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ABSTRACT

Global Navigation Satellite Systems (GNSS) are well
known to be accurate providers of position informa-
tion across the globe; as such, they are commonly used
to locate and navigate craft in various transportation
modes. Because of high signal availabilities, capable
receivers, and well-populated satellite constellations,
GNSS users typically believe that the position infor-
mation provided by their GNSS receiver is perfectly
accurate. More sophisticated users look beyond ac-
curacy and are also concerned with the integrity of
the GNSS information; for example, RAIM algorithms
were developed to ensure users that the provided posi-
tion information is resistant to several possible satellite
failure modes.

Advances in electronics technology have enabled the
creation of malicious RF interference of GNSS signals.
Inexpensive jamming devices overpower or distort the
GNSS receiver’s input so as to completely deny the

GNSS user of PNT information. While a serious con-
cern when we expect PNT information to be available
at all times, current generation GNSS receivers warn
the user when PNT is unavailable; some of the more
sophisticated receiver designs can also battle jamming.
A second threat to GNSS integrity is spoofing, the cre-
ation of counterfeit GNSS signals. This type of attack
is considered more dangerous than a jamming attack
since an erroneous PNT solution is often worse than
no solution at all.

A variety of approaches have been proposed in the
literature to recognize spoofing and can vary widely
based upon the assumed capabilities and a priori
knowledge of the spoofer. Some of these are based
on characteristics of the RF signal alone (e.g. vesti-
gial peaks in the correlator outputs) or employ multi-
ple antennae (e.g. beamforming) or multiple receivers
(looking for consistent data).

Another spoof detection method is to compare the
GNSS measurement to data from a sensor of a dif-
ferent type that cannot be spoofed; for example, sev-
eral prior efforts have considered IMU data. This pa-
per considers the use of range measurements (range
only, no bearing) to detect spoofing. Range might be
measured using RF signals (e.g. DME for avionics)
although other modalities could be effective (e.g. a
calibrated barometric altimeter). Assuming that the
data set consists of a GNSS measurement and ranges
to one or more fixed sites, this paper develops the bi-
nary hypothesis test between spoofing and no spoofing.
The unknown positions naturally lead to a generalized
likelihood approach. We initially focus on the simplest
case of one range measurement and a simple Gaus-
sian model for the GNSS position measurement; this
scenario allows for a simple closed form solution from
which we can examine the characteristics of the test
(it is similar to RAIM) and to observe the interaction
between the relative accuracy of the sensors (GNSS
and range) on the form of the hypothesis test and its
resulting performance at detecting spoofing. We then
generalize the results to multiple ranges and correlated
statistics.



INTRODUCTION

GNSS are well known to be accurate providers of posi-
tion information across the globe. Because of high sig-
nal availabilities, capable/robust receivers, and well-
populated satellite constellations, operators typically
believe that the location information provided by their
GNSS receiver is correct. More sophisticated users are
concerned with the integrity of the derived location in-
formation; for example, RAIM algorithms were devel-
oped to address possible satellite failure modes.

Attacks on GNSS availability and integrity are known
as jamming and spoofing. Both are based on the cre-
ation of radio signals in the GNSS band. Jamming
involves the transmission of signals that interfere with
GNSS reception so that the receiver is unable to pro-
vide a position or time solution. Various methods to
detect jamming, and possibly overcome it, have been
considered in the literature. Spoofing is the transmis-
sion of counterfeit GNSS signals so as to mislead a
GNSS receiver into reporting an inaccurate position
or time. If undetected, spoofing might be much more
dangerous than a jamming attack.

A variety of approaches have been proposed in the
literature to recognize spoofing and can vary widely
based upon the assumed capabilities and a priori
knowledge of the spoofer. Many of these are based
on the RF signal alone and are, in some sense, the
cheapest to implement. Of interest here are methods
which compare GNSS information to measurements
available from other, non-GNSS sensors. Over 10 years
ago Warner and Johnston [1] suggested such methods,
calling them sanity checks; unfortunately, they did not
further develop the idea. Recently there have been a
few examinations of combining GNSS and non-GNSS
data toward spoof detection:

• In 2014 these authors considered the use of IMU
data to detect spoofing of a Coast Guard ship
[2]. Specifically, the pitch and roll measurements
from the ship’s gyrocompass were used to predict
the relative spatial trajectory of a GPS antenna
mounted high up on the ship. This movement was
then correlated to the GPS measurements (with
the linear motion of the ship being removed) to
detect spoofing. The concept was that the spoofer
would not correctly generate the “wiggle” due to
the sea state and, hence, could be identified.

