k+1 can
be computed from (3.10).

The similarity of the decompositions (3.7) and (3.11), and (1.3)–(1.4), suggests
that it may be possible to append new columns to the matrices P̃k+1 and Q̃k+1 in
a way similar to Lanczos bidiagonalization. We will show that this is indeed the
case. For notational simplicity, denote the columns of P̃k+1 and Q̃k+1 by p̃j and q̃j ,
respectively, i.e.,

P̃k+1 = [p̃1, p̃2, . . . , p̃k+1] ∈ R
n×(k+1), Q̃k+1 = [q̃1, q̃2, . . . , q̃k+1] ∈ R

�×(k+1).

We may assume that f̃k+1 �= 0, because otherwise it follows from (3.7) and (3.11)
that the singular values of B̃k+1 are singular values of A, and we are done. Thus, let
β̃k+1 := ‖f̃k+1‖ and p̃k+2 := f̃k+1/β̃k+1. Then the matrix P̃k+2 := [P̃k+1, p̃k+2] has
orthonormal columns.

Let

α̃k+2q̃k+2 := (I − Q̃k+1Q̃
T
k+1)Ap̃k+2,(3.12)



IMPLICITLY RESTARTED LANCZOS BIDIAGONALIZATION 27

where α̃k+2 > 0 is a scaling factor, such that q̃k+2 is of unit length. We comment on
the possibility of α̃k+2 vanishing below. Equation (3.11) yields

AT Q̃k+1 = P̃k+1B̃
T
k+1 + β̃k+1p̃k+2e

T
k+1,(3.13)

and substituting (3.13) into (3.12) shows that

α̃k+2q̃k+2 = Ap̃k+2 − Q̃k+1(A
T Q̃k+1)

T p̃k+2

= Ap̃k+2 − Q̃k+1(B̃k+1P̃
T
k+1 + β̃k+1ek+1p̃

T
k+2)p̃k+2(3.14)

= Ap̃k+2 − β̃k+1Q̃k+1ek+1 = Ap̃k+2 − β̃k+1q̃k+1.

Let Q̃k+2 := [Q̃k+1, q̃k+2] ∈ R
�×(k+2), and define B̃k+2 ∈ R

(k+2)×(k+2) by first ap-
pending the column β̃k+1ek+1 and then the row α̃k+2e

T
k+2 to B̃k+1, i.e.,

B̃k+2 :=

⎡
⎢⎢⎢⎢⎢⎢⎣

σ̃
(A)
1 0 ρ̃1 0

. . .
...

...

σ̃
(A)
k ρ̃k 0

α̃k+1 β̃k+1

0 α̃k+2

⎤
⎥⎥⎥⎥⎥⎥⎦
.

It now follows from (3.7) and (3.14) that

AP̃k+2 = Q̃k+2B̃k+2.(3.15)

We turn to the derivation of a decomposition of the form (3.13) with k+1 replaced
by k + 2. Let

β̃k+2p̃k+3 := (I − P̃k+2P̃
T
k+2)A

T q̃k+2,(3.16)

where β̃k+2 > 0 is a scaling factor, such that p̃k+3 is of unit length. We may assume
that a positive coefficient β̃k+2 exists; otherwise we are done; see below. Substituting
(3.15) into (3.16) yields

β̃k+2p̃k+3 = AT q̃k+2 − P̃k+2B̃
T
k+2ek+2 = AT q̃k+2 − α̃k+2p̃k+2,

which, together with (3.13), shows that

AT Q̃k+2 = P̃k+2B̃
T
k+2 + β̃k+2p̃k+3e

T
k+2.(3.17)

The decompositions (3.15) and (3.17) are analogous to (3.7) and (3.13). We therefore
can continue in the same fashion by appending new columns to the matrices P̃j and

Q̃j , and new rows and columns to the matrices B̃j , for j = k + 2, k + 3, . . . . After a
total of m− k steps, we obtain the decompositions

AP̃m = Q̃mB̃m, AT Q̃m = P̃mB̃T
m + β̃mp̃m+1e

T
m,(3.18)
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where the matrices P̃m and Q̃m have orthonormal columns and

B̃m =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

σ̃
(A)
1 0 ρ̃1 0

. . .
...

σ̃
(A)
k ρ̃k

α̃k+1 β̃k+1

. . .

. . . β̃m−1

0 α̃m

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The method now proceeds by first computing the singular value decomposition of
B̃m and then determining the k largest approximate singular triplets of A from the k
largest singular triplets of B̃m; cf. (2.11). These triplets define new decompositions
of the form (3.7) and (3.11), from which we compute new decompositions of the
form (3.18). The computations proceed in this manner until sufficiently accurate
approximations of the k largest singular triplets of A have been determined. An
algorithm is presented in subsection 3.3 below.

We remark that the computations are analogous for determining the k smallest

singular triplets of A. The vectors ṽ
(A)
j , 1 ≤ j ≤ k, in (3.2) should then be replaced

by the right approximate singular vectors of the k smallest available approximate
singular triplets of A. These approximate singular triplets are used to define decom-
positions (3.7) and (3.11), from which we compute decompositions (3.18) in the same
manner as described above. We are interested in the k smallest singular triplets of the
matrix B̃m in the decompositions (3.18). These triplets yield approximations of the
k smallest triplets of A. The computations are continued until sufficiently accurate
approximations of the k smallest singular triplets of A have been found. However, we
note that when the k smallest singular triplets of A are desired, it can be advanta-
geous to augment by harmonic Ritz vectors instead. This is discussed in subsection
3.2.

