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Monitoring Bio Surveillance with MPC (multivariate process control) Methodology 

 

 Modern bio surveillance involves the monitoring of a large number and wide 

range of data from samples of diagnostic and pre-diagnostic data. The purpose is to 

enable health care professionals to better recognize, detect, investigate and respond to the 

outbreaks of disease and epidemics. A central tool in this monitoring process in classical 

disease surveillance migrated to bio surveillance. The migration is the result of 

implementing multivariate quality control methods in the analysis. Fricker (2007) applied 

multivariate statistical control methods with an application of MQC to syndromic 

surveillance. Fricker et al. (2008) continued the earlier study by focusing on directionally 

sensitive procedure in bio surveillance. Joner et al. (2008) produced a one sided 

MEWMA (multivariate exponentially weighted moving-average) control chart for the 

analysis of health data. Yahav and Schmueli (2013) introduced in practice directionally-

sensitive MPC charts to bio surveillance methods. They examined four such techniques 

and came to conclusions based on simulated data, but suggested further research in the 

application of these methods.  

 Since bio surveillance is the process of monitoring health data concerning 

infectious diseases, the use of quality control and improvement methods largely 

developed in industrial application applies to the analysis of data collected in health care 

monitoring. Our purpose hence is to apply the useful methods to this type of control of 

infectious diseases in the very difficult procedures of preventing epidemics and other 

problems associated with the lack of adequate and ineffective safety programs in health 

care institution and public health programs. Traditional bio surveillance can take weeks , 

sometimes months, before detect ion and prevention measures are applied. We focus on 

one very useful method for such implementation of better methods. 

 Usually but not necessarily the data resulting from bio surveillance are counts and 

not measurements. The chief problem is often that broad categories are used such as 

gastrointestinal, unspecified infection, respiratory problems and/or neurological 

problems. These broad categories are often auto correlated with seasonal components, 

trends related to population changes and similar problems associate with other 

quantifiable components. Current analysis by Shewhart control charts which focus on a 



 

 

time series of a single variable whereby the result is either to conclude that the process is 

in control or not are often inadequate to reflect real change in the process results leading 

to misleading conclusions made by physicians and health care practitioners. We suggest a 

more modern approach that considers many of the problems not heretofore fully 

examined by contemporary quality control methods as part of a total quality management 

program. In the next section, we examine a methodology whereby better and more 

sophisticated results are possible. 

 

Under MEWMA Modeling and Quality Control 

 Previously Ord, et al. 2009; recognized the usefulness of monitoring social or 

economic processes is a clear application of the notion of statistical process control 

(SPC). They extended the notions of control by Shewhart Control Charting to that of 

monitoring univariate time series. Furthermore, they. suggested the use of EWMA charts 

for residuals, which will be effective in detecting level shifts and suggest their use in 

detecting shifts in variability. This improved process could also be explored by 

expanding the analysis to the multivariate case.  Also they suggested that we examine the 

ideas explored by Lowry, Woodall, Champ and Rigdon (1992, hereafter LWCR), Pan and 

Jarrett (2004) and Rungar, Barton, Del Castillo and Woodall (2007).  

 The multivariate form of the EWMA control chart simultaneously monitors two 

or more related process characteristics in an exponentially weighted control chart.  For 

example, one uses a MEWMA chart to monitor temperature and pressure in a plastic 

injection-molding process. Each MEWMA point incorporates information from all the 

previous subgroups or observations in combination with a user-defined weighting factor.  

MEWMA charts can help you detect small process shifts quicker than other multivariate 

charts, such as the T-Squared control chart [Hotelling, 1947]. 



 

 

Another advantage of MEWMA charts is that they are not greatly influenced 

when a small or large value enters the calculation. Also, MEWMA charts can be custom 

tailored to detect any size shift in the process. In turn, difficult to detect small shifts, not 

detected by less sophisticated methods, one employs MEWMA control charts to find 

these small changes in a process. 

 

Multivariate process control simultaneously monitors several processes in 

combination. A long list of manuscripts from 1995 until near the present consider the 

standard methods of Hoteling T-squared charts in various applications. In general, they 

studied industrial and commercial applications, however, the statistical properties of the 

data utilized in the studies are similar to those in health applications. A listing of the 

studies is given in a large number of papers in the quality monitoring literature [i.e., 

Lowry and Montgomery, 1995; Sullivan and Woodall, 1996; Djauhari, 2005; Khoo and 

Quah, 2003; Kruegel, Valuer and Vigna, 2005; Ye and Chen, 2001; Ye, Chen and Borror, 

2004; Ye, Giardano and Feldman, 2001; Ye, Vilbert and Chen, 2003; Bersimis, Psakaris 

and Panaretos, 2006; Khoo, 2003, Yeh, Wang and Wu, 2004; Pan and Jarrett, 2004; Yang 

and Rahim, 2005, and finally Jarrett and Pan, 2007a and 2007b)] These monitoring 

methods employ the Hotelling T
2 

statistic for a current sample.  