• In 2015 Tanil, Khanafseh, and Pervan employed
RAIM residuals from a tightly coupled aircraft
GPS/INS to detect spoofing [3]. In this case, the
system tracked the aircraft’s motion due to winds.
As above, if the spoofer does not generate this
wiggle correctly then it could be detected.

• In 2015 Carson and Bevly discussed the use of
range and bearing information with GPS posi-
tions to detect spoofing for a platoon of vehi-
cles [4]. They assumed the availability of Relative
Position Vectors between pairs of vehicles from a
radar sensor. To detect spoofing of a single vehicle
they compare these vectors to the corresponding
GPS difference vector, declaring spoofing if the
difference is too great. Their focus is on a pair of
vehicles only.

This work considers the use of range only (no bear-
ing) information to detect GNSS spoofing. This range
information might be available from Distance Measur-
ing Equipment (DME) for aircraft, might be derivable
from image data, could be measured from an RF signal
in a different frequency band (e.g. Loran), a baromet-
ric measurement of altitude, or a laser range. The
contribution of this paper is the explicit development
and analysis of a GNSS spoof detection algorithm that
fuses GNSS positions with such range measurements.
The significance of this paper is that it adds to the
limited, but important, literature on spoof detection
by comparison to non-GNSS position data.

The paper starts by constructing the hypothesis test-
ing problem, introducing the solution of the General-
ized Likelihood Test under the assumption of Gaus-
sian GNSS and range errors. The problem is then
explored in a hierarchical way. First, the simplest
case of a single range measurement is examined, fully
developing the test, providing an exact analysis of
its performance, and comparing/contrasting the situ-
ation for different parameterizations of sensor quality
and spoofer characteristics. The methodology is then
extended to multiple ranges; examples are presented
showing the power of having more than one range. Fi-
nally, we allow for uncertainty in the location of the
ranging sites and for correlation in the GNSS error
model.

THE SETUP

Imagine a two dimensional positioning problem as de-
picted in Figure 1. The red dot represents a mobile ve-
hicle whose location is of interest; the variables e and
n represent its true east and north coordinates, respec-
tively, in some local coordinate frame. The blue dots
represent ranging sources at known locations (ek, nk),
k = 1, 2, . . .m. The true ranges are

rk ≡
√

(e− ek)2 + (n− nk)2

We assume that a GNSS measurement of the position
is available, denote it as (ê, n̂), as are the range mea-
surements, r̂k.

The goal here is to test for spoofing which is defined as
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Figure 1: The general configuration of a mobile and m
ranging sources.

the existence of radio signals that would result in an
erroneous position solution at the GNSS receiver. It
is assumed that spoofing does not impact the ranging
measurements in any way. (More generally, the sce-
nario is that the GNSS signals are themselves faulty
and our interest is in employing the range measure-
ments as an integrity check.) Define the null hypothe-
sis, H0, as the case in which no spoofer is present and
the alternative hypothesis, H1, for when a spoofer is
present. Under both hypotheses the GNSS measure-
ment is assumed to be Gaussian

(ê, n̂) ∼ N
(
µe, µn, σ

2
g , σ

2
g , 0
)

(1)

(this notation including the arguments of the two
means, two variances, and the correlation coefficient;
hence, independent east and north measurements with
equal variances). Under H0 the means are the true lo-
cation, µe = e and µn = n, while under H1 the means
are some other location, say µe = u and µn = v.
Meanwhile the range measurements are assumed to
be unaffected by the spoofer. We assume a Gaussian
model for each

r̂k ∼ N
(
rk, σ

2
k

)
providing for different levels of accuracy on the dif-
ferent range measurements. While this model is not
perfect, that the range would never be negative, we
assume that the actual ranges are much greater than
the range accuracy and ignore the slight difference in
the model. Further, all of the measurements are as-
sumed to be statistically independent.

HYPOTHESIS TESTING

Hypothesis testing between a pair of hypotheses, H0

and H1, is usually implemented by computing a scalar
function of the observed data, T (data), called the test
statistic, and comparing this value to a constant called
the threshold. If the test statistic exceeds the thresh-
old, the test result is a decision for H1; if not, H0.
Symbolically, this can be written as

T (data)
H1

>
<
H0

λ

in which λ represents the threshold (yet to be se-
lected).

