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Partial averaging approach to Fourier coefficient path integration

Rob D. Coalson®
Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545

David L. Freeman
University of Rhode Island, Department of Chemistry, Kingston, Rhode Island 02881

Jimmie D. Doll
Chemistry Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545

(Received 7 May 1986; accepted 19 June 1986)

The recently introduced method of partial averaging is developed into a general formalism for
computing simple Cartesian path integrals. Examples of its application to both harmonic and
anharmonic systems are given. For harmonic systems, where analytical results can be derived,

both imaginary and complex time evolution is discussed. For two representative anharmonic
systems, Monte Carlo path integral simulations of the imaginary time propagator (statistical
density matrix) are presented. Connections with other Cartesian path integral techniques are

stressed.

The major source of difficulty in calculating properties
of many chemically interesting systems is easy to pinpoint.
Chemical systems, governed as a rule by the nonrelativistic
Schrédinger equation, typically involve many degrees of
freedom whose motion is coupled in a complicated fashion.
Unfortunately, when approached via traditional solution
techniques, the Schrodinger equation becomes rapidly in-
tractable with increasing spatial dimensionality. Again, the
reason is simple: The traditional approach entails solution of
the time independent Schrodinger equation HY = EV via a
basis set expansion. A conservative estimate of the number
of basis functions needed to converge results for a coupled d
degree of freedom system is N ¢ where N is the number of
basis functions necessary to converge results for a generic
one-dimensional problem. In other words, the basis set size
grows geometrically with dimension. Thus, the efficacy of
basis function techniques is limited to problems with only a
few degrees of freedom.

In the past few years it has become increasingly appar-
ent that Feynman’s path integral formulation of quantum
mechanics,! when combined with Monte Carlo sampling
techniques,” offers a way out of the basis set dilemma de-
scribed above in at least some interesting cases. More pre-
cisely, the path integral formalism focuses on the evaluation
of the coordinate space propagator, {x |exp( — «H)|x,)
=p, (X;,X,), where the parameter x depends on the property
of interest. For example, if k = 1/k, T with k; Boltzmann’s
constant and 7T the system temperature, then
Sdx pg (X,x) = Zg, the quantum partition function for a sys-
tem of distinguishable particles. From the partition function
all thermodynamic properties can be calculated. If x = it /4,
then p,, ,; can be used to evolve an arbitrarily prepared initial
wave packet to time ¢. From such temporal evolution scatter-
ing cross sections, spectra and rate constants of various
kinds can be extracted. Indeed, in a formal sense p, may be
regarded as a holy grail: Knowledge of p, enables computa-
tion of essentially any quantum mechanical observable.

The critical issue, clearly, is one of implementability.
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Fortunately, the path integral formalism enables numerical
computation of p, in favorable circumstances. Moreover,
these circumstances as a rule have relatively little to do with
the spatial dimensionality of the problem under considera-
tion. In particular, the path integral (PI) formulation re-
duces the calculation of p, to an exercise in multidimen-
sional integration. If the relevant integrals were attempted
by conventional quadrature schemes, the ‘“basis set di-
lemma” would recur: The number of quadrature points
needed in such schemes goes up geometrically with the di-
mensionality of the integration space. However, by using
importance sampling techaniques to perform the integrals it
is frequently the case that substantial dimensionality in-
creases require only mild increases in computational effort.
Thus, if a particular property can be computed by Monte
Carlo path integration (MCPI) for a 1d system, it can be
computed for a many degree of freedom system without in-
creasing the numerical effort by orders of magnitude.

As impressive as importance sampling techniques are, it
is clearly unwise to tempt the hand of fate with regard to
their convergence properties: Any reduction in the dimen-
sionality of the requisite integrals and/or the complexity of
the integrands involved is to be welcomed. A number of at-
tempts along these lines have now been made. Most have
concentrated on improving the small argument propagator
expression from which finite argument propagators are syn-
thesized.

Suzuki® has given a formal procedure for constructing
improved small argument propagators. De Raedt and De
Raedt* have extended and applied Suzuki’s ideas, mainly to
problems of interest in solid state physics. In the arena of
chemical physics, Thirumalai and Berne® and Schweizer et
al.® have discussed schemes for improving the accuracy of
the small argument propagator for systems governed by Car-
tesian coordinate space Hamiltonians.

Recently, we approached the convergence issue for sim-
ple Cartesian coordinate space path integrals in a different
way.” Specifically, the formally exact Fourier coefficient
prescription for such PI’s was used as a point of departure.
From here, certain connections between PI quantum me-
chanics and Brownian motion theory were exploited in order
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4568 Coalson, Freeman, and Doll: Fourier path integration

to average out the rapid fluctuations in typical (“Brow-
nian”) paths encountered when “summing over paths” in
accordance with the PI formalism. This resulted in an imple-
mentable procedure, designated as ‘“partial averaging,”
which was essentially the original Fourier coefficient pre-
scription with the system potential replaced by an appropri-
ate effective potential. Partial averaging (PA) was found to
enhance convergence of MCPI simulations dramatically for
a 1d double well potential problem. A number of other ex-
amples have now been examined,; all have displayed the same
favorable trends upon application of PA. Moreover, a num-
ber of promising ramifications of PA theory have been devel-
oped. For these reasons, a fuller exposition of the PA pre-
scription seems warranted. An outline of this exposition
follows.

We will divide our discussion into three parts: Theory,
applications, and speculations. Theoretical development
will be presented in a sequence of six brief sections. The es-
sential features of partial averaging are introduced in Sec. I,
where evaluation of the imaginary time propagator p, in 1d
is considered. In Sec. II the PA procedure is explicitly ex-
tended to the case of multidimensional coupled potentials. It
is important to make this extension clear, since the ultimate
goal of MCPI techniques is to be able to treat such compli-
cated systems. In Sec. III the underlying cumulant structure
of PA is stressed. This serves to elevate PA from an approxi-
mation procedure to an exact formalism which naturally
suggests the basic PA prescription presented in Secs. I and 11
as a first level of approximation. With the groundwork laid
in Sec. III, it is then possible in Sec. IV to extend PA to the
important case of mixed time propagation [S—f + it /#].
Sections V and VI further utilize the cumulant structure of
PA to derive “improved small argument propagator” re-
sults, and make connections with similar results obtained by
other workers. In Sec. V the effective small argument poten-
tial arrived at by Schweizer et a/. using a Migdal transforma-
tion is derived in a very simple way via PA. In Sec. VI this
effective potential is shown to be exact through O(¢€*), €
being the relevant “small argument” parameter. All terms
contributing through O(€?) are extracted.

In the second part of the paper a number of applications
of the PA procedure are presented. These divide naturally
into two classes: Those concerning harmonic systems and
those concerning anharmonic systems. As is well known,
harmonic oscillator systems provide an obvious first testing
ground for new PI methods. All integrals arising in connec-
tion with path integration of harmonic oscillator systems
can be performed analytically. This removes problems con-
cerning numerical precision of the quadrature schemes and
importance sampling techniques which must be employed in
order to treat more general systems. It is then possible to see,
if one is working with a Fourier coefficient framework, how
many coefficients are needed to describe the paths which
enter into the Feynman “sum over paths.” The fewer the
number of Fourier coefficients needed, the more efficient a
particular PI algorithm is.

We have found that PA dramatically improves the effi-
ciency with which harmonic oscillator systems can be treat-
ed. A number of cases are discussed in Sec. VII. Partition

functions for various temperature systems are computed be-
fore and after partial averaging. The results are compared
with analogs obtained using discretized PI methods. The
second cumulant correction to the PA prescription is also
computed. It is seen to further enhance the quality of the PA
results. Finally, to demonstrate the promise of the PA pre-
scription for treating complex time systems, two problems of
current interest are considered. Namely, thermally averaged
transmission coefficients (“reaction rates”) for tunneling
through an inverted parabolic barrier are computed using
the propagator based formalism of Miller, Schwartz, and
Tromp.® In addition, electronic absorption spectra for two
linearly displaced harmonic wells are calculated via the tra-
ditional time kernel formalism as adapted recently to enable
utilization of propagator techniques.’ In both these cases,
partial averaging uniformly and significantly enhances the
accuracy of the results.

Section VIII presents a number of imaginary time re-
sults concerning two anharmonic potentials, a Morse well
and a double well. For these systems MCPI simulations were
performed to numerically enumerate the appropriate sum
over paths. For both systems, trends similar to those ob-
served in the harmonic oscillator problems discussed in Sec.
IT A are seen. In particular, partial averaging uniformly and
dramatically enhances the convergence rates of imaginary
time propagator calculations.

The final part of the paper consists of a single section
entitled Practical Considerations and the Role of Fractals in
Path Integrations. The theme of this section is somewhat
curious, since it attempts to embrace the mundane and the
sublime simultaneously. Its purpose is correspondingly two-
fold: We wish to point out what appears to be the essential
numerical advantage of the PA procedure. The desired re-
sults can be obtained by considering a small set of smooth
paths which comprise a tiny subset of the paths formally
included in the Feynman path integral prescription. Not
only does PA enable converged results to be obtained with
fewer integration variables than would otherwise be neces-
sary, it also leads to smooth “integrals along the potential,”
which can then be evaluated with relatively few (expensive)
calls to the potential function. On a more conceptual level,
we wish to raise the possibility that the unusual properties of
continuous but nondifferentiable Brownian paths play at
most a minor role in determining evolution of systems gov-
erned by simple Cartesian Hamiltonians.