 

 Exponentially weighted moving average (EWMA) charts which are more 

sensitive to moderate shifts in parameters than univariate charts are widely used in 

univariate cases (Crowder, 1989; Lucas and Saccucci, 1990). LWCR extended the 

univariate EWMA control chart to the multivariate case by simulation. They noted that 



 

 

the multivariate EWMA (hereafter MEWMA) chart has greater sensitivity to shifts in the 

mean than more traditional Hotelling T
2 

control methods.  

An alternative MEWMA scheme is Pan (2005), which builds the Hotelling 2T  of 

the variables before the formation of the EWMA of the 2T s. Lui (1996) presented an 

improvement for MEWMA. Runger and Prahu (1996) used Markov chain analysis to 

calculate the ARL for MEWMA and Prahu and Runger (1997) discussed the design of 

the same scheme. However, all these studies assumed the processes to be serially 

independent. 

Others chose to study the usefulness of MEWMA methods as well.  Stoumbus 

and Sullivan (2002) investigated the effects of non-normality on the performance of the 

MEWMA control chart, and its special case, the Hotelling’s Chi-Squared control chart 

when applied to individual observations. The purpose in this case was to monitor the 

mean vector of a multivariate process variable. Khoo studied the sensitivity of MEWMA 

control charts under other circumstances. In addition, Lee and Khoo (2006) explored a 

method for optimally designing multivariate EWMA charts based on the measures of 

average run length (ARL) and median run length (MRL). In this study , we utilize the 

concept of sensitivity ratios based on the works of Otto-Hanson, Eskridge, Steadman and 

Madisa (2009) and Väisänen and Hyttinen (2007) who argued that sensitivity ratios are a 

superior method to assess quality in the areas of bioelectric measurements, plant disease-

screening methods and others involving new technology. The sensitivity ratio is a statistic 

specifically developed for comparing for different measuring methods and is not based on 

any particular assumption about haw the measuring methods or scales are related. Hence, 



 

 

our purpose is to share new research in the evolution of monitoring processes by 

comparing results of experiments. 

The Pan MEWMA scheme builds the Hotelling 2T  of the variables before order 

of construction steps is the statistic of MEWMA chart. Pan (2005) used integral equation 

method to compute the ARL's of MEWMA charts for in-control and out-of-control 

situations without the presence of serial correlation. All MEWMA method variations are 

multivariate EWMA schemes. 

The above schemes have a common problem, that is, they cannot be directly 

employed when the processes are serially correlated. An indirect way to apply the 

MEWMA schemes for serially correlated processes is to adopt Alwan and Roberts’ 

(1988) approach. They suggest estimating the residuals, i.e., one-step-ahead forecasting 

errors, of the autocorrelated process. In turn, they apply traditional control charts for the 

residuals. Extending this approach to multivariate cases, one can apply the above 

MEWMA scheme to the residuals of the serially correlated multivariate processes. The 

final result will have properly modeled processes, the initial number of observations will 

be sufficiently large and the residuals are asymptotically independent over time. Then, 

the EWMA At this point, we determine the sensitivity of these approaches to changes in 

process parameters in the presence of serial correlation. Since the process parameters are 

usually unknown, the appropriate estimation and use of the covariance matrix is vital for 

correct execution of MEWMA. This may occur if the direct sample variance is a biased  

We will in the next section, consider applications of MEWMA charts to monitor 

bio surveillance data to understand the meaning and application of these charts in a 

simulated experiment.  



 

 

 

 

Under An Illustration of the MEWMA Control Chart 

 We consider a bio surveillance procedure where data is collected on five variables 

(A, B, C, D and E). The sensitivity of the process will be seen by the five control charts 

based on the dampening coefficient being equal to 0.1 to 0.6 and increasing and the level 

of 0.1. Recall that the exponential coefficient in MEWMA refers to relationship between 

the prediction and observed values of variables. The larger the value of the coefficient indicates 

the greater the influence of the error in the previous prediction. If the coefficient was 1, the 

prediction would be the same as in the previous time period. 

Figures 1 through 6 provide for the results of the MEWMA charts yield different upper control 

limits (UCL) for each of the control charts. For example Figure 1 where the coefficient is 0.1, one 

find a UCL of 14.54 and out of control points of 5 through 13, 24 through 32 and 52 through 55. 

Note when applying this method the value of the dampening coefficient is crucial.  

For Figure 2, the UCL equals 15.73 but the number of points out of control becomes smaller. 