Finally, we comment on the cases when r̃k vanishes in (3.4) and when the left-
hand sides of (3.12) and (3.16) vanish. In all these cases, one can show that the
singular values of the matrix B̃j also are singular values of A and that the singular

triplets of B̃j yield singular triplets of A.

3.2. Augmentation by harmonic Ritz vectors. Augmenting by Ritz vectors,
as described in the previous subsection, or, equivalently, shifting by Ritz values, often
gives good approximations to the largest singular triplets of A. However, Kokiopoulou,
Bekas, and Gallopoulos [17] observed that when seeking to compute the smallest
singular triplets of A, shifting by harmonic Ritz values can give faster convergence
than shifting by Ritz values. This section describes how shifting by harmonic Ritz
values can be implemented via augmentation by harmonic Ritz vectors. Harmonic
Ritz vectors are approximate eigenvectors of ATA associated with harmonic Ritz
values of ATA.

Let the partial Lanczos bidiagonalization (1.3)–(1.4) of A be available, and assume
that all the diagonal and superdiagonal entries of Bm, as well as βm given by (2.1), are

nonvanishing. Then, in particular, Bm is nonsingular. The harmonic Ritz values θ̂j of
ATA associated with the partial Lanczos tridiagonalization (2.4) are the eigenvalues
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of the generalized eigenvalue problem

((BT
mBm)2 + α2

mβ2
memeTm)ŵj = θ̂jB

T
mBmŵj , 1 ≤ j ≤ m,(3.19)

with ŵj ∈ R
m\{0}; see, e.g., Morgan [24] or Paige, Parlett, and van der Vorst [27] for

properties of harmonic Ritz values.
The eigenpairs {θ̂j , ŵj} of (3.19) can be computed without forming the matrix

BT
mBm as follows. Let

wj := Bmŵj .(3.20)

Then (3.19) can be expressed as

(BmBT
m + β2

memeTm)wj = θ̂jwj ,(3.21)

where we may choose the eigenvectors wj to be orthonormal. Let Bm,m+1 be the
matrix in (2.3), and note that

Bm,m+1B
T
m,m+1 = BmBT

m + β2
memeTm.(3.22)

Introduce the singular triplets {σ(Bm,m+1)
j , u

(Bm,m+1)
j , v

(Bm,m+1)
j }, 1 ≤ j ≤ m, of the

matrix Bm,m+1, and let them be enumerated so that

0 < σ
(Bm,m+1)
1 ≤ σ

(Bm,m+1)
2 ≤ · · · ≤ σ(Bm,m+1)

m .(3.23)

This enumeration differs from the one for the singular values of Bm (cf. (2.9)), because
in the present subsection we are concerned with the computation of the k < m smallest
singular triplets of A. Throughout this subsection, we use the following simplified
notation:

σ′
j = σ

(Bm,m+1)
j , u′

j = u
(Bm,m+1)
j , v′j = v

(Bm,m+1)
j .

The k smallest singular triplets of Bm,m+1 determine the matrices

U ′
k := [u′

1, u
′
2, . . . , u

′
k] ∈ R

m×k,

V ′
k := [v′1, v

′
2, . . . , v

′
k] ∈ R

(m+1)×k,(3.24)

Σ′
k := diag[σ′

1, σ
′
2, . . . , σ

′
k] ∈ R

k×k,

where U ′
k and V ′

k have orthonormal columns, and

Bm,m+1V
′
k = U ′

kΣ
′
k, BT

m,m+1U
′
k = V ′

kΣ′
k.(3.25)

We refer to (3.25) as a partial singular value decomposition of Bm,m+1. It follows
from (3.22) and (3.25) that {(σ′

j)
2, u′

j} is an eigenpair of (3.21), and (3.20) shows

that {(σ′
j)

2, B−1
m u′

j} is an eigenpair of (3.19). Thus, the eigenpairs of (3.19) and
(3.21) associated with the k smallest eigenvalues can be determined from the partial
singular value decomposition (3.25). Gu and Eisenstat [12] describe how the singular
value decomposition of Bm,m+1 can be computed by updating the singular value
decomposition of Bm; see also Bunch and Nielsen [6]. However, when A is large
and m is small, the computational effort required for determining the singular value
decompositions of Bm and Bm,m+1 is negligible. We will therefore not dwell on the
computation of (3.25).
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The harmonic Ritz vector of ATA associated with the harmonic Ritz value θ̂j is
given by

v̂j := Pmŵj ;(3.26)

see, e.g., [24, 27]. Morgan and Zeng [26] recently pointed out that the residual errors

associated with different harmonic Ritz pairs {θ̂j , v̂j} are parallel. We show this
result for the problem at hand, because this property is central for our augmentation
method. Thus, using (2.4), (3.20), (3.21), and (3.26), we obtain

ATAv̂j − θ̂j v̂j = ATAPmŵj − θ̂jPmŵj

= (PmBT
mBm + αmrmeTm)ŵj − θ̂jPmŵj

= Pm(BT
mBm − θ̂jIm)ŵj + αmrmeTmŵj

= PmB−1
m (BmBT

m − θ̂jIm)wj + rmeTmwj

= PmB−1
m (−β2

memeTmwj) + rmeTmwj

= eTmwj(rm − β2
mPmB−1

m em).