I. 1d PARTIAL AVERAGING IN IMAGINARY TIME
Consider a 1d Hamiltonian of the form

(L.1)

Note that position-momentum coupling is excluded by the
form of Eq. (1.1). Only simple Cartesian Hamiltonians
(““Cartesian kinetic energy plus position dependent poten-
tial”) will be studied in this paper.

We start from the Fourier coefficient path integral
(FPI) expression for the coordinate space propagator-'®3°

J. Chem. Phys., Vol. 85, No. 8, 15 October 1986
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Ps (X6:X4)

172
= 2mos ] da,...da
PIP(xp%0) L= '

L 1
Xexp[ - > a;/20; —Bf du V(q(u))] .
k=1 0

(1.2)
Here p{,"(x,,xo) is the free particle propagator

piveo =[] o2
o (X7:%o) [Zﬂ'ffzﬁ c*p
g(u) is the Fourier path

7%~ xo)] (13)

q(u)=xo+(xf_x0)u+ i a; sin(kwu), (1.4)

k=1

and o7, the mean square deviation of @, from zero in the
V—0 limit, is given by

=B (15)

m(mk)?

Note that the Fourier coefficient formulation of the Carte-
sian Hamiltonian path integral has a natural and intuitively
appealing length scale built into it. The more highly oscilla-
tory sine wave contributions to a typical path are con-
strained to have smaller and smaller amplitudes according to
Eq. (1.5). Thus, it seems reasonable to assume that by trun-
cating Eq. (1.2) [and the associated Eq. (1.4)] after some
modest number k&, of coefficients that a good approxima-
tion to the (formally exact) infinite coefficient result may be
obtained. The hope is that by repeating the calculation for
successively larger values of k.., the result will cease chang-
ing before k., becomes so large that the calculation be-
comes unwieldy. This hope has now been borne out in a
number of cases.'®!! However, it has at the same time be-
come clear that for highly quantal (large 3) systems the
convergence rates can be frustratingly slow. The question
arises as to whether a treatment can be devised which incor-
porates the major effect of the rapid fluctuations contributed
by sine waves with k> k,_,,, without explicitly considering
individual higher order paths. This is the objective of the
method of partial averaging.

Let us rewrite Eq. (1.2) in the following way:

PRERN _ [km“ 217.02] 172
pgp(x‘f,xo) k=
><J‘da1...dakmnx exp i ak/ZOi]
k=1
1
x<exp[—ﬁf du V(q(u))]> )
) Uk pax + 1% 0

(1.6)
., Means “average over the Gaussian

.” Specifically,

where ( Ya,

max ol M

variablesa, . ,,...q,

1
<exp —ﬂf du V(q(u))>
0

a
kmax + 1

© — 172
= [ II 217'0%] J.dakm+1...dam
K= gy + 1

1
&/20% —ﬂf du V(q(u))].
0
(1.7)

X exp — z

Kmax + 1

Equations (1.6) and (1.7) are, of course, completely equiva-
lent to Eq. (1.2). The integration over all g, ’s has simply
been organized in a way which suggests the following ap-
made arbltrarlly small by choosing k., largé";nough we
appeal to Gibbs’ inequality'?:

(exp[ 3[ du V(q(u»]) o

>eXP[ *BJ du(V(g(u))),, .,
o max

Upon replacing the left-hand side of Eq. (1.8) with the right-
hand side a considerable simplification arises, because the
inifinite dimensional integral in the exponent of the right-
hand side of Eq. (1.8) can be reduced to a one-dimensional
integral. Moreover, this integral can be performed analyti-
cally in many cases and to good approximation in virtually
all cases.

It is well known from random variable theory that a
linear combination of Gaussian random variables generates
a single Gaussian random process,'? i.e.,

] . (1.8)

N — 172
[ II 2ror dx,..dxy
k=1
N N
Xexp| — 2 xi/Zai] F( 3 /lkxk)
k=1 k=1
= [270*]1 ~*| dpe 7" F( p) (1.9a)
with
N
=3 ildl. (1.9b)
k=1

Applying this result to the average on the right-hand side of
Eq. (1.8) we obtain

SLCIED )

In Eq. (1.10), ¢, (u) is a Fourier path composed of the
k.ax lowest sine waves in the appropriate Fourier series ex-

kmn

X u + Z a, sin(km u).
k=
1 (1.11)

Furthermore, V_; is an effective potential obtained from V
through the Gaussian transform:

e (g (u),u). (1.10)

'max

Ui, (U) = Xo + (xp —

Veﬂ' (qkm“ (u)yu)
= [270° ()] | dp e~ P27V (g, (u) +p),
(1.12)
where the width of the transform variable p is given by
o (u) = i ol sin®(km u)
k= ks + 1
kmll
=—ﬁi‘§u(l —u)— Y o sin’(km u) (1.13a)
m k=1
ﬁ’ﬁ[ 2 *ov sin?(kr u)
=—(u(l—u) -= —_—, .
=5 Y s (1.13b)
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Note that o®(u) depends on k., although for notational
simplicity this dependence has been suppressed. Equation
(1.13b) shows that the effective fluctuations scale as the
thermal de Broglie wavelength A = [8 #*/m]'/2. Some rep-
resentative plots of the dimensionless function [o?(u)]/%/
A which modulates this length scale are shown in F ig. 1.

For completeness, let us assemble the net partial averag-
ing prescription:

Kinax —172
P (Xex0) >[ H 277_02]
PF(xpx0) L

kfﬂﬂx
dea,...dakm_x exp[ - Y a;i/20;

k=1

1
8] awVaG ww]|. a1
0

Thus, the PA prescription is seen to be operationally identi-
cal to its canonical FPI analog except that the system poten-
tial has been replaced with an effective “time dependent”
potential ¥, for purposes of computing the contribution of
a particular Fourier path to the path integral. It is apparent
that the utility of Eq. (1.14) hinges upon our ability to com-
pute Vg efficiently. Let us assert that V.; can be readily
evaluated (this will be affirmed for a large collection of po-
tentials in the following paragraphs). Under such circum-
stances the PA prescription requires hardly any more com-
putational effort to implement than its canonical
counterpart. However, the convergence enhancement is gen-
erally quite dramatic when PA is performed, as will be dem-
onstrated in the applications sections. Moreover, it should be
noted that if V¢ is calculated exactly, PA supplies a strict
lower bound to Ps(XpX,) for any X0:X;. Therefore numerous
integrals over ps (e.g., the partition function) yield strict
bounds as well.

Before discussing the details of evaluating Vg, it is ap-
propriate to dwell briefly on the physical motivation behind
partial averaging. Consider the task of evaluating the basic
FPI expression, Eq. (1.2). To do so typically implies that
some means of truncating the infinite dimensional integral
indicated there must be devised. Since o2 ~k ~2, it is plausi-

0.6~ kmux’? - 7
2 ............
4 —__
8 -

04 |- -

olu)/A

oz

o] 0.25 0.50 075 1.00
u

FIG. 1. Plots of reduced Gaussian transform width [¢?(x)]!/2/A [cf. Eq.
(L.13) vsu] for k,,, =0,1,2,4,8.

ble to argue that for many interaction potentials of interest
the high order fluctuations with Fourier index greater than
some maximum value X, become sufficiently small that
they are effectively free-particle-like. If this is so, then
(a,) =0fork>k_, ,and we might argue that it is reasona-
ble to replace ¥(g(u)) in Eq. (1.2) by V(qkm_x (u)). That is,
we argue that the cumulative effect of including all high or-
der fluctuations will vanish. This is the basic FPI method.
The partial averaging method also utilizes the ““small-
ness” of the high order fluctuations, but in a less drastic
manner. In the PA approach we retain both first and second
moment information concerning the high order ( free-parti-
cle-like) fluctuations. Thus, although for k > Koax (@) =0,
(ai) = o%. This suggests that the effects of the high order
terms can be “projected” onto the low order paths and can be
included (approximately) by retaining only a small amount
of additional information concerning their fluctuations.
This line of development ultimately leads us to view each low
order path as not simply a single path, but as representing a
family of paths with a common low order “core” and all
possible high order (free-particle) fluctuations. The contri-
bution of each low order path is thus no longer simply the
integral of the (bare) potential along that path, but becomes
in the PA method the integral along that path of the poten-
tial averaged over the high order (free-particle) fluctuations
[Egs. (1.12)~(1.13)]. Thus, in the spirit of the effective po-
tential formalism of Feynman and Hibbs,' one is ultimately
led to a modification of the canonical FPI algorithm in
which higher order fluctuations are approximately included
via the Gaussian transform effective potential of Eq. (1.12).
Figure 2 illustrates the points discussed above. Shown is
a “typical” high order path (short-dashed line) constructed
according to Eq. (1.11) with 100 g, values chosen at ran-
dom from a Gaussian distribution with standard deviation
o, (B=m=%=1). Also shown (solid line) is its
kwax = 10 core. In the basic FPI method one assumes that
these deviations are zero, or, equivalently, that the integral

-2
u
FIG. 2. Plot of ¢,4(u), a “typical k,, = 10 path” as discussed in text

(line), “typical k,,, = 100 path” built on ¢,,(«) (short-dash), and partial
averaging envelope function ¢,o(#) + 2[0®(u)]'/? (long-dash).