The goal here is to detect the occurrence of spoof-
ing. Under the Neyman-Pearson approach the proba-
bility of false alarm (the probability of deciding for H1

when H0 is true) is limited (upper bounded) to some
preselected value (often close to zero) and the test is
constructed to maximize the probability of detection
(the probability of correctly accepting H1 when H1 is
true). For this criterion the optimum test statistic is
well known to be the likelihood ratio [5]. Recogniz-
ing that the data consists of both the GNSS location
measurement and the range measurements, this is the
ratio of the conditional probability density functions
(pdfs) of the measurements under the two hypotheses.
Exploiting the assumed mutual independence of the
measurements

T (data) =
f (ê, n̂ |H1)

f (ê, n̂ |H0)
·
m∏
k=1

f (r̂k |H1)

f (r̂k |H0)

Since the spoofer is assumed to not impact the range
measurement the product term in this expression is
unity and the likelihood ratio reduces to the first term.
While this cancellation of the range measurements
seems anti-intuitive, that one expects to exploit those
measurements as part of the test, they will reappear
in the estimation of the parameters of this resulting
likelihood ratio.

Substituting the pdf, taking the natural logarithm and
dropping the additive constants, the test is

T = (ê− e)2 + (n̂− n)2 − (ê− u)2 − (n̂− v)2

Unfortunately, most of the variables in this expression
are unknown: specifically, u and v under H1 and e and
n under H0. A common approach, the generalized like-
lihood ratio test or GLRT, replaces each of these with
its maximum likelihood estimate (MLE) [5].

To continue consider those MLEs, starting with the
simpler case of H1:



H1: Under H1 the likelihood function is

L1 =
1

2πσ2
g

e
− 1

2σ2g
[(ê−u)2+(n̂−v)2]

×
m∏
k=1

1√
2πσk

e
− 1

2σ2
k

(r̂k−rk)2

Note that only the first exponential term contains
u and v, hence, the expression is trivially maxi-
mized at the MLEs

u = ê and v = n̂

Substituting these MLEs for u and v into the op-
timum test, the GLRT reduces to

T = (e− ê )
2

+ (n− n̂ )
2

the square of the distance between the MLE un-
der H0, (e, n), and the GNSS measurement, (ê, n̂).
This is a satisfying solution, if the location mea-
surement is close to the location estimate includ-
ing the range, then declare no spoofing; if it’s far
off, declare spoofing.

H0: Under H0 the likelihood function is

L0 =
1

2πσ2
g

e
− 1

2σ2g
[(ê−e)2+(n̂−n)2]

×
m∏
k=1

1√
2πσk

e
− 1

2σ2
k

(r̂k−rk)2

in which the rk are implicitly functions of both e
and n. At the MLE the derivatives with respect
to e and n should equal zero. Focusing on e

∂L0

∂e
= L0

[
1

σ2
g

(ê− e) +

m∑
k=1

1

σ2
k

(r̂k − rk)
e− ek
rk

]

For a zero derivative, the expression within the
brackets must equal zero (the other term is a pdf,
assumed to never equal zero); equivalently,

e = ê+

m∑
k=1

σ2
g

σ2
k

(r̂k − rk)
e− ek
rk

= ê+ ∆e (2)

The n derivative yields another requirement at the
MLE

n = n̂+

m∑
k=1

σ2
g

σ2
k

(r̂k − rk)
n− nk
rk

= n̂+ ∆n (3)

While these expressions are quite sensible, that
the MLE of the true position is the GNSS loca-
tion plus an offset, (∆e,∆n) (and that the offset
depends upon the relative accuracy of the GNSS
and range measurements), this result is not yet

useful in that the expressions for the corrections
are themselves functions of the true positions and
the true ranges. We return to these expressions
below. Substituting the estimates for e and n into
the optimum test, the GLRT reduces to

T = ∆2
e + ∆2

n (4)

the square of the length of the MLE offset in the
position domain.

To continue the development and analysis of the GLRT
the required conditions for the MLE stated in Eq. (2)
and (3) must be solved. The simple case of m = 1 is
considered first, allowing for a complete analysis of the
test performance; the extension to general m appears
later in this manuscript.

ONE RANGE MEASUREMENT

To solve the coupled non-linear equations in Eqs. (2)
and (3) when m = 1 we assume the form of the solu-
tion and then demonstrate that it fits the conditions.
Further, as long as the actual range is much larger
than the sensor accuracies, then the likelihood surface
is unimodal and this extremum is the unique maxi-
mum. Specifically, the MLE occurs along the line con-
necting the location measurement to the known posi-
tion

e = ê+ β (e1 − ê ) n = n̂+ β (n1 − n̂ )

for an appropriate chosen constant β. This relation-
ship is shown in Figure 2. The green dot is the GNSS
position, the blue dot is the location of the ranging
site, and potential MLE locations are shown as red
squares.