It is convenient to define the scaled residual vector

r̂m := pm+1 − βmPmB−1
m em,(3.27)

where we have used (2.2).
We are in a position to derive relations analogous to (3.7) and (3.11) for harmonic

Ritz vectors. Equations (3.20), (3.26), and (3.27) yield

[v̂1σ
′
1, v̂2σ

′
2, . . . , v̂kσ

′
k, r̂m] = Pm+1

[
B−1

m U ′
kΣ

′
k −βmB−1

m em
0 1

]
,

where the matrix Pm+1 is the same as in (2.3). Introduce the QR-factorization
[

B−1
m U ′

kΣ
′
k −βmB−1

m em
0 1

]
= Q′

k+1R
′
k+1,(3.28)

where Q′
k+1 ∈ R

(m+1)×(k+1) has orthonormal columns and R′
k+1 ∈ R

(k+1)×(k+1) is
upper triangular.

Consider the matrix

P̂k+1 = [p̂1, p̂2, . . . , p̂k+1] := Pm+1Q
′
k+1.(3.29)

Its columns p̂j are orthonormal since both Pm+1 and Q′
k+1 have orthonormal columns.

Equations (1.3) and (3.28) yield

AP̂k+1 = [APm, Apm+1]Q
′
k+1

= [QmBm, Apm+1]

[
B−1

m U ′
kΣ

′
k −βmB−1

m em
0 1

]
(R′

k+1)
−1

= [QmU ′
kΣ

′
k,−βmqm + Apm+1](R

′
k+1)

−1.

In the derivation of our method, we assume only that the matrix Bm is upper trian-
gular, because Bm has this property after restarts. Below we comment on possible
simplifications when Bm is upper bidiagonal.

Let

Q̂k := QmU ′
k.(3.30)
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The columns of this matrix are orthonormal, and we define the Fourier coefficients

ĉk = [γ̂1, γ̂2, . . . , γ̂k]
T := Q̂T

k (−βmqm + Apm+1).

The vector

α̂k+1q̂k+1 := −βmqm + Apm+1 − Q̂k ĉk

is orthogonal to the columns of Q̂k, and the scaling factor α̂k+1 > 0 is chosen so that
q̂k+1 is of unit length. It follows that

AP̂k+1 = Q̂k+1B̂k+1,(3.31)

where

Q̂k+1 := [Q̂k, q̂k+1] ∈ R
�×(k+1),(3.32)

B̂k+1 :=

⎡
⎢⎢⎢⎢⎢⎢⎣

σ′
1 0 γ̂1

σ′
2 γ̂2

. . .
...

σ′
k γ̂k

0 α̂k+1

⎤
⎥⎥⎥⎥⎥⎥⎦

(R′
k+1)

−1 ∈ R
(k+1)×(k+1).(3.33)

Thus, Q̂k+1 has orthonormal columns, and B̂k+1 is the product of two upper triangular
matrices, one of which has nonzero entries only on the diagonal and in the last column.
In particular, B̂k+1 is upper triangular. The decomposition (3.31) is the desired
analogue of (3.7). When Bm is given by (1.6), one can show that α̂k+1 = αm+1,
q̂k+1 = qm+1, and ĉk = 0.

We now derive an analogue of the decomposition (3.11). Let Q̂k be given by
(3.30). Then (3.25) yields

AT Q̂k = ATQmU ′
k = Pm+1B

T
m,m+1U

′
k = Pm+1V

′
kΣ′

k.(3.34)

It follows from the decomposition on the left-hand side of (3.25) that

[Im, βmB−1
m em]V ′

k = B−1
m U ′

kΣ
′
k,

and therefore

V ′
k =

[
B−1

m U ′
kΣ

′
k −βmB−1

m em
0 1

] [
Ik

eTm+1V
′
k

]
.(3.35)

Substituting (3.35) into (3.34), using (3.28) and (3.29), gives

AT Q̂k = Pm+1Q
′
k+1R

′
k+1

[
Ik

eTm+1V
′
k

]
Σ′

k = P̂k+1R
′
k+1

[
Ik

eTm+1V
′
k

]
Σ′

k.(3.36)

Let B̂k,k+1 be the leading k × (k + 1) submatrix of the upper triangular matrix

B̂k+1 in (3.31). Then (3.31) yields

Q̂T
kAP̂k+1 = B̂k,k+1.(3.37)
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It follows from (3.36) that

P̂T
k+1A

T Q̂k = R′
k+1

[
Ik

eTm+1V
′
k

]
Σ′

k,

and comparison with (3.37) shows that

R′
k+1

[
Ik

eTm+1V
′
k

]
Σ′

k = B̂T
k,k+1.

Hence, (3.36) can be expressed as

AT Q̂k = P̂k+1B̂
T
k,k+1.(3.38)

We turn to the last column, AT q̂k+1, of AT Q̂k+1. Equation (3.31) yields

P̂T
k+1A

T q̂k+1 = B̂T
k+1Q̂

T
k+1q̂k+1 = B̂T

k+1ek+1 = α̂k+1ek+1,

where α̂k+1 denotes the last diagonal entry of B̂k+1. Thus,

AT q̂k+1 = α̂k+1p̂k+1 + r̆k+1,(3.39)

where P̂T
k+1r̆k+1 = 0. Combining (3.38) and (3.39) yields

AT Q̂k+1 = P̂k+1B̂
T
k+1 + r̆k+1e

T
k+1,(3.40)

which is the desired analogue of (3.11). Note that the residual vector r̆k+1 can be
computed from (3.39), because the other terms are explicitly known.