J. Chem. Phys., Vol. 85, No. 8, 15 October 1986



Coalson, Freeman, and Doll: Fourier path integration 4571

of the potential along every high order path is equal to the
corresponding integral along the low order core. The long-
dashed line in Fig. 2 represents a + 2[c?(u)]'/? envelope
for k.., = 10 and can be seen to describe the magnitude of
the high order fluctuations well. [ Strictly speaking, o?(u) is
the second moment of all high order fluctuations
(Kpax + 110 0).]

We turn now to the question of evaluating ¥,;. From
Eq. (1.12) it can be seen that V_; is analytically attainable
for any potential which is superposed from functions having
analytical Gaussian transforms. Such functions include
polynomials, linear exponentials,®! and Gaussians. Clearly,
very flexible potential functions can be composed from these
components. If V¥ is not solely comprised of Gaussian trans-
formable functions, two procedures immediately suggest
themselves.

The first of these entails approximating ¥ by Gaussian
transformable functions. If the region of coordinate space
accessible in the process of interest is restricted to some rela-
tively localized region, a modest order Taylor series expan-
sion should suffice.'® By including Gaussians and/or expon-
entials in the fitting procedure, asymptotic decay of
interactions and steep repulsive walls can be accurately mo-
deled.'® In this manner ¥4 can be analytically evaluated for
essentially any V, providing sufficient care (and effort) is
expended in fitting V' to a superposition of Gaussian trans-
formable functions.

If this task proves too laborious, a second appealing al-
ternative exists, namely, to perform a gradient expansion
about the fluctuation variable p in Eq. (1.12). Proceeding in
this way, we obtain

V(g) + V" (g)o*(u) + V@ (g)o* (u) + -
(1.15)

Vs (qu) =

Of course, if this series is continued until it truncates (which
will be at infinite order for nonpolynomial V) the exact V4
will be obtained. What is very appealing, however, is thatina
wide variety of circumstances only the lowest order correc-
tions will be needed. This is because ¢*(u), which is a mea-
sure of the “higher-order” fluctuations, becomes uniformly
smalleron0 < u < 1ask,,, isincreased (the smaller B 1s, the
lower the value of k., which will suffice to force the “small
o*” limit). Hence one can devise a variation of the PA pre-
scription in which V4 is approximated by a low order gradi-
ent expansion [e.g., only the V" correction on the right-hand
side of Eq. (1.15) is kept]. The strict bound on p, for all
Kax 18 thereby lost. However, the procedure is clearly con-
vergent in the following sense: As k., — « all gradient cor-
rections are squeezed out and the canonical FPI prescription
(i.e., the exact propagator) is recovered. Moreover, as we
back away from k,,,,, = o, there will be some regime where
the truncated gradient expansion is identical to Vg, i.e.,
where the complete PA result will be obtained. On the as-
sumption that partial averaging improves results forall k_
relative to the canonical FPI procedure (an assumption
which has yet to be seriously contradicted in our experi-
ence), the gradient expansion method is guaranteed to con-
verge at lower k., than its canonical FPI analog.

Il. PARTIAL AVERAGING AND GRADIENT
EXPANSIONS IN MANY DIMENSIONS

As stressed in the introductory section, the entire pre-
mise underlying the development of MCPI techniques is the
ease with which they may be extended to many coupled spa-
tial dimensions. Fortunately, the partial averaging proce-
dure does not destroy this important feature. By manipula-
tions entirely analogous to those discussed in the
one-dimensional case, one finds for the d-dimensional sim-
ple Cartesian Hamiltonian

i g zﬁ/Zm + V(x)

i=1

the following expression:

k; —172
e[ ] o]

i (XpXp)  Lisilesh
d
11 U daﬁ"’...da,‘(‘;’w(a“))]
=1

1
Xexp[ —Bf du Veﬂ‘(xk(u)yu)] ) (21)
0

where the following notation has been adopted: w(a‘”) is the
Gaussian weight factor for the Fourier coefficients associat-
ed with the ith spatial coordinate, x*”:

k;

w(a®) = exp[ -3 a}c")z/Zoi].
k=1
[ The fluctuation parameters o were given in Eq. (1.5)]. k,
corresponds to the maximum Fourier coefficient utilized to
describe the Fourier path associated with x‘. In other
words, x; (#)=(x{" (u),.. ,xkd’(u)),wnh
X0 (u) = x5 + (x — x§)u + 2 al” sin(km u).

The critical specification concerns the definition of V.
Again, this definition is completely analogous to the one put
forth in the 1d case. To make it explicit let us notate ¥ by
components, i.e., V(x)—V(x"V,...x?). Then

d —~1/
Vor Oxt) = | [T 20070

i=1

2
dp,..dp,

Xexp| — 2 p,2/20'f(u)]

i=1

XV 4 ppyex® + py)
with o%(u) analogous to the 1d case:

(2.2)

o0

oiw)= Y o sin(kru)
k=T +1
,
=@u(1 —u)~ Y of sin’(kwu)
m =
;
ﬁzﬁ w(l — ) — 2 sin (k1ru)
k=l

Thus we see that the effective potential relevant to multidi-
mensional Hamiltonians is a d-dimensional Gaussian trans-
form of the system potential ¥'(x). Note that for a separable
potential ¥V(x) =32¢_ v(x?), the effective potential

J. Chem. Phys., Vol. 85, No. 8, 15 October 1986
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breaks up into a sum of 1d effective potentials. This is obvi-
ously the correct reduction of Eq. (2.2) in the separable po-
tential limit. Also analogously to the 1d case, potentials com-
posed of polynomials, linear exponentials, and Gaussians
(including Gaussians with quadratic cross coupling in the
exponent) may be transformed analytically.

Finally, the gradient expansion procedure discussed
above in connection with the 1d problem generalizes easily
to the multidimensional case. Indeed, because of the Gaus-
sian transform structure of Eq. (2.2), many terms in the
Taylor series expansion of V about p,....,p, =0 vanish.
Through fourth order we find

d d
Vo (xu) = V(x)+%z VaoP(u) +%z Vaod(u)

j=1 Jj=1

1

+— > Vueoj(w)og (u) + - (2.3)
4 >k

In Eq. (2.3), V, etc., are derivatives of the potential evalu-

atedat x, e.g., Vs = 92,3 2 V(x). The lowest neglected

terms are of overall order o°.

IlIl. CUMULANT APPROACH TO PARTIAL AVERAGING

In discussing partial averaging in imaginary time we in-
troduced the only approximation involved via Gibbs’ ine-
quality'*:

(exp{f(x)})>exp{(f(x))}. (3.1)

This inequality is quite general (it applies for arbitrary prob-
ability distributions in configuration spaces of arbitrary di-
mensionality). By applying it to the problem of interest in
Secs. I and II it was possible to demonstrate that the PA
prescription approximation to pg (X,,X,) [Eq. (1.4) in 1d,
and Eq. (2.1) ind dimensions] rigorously bounded the exact
value from below for any x,,X;.

It is also possible to look at the right-hand side of Eq.
(3.1) as the first term in a cumulant expansion'®:

fdx Q(x)e™ = exp[7+ WA=

+ %( =3+ + ] (3.2)

where g=fdx Q(x)g(x). It is important to note that Q(x)
does not have to be positive definite or even real for Eq. (3.2)
to hold.

There are both advantages and disadvantages to viewing
the PA prescription as a consequence of Eq. (3.2) rather
than Eq. (3.1). The only disadvantage is that for problems

|
(exp[ —Bfol du V(q(u))]>

gexp[ —ﬂ(fol du V(q(u))> +—B2—2(<U:du V(q(u))]2> - Uoldu V<q(“))>2)}

1 ﬁz 1 1 1 2
=exp[ —Bf du Vg (g, (u)u) + (J duf du'G(uu') — [f du Veﬁ(qkm(u),u)] )}
0 0 0 (¢

2

set in imaginary time, the rigorous bound on pg (x,,X,) is
lost if the expansion on the right-hand side of Eq. (3.2) is
pursued beyond the first term. In practice, however, we have
not yet been able to exploit the “lower bound” property of
the PA prescription in a practical way. There are at least two
reasons for this. First, formal bounds will not necessarily be
respected when an integral is computed by importance sam-
pling, due to the error bars inherent in results obtained by
MC simulations. And second, the only obvious tractable ze-
roth order problem which has parameters amenable to vari-
ational optimization is the harmonic oscillator problem. It
has been our experience that highly anharmonic (e.g., dou-
ble well potential) results are relatively insensitive to adjust-
ments in the frequencies of harmonic oscillator reference
systems.'” Finally, even if one can use the variational fea-
tures of PA in imaginary time to advantage, many problems
of considerable interest involve “complex time” dynamics,
i.e., f—f + it /fiin the expressions used in the development

presented up to this point. (Derivation of complex time ex-
pressions will be given in the next section.) Then Gibbs’
inequality breaks down, because the “weight function”
Q(x) in Eq. (3.2) becomes complex. However, the cumu-
lant expansion given on the right-hand side of Eq. (3.2) re-
mains valid and indeed enables implementation of PA when
temporal evolution (¢ #0) is required.