Define the GNSS developed range, the distance from
the GNSS measured position to the fixed location
as

r̃1 =
√

(ê− e1)2 + (n̂− n1)2

(e1, n1)

(ê, n̂)

MLE

Figure 2: The location of the MLE for m = 1 ranging
source.



(using a tilde) then the MLE’s parameter is

β =
σ2
g

σ2
g + σ2

1

(
r̃1 − r̂1
r̃1

)
and the test statistic reduces to

T =

(
σ2
g

σ2
g + σ2

1

)2

(r̃1 − r̂1)
2

Ignoring the (positive) constant, the equivalent test
statistic is

T = (r̃1 − r̂1)
2

This can be further simplified by taking a square root,
but the test becomes two sided

T ′ = | r̃1 − r̂1 |
H1

>
<
H0

λ (5)

In words, the optimum test is a comparison of the
measured range to the GNSS derived range; similar to
RAIM. Unlike RAIM, which looks at the range resid-
ual of a single satellite to determine its validity, this
test is considering the validity of all of the satellites
simultaneously.

Performance Analysis

Recall that the GNSS derived range is

r̃1 =

√
(ê− e1)

2
+ (n̂− n1)

2

With the measurements under H0 assumed to be Gaus-
sian random variables each difference in this expression
is also Gaussian and the square root of the sum of
squares has a Rician distribution

f (r̃1) =
r̃1
σ2
g

I0

(
r1 r̃1
σ2
g

)
e−(r̃12+r21)/2σ2

g

for r̃1 > 0, I0(x) is the modified Bessel function of zero
order, and r1 is the true range

Next, recall that r̂1 is assumed to be Gaussian. Nor-
mally the pdf of the difference between r̃1 and r̂1 would
be found by convolving the density functions of r̃1 and
−r̂1. However, since r1 is typically much larger than
σg the Rician density function is well approximated as
Gaussian

r̃1 ∼ N
(
r1, σ

2
g

)
so the difference is approximately Gaussian distributed
under H0

r̃ − r̂ ∼ N
(
0, σ2

g + σ2
1

)
This approximation provides an expression for the
false alarm probability

Pfa = Prob (|r̃1 − r̂1| > λ |H0 ) ≈ 2Q

 λ√
σ2
g + σ2

1



(e, n)

(e1, n1)

(u, v)

r1

η

Figure 3: Definition of the spoofer offset η.

in which Q(x) is the standard Gaussian tail probabil-
ity. Equivalently, the threshold can be found as

λ =
√
σ2
g + σ2

1 Q−1
(

Pfa

2

)
The probability of detection depends upon the ac-
tion of the spoofer. Figure 3 shows the relationship
with the green and red dots representing the true and
spoofed positions, respectively. Defining η as the ex-
tra distance from the ranging source beyond that at-
tributable to the true location, then the distribution
of the range difference under H1 is

r̃1 − r̂1 ∼ N
(
η, σ2

g + σ2
1

)
so

Pd = Prob (|r̃1 − r̂1| > λ |H1 )

≈ Q

 λ+ η√
σ2
g + σ2

1

+Q

 λ− η√
σ2
g + σ2

1


Figures 4 and 5 show examples of the test’s per-
formance; both are receiver operating characteristic
(ROC) curves plotting the probability of detection ver-
sus the probability of false alarm.

• The first of these (Figure 4) sets σg = σ1 (equal
quality sensors) and varies η, the along-range shift
created by the spoofer in multiples of σg. Note
that if η = 0, that the shift maintains the same
range (i.e. the spoofed position (u, v) and the true
position (e, n) are both on the same circle about
the ranging source) then the spoofing is not de-
tectable by a single range (and the performance is
a coin toss, the straight line); of course, this could
be mitigated by having a second ranging source
non-colinear to the current one (this is demon-
strated below). Further, significant shift by the
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spoofer (on the order of 10 or more σg) is easily
detected (the η = 10σg is essentially a vertical line
on the ROC).