Let β̂k+1 := ‖r̆k+1‖ and p̂k+2 := r̆k+1/β̂k+1, and define

P̂k+2 := [P̂k+1, p̂k+2], B̆k+1,k+2 := [B̂k+1, β̂k+1ek+1].

Then (3.40) can be written in the form

AT Q̂k+1 = P̂k+2B̆
T
k+1,k+2,

which is an analogue of (2.3).
Given the decompositions (3.31) and (3.40), we can proceed analogously as in

subsection 3.1 to compute the decompositions

AP̂m = Q̂mB̂m, AT Q̂m = P̂mB̂T
m + r̆meTm,(3.41)

where P̂m ∈ R
n×m has orthonormal columns with leading n×(k+2) submatrix P̂k+2,

Q̂m ∈ R
�×m has orthonormal columns with leading �× (k + 1) submatrix Q̂k+1, and

B̂m =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

B̂k+1 β̂k+1 0
α̂k+2 β̂k+2

α̂k+3 β̂k+3

. . .

. . . β̂m−1

0 α̂m

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
∈ R

m×m
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has the (k+1)×(k+1) leading principal submatrix B̂k+1 and an (m−k−1)×(m−k−1)
upper bidiagonal trailing principal submatrix. The residual vector r̆m is orthogonal
to the columns of P̂m. The method of this subsection can be restarted by letting
Bm := B̂m, Pm := P̂m, Qm := Q̂m, rm := r̆m, and βm := ‖r̆m‖.

We remark that the accurate computation of the vector B−1
m em, used in (3.28), can

be difficult when the matrix Bm has a large condition number κ(Bm) := σ
(Bm)
m /σ

(Bm)
1 ,

where the singular values are enumerated as in (3.23). In this case, we switch from
augmentation by harmonic Ritz vectors to augmentation by Ritz vectors. Details are
provided in the following subsection.

3.3. An augmented Lanczos bidiagonalization algorithm. We describe an
algorithm for the computation of a few of the largest or smallest singular triplets of a
large matrix A. The algorithm is based on augmentation by Ritz vectors or harmonic
Ritz vectors as described in the previous subsections. The Boolean variable harmonic
suggests the type of augmentation used. If harmonic is true and Bm is not too ill-
conditioned, then the augmentation scheme of subsection 3.2 is applied; otherwise
augmentation is carried out according to subsection 3.1.

Algorithm 3.1. Augmented Lanczos Bidiagonalization.

Input: A ∈ R
�×n or functions for evaluating matrix-vector products

with the matrices A and AT ,
p1 ∈ R

n : initial vector of unit length,
m : number of bidiagonalization steps,
k : number of desired singular triplets,
δ : tolerance for accepting computed approximate singular triplet; cf. (2.13),
ε : machine epsilon,
harmonic : Boolean variable that suggests type of augmentation; see above.

Output: Computed set of approximate singular triplets {σj , uj , vj}kj=1 of A.

1. Compute the partial Lanczos bidiagonalization (1.3)–(1.4) using Algorithm 2.1.
2. Compute the singular value decomposition (2.10) of Bm.
3. Check convergence: If all k desired singular triplets satisfy (2.13), then exit.
4. Compute the augmenting vectors:

4a. if not harmonic or κ(Bm) > ε−1/2, then
Determine the matrices P := P̃k+1, Q := Q̃k+1, B := B̃k+1, and the
vector r := f̃k+1 by (3.2), (3.5), (3.6), and (3.10), respectively.

4b. if harmonic and κ(Bm) ≤ ε−1/2, then
Compute the partial singular value decomposition (3.24) of Bm,m+1

and the QR-factorization (3.28).
Determine the matrices P := P̂k+1, Q := Q̂k+1, B := B̂k+1, and the
vector r := r̆k+1 by (3.29), (3.32), (3.33), and (3.39), respectively.

5. The available matrices P , Q, B, and the vector r satisfy

AP = QB, ATQ = PBT + reTk .

Append m− k columns to the matrices P and Q, and m− k rows and columns
to the matrix B. Denote the matrices so obtained by Pm, Qm, and Bm,
respectively. Determine a new residual vector and denote it by rm.

6. Goto 2.
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The above algorithm is a simplification of the actual computations carried out.
For instance, the algorithm exits when a matrix Bm that is numerically singular
has been detected, but the available decompositions of A can be used to determine
singular triplets of A; see the discussion in section 1. Moreover, the number of aug-
mented vectors used at each restart is typically larger than the number of desired
singular triplets. Assume that k′ of the desired k singular triplets have been found.
We then augment by k + k′′ (instead of k) singular triplets, where k′′ is chosen as
large as possible, such that k′′ ≤ k′ and k + k′′ ≤ m − 3. The term −3 secures that
at least three orthogonalization steps can be carried out between restarts. This ap-
proach has been advocated by Lehoucq [20] in the context of the implicitly restarted
Arnoldi method. It often yields faster convergence without increasing the memory re-
quirement. Finally, our implementation enforces two-sided reorthogonalization when
κ(Bm) > ε−1/2. MATLAB code is available at the authors’ home pages.

4. Numerical examples. All computations were carried out using MATLAB
version 6.5 R13 on a Dell 530 workstation with two 2.4 GHz (512k cache) Xeon
processors and 2 GB (400 MHz) of memory running under the Windows XP operating
system. Machine epsilon is ε = 2.2 · 10−16.