We now discuss the advantages of a cumulant approach
to PA. One of these has just been mentioned: All manipula-
tions used in obtaining the PA prescription for imaginary
time propagators follow analogously in the complex time
case if the approximation of replacing the “average of the
exponential”’ by the “exponential of the average” is viewed
as a first order cumulant expansion procedure. Another ad-
vantage is the utility of the cumulant expansion for deriving
power series expansions in small parameters of interest. Ob-
vious choices of this small parameter include # (which re-
sults in Wigner-Kirkwood expansions of the density opera-
tor'®) and £ (which results in improved small B propaga-
tors).

A third potential advantage of the cumulant approach
revolves around the possibility of improving the conver-
gence rate of MCPI simulations by explicitly computing
higher cumulants on the right-hand side of Eq. (3.2). For
example, it is straightforward to derive an implementable
second cumulant correction to the first order result
— B fedu Vg (x(u),u) of Eq. (2.1). For simplicity we will
discuss the correction in one spatial dimension. Generaliza-
tion to d dimensions should be obvious.

Appealing to Eq. (3.2) one finds [cf. Eq. (1.6) ]

(3.3a)

(3.3b)
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The function G(u,u’) will be prescribed momentarily. First
a few notational clarifications are indicted. Angled brackets
here indicate Gaussian averages over the Fourier variables
@ 414, In other words, what was notated as
( a2 1 in Egs. (1.6)—~(1.8) is now designated simply
by ( ). Furthermore, g(«) is the infinite coefficient Fourier
path given in Eq. (1.4), while q,, (4) is the truncated path

of Eq. (1.11). Finally, we turn to the specification of G:
G(uu') = (V(g(u))V(g(u')))

= [(2m)°detA] - ‘/ZJ. dp,dp,

XCXP[ - ; p-A“-p] V(qy,, (#) +py)
X Vg, (4') +psy), (3.4)
where p = (p,,p,) and the components of A are
k=kmax+l
A22 = i Ui Sinz(k'ﬂ' ll),
k= Knax + 1
A,=4, = i o? sin(km u)sin(km u')
k= ‘max + 1
hzﬂ kmnx
- uy-F 2
m 1( g) kgl k
X sin(kw u)sin(kw u'). (3.5)

Thelast line of Eq. (3.5) shows how the evaluation of 4; can
be simplified. The symbol u,,, stands for the greater (less-
er) value of u,u’.

IV. PARTIAL AVERAGING IN COMPLEX TIME

In this section we wish to consider the application of the
partial averaging prescription to the problem of computing
Ps.(X,Xo) when B, =p + it /#. The relevant results are
easy to present because they are identical in form to the
imaginary time analogs discussed in previous sections upon
replacement of f—f3.. More specifically, the Fourier coeffi-
cient path integral for p,_is

Pp.(XpX0) [ o _ ]—1/2
—_ = 270 fd >/
o L2 ] A da

© 1
xXexp— Y a;/20; _BCJ du V(g(u))
k=1 0
4.1
with

o = 2B, /m(wk)?, (42)

g(u) the generic path of Eq. (1.4), and p/? the free-particle
propagator for complex 5. [Eq. (1.3) with 8—f_.]. Two
remarks are appropriate here: (1) For notational simplicity,
only the 1d case will be discussed here. The multi-d general-
izations are obvious. (2) Since little attention has been de-
voted to complex time Fourier coefficient path integration in
previous literature, a derivation of Eq. (4.1) is given in the

Appendix. With these remarks completed, we can proceed
to partially average the formally exact complex time Fourier
path integral.

Starting from Eq. (4.1), the integralsovera,  ,..,a,
may be approximated by the first term in a cumulant expan-
sion in order to obtain

Pg. (Xp%0) [""m 5 52] -2
—_— T
preEn i LU

1
Xf da,..da,

kmax
Xexp[ - Y ai/25;%

k=1

1
—Bcf du V,,f(qkm(u),u)], (4.3)
(]

with 9, (%) the low order Fourier path of Eq. (1.11), and
V. having the same structure as the imaginary time cases
[cf. Eq. (1.13)], except that —8,, 0, —0C, . Higher cumu-
lants follow in a similar fashion.

V. IMPROVED SMALL ARGUMENT PROPAGATORS

Suppose that we wish to improve upon the basic small
argument propagator

Pe(Xpxo)=(x/|e~ H |x0)

::opg"(xf,xo)eXP[ - 'g—[ V(xf) + V(xp) ] ],
5.1

pL? being the free-particle propagator of Eq. (1.3) with
P—€. One would hope to be able to find an effective potential
V(xf,xo), which is both easy to evaluate and improves the
accuracy of the right-hand side of Eq. (5.1) when it is substi-
tuted for [V(x,) + V(x,)]/2 in that expression. Such a
function can in fact be obtained using the PA prescription.

Starting from the formally exact FPI expression, Eq.
(1.2), and applying Gibbs’ inequality to al/ the Fourier coef-
ficients, one obtains

1
pﬁ(xf,x0)>p,§”(xf,x0)exp[ —ﬁJ- du Veff(u)] , (5.2)
0
where
Vg (1) = 2007 (1) ]~

XJ e—p2/2a2(u)V(xo+ (_xf—xo)u +p) (5.3)
and

az(u)=ﬁ—ﬁ2-u(1—u). (5.4)
m

The inequality, Eq. (5.2) holds for all values of 5. However,
for sufficiently small B this inequality becomes more and
more sharply peaked [o0*(u) in Eq. (5.4) becomes uniform-
ly smaller}. Comparing Eq. (5.2) to Eq. (5.1) in the limit of
B—€ small, one is naturally tempted to identify

1
Vixxo) =f du Vg (u), (5.5)
0

where V_; (1) was givenin Eq. (5.3),and 0*(u) in Eq. (5.4)

J. Chem. Phys., Vol. 85, No. 8, 15 October 1986



4574 Coalson, Freeman, and Doll: Fourier path integration

(with f—€ there). In other words, the Gaussian trans-
formed potential Eq. (5.3), when averaged (integrated)
over u is the improved small argument potential which re-
places [ ¥(x;) + V(x,)]/2 in the small argument propaga-
tor, Eq. (5.1). In the next section we will explicitly demon-
strate that 7(xf,xo) in Eq. (5.5) is an imp_r_ovement over
[V(x7) + V(x,)]/2, by showing that the V(xx,) small
argument propagator is accurate through O(€*), whereas
the version in Eq. (5.1) is accurate only through O(e). In
closing this section we note that the function ¥ has been
identified in a slightly different but closely related context by
Schweizer et al.® [cf. their Egs. (2.14) and (2.15) with the
(free particle) choice p, as given in their Eq. (3.4); note that
their B /Pis our €] via a considerably different method than
the one employed here. They were pursuing an upper bound
on the thermodynamic free energy. It is easy to see how such
a bound can be deduced through the derivation pursued
above: By composing finite argument propagators out of
small argument approximations PP (xx0)
X exp[ — €V (x;,%,) | <pe (%7,%o), the approximation to the
finite argument propagator which is thereby obtained must
itself be a lower bound on pg (x,,x,). Hence the partition
function obtained from such a composition must also be a
lower bound on the exact result.

VI. EXACT O(e2) PROPAGATOR FROM PARTIAL
AVERAGING

From Sec. III we know that Eq. (5.2) can be viewed as
the simplest approximation to the formally exact expression

ps(xpx0) = P//;p(xfyxo)

1
Xexp[ —ﬁj du V. g (u)du
0

(]

1 2
- <J du V(Q(u))> ) +O(,33)] . (6.1)
0

Here we are adapting Eq. (3.3a) to our present needs.
V. (u) was given in Eq. (5.3). g(u) is the full Fourier path
of Eq. (1.4), and the angled brackets indicate the appropri-
ate Gaussian averages over al/ Fourier coefficients. Clearly,
as f—0 all the relevant Gaussian distributions become very
sharply peaked around 0, so that the effect of ( ) in this limit
is simply to zero all Fourier coefficients encompassed. That
is

’ 1 2 1 2
<U du V(q(u))] > — U du V(q(u))>
0 (0]

=cf+c B 24 ..
with the zeroth order coefficient ¢, conspicuously absen
Thus, it must be the case that truncation of Eq. (6.1) after
the first cumulant [i.e., Eq. (5.2)] is accurate through order
% We can explicitly verify this in the following way.

Let us consider 8 to be a small number € and extract the
part of 53 du V., (u) which contributes to O(e). Essential-
ly we will expand in Taylor series and disgard terms of O(€’)
and higher. One subtle point in our power counting proce-
dure is that we will regard the quantity (x, — x,) as O(e'/?).

(6.2)

t.1°

Naively, this is because the kinetic energy factor,
exp{ — m(x, — x,)*/2#%€} in p/?, effectively restricts
(X, —x9) & €'/2. A more precise justification of this scheme
will be given after we have obtained the desired result.