Only points6,8 9 and 23 through 30 are out of control. Figure 3 the UCL increases to 16.22and 

points 8 and 23 through 29 are out of control. For figure 4 (coefficient of 0.4), the UCL equals 

16.46 and points 8, and 24 through 27 are out of control. Figure 5 (coefficient equals 0.5, the 

UCL increases again to 16.60 and the points out of control 25 and 26. Finally, Figure 6 

(coefficient equals 0.6) the upper bound is now the zero line and everything is out of control. 

 MEWMA for Serially Independent Processes 

For a p-dimensional multivariate an independent and identically distributed 

process 1 2( , , , ) 'i px x x x  at time point i, constructing the exponentially weighted 

moving-average (EWMA) quantities based on previous observations, we have 



 

 

1(1 )i i iz rx r z    ,  i=1, 2 … ,     (1) 

 

r  is  a 1i row vector 1[ , (1 ), , (1 ) ]ir r r r r r     

Without losing generality, the mean in-control vector of ix  is set at zero. We then 

construct the quadratic Hotelling T
2
 of iz as the chart statistic: 

2 1'
ii i z iT z z            (2)  

where the covariance used in the T
2
 is the covariance of iz , and r was chosen as a scalar 

weighting parameter. It seems obvious that under the assumption of i.i.d. normal 

distribution ~ (0, )ix N   with known parameters, the MEWMA or statistic 2 1'
ii i z iT z z   

follows chi-square distribution with order of p, because each iz  is still normal. However, 

omitted here is that initial value of the EWMA, 0z . As 0z  has to be set as a certain value 

(say, 0), this may make the 2

iT  a little different from the exact 2 ( )p . 

To investigate the details of the distribution, we denote 1 1[ ', ', , ']'i ix x x x  be 

an ip1 column vector, r  be a 1i row vector 1[ , (1 ), , (1 ) ]ir r r r r r    , and pI  are a 

p p  unity matrix. For independent observations, we have x ~ (0, )N V  with ( )iV I  . 

Setting the initial EWMA vector 0 0z  , we have,  

( )i pz r I x          (3) 

and  ( ')
iz i iE z z   ( ) ( ')( ) 'p pr I E xx r I   

      
2

( )( )( ) '

( ') (1 (1 ) )
2

p i p

i

r I I r I

r
rr r

r

   

     


     (4) 



 

 

where ( ') ( )iE xx I   because of the independence for observations at different time points 

( iI  is a i i  unity matrix), and that ( ')rr  is scalar. The result in (4) is the same as given in 

LWCR. Letting Rr be a normalized ii matrix that
1( ' )( ')rR r r rr  , the MEWMA or chart 

statistic is 

2 1'
ii i z iT z z  1'( ) ' ( )

ip z px r I r I x     

                 

1 1

1

'( ' )(( ') )( )

'( ) .

p p

r

x r I rr r I x

x R x

 



   

 
     (5) 

We derive the distribution of (5) by applying the theorems on quadratic form discussed in Box 

(1954) and others Thus, the MEWMA in (5) is approximately distributed as
2 2~ ( )iT p  and the 

distribution of (5) is irrelevant to the exponential weighting factor r.  This result is consistent with 

the reported simulation results in LWCR.  Therefore, the in-control average run lengths (ARL's) 

and the control limits are the same as the results of LWCR for different values of r. 

In addition, LWCR noted that the EWMA weighting parameter is a diagonal matrix with 

different elements, although they only reported the simulation results for scalar r. If the weights 

are different for different variables, the EWMA weighting parameter is a matrix 

1

2

p

r

r
W

r

 
 
 
 
  
 

.       (6) 

We define a new p ip  matrix,
1[ , ( ), , ( ) ]i

p pR W W I W W I W    , to replace the previous 

Kronecker product ( )pr I  in (3), so that (3) becomes iz Rx . Then, from the diagonal 

property of matrix RR', it is not difficult to see that 

iz ( ) ' ( ')iR I R RR           (7) 

 
2 1'

ii i z iT z z  1 1' ' ( ')x R RR Rx         (8) 

 



 

 

If the 1 2, , pr r r  in W is the same r, (7) and (8) reduce to (4) and (5) respectively. In addition, (8) 

follows
2 ( )p , a chi-square determined by the number of dimensions of the system, and 

irrelevant to the EWMA weighting parameters for the variables. Since the scalar weight is just a 

special case of the matrix weight, (3) is a special case of (7). 