We compare our methods, outlined by Algorithm 3.1, with methods recently
proposed by Hochstenbach [14, 13] and Kokiopoulou, Bekas, and Gallopoulos [17], as
well as with the MATLAB internal function svds and the scheme proposed in [2].
Hochstenbach [14, 13] presents a Jacobi–Davidson method. This is a powerful scheme
when a good preconditioner for the linear system of equations that has to be solved
is available. In our computed examples, we assume that no good preconditioner
is known, and we apply the method without preconditioner. The linear system of
equations is solved by the GMRES iterative method. The MATLAB implementation1

jdsvd offers several extraction choices, such as standard, u-harmonic, v-harmonic,
double-harmonic, and refined. In our numerical examples, refined extraction often
gave best accuracy. This is consistent with results reported by Hochstenbach [14].
We refer to the Jacobi–Davidson method with refined extraction as jdsvd(Ref). The
code jdsvd is still under development, and we used the version available to us at the
time of the numerical experiments.

Our methods are mathematically, but not numerically, equivalent to the meth-
ods proposed by Kokiopoulou, Bekas, and Gallopoulos [17]. We used the MATLAB
implementation irlanb by Kokiopoulou, Bekas, and Gallopoulos [17] in our compari-
son. The code irlanb calls Larsen’s MATLAB code lanbpro [18] to compute partial
Lanczos bidiagonalizations with partial reorthogonalization. irlanb is designed for
computing a few of the smallest singular triplets but not for computing a few of the
largest ones. The code therefore is not used in Examples 4 and 5 below. Ritz values
and harmonic Ritz values can be used as shifts. We refer to irlanb with these shift
selections as irlanb(R) and irlanb(H), respectively. The code irlanb is still under
development, and we report results for the version available to us at the time of the
numerical experiments.

The internal MATLAB function svds uses FORTRAN codes of ARPACK [22].
It calls an eigenvalue routine to compute eigenvalue-eigenvector pairs associated with
positive eigenvalues of the symmetric matrix

Z :=

[
0 A
AT 0

]
∈ R

(�+n)×(�+n).(4.1)

1Code is available at http://www.case.edu/artsci/math/hochstenbach/software/jdsvd.html
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The matrix Z has the eigenvalues

±σ
(A)
1 ,±σ

(A)
2 , . . . ,±σ(A)

n ,

as well as � – n zero eigenvalues, where we as usual assume that � ≥ n. The eigenvec-
tors of Z yield both the right and left singular vectors of A. The method requires the
computation of eigenpairs associated with eigenvalues near zero when determining the
smallest singular triplets of A. This can be difficult when Z has many positive and
negative eigenvalues of large magnitude. For this reason, the svds function uses a
shift-and-invert approach for computing the smallest singular triplets. This requires
factorization of the matrix Z, and therefore the function svds typically demands much
more storage than the other methods in our comparison. Since svds does not yield
the number of linear systems of equations that have to be solved, we report only the
CPU time required.

The MATLAB code irblsvds implements an implicitly restarted block-Lanczos
method applied to the matrix (4.1) for the computation of a few singular triplets
of A. The method and code are described in [2, 3].2 The matrix Z is used only
for evaluation of matrix-vector products; in particular, the matrix Z is not factored.
The code irblsvds is not, in general, well suited for computing the smallest singular
triplets of A when �−n is large, because then Z has �−n zero eigenvalues, and the code
may determine these eigenvalues and associated eigenvectors instead of eigenpairs
associated with tiny singular triplets of A. Unless indicated otherwise, we use the
default value 3 for the block-size in our experiments with irblsvds. The largest
number of consecutive block-Lanczos steps is chosen so that irblsvds has about the
same storage requirement as the other codes. We note that of the methods used in the
examples of this section, only the ones of the present paper are based on augmented
matrix formulations.

The schemes of subsections 3.1 and 3.2 are implemented by the MATLAB code
irlba.2 The execution of irlba is determined by certain user-specified parameters;
see Table 4.1. We refer to the augmentation method of subsection 3.1, based on Ritz
vectors, as irlba(R) and to the augmentation method of subsection 3.2, based on
harmonic Ritz vectors, as irlba(H). The scheme irlba(R) with one- and two-sided
full reorthogonalization is referred to as irlba(R1) and irlba(R2), respectively. The
analogous implementations of irlba(H) are denoted by irlba(H1) and irlba(H2).
One-sided full reorthogonalization reorthogonalizes the columns of the smaller of the
matrices Pm and Qm. Thus, when � ≥ n, the columns of Pm are reorthogonalized.

The codes irblsvds, irlanb, jdsvd, and svds allow a user to choose numerous
parameters that affect their performance. Unless stated otherwise, we use the default
values for the parameters. Except for the function svds, we choose the parameters
that affect storage so that all codes require about the same maximum computer
storage.

It is impossible to use the same starting vector for all the methods, since some
routines work with A and AT and others with the matrix Z. To make our comparison
less dependent on the choice of starting vector, we record the best results for each
method over five runs using default random starting vector(s) generated by each
code. We use the same starting vector when the same method is applied with different
parameter values. The reported number of matrix-vector products is the total number
of matrix-vector product evaluations with A and AT for irlba, irlanb, and jdsvd

and with Z for irblsvds.