In order to evaluate the propagator to O(€*) we need to
evaluate f§ du V(1) to O(e). The place to begin, there-
fore, is by expanding Vg (u):

Ve (u) = V(xg + (xp — xo)u)

+ V" (X0 + (xp — Xp)u)o” (u) + . (6.3)

There is no need to continue the series further because
0%(u) ~¢, and according to the gradient expansion proce-
dure developed in Sec. I [cf. Eq. (1.15)] the next term
~0*~¢. Next we expand ¥ [x, + (x, — x,)u] through
order (x;— Xo)>~€. At the same time we can replace
V7" (xo+ (x; — x0)u)—V " (x,) since ¥” is multiplied by a
term (o?) of order €. Upon integrating the resultant approxi-
mation to V4, we find

1
f du Vg (u) = Vixg) + V' (%) (xp —x5)/2
0

+ V" (x0) (x; — x0)°/6

+ V" (xo)fe/12m + O(€*) (6.4a)
= V(x.%0) + O(€?), (6.4b)
where
V(xpx0)=4[V(xo) + V(x,) ]
V" [#e
+—1—2— —r;-'— (x; — xp) ] (6.4c)

Equation (6.4b), which is our final answer, was obtained via
obvious Taylor series manipulations from Eq. (6.4a). More-
over, the coefficient V" appearing in Eq. (6.4c) has been
vaguely notated on purpose, since the number which is set
here is not unique. Natural choices are
V' =aV"(x,) +bV"(x;) with a+b=1 and
V' =V"((xo+x7)/2).

The discussion of the previous paragraph has thus re-
sulted in the explicit improved small argument propagator

Pe(Xp,%0) = pLP(xpx0)exp[ — €V (x, — x0) | + O(€7).
(6.5)

We will now indicate precisely in what sense this expression
is correct through O(€). [ This will serve to justify counting
(x; — x,) as O(€'"?) in the derivation. ]

Consider the evolution of an initially localized wave
packet ¢/(x,0) under the imaginary time Schridinger equa-
tion:

— 3, ¥(x,0) = h,P(x,0), (6.6)

A
h, being the coordinate space representation of H.*® The
exact propagator p, is defined so as to have the property

0 —_ h k
P(xe)= (—i’i)—zp(x,m (6.72)
K= k!
=J‘dxcpE (3,%0) ¥(x4,0). (6.7b)

Feynman' demonstrated that the small argument propaga-
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tor function given in Eq. (5.1) is “correct to first order in €”
by inserting it into Eq. (6.7b) and expanding in a Taylor
series about €. He found that the right-hand side of Eq.
(6.7a) was recovered through O(e). If the analogous calcu-
lation is performed using the improved small argument pro-
pagator in Eq. (6.5), one finds that the right-hand side of Eq.
(6.7a) is recovered through O(€?).

In concluding this section we note that for
V(x) = ma’x*/2, V(x,,x,) = V(x,x,) exactly and with no
ambiguities (V" = constant = me’). Thus our general
expression for ¥ in Eq. (6.4c) reduces to the result for ¥
given by Schweizer et al.® in their discussion of harmonic
oscillator dynamics [cf. their Eq. (3.9)]. For the general
case of motion in anharmonic potentials Thirumalai and
Berne® have presented an improved propagator result simi-
lar to the one given in Eq. (6.4b). However, their result
differs from ours in the details of the second derivative terms
which constitute the O(€?) correction.

VIi. PARTIAL AVERAGING APPLIED TO HARMONIC
OSCILLATOR SYSTEMS

In this section we wish to examine various examples of
motion in a 1d harmonic oscillator well. It will prove con-
venient to organize the discussion so that imaginary time
behavior is considered first, then complex time behavior.
However, the essential feature of PA in harmonic oscillator
problems is the same in both imaginary and complex time
cases: The propagator obtained in the canonical FPI proce-
dure is rescaled by a simple factor which tends to zero in the
limit that k,,, — oo . Let us first derive this correction factor,
and then see how it affects the calculation of various proper-
ties.

Consider the complex time propagator s (x,,x,) for a
harmonic oscillator potential ¥V(x) = mw*x*/2. According
to the PA prescription the appropriate effective potential
which should be utilized in a FPI computation involving
k..ax coefficients is

2
Ve (qr,,, (W)u) = ani[qkﬂm(u)2 S ACHE

where g, is a Fourier path composed of the lowest
k.max sine waves [Eq. (1.11)] and &*(u) was given in Eq.
(4.2). It is easy to evaluate

1
3cf du Ve (9, (u),u)
o

= _(u)?
(ﬂﬁw)’[ 6 = ]
—_— 1= ¥ |
+ 12 172,;, k?

Thus, the net modification of the canonical FPI prescription
induced by partial averaging is an overall scale factor, as
mentioned above. Specifically,

PES (X %0) = PET (X pXo)

(B.fiw)? [

6 kln-x 1 }
12 '

€X — —
x p{ e k2

(7.1)

4575

In Eq. (7.1) we have superscripted the PA result to distin-
guish it from the analogous canonical FPI result. For com-
pleteness we record this latter function:

— 12

knax
PEP (xyx0) = pfp Gxpoxo) | T 1+ (7/k)2]
k=1

2
Xexp{ =[x + xox; + x%]
2 kmlx
+M S (xp— (- 1)"xf)2gk]
L

(7.2)

with g, =[k?(k?+9?)] ! and y the dimensionless con-
stant ¥ = B fiw/m. Let us now proceed to utilize Egs. (7.1)
and (7.2) in calculating a number of observable properties.
As indicated at the outset of the section, imaginary time
properties will be considered first, and complex time proper-
ties subsequently.

The imaginary time density propagator or density ma-
trix pg(x,x,), contains all thermodynamic information
about the system governed by a given Hamiltonian, since
knowledge of p; enables one to compute the partition func-
tion Z; = tr fg. p, also contains all position and momen-
tum density information about the system, so that various
static averages,

(F(pR))=tr psF( p,R)/tr by (7.3)

can also be computed once p; has been obtained. From Eq.
(7.1) it is clear that such averages will not be changed by
implementation of PA, since the only difference between ca-
nonical and partially averaged versions is a c-number factor
which cancels out of the ratios involved in Eq. (7.3).On the
other hand, the partition function will change: it will be
lowered by the exponential factor indicated in Eq. (7.1). To
demonstrate the effect of this correction on the accuracy of
Z, calculations based on a number of approximations to Z
are compared to the exact value Z, = § sinh(B #iw/2) overa
considerable range of 8 fiw. This is done in Fig. 3 for Kma

= 10. Again, for completeness we exhibit the formula for
the FPI approximation, which follows trivially from Eq.
(7.2):

‘max —1/2
Z5 = [(ﬂﬁw)[ﬂl+(7/k) (1- G, )]
(7.4)
with

mtx

2 ( - l ) k ) 2g ko

k=1
and in accordance with our previous notation y = 8 fiw /7.
The reduction factor appropriate to the PA result has been
given above. Finally, the discretized Cartesian PI result
(based on a trapezoid rule short time propagator) is given
by®

D=fP/2/(fP_ 1

with f=14+R?*4+}R(4+R>?, R =B fiw/P,
P = k.., + 1. The PA result is indistinguishable at this level
of resolution from the exact result over the range of B #w
plotted in Fig. 3. Examination under higher resolution re-
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1 |
10 15 20

Bhw

ot

FIG. 3. —In Z, vs B #iw for the harmonic oscillator system described in
Sec. VIL The exact result (solid line), which is indistinguishable from the
PA-FPI result, is compared with k,,, = 10 =P canonical FPI (short-
dash), and trapezoid (long-dash) approximations.

veals that the PA solution provides a strict lower bound on
Z, as discussed in Sec. I. The improvement of the PA result
relative to its canonical FPI analog is striking: Without PA,
the Fourier prescription converges noticeably slower than
the P discretized results of Schweizer et al. The PA corrected
result, on the other hand, converges noticeably faster.

As has been remarked above, for a harmonic oscillator
system partial averaging does not alter static averages
(F(p,%)) relative to the canonical FPI prediction, because
there is no coordinate dependence in the PA correction to
P (x7,x,). In view of the dramatic improvement obtained in
Zz upon application of PA, it might be expected that quanti-
ties such as (X?), ( p?) are predicted rather accurately by the
canonical FPI prescription, since they are not improved by
PA. More precisely, they are not improved by the first cumu-
lant correction in the PA formalism. They will be modified
at second order, as we will see below. However, it is instruc-
tive at this point to examine the average potential and kinetic
energies for some of the simpler approximations as a func-
tion of B #iw. These are to be compared to the exact result
(PE ) /#iw = (KE ) /#iw = coth(3 #iw/2)/4. For the FPI
procedure (with or without first cumulant PA), we find
from Eq. (7.1) that

1 2722
— e me*(X°Y/2
w*(x*)

Kimax -1
=[2ﬂﬁw(1——2[1—( 1>k]2gk] , (7.52)

1 A2
—.(p)/2
#iw &%)/ 2m

1 2(Btw)?