Shift Effects and the Measure of Sensitivity - Mean Shift 

If a mean shift 0  occurs at 0i i k  , 0ki, then we write x u   , where u  is 

denoted as the in-control processes and   is a ip1 column vector that has 0  in the first 

kp  elements and zeros in the last 0i p  elements. Taking the scalar r case as example (the 

case of (6) can be discussed in the same way), the statistic of (5) becomes  

 2 1 1 1'( ) 2 '( ) '( )i r r rT u R u R u R          .   (9) 

This is a no central chi-square distribution. The first item in (9) is the in-control chi-

square (note the mean vector of in-control processes iu  is assumed to be zeros without 

losing generality). The second item is a normal distribution with mean of zero and 

variance of 4 1'( )rR  .  The second and the third items are all determined by the 

value of the third item which is a constant scalar. Defining the third item as , 

 1'( )rR     = 1

0 0( )rkR      (10) 

where rkR , the upper-left kk partition matrix is rR , partitioned according to shift 

occurrence time, 0i . Obviously, (10) is relevant to r through rkR . Therefore, the choice of 

the value of the exponential weight r in M-EWMA or does matter for the out-of-control 

distributions of the chart statistic.  



 

 

By reexamining (10), it is actually 2

0  times the sum of all the elements 

of 1

rkR  . Hence, it is not difficult to show that (10) is also 1

0 0 '   times the sum of 

all the elements of rkR . Denoting both 1

0 0 0 '     and the sum of all the elements of 

rkR  as rkS , we have 0rkS   . Note 1/2 1 1/2

0 0 0( ')     is only the noncentrality 

parameter in LWCR.  0  (or 1/2

0 ) measures the size of the shift in the process itself 

instead of incorporating the control chart, while the measure   is chart-specific. It can be 

shown that the rkS  is 

2

2

(2 )(1 (1 ) )

(1 (1 ) )

k

rk i

r r
S

r r

  


 
       (11) 

Since the mean of (5) is p  and the mean of (9) can be viewed as p , the 

difference between them, , can be viewed as the measure for the difference in 

distribution. Comparing this difference with the in-control dispersion measured by the in-

control standard deviation, 2 p , we can design the sensitivity ratio 

 0
1

2 2

rkS

p p



           (12) 

to measure the performance of the control chart for detecting mean shift. As rkS  is the 

only factor depending on r, we choose r for the optimal sensitivity through rkS . Figure 1 

shows how the rkS  changes with r for different occurrence time of the shift. For k=1, 

indicating a recent shift, exponential weighting will lower the sensitivity.  Later, when 

k=2, weighting at r=0.5 gives the best sensitivity. For k is 3, r should be chosen at about 

0.3. For k is around 5, r should be 0.2. For k is about 10, r should be 0.1.  For k is as large 

as 30, r should be as small as 0.04. Our results indicate but do not resolve whether larger 



 

 

r is mandatory if the number of time intervals is small. Hence, these results are not fully 

consistent with the results based on ARL criteria in LCWR and Prabhu and Runger 

(1997). 

Shift Effects and the Measure of Sensitivity - Dispersion Shift 

A shift in the dispersion parameter is a change in the process covariance matrix. Yeh, 

Huwang, and Wu (2004) studied a likelihood-ratio-based EWMA approach for 

multivariate variability. We now consider the MEWMA or chart by building the Hotelling 

T
2
 on the in-control covariance matrix. For out-of-control processes, the theoretical 

distribution which is the basis for constructing the chart is not clear. Moreover, if the 

mean of ix  is still zero, the theorems on quadratic form (see Appendox1) are directly 

applicable. Suppose a shift from  to 1 occurs at 0i i k  , (0ki).  Since the covariance 

matrix is positively definite, there exists a matrix C so that i ix Cu  and 1 'C C    after 

the time point 0i . The chart statistic is still expressed in the form of (4) and (5) or (7) and 

(8) except x  is actually shifted.  Since the covariance of x  is 

 
0

1
( ')

k

i

I
E xx

I

 
  

 
 .      (13) 

The matrix U is (for common weight r, i.e. (4) and (5))  

0 0

1

11( ')( ) ork rki p

r

ri k p ri p

R R I
U E xx R

R I R I




   

    
   

    (14) 

where rkR , 
0riR , 

0rkiR , and 
0ri kR  are partition matrices of rR  which is partitioned 

according to shift occurrence time 0i . The eigenvalues of U depends on rkR , 
0riR , and 

1

1

  , and the eigenvalues of UU depends on all the four partitioned matrices of rR .  We 



 

 

can easily verify through simulation that the eigenvalues of the partitioned rR  does differ 

for varying values of r.  Therefore, the distribution of the chart statistic is still chi-square 

but with parameter shift that depend on the exponential weight r (i.e., g  and v  will be 

dependent on r instead of being 1 and p). The departure from the in-control statistic’s 

distribution determines how quickly on average the control chart detects the shift.  

To design a sensitivity measure for the detection of the out-of-control status due  

to dispersion change, we suggest the use of the ratio between the variance for the out-of-

control and the variance for the in-control chart statistics. Since the in-control chart 

statistic is 2 ( )p , its variance is 2p. The variance of the out-of-control chart statistic is 

2 ( )trace UU , where U is given in (14). We have the sensitivity 

2

( )trace UU

p
         (15) 

Alternatively, we use the ratio of the standard deviations, which is the square root of (15), 