2Code is available at the authors’ home pages.
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Table 4.1

Parameters for irlba.

adjust Initial number of vectors added to the k restart vectors to speed up convergence.
Default value: adjust = 3.

aug A 4-letter string. The value RITZ yields the augmentation described in subsection
3.1; the value HARM gives augmentation according to subsection 3.2. Default value:
aug = HARM if sigma = SS, and aug = RITZ if sigma = LS.

disps When disps > 0, available approximations of the k desired singular values and
norms of associated residual errors are displayed each iteration; disps = 0 inhibits
display of these quantities. Default value: disps = 0.

k Number of desired singular triplets. Default value: k = 6.
maxit Maximum number of restarts. Default value: maxit = 100.
steps Maximum number of Lanczos bidiagonalization steps. The parameter specifies the

largest value of steps m in (1.3)–(1.4) and determines the storage requirement of
the method. Default value: steps = 20.

reorth A 3-letter string. The value ONE yields one-sided full reorthogonalization of the
“shorter” vectors; the value TWO gives two-sided full reorthogonalization. When
our available estimate of κ(A) (see the discussion following (2.13)) is larger than
ε−1/2, two-sided full reorthogonalization is used. Default value: reorth = ONE.

sigma A 2-letter string (SS for smallest and LS for largest) which specifies which extreme
singular triplets are to be computed. Default value: sigma = LS.

δ Tolerance used for convergence check; see (2.13). Default value: δ = 10−6.
v0 Initial vector for Lanczos bidiagonalization. When � ≥ n, p1 := v0; cf. Algorithm

2.1. Default value: v0 is a random vector with normally distributed entries.

Example 1 (smallest singular value). We would like to compute the smallest
singular triplet of the diagonal matrices

A := diag[1, 2, . . . , n], n = 100, 200, 300, 400.

Each code was instructed to determine only one singular triplet, the smallest one.
This corresponds to the parameter values sigma = SS and k = 1 for irlba. We al-
lowed each of the codes irlba, irlanb, jdsvd, and irblsvds about the same amount
of storage as required for carrying out 20 Lanczos bidiagonalization steps. In par-
ticular, the largest number of consecutive block-Lanczos steps allowed by irblsvds

was limited to 7 (with block-size 3). This corresponds to about the same storage
requirement as 21 Lanczos bidiagonalization steps. We let adjust := 4 for irbla; see
Table 4.1. This forces both the irlba and irlanb codes to apply the same number
of bidiagonalization steps in the first restart. We chose the tolerance 10−6 for all
codes, i.e., δ := 10−6 in (2.13). For the jdsvd code we report only refined extraction,
because this extraction method was the fastest. Figure 4.1 displays the CPU times
required for the different methods. The MATLAB svds function is seen to be fastest.
This may depend on the fact that svds is not coded in MATLAB and that it is based
on a shift-and-invert approach. For large problems shift-and-invert may require un-
acceptable amounts of memory and execution time; however, when computation and
storage of factors of matrices of the form Z − τI, where τ is a scalar, is feasible, then
this approach is attractive. Among the methods that use only the matrices A and AT

for evaluating matrix-vector products, irlba is seen to be competitive.
Example 2 (smallest singular values). We are interested in determining the small-

est singular triplet of four matrices generated in MATLAB with the commands

A = randn(n), A(:, 1) = A(:, 10),

for n = 200, 400, 600, 800. Here A = randn(n) determines an n × n matrix with
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Fig. 4.1. Example 1: CPU times for computing the smallest singular triplet.

normally distributed entries with mean zero and variance one. The command A(:, 1) =
A(:, 10) overwrites column 1 by column 10 and secures that the matrix obtained has
a zero singular value. This example illustrates that augmentation by harmonic Ritz
vectors can give substantially faster convergence than augmentation by Ritz vectors.

The code irlba was used with k = 1, δ = 10−16, reorth = TWO, and steps = 30.
Figure 4.2 shows the convergence to zero of the smallest computed singular value.
The vertical axis displays the absolute error in the smallest computed singular value,
i.e., the smallest computed singular value, and the horizontal axis shows the number
of restarts. The cross-over label indicates when irlba switched from augmenting with
harmonic Ritz vectors to augmenting with Ritz vectors. As mentioned in subsection
3.2, augmentation by harmonic Ritz vectors requires the solution of a linear system
of equations with the matrix Bm (while augmentation by Ritz vectors does not). We
switch from augmentation by harmonic Ritz vectors to augmentation by Ritz vectors
when the condition number of the matrix Bm is larger than the square root of the
reciprocal of machine epsilon; cf. Algorithm 3.1.

We remark that computing a singular triplet with a numerically vanishing singular

value is not always possible since the approximated left singular vector ũ
(A)
j lives in

the Krylov subspace (2.8), which is restricted to the range of A. However, in the
presence of round-off errors, irlba is often able to successfully compute singular
triplets associated with zero singular values.



38 JAMES BAGLAMA AND LOTHAR REICHEL

0 20 40 60
10

–20

10
 –10

10
0

Number of restarts
0 50 100 150 200

10
– 20

10
– 10

10
0

Number of restarts

0 100 200 300 400
10

– 20

10
– 10

10
0

Number of restarts
0 200 400 600

10
– 20

10
– 10

10
0

Number of restarts

Ritz
harmonic Ritz

    Cross –over
   (restart 32) 

n = 200 n = 400 

n = 600 n = 800 

    Cross– over
   (restart 104)  

    Cross –over
   (restart 190)  

     Cross– over
   (restart 395)  

A := randn(n) and A(:,1) := A(:,10) 

Fig. 4.2. Example 2: Absolute error in the smallest singular value computed by irlba ver-
sus number of restarts using augmentation with Ritz vectors (solid curve) and augmentation with
harmonic Ritz vectors (dotted curve). After the cross-over point augmentation is with Ritz vectors.