Bﬁw[
IR EAGRIRTY e

Kmax 2 Kmax
x 3 & +“”’”” - 1>k]2gk]. (7.5b)
k=1 k=

The analogous expressions in the discretized Cartesian PI
prescription are

1.00 T a T
0.75 |~ _
3
=
.
2
<
050 +—
2 T
<>
v PR
/—,
025 |  wwmme—— =
—————— -
0 1 1 1
0 5 10 15 20
Bhw

FIG. 4. (V') /#iw and (T ) /#iw vs B #iw for the harmonic oscillator system of
Sec. VII. Exact result, given by solid line, is compared to k., =1 =P
approximations according to various algorithms: (V') /#w via FPI (short-
dash); via trapezoid (medium-dash). (T} /#iw via FPI (dot); via trapezoid
(long-dash).

RS Vil
fiv 2 20f+ D) (fP-1’
-ﬁl—w-(ﬁz)/Zm
P
=B #iw /8P
B +4ﬁﬁw
[(f—l)(f""+1) fP”(fz—l)}
f2P f __1

In Fig. 4 we plot {PE)/#w, (KE )/#w for the choice
kmax = 10. Fourier and discretized approximations are com-
pared to the exact result. As can be seen, the FPI results are
uniformly superior to their discretized counterparts. This is
in contrast to the partition function case where the converse
was true. Apparently, the canonical FPI prescription con-
verges quickly to the correct shape, but rather slowly to the
correct scale. When the first cumulant partial averaging cor-
rection is applied, the (already good) shape of pg (x,,x,) is
not altered but the erroneous absolute scaling of p is renor-
malized. Of course, if the second cumulant correction to the
PA prescription is included in the calculation the shape of p;
(as well as the scale) will be modified. As an illustrative
application of the cumulant formalism we will briefly exa-
mine the second cumulant correction to p, (x,x) for the har-
monic oscillator.

For the harmonic oscillator it is simple to compute
Sodu V{q(u)), particularly for paths constrained to begin
and end at the same point x = x, = x,:

d — 1)¥]
=x% 4+ 2x a [———(———— az.
k;, , u k 2 kgl ,
It is then straightforward to perform the Gaussian averages
over coefficients B ypseenly, according to Eq. (3.3a). One

finds that the right-hand side of Eq. (3.3a) reduces to
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P (x.x) = g (x,x)
(ﬁﬁw)2 [ _” x4
Xexp[ 7T2k——l
with
2 ﬁﬁw)z[ﬁ_‘*_"w [1—(—1>k]2]
a_mwﬁ( ey Eyaaip K
and
Rl
A= 27 90 k; k4l

The factor exp[ax® + 4] is the second cumulant correction.
exp[4] will modify only Z; exp[ax?] will modify both Z,
and (£?).

To see that the modifications are clearly in the right
direction we plot Z, vs S #iw in Fig. 5 for the case k,,,, = 5,
and (PE ) /#iw vs B #iw in Fig. 6 for the same value of &, . A
lower value of k,,, is employed here than was used in the
previous figures in order to make the convergence order of
the various approximations under study readily apparent. It
is easy to see that the second cumulant corrected PA results
are uniformly superior to the other approximations dis-
cussed in this section.

Partial averaging methods have potential application to
the problem of computing finite temperature time correla-
tion functions. As a prototype example of this type of appli-
cation we consider the problem of computing a thermally
averaged rate constant for a simple 1d barrier crossing prob-
lem. As shown by Miller et al.,® the rate constant can be
given as

kQ = rc,(z)dz,
(o]

where Q denotes the partition function for reactants, & is the
Boltzmann rate constant, and C;(¢) is the flux—flux autocor-
relation function. This autocorrelation function can be writ-
ten (for symmetric barriers) as

(7.6)

Bhw

FIG. 5. —In Z, vs B %w for the harmonic oscillator system described in
Sec. VII. Exact result (solid line) is compared to k,,,, = 5 = P canonical
FPI (short-dash), PA-FPI (dot), trapezoid (medium-dash), and second
cumulant PA-FPI (long-dash) approximations.
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FIG. 6. (V') /#w vs B8 #iw for the harmonic oscillator system of Sec. VII.
Exact result, given by solid line, is compared to FPI (short-dash), and sec-
ond cumulant PA-FPI (long-dash) algorithms with k,, = 5.

) =
C.(t) =
7(1) ( Axdx’'

where x = 0 denotes the location of the flux counting sur-
face, and B, is given by B.=(B/2+it/#) with
B=1/ksT.

For purposes of numerical example we consider the cal-
culation of the flux-flux autocorrelation function C,(t) for
the model problem of an inverted parabolic barrier,
V(x) = — mw’x*/2. For this problem C,(¢) is available ex-
actly. As shown by Miller e al.®

kT
C
(1) / A ]

_ Bfw/2
sin(f #w/2)

‘max

| (x'le 2 |x) |2 , (1.7)

x'=x=0

sin?(B #iw/2)cosh wt

[sinh*(wt) + sin®(B fiw/2) 1>

(7.8)
Figure 7 compares this exact result with approximate results
in which the Fourier method (with and without partial aver-
aging) was used to compute the relevant density matrix ele-
ments [cf. Egs. (7.1) and (7.2)]. The particular results
shown are for S fiw = 5. The improvement due to partial
averaging for a fixed number (k,,,, ) of Fourier coefficients
is impressive. In fact the &, = 1 partial averaging results
are as good as those produced by k,,,,, = 100 without partial
averaging. Similar improvements were found at other values
of § fi. We note in passing that for this problem partial
averaging introduces a decaying Gaussian envelope on the
flux autocorrelation function.

As a second illustration of the effect of partial averaging
on complex time harmonic oscillator motion, we consider
the phenomenon of electronic absorption. Suppose that the
nuclei of a molecule are initially prepared in a vibrational
eigenstate i of a potential surface ¥;. Call this state |i,/ ).
Upon absorption of a photon, the electron cloud of the mole-
cule rearranges so that the nuclei find themselves moving on
a different potential surface, ¥, . It is possible to obtain the
Franck—Condon absorption spectrum for this process from
the time kernel®®

C(t) — (i,l le" (Ba+il/ﬁ)§uli,1),

(7.9)
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FIG. 7. Plots of flux autocorrelation function C,(¢) [Eq. (7.7)] vs wt for
inverted parabolic barrier described in text at £ #iw» = 5. Thick solid line is
exact [Eq. (7.8)]. Also shown are canonical FPI approximants for k,,,,
= 1,2,4, and the k,_,, = 1 PA-FPI approximant.

where H, is the Hamiltonian associated with V,. In Eq.
(7.9),8, is an “artificial temperature” parameter. When it is
set to 0, the desired absorption spectrum follows from simple
Fourier transformation of C(z). When 3, is a positive num-
ber the Fourier transform of C(¢) yields an artificial spec-
trum, which nevertheless can be easily converted into the
correct (3,—0) result. The reason for inserting a nonzero
B, into the computation when only the §,—0 limit is physi-
cally meaningful stems from the difficulty of evaluating
purely real time propagators via MCPI methods. Fortunate-
ly, when the potentials involved are harmonic, the integrals
entailed by Eq. (7.9) can be performed analytically. Thus,
results for any value of B, (including S, = 0) can be ob-
tained without resorting to Monte Carlo integration tech-
niques. It is then possible to study the effect of PA on the
convergence rate of the FPI prescription. In other words, we
ask the question: Presuming all integrals involved can be
accurately evaluated, how does PA affect the value of k_,,
needed to pinpoint the function C(#) defined in Eq. (7.9)?

For the case of linearly displaced harmonic surfaces,
ie.,

V,(x) = ima*x?, (7.10a)

V,(x) =kmo*(x —a)> + ¥, (7.10b)

the previous question can be answered with little effort. Let
us concentrate on the simplest case, / = 0. The essential con-
clusions we will reach are equally valid for / > 0, as well as for
the finite temperature case, and the case where the electronic
transition moment operator (which has been assumed con-
stant here) varies with x.

When i = 0, and for the choice of potentials indicated in
Eq. (7.10), we find

12
— m _ 2
C(t)=e ﬂcV"[Tr_(‘ﬁ)] fdx1dxze me(x, + a)?/2h

— ma(x, + a)2/2#%
[

Xpﬂc(x,,xz)e (7.11)

with pg (x,,x,) the standard propagator for the simple har-
monic oscillator potential Eq. (7.10a) and B.=8, + it /#.
The k,,,, FPI approximation to this propagator function

max
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was given in Eq. (7.2), and the PA corrected version in Eq.
(7.1). Thus both FPI and PA-FPI approximations to Eq.
(7.11) amount to the same 2d Gaussian integral, with the
PA version further corrected by the familiar scale factor in
Eq. (7.1).

We have compared FPI and PA-FPI results for various
values of k., and 3,. [ Exact results may easily be obtained
from Eq. (3.3) of Ref. 9(a).] We have found that the rate of
convergence with k., of the two approximations under
study is quite insensitive to the value of B, used in the calcu-
lation. Therefore, we will restrict the following discussion to
asingle value of B, . Specifically, we will choose B, = 0, since
the exact solution is then particularly simple:

eiwt/ZC(t) =~ Vot g — b2(1 —e~

with b *=mawa®/24. Upon further selecting ¥V, = — maw*a®/
2, C(2) becomes extremely easy to describe. For the param-
eter choices which we will adopt, namely, i=w=m =1
and a=23, Re[C(z)] is essentially the Gaussian
exp( — (bwt)?/2) periodically resurrected at integer multi-
ples of 277/w. This is shown via the solid line in Fig. 8. Also
shown are FPI and PA-FPI approximations for £, = 5.
Focus first on the FPI (long-dashed line) result. Although
this approximation accounts correctly for the initial decay of
C(t), successive recurrences damp out rapidly (and incor-
rectly, of course). On the other hand, the PA-FPI analog
(short-dashed line) recurs quite properly at # = 27. The sec-
ond recurrence is less successful, although certainly it is
more accurately reproduced than in the simple FPI calcula-
tion.