• The second ROC (Figure 5) keeps η = 3σg (the
yellow curve in Figure 4) and considers various
ratios for the sensor accuracies (up to where one
sensor is ten times more accurate than the other).
Note that the yellow curve in this figure matches
the yellow curve in the prior figure (equal quality

sensors) to provide a benchmark on performance.
We observe that a range sensor that is more accu-
rate than the GNSS sensor aids performance while
a worse range sensor degrades performance. It ap-
pears that once the sensor ratio is 10 or larger, we
have either maxed out detection performance or
made the spoofing test irrelevant. This observa-
tion is useful in responding to questions on which
sensor to purchase (it need not be more than 10
times better than GNSS) or even if a range mea-
surement will help in detecting spoofing (a range
accuracy of ±50 meters is of no use).

TWO OR MORE RANGES

The successful development and analysis of the opti-
mum test in the section above was predicated by there
being only one range measurement; in general, the di-
rect solution of the necessary conditions in (2) and (3)
for more than one range is needed. Deferring to the
development in [6] (and modified to the 2-D problem),
define the m-by-2 matrix

d =

 sin θ1 cos θ1
...

...
sin θm cos θm


whose rows consist of the unit vectors pointing from
the GNSS position to the m ranging sources (θk cor-
responding to the azimuth from the GNSS position
toward the kth ranging source, North being 0◦ and the
angles proceeding clockwise). Further, define the co-
variance matrix for the range measurements as

Γ = diag
(
σ2
1 , . . . , σ

2
m

)
(diagonal since we assume independent measurement
errors). Finally, define the column vector of differential
range measurements as

δr = r̂− r̃

in which r̃ is the vector of ranges from the GNSS po-
sition, (ê, n̂), to the m ranging sources. With these
definitions the MLE offset vector from the GNSS po-
sition under H0 can be shown to be[

∆e

∆n

]
=

(
1

σ2
g

I2 + dTΓ−1d

)−1
dTΓ−1 δr

in which I2 is a 2-by-2 identity matrix. Further, since
the test statistic for our spoofing problem was shown
in (4) to be the square of the length of this offset vec-
tor (or the length itself), the general form of the test
is ∣∣∣∣∣

(
1

σ2
g

I2 + dTΓ−1d

)−1
dTΓ−1 δr

∣∣∣∣∣ H1

>
<
H0

λ (6)

Note that if m = 1 then this result simplifies to that
presented above.



An Example with Two Ranges

Consider two ranging sources, one to the East at GNSS
range r̃1 from the GNSS location and one to the North
East at GNSS range r̃2 so that

d =

[
1 0
1√
2

1√
2

]
Set the range accuracies as

Γ =

[
σ2
1 0

0 σ2
2

]
Evaluating the expressions above, the MLE offset
has

∆e =
σg

2
(
σg

2 + 2σ2
2
)

(r̃1 − r̂1) +
√

2σ2
gσ1

2(r̃2 − r̂2)

σg4 + 2σg2 σ12 + 2σg2 σ22 + 2σr,12 σ22

and

∆n =

√
2σg

2
(
σ2
g + σ2

1

)
(r̃2 − r̂2)− σg4 (r̃1 − r̂1)

σg4 + 2σg2 σ12 + 2σg2 σ22 + 2σ12 σ22

Recall that with this offset, the test itself is defined in
terms of ∆e and ∆n in (4).

As an example of this solution, Figure 6 shows the
GNSS measurement (a black dot, placed at the ori-
gin on these axes for convenience) and the directions
(the dashed lines) toward the ranging sources to the
East (right, red) and North East (up and right, blue).
The two solid lines (red and blue for the corresponding
ranging sources) show the differential ranges (the dif-
ferences between the measured ranges and the ranges
developed from the GNSS solution); in this case both
measured ranges are greater than the corresponding
GNSS ranges, so both line segments are oriented away
from the ranging sources. Assuming measurement
standard deviations of 0.25 (GNSS), 0.1 (range 1),
and 0.2 (range 2), the arcs are the contours of the
likelihood function combining the measurements. The
MLE found from the expressions above is shown as
the green square; it clearly matches the extremum of
the likelihood contours. Further, for this example the
MLE clearly exploits the high accuracy of r̂1 in that
its horizontal component almost perfectly matches the
date in r̂1.

To demonstrate the performance with multiple rang-
ing sources, consider the experimental configuration of
Figure 7. The black diamond at the center represents
the true location; the red and blue dashed lines again
show the directions toward the two ranging sources.
The 12 dots show possible locations that the spoofer
is creating (i.e. they define η); the 2 green ones to the
left and right should be easily caught by the sole rang-
ing source to the East (the red direction), the 2 red
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Figure 6: Graphical representation of locating the
MLE for the two range example.