Example 3 (smallest singular values). We consider the 1033 × 320 matrix
WELL1033 and the 1850× 712 matrix WELL1850 from the set LSQ in the Harwell–
Boeing sparse matrix collection [9]. These matrices arise from surveying problems.
We would like to determine the six smallest singular triplets of these matrices and
select the parameters for the different codes accordingly. For instance, for irlba we
let sigma := SS and k := 6. All codes are allowed the amount of storage required
for 40 Lanczos bidiagonalization steps. The number of implicit QR-steps in irlanb

is chosen to be 31; this choice is consistent with the default value of the parameter
adjust of irlba. It forces irbla and irlanb to apply the same number of Lanczos
bidiagonalization steps in the first restart. The tolerance for all methods is set to
δ = 10−6. irlanb with shifts chosen to be harmonic Ritz values gave better results
than when Ritz values were used as shifts. We therefore report only results for the
former. The restarted block-Lanczos method irblsvds used block-size 4 and was
allowed to carry out at most 10 consecutive block-Lanczos steps between restarts.
jdsvd gave the best results for refined extraction. Therefore we do not report results
for other extraction methods. The MATLAB svds function was unable to find any of
the desired singular triplets to requested accuracy for either of the matrices. Table 4.2
summarizes the computed results. The table shows that irlba was able to compute
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Table 4.2

Example 3: Computation of the six smallest singular triplets of the matrices WELL1033 and
WELL1850.

irlba(H1)

Matrix # Matrix-vector CPU Magnitude of
products time largest error

WELL1033 638 0.36s 2.41 · 10−15

WELL1850 1442 1.39s 1.72 · 10−13

irlba(H2)

Matrix # Matrix-vector CPU Magnitude of
products time largest error

WELL1033 638 0.59s 2.14 · 10−15

WELL1850 1442 2.41s 1.72 · 10−13

irblsvds

Matrix # Matrix-vector CPU Magnitude of
products time largest error

WELL1033 7520 18.67s 8.53 · 10−16

WELL1850 16080 77.53s 1.11 · 10−15

irlanb(H)

Matrix # Matrix-vector CPU Magnitude of
products time largest error

WELL1033∗ − − −
WELL1850 1578 8.31s 3.03 · 10−10

∗ Method failed to convergence.

jdsvd(Ref)

Matrix # Matrix-vector CPU Magnitude of
products time largest error

WELL1033 1978 2.66s 4.15 · 10−10

WELL1850 4244 7.69s 6.84 · 10−12

all six singular values with the fewest matrix-vector product evaluations and the least
CPU time for both matrices.

Example 4 (largest singular values). The matrices MEDLINE, CRANFIELD,
and CISI are standard term-by-document test matrices and can be obtained from the
Cornell SMART FTP server3 or the TMG web page.4 They are of size 5735 × 1033,
4563 × 1398, and 5544 × 1460, respectively. We also consider the term-by-document
matrix HYPATIA5 of size 11390 × 1265 with 109056 nonzero terms from the web
server at the Department of Mathematics, University of Rhode Island. HYPATIA
was created in the same manner as standard term-by-document test matrices. All
test matrices use the local term frequency (i.e., number of times a word occurs on a
website) and have no global weighting or normalization. The parameter values chosen
for the different methods are consistent with our desire to determine the 10 largest

3ftp://ftp.cs.cornell.edu/pub/smart.
4http://scgroup.hpclab.ceid.upatras.gr/scgroup/Projects/TMG/.
5The matrix is available at http://math.uri.edu/∼jbaglama.
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Table 4.3

Example 4: Computation of the 10 largest singular values of the matrices MEDLINE, CRAN-
FIELD, CISI, and HYPATIA.

irlba(R1)

Matrix # Mat.-vec. CPU time Magn. lar-
products mat.-vec. one-sided total gest error

products reorthog.
MEDLINE 74 0.23s 0.05s 0.33s 1.11 · 10−10

CRANFIELD 78 0.35s 0.03s 0.48s 1.29 · 10−12

CISI 76 0.26s 0.08s 0.48s 2.77 · 10−12

HYPATIA 78 0.41s 0.17s 0.76s 1.54 · 10−11

irlba(R2)

Matrix # Mat.-vec. CPU time Magn. lar-
products mat.-vec. two-sided total gest error

products reorthog.
MEDLINE 74 0.22s 0.11s 0.41s 1.11 · 10−10

CRANFIELD 78 0.35s 0.12s 0.53s 1.39 · 10−12

CISI 76 0.26s 0.14s 0.53s 2.79 · 10−12

HYPATIA 78 0.40s 0.28s 0.89s 1.55 · 10−11

irblsvds

Matrix # Mat.-vec. CPU time Magn. lar-
products gest error

MEDLINE 436 4.55s 5.09 · 10−10

CRANFIELD 508 5.72s 3.28 · 10−10

CISI 564 6.39s 2.41 · 10−10

HYPATIA 432 9.36s 2.15 · 10−09

jdsvd(Ref)