Beyond the second recurrence, the PA result displays
pronounced artifactual oscillations. The long time break-
down of PA in this example is easily understood: The magni-
tude of the PA scale factor blows up at long times as

exp[w?12{1 — 6/ 1/k?*}/12]. One therefore ex-
pects instability of the overall PA result in this limit. (This is
in contrast to the reaction rate example considered above,
where the oscillator well was upside down, so that w—iw. Or
equivalently, the PA scale factor decayed in a Gaussian fash-
ion for large ¢, thus stabilizing the appropriate correlation

function.) Equally as important, one is not alarmed by the
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FIG. 8. Real part of time kernel, Eq. (7.50), for linearly displaced oscillator
system of Sec. VII and 8, = 0. Exact (solid line) result is compared with
Kmax = 5 canonical FPI (long-dash) and PA-FPI (short-dash) results.
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instability exhibited in Fig. 8. For one reason, it is easily
removed on any time scale of interest. This is illustrated in
Fig. 9, where k., = 25 results are plotted on the same time
interval as before. The PA result is now accurate on nearly
the entire interval. (Slight underestimation of the fifth recur-
rence is discernable, but all spurious oscillations are gone.)
The FPI results have also improved, but lag far behind their
PA counterparts in accuracy.
From the point of view of presaging MCPI computa-

tions of two surface spectra, there is another reason to be
pleased with the PA performance: Current technology is
confined to relatively short time dynamics. (This restriction
stems from the difficulty of computing oscillatory complex
time propagator integrals via importance sampling.>?) If we
focus on the initial decay and first recurrence of C(z), we
find in Fig. 10 that PA dynamics is quite accurate when k
= 6. Curiously, the FPI approximation without the PA cor-
rection factor stubbornly undershoots the peak at ¢t = 2.
More than 150 Fourier coefficients are required to obtain the
same accuracy as the k,,,, = 6 PA results.

VIll. MCPI DENSITY MATRIX CALCULATIONS FOR
ANHARMONIC SYSTEMS

In this section exploratory MCPI simulations on two
anharmonic 1d systems are presented. Specifically, we wish
to report on calculations of pg (x,x) for the Morse well

V(x) =D(1l —e~%%)?

with D = 100.25, a = 0.071, and the double well
V(x) =Aexp( —ax?) +v,,

with
Upo (X) = ma*x?/2,

and w =1, a =4, A = 2. In both systems, m =# =1 and
B = 2. We have discussed both systems before,*®-2! 5o the
preliminary discussion here will be kept to a minimum. To
be compared below are the performances of the canonical
FPI and PA-FPI algorithms, as well as analogous results
obtained from vaious discretized Cartesian PI algorithms.
Specifically, trapezoid rule [based on Eq. (5.1)], midpoint
rule [using [V(x,) + V(x;)]1/2—-V([x; + x,]/2) in Eq.
(5.1)] and second order effective potential [SOEP, cf. Eq.

1.8 7 T T T 1 T T
0.9
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= / \
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FIG. 9. Same as Fig. 8, except k., = 25.
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Re C(t)

FIG. 10. Same as Fig. 8, except k,,., = 6. Also, note the dilation of time
scale relative to Figs. 8 and 9.

(6.5)] variants will be considered. The trapezoid, midpoint
and canonical FPI results have been presented before.?!
They are indicated in the present discussion for convenience
in comparing various extant algorithms relevant to the prob-
lems under scrutiny. Of the two new methods developed in
this paper, the PA-FPI results were obtained in complete
analogy to the canonical FPI results obtained in Ref. 21, and
the SOEP results in complete analogy to the Trapezoid and
Midpoint rule calculations discussed there. We mention
here only a few essential details: Four repetitions of each
simulation were performed, with 1800 passes per repetition,
and the requisite importance sampling was based on the un-
coupled Gaussian distributions associated with the kinetic
energy part of the Hamiltonian functional. The reader is re-
ferred to Ref. 21 for further elaboration upon these remarks.

In Fig. 11 we show results for the Morse system intro-
duced above. The solid line depicts the exact results for

0.25 T T T T T T

0.20

0.15

0.05

-3

FIG. 11. pg (x,x) vs x for Morse oscillator system discussed in Sec. VIIL In
each of the four panels the solid line depicts exact results. The filled circles
are MCPI results, based on (a) k,,, = 6 canonical FPI, (b) P = 6 mid-
point, (c) P = 6 trapezoid and (d) &,,,, = 1 PA~FPI algorithms. Simula-
tion details are discussed in text. Error bars in general did not exceed the
data point circle radius, and therefore have been suppressed.
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Pg (x,x), as obtained by a straightforward eigenvalue/eigen-
function computation.®®-?! In panels 11(a), 11(b), and
11(c) are the canonical FPI, midpoint, and trapezoid re-
sults, respectively, for the choiceof k_,, = P = 6. [ P hereis
the Trotter index, or equivalently, the value of the small
argument used in all discretized algorithms is given by
€ =pf/(P + 1).] Panel d shows the analogous PA-FPI re-
sult for k,,,, = 1. Itis easy to see that in this case one explicit
Fourier coefficient in the PA procedure produces results
which are considerably more accurate than those achieved
with six coefficients in the canonical FPI algorithm. As has
been discussed before,*' the Trapezoid rule algorithm tends
to outperform the canonical FPI algorithm in unnormalized
density matrix calculations. Nevertheless, it takes a six coef-
ficient trapezoid rule calculation to (almost) equal the accu-
racy of a one coefficient PA-FPI analog in the present exam-
ple.

Figure 12 shows the analogous results for the Gaussian
mound potential introduced above. Here, the one coeflicient
PA-FPI results are clearly superior to any of the simple
alternatives implemented at the k_,, = 6 = P level. Finally,
we were curious to see how the SOEP algorithm fit into the
convergence hierarchy being investigated. We found that
about P =9 was required to obtain the convergence level
observed at the 1 PA-FPI coefficient level. These results are
presented in Fig. 13(a). In Fig. 13(b) the analogous P =9
trapezoid rule results are shown in order to demonstrate that
the improved small argument propagator derived in Sec, VI
does indeed produce improved results relative to its prede-
cessor (upon which the trapezoid rule algorithm is based).

IX. PRACTICAL CONSIDERATIONS AND THE ROLE OF
FRACTALS IN PATH INTEGRATION

It has been stressed since the introduction of path inte-
gration®® that the vast majority of paths which arise in the
Trotter product expression for the Cartesian path integral
are of the type encountered in Brownian motion. Namely,
they are extraordinarily “jagged”: If one magnifies a small
section which appears smooth, this magnification will reveal
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003 - ¢
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001 -
= 1
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FIG. 12. Same as Fig. 11, except for the Gaussian mound system discussed
in Sec. VIII.
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FIG. 13. Effectively, additional panels for the previous figure. In (a) P=9
SOEP MCPI results are depicted. In (b) the corresponding P = 9 trapezoid
results are shown.

jagged structure in the small section similar to what had been
observed in the complete unmagnified path. Because of the
self-similar structure of these objects, they may be character-
ized as “fractal.” % One of their properties is that they are as
a rule nowhere differentiable.

In light of these remarks, it would appear foolhardy to
attempt to compute quantum mechanical propagators uti-
lizing paths parametrized via low order Fourier series. Such
paths are quite smooth (differentiable to all orders) and thus
span a phenomenally small subspace of the jagged Brownian
paths which in principle contribute to the propagator eva-
luation. The first indication that such a convergence scheme
is not foolhardy, or, in other words, that contributions from
smooth paths strongly dominate the P1I in spite of their over-
whelming paucity, was provided when the FPI representa-
tion of the harmonic oscillator problem was formulated.! As
has been seen in Sec. VII, both the statistical density matrix
Dper se, the average static properties dependent on it, and the
dynamical correlation functions for harmonic systems can
be obtained to high accuracy via finite order Fourier series
parametrization of the contributing paths. Precisely how
low a value of k_,,, will give sufficient accuracy depends on
the temperature and/or time, the oscillator potential, and
the property of interest. Nevertheless, for any specific prop-
erty, system and conditions, the convergence of the FPI pre-
scription with k. is found to be monotonic and smooth,**
so that some finite value of k_,, is guaranteed to suffice. 23
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Historically, a second indication that smooth paths
dominate simple Cartesian PI’s was provided by the success
of semiclassical propagator theories of scattering,”® tunnel-
ing,?"?8 etc. These analyses hinge upon a steepest descent/
stationary phase evaluation of the propagator, which invar-
iably isolates one or at most a discrete collection of smooth
paths, namely, classical mechanical trajectories dictated by
the appropriate potential and boundary conditions. The val-
ue obtained for the propagator function then follows by ap-
propriately processing the classical trajectory data.