East

-1 -0.5 0 0.5 1

N
o
r
t
h

-1

-0.5

0

0.5

1

Figure 7: Geometry for the simulations.

ones on the top and bottom are essentially “invisible”
to this range (so will demonstrate that the two range
test does see them), and the 8 blue ones are partly
visible to a single range test. Figure 8 shows the re-
sulting ROC curves from simulations of the two range
hypothesis test for all 12 spoofing locations. The ob-
servation is that the two range test effectively detects
all of the spoofing events. The dotted lines in this
figure show the results for a single range detector us-
ing the range measurement from the East (r̂1) and are
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Figure 8: Simulation results with two ranging sources.

color coded to match the spoofer locations directly in
line with the ranging source (the green locations) and
the spoofer locations perpendicular to the direction to
the ranging source (the red dots). The pair of ranging
sources reduces this directional sensitivity.

EXTENSIONS

This section briefly describes two extensions to this
work that we have considered, stating results without
full development.

Randomness in the location of the ranging sources:
Consider the situation in which the locations of the
ranging sources themselves include some uncertainty
(and use the notation êk and n̂k for the knowledge of
the locations). Perhaps the locations are just not well
known, or that they can move due to some external
stimulus (e.g. tide, current, or wind moving a ranging
source on a buoy). For example, for m = 1 consider
a Gaussian model with a different standard deviation
for the location of the ranging source

(ê1, n̂1) ∼ N
(
e1, n1, σ

2
r , σ

2
r , 0
)

It can be shown that the resulting GLRT is identical
to that in (5); however, this additional uncertainty
does impact the resulting performance. Specifically,
the threshold is defined by

λ =
√
σ2
g + σ2

r + σ2
1 Q−1

(
Pfa

2

)
(notice the inclusion of σr in this expression) and defin-
ing η the same way as above, the probability of detec-

tion is

Pd = Q

 λ+ η√
σ2
g + σ2

r + σ2
1

+Q

 λ− η√
σ2
g + σ2

r + σ2
1


Qualitatively, noise on the location of the ranging
source reduces the test’s ability to detect spoofing.
Further, these expressions are valid both under a static
assumption on the means for the source’s location or
if the source measures its own (unspoofed) location
and broadcasts this information to the receiver that is
testing for spoofing.

Correlated GNSS errors: All of the results above as-
sumed uncorrelated errors on the GNSS measurement.
The model in (1) can be extended, allowing a more
general covariance model for ê and n̂. Specifically, let
Σg be this covariance

Σg =

[
σ2
e ρσeσn

ρσeσn σ2
n

]
With this notation, the GLRT for the general m case
can be shown to reduce to∣∣∣ (Σ−1g + dTΓ−1d

)−1
dTΓ−1 δr

∣∣∣ H1

>
<
H0

λ

a direct extension of (6).

CONCLUSIONS/FUTURE WORK

This paper shows how range measurements can be
used to detect spoofing (or as an integrity check) of
GNSS position measurements:

• A closed form solution and analysis was presented
for the case of a single range measurement. These
results provide analytical predictions of how well
spoofing can be detected. Specifically, we have
seen that spoofing offsets greater than 3σg can be
detected with low probability of error and high
probability of detection; hence, a mobile receiver
can recognize spoofing before moving too far off of
its desired path. However, a single range measure-
ment is not a solution to all cases primarily due
to geometry; it was seen in the development that
a spoofer can defeat the test by proper selection
of its imposed location.

• These single range results also promote an un-
derstanding of how the relative accuracies of the
GNSS and range measurements interact to yield
spoofing detectability. Specifically, a ranging sen-
sor’s precision need not be better than 10 times
that of the GNSS sensor; higher precision yields
only a very slight improvement in detectability.



Conversely, a range measurement with precision
10 times worse than that of the GNSS sensor pro-
vides essentially no information toward detecting
spoofing.

• The spoofing test was fully developed for 2
or more range measurements; examples were
presented showing that 2 ranges eliminate the
spoofer’s ability to defeat the test.

• The results were extended to uncertainty in the
locations of the ranging sources and to correlated
GNSS errors.

Future work includes allowing for configurations with
more than one mobile receiver (e.g. the sensor net-
work problem [7]) and investigating how biases in the
range measurements would impact the test and its per-
formance; examples include using a terrestrial RF sys-
tem such as eLoran for the ranges and accommodating
the additional secondary factor [8] or measuring alti-
tude with an altimeter and accommodating changes in
weather.
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