Matrix # Mat.-vec. CPU time Magn. lar-
products gest error

MEDLINE 218 2.25s 7.32 · 10−10

CRANFIELD 240 2.58s 7.16 · 10−11

CISI 218 2.39s 2.93 · 10−10

HYPATIA 240 4.70s 4.43 · 10−10

svds

Matrix CPU time Magn. lar-
gest error

MEDLINE 1.06s 4.94 · 10−12

CRANFIELD 1.48s 2.64 · 10−11

CISI 1.58s 2.73 · 10−12

HYPATIA 2.53s 1.02 · 10−11

singular triplets for each of these matrices; for irlba we let sigma :=LS and k := 10.
The available storage is assumed to be large enough to simultaneously store all vectors
generated during 20 consecutive steps of Lanczos bidiagonalization. The tolerance δ
in the stopping criterion is 10−6. Since we seek to determine the largest singular
triplets, irbla uses the augmentation method of section 3.1. We report the results
for one-sided and two-sided full reorthogonalization. The code irblsvds was used
with block-size 4 and was allowed to carry out at most five consecutive block-Lanczos
steps between restarts. The fastest extraction method for jdsvd was refined. Table
4.3 displays the performance of the methods and illustrates the competitiveness of
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irlba. The code irlanb is not part of our comparison, since it is designed for the
computation of only a few of the smallest singular triplets.

Example 5 (condition number). We would like to determine the condition num-

ber κ(A) := σ
(A)
1 /σ

(A)
n , where the singular values are enumerated according to (1.1),

of the Läuchli matrix A := L(n, μ) ∈ R
(n+1)×n for n = 20000 and the default value

of μ.6 Thus, A has ones across the top row and μ on the subdiagonal; the remain-
ing matrix entries are zero. This matrix often is used to illustrate the drawback
of forming ATA in least-squares computations; see [19]. The Läuchli matrix A is

nonsingular; it has the simple singular value
√

n + μ2 and the singular value μ of
multiplicity n− 1 giving the condition number κ(A) = 9.490724975767860 · 109, and
therefore ATA is numerically singular. irlba only implicitly works with the matrix
ATA and is able to compute κ(A). Specifically, we let sigma :=LS and SS, k := 1,
and we allow the storage required for all vectors generated by 20 consecutive steps
of Lanczos bidiagonalization. The tolerance δ in the stopping criterion is set to ma-
chine epsilon ε. Two-sided full reorthogonalization was employed. We augmented
by Ritz vectors when computing the largest singular value and, until the matrices
Bm became ill-conditioned, by harmonic Ritz vectors when determining the smallest
singular value. irlba required 0.703 and 0.796 seconds of CPU time to compute the
largest and smallest singular values of A, respectively, and gave the condition number
9.490724975767925 · 109 with a relative error of 6.83 · 10−15. Thus, the fact that ATA
is numerically singular does not cause irlba problems.
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[19] P. Läuchli, Jordan-Elimination und Ausgleichung nach kleinsten Quadraten, Numer. Math.,
3 (1961), pp. 226–240.

[20] R. B. Lehoucq, Implicitly restarted Arnoldi methods and subspace iteration, SIAM J. Matrix
Anal. Appl., 23 (2001), pp. 551–562.

[21] R. B. Lehoucq and D. C. Sorensen, Deflation techniques for an implicitly restarted Arnoldi
iteration, SIAM J. Matrix Anal. Appl., 17 (1996), pp. 789–821.

[22] R. B. Lehoucq, D. C. Sorensen, and C. Yang, ARPACK Users’ Guide: Solution of Large-
Scale Eigenvalue Problems with Implicitly Restarted Arnoldi Methods, Software Environ.
Tools 6, SIAM, Philadelphia, 1998.

[23] The MathWorks, Inc., MATLAB, Version 6.5 R13, Natick, MA, 2002.
[24] R. B. Morgan, Computing interior eigenvalues of large matrices, Linear Algebra Appl.,

154/156 (1991), pp. 289–309.
[25] R. B. Morgan, On restarting the Arnoldi method for large nonsymmetric eigenvalue problems,

Math. Comp., 65 (1996), pp. 1213–1230.
[26] R. B. Morgan and M. Zeng, Harmonic Restarted Arnoldi Algorithm for Calculating Eigen-

values and Determining Multiplicity, preprint, 2003.
[27] C. C. Paige, B. N. Parlett, and H. A. van der Vorst, Approximate solutions and eigenvalue

bounds from Krylov subspaces, Numer. Linear Algebra Appl., 2 (1995), pp. 115–134.
[28] H. D. Simon and H. Zha, Low-rank matrix approximation using the Lanczos bidiagonalization

process with applications, SIAM J. Sci. Comput., 21 (2000), pp. 2257–2274.
[29] D. C. Sorensen, Implicit application of polynomial filters in a k-step Arnoldi method, SIAM

J. Matrix Anal. Appl., 13 (1992), pp. 357–385.
[30] D. C. Sorensen, Numerical methods for large eigenvalue problems, Acta Numer., 11 (2002),

pp. 519–584.
[31] A. Stathopoulos and Y. Saad, Restarting techniques for the (Jacobi-)Davidson symmetric

eigenvalue methods, Electron. Trans. Numer. Anal., 7 (1998), pp. 163–181.
[32] A. Stathopoulos, Y. Saad, and K. Wu, Dynamic thick restarting of the Davidson, and the

implicitly restarted Arnoldi methods, SIAM J. Sci. Comput., 19 (1998), pp. 227–245.
[33] K. Wu and H. Simon, Thick-restart Lanczos method for large symmetric eigenvalue problems,

SIAM J. Matrix Anal. Appl., 22 (2000), pp. 602–616.


	Augmented Implicitly Restarted Lanczos Bidiagonalization Methods
	Citation/Publisher Attribution

	Augmented Implicitly Restarted Lanczos Bidiagonalization Methods
	Terms of Use

	P:\TEX\SISC\27-1\60593\60593