The method of partial averaging provides a third indica-
tion of smooth path domination in simple Cartesian PI's. In
a sense the lesson here is precisely the same as the one
learned in semiclassical propagator techniques: Properly pro-
cessed smooth trajectory data is all that is needed to obtain
accurate values of the propagator function. In partial averag-
ing we select a collection of smooth paths, namely, all paths
having the desired end points which can be obtained from a
Fourier series of (modest) order k,_,,. Having selected a
particular smooth path, we are then faced with the task of
summing over higher order fluctuations (Fourier modes
with k> k., ). Just as in semiclassical theories, these higher
order fluctuations are not completely neglected, but rather
summed over in an approximate way. Indeed, the same as-
sumption motivates the approximations employed in the
two procedures (i.e., the fluctuations are presumed small).
One finally arrives in PA theory at a simple prescription for
processing the smooth path data in an optimal way
(Sodu Vg (gx,,, (#)u)). As we have seen in the previous
sections, with this processing procedure very smooth paths
are sufficient to obtain converged quantum mechanical in-
formation about a variety of systems under a variety of con-
ditions. To make this notion clearer, we depict in Fig. 14(a)
a typical k_,,, = 1 Fourier path for the inverse temperature
B=2 (xo=x,=m =#=1).Also, depicted in Fig. 14(a)
are V(g(u)) and V4 (q(u),u) for the Gaussian mound po-
tential discussed in Sec. VIIIL. Recall thata k,,,, = 1 descrip-
tion of paths proved sufficient for quantitative evaluation of
pp (x,x) at B =2, provided V 4 (q(u),u) was employed in
the necessary “action integral.” This amounted to a particu-
lar and apparently optimal processing of the smooth trajec-
tory data contained in k,,,,, = 1 paths [i.e., the solid line in
Fig. 14(a) is transformed into the short-dashed line in that
figure]. An example of improper or nonoptimal path pro-
cessing is provided by the canonical FPI procedure (the sol-
id line in Fig. 14(a) is transformed into the long-dashed line
there). If this processing procedure is employed the results
are dramatically worse than those shown in Fig. 12(d).
[Note: k_,, =1 results for the canonical FPI algorithm
have not been included in the figures. However, from the
knax = 6 results shown in Fig. 12(a), the veracity of the
present claim can be inferred. ]

To address the “practical considerations” alluded to in
the current section heading, we have plotted in Fig. 14(b)
analogous results for a typical k,,,, = 10 path (again, the
solid line). At thelevel of k,,,, = 10 the canonical FPI algo-
rithm results are approaching the desired limit (note that the
proper vs improper processing procedures, i.e., short-dashed
vs long-dashed lines, are nearly coincident). We wish to

stress here that substantial savings in computational effort
results from the order of magnitude reduction in the number
of Fourier coefficients enabled by PA. First, fewer integra-
tion variables need to be sampled (in the present case, ten
times fewer). Moreover, the number of quadrature points
needed for the action integral computation, and hence the
number of (expensive) calls to the system potential, are sig-
nificantly reduced when they are based on a low order Four-
ier path [cf. the short-dashed line in Fig. 14(a) vs the long-
dashed line in Fig. 14(b)]. Overall, the effort needed to
converge a k,,, = 1 calculation in our current example is
nearly an order of magnitude smaller than that needed to
convergea k.. = 10 calculation without PA. Although the
relative effort needed to converge results with and without
PA will clearly be system dependent, it is heartening to see
that for the nontrivial system just discussed, PA proves itself
to be a considerable asset.
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FIG. 14. The solid lines in Figs. 14(a) and 14(b) depict typical k,,, = 1,10
paths, respectively, for the choice of parameters 1 = x, = x,=fi=m=p8/
2. The long-dashed line in each panel indicated V(g(«)) for the path g(u)
shown in that panel, with ¥ the Gaussian mound potential of Sec. 8. The
short-dashed line is a plot of the corresponding PA effective potential
Vig(u),u).
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X. DISCUSSION AND CONCLUSION

In this paper we have developed a new scheme for com-
puting Cartesian path integrals. This formulation starts with
the Fourier coefficient representation of the sum over paths.
It then removes the small, rapid fluctuations contributed by
high order terms in the Fourier series parametrization of
paths in a way which is both physically appealing and math-
ematically sound. In its simplest manifestation, the proce-
dure leads to a prescription which we have termed partial
averaging. The partial averaging prescription is simply a ca-
nonical Fourier path integral (FPI) description with the
system potential replaced by an effective “time dependent”
potential. We have examined convergence rates of the ca-
nonical FPI algorithm vs the partial averaging modified FPI
algorithm (PA-FPI) for both harmonic and anharmonic
systems undergoing both imaginary and complex time evo-
lution. Partial averaging has proven uniformly effective in
improving the performance of the canonical FPI algorithm.
Thus, as a general rule, PA-FPI would appear to supplant
its canonical counterpart as the Fourier algorithm of choice.

Also considered in our convergence investigations were
various standard discretized algorithms. It is now reasona-
bly well understood”' that these are in many respects var-
iants of the canonical FPI algorithm (or vice versa). The
respective positions of canonical FPI and discretized algor-
ithms in convergence hierarchies depends on the property of
interest, as was documented in some detail for the case of
harmonic systems in Sec. VII. However, the PA-FPI algo-
rithm demonstrated convergence characteristics superior to
all discretized algorithms for the rather wide variety of prop-
erties considered in Secs. VII and VIIL

For motion which takes place in a single (multidimen-
sional) potential well the FPI-PA method seems ideally
suited. The discussion of Sec. VII showed partial averaging
to be quite successful in the treatment of harmonic systems.
The results of Sec. VIII then confirmed that this success is
not threatened when the single well is anharmonic (Morse
case) or a modest bump is put in it (Gaussian mound case).
In all three cases we suspect that free-particle paths sample
the path space rather efficiently, and that the small rapid
oscillations associated with high order Fourier coefficients
are efficiently averaged out by partial averaging.

In potentials which admit tunneling between two deep
wells the situation is less clear. While there is no reason to
believe that the PA-FPI prescription would not converge
rapidly if we could easily compute the multidimensional in-
tegrals which arise at each stage of the convergence proce-
dure, current Fourier methods may be inefficient for impor-
tance sampling evaluation of these integrals. Free-particle

J
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paths are rather far removed in character from the kink-like
paths which are known to give dominant contributions to
path integrals for these systems.”>®® Work is currently un-
derway to devise more natural sampling schemes for this
important and still controversial®® class of processes.
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APPENDIX

We wish to derive the complex time Fourier PI here.
Our starting point is the small argument propagator for
e=f./N:

m
27 #He

172 —m 5
P (Xpxp) = [ ] exp{—zﬁ—ze—(xf — X)) — eV(xf) .

It is then easy to construct a Trotter product approximation
to the finite argument case:

P (Xf,xo) = (xfl (e” H )le0>

%’ANJ dxy..dxy _ exp{—z_?”—l—

N
—€ 2 V(xj)],

j=1

N
2—x_1)"

j=1

where xy=x, and Ay=[m/27 #€)"’*. The approxima-
tion just recorded tends toward equality as N-» 0.

Using Feynman’s sum over histories interpretation of
this Trotter product formula, it is possible to regard in the
N—> o limit

N 'd
z (x, —x;,_,)? =5J ds g(s)?,
i (4]

Jj=1

N 1 '
Z Vi) =— | dsV(q(s)),
=1 8 Jo

where y is an arbitrary positive number §==y/N and g(s) is
the “trajectory” limit of the jagged path determined by a
particular configuration (xg,....xy ). Since the value of y is
arbitrary it must disappear from the final result. To see how
this occurs, we take the ratio of pg /pff pf (x,,x,) being the
free particle propagator for complex 3. Because 4, is po-
tential independent it cancels out of the ratio and we find

Pp, (Xp%0)  Zpapexp[(— my/2#23,) §§ds §*(s) — (B./y)Skds V(q(s)) ]

P (pxe)

S as [ €XP( — my/ 2B, ) §§ds ¢*(s) ]

>

Having expressed the path integral in a representation independent form, we next seek a particular representation convenient
to our present goals. To wit, we use a Fourier representation for the paths

q(s) =xo+ (x; — X0)s/¥ + i a, sin{kws/y)

k=1

and sum over paths by integrating over Fourier coefficients, so that
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Ps,(XpXo)  fda, ..da, exp[(— my/2#°B,) §§ ds §*(s) — (B./y) S} ds V(g(s))]

ng (x7,x0)
It is trivial to integrate §%ds ¢*(s), which results in

fda,..da exp[( —my/2#B,) §§ ds ¢*(s)]

Pe(XpXo)  fday..daexpl — Zp_, [m(7k)*/4B. |a; — (B./v)S§ds V(q(s))}

PR

fda,...da_exp{ — Z7_ | [m(wk)*/4#°B, |ai}

’

Finally, changing variables in the potential integral according to s = y u brings us to our final expression, Eq. (4.1) of the text.

Note that y has vanished from the final result, as anticipated.
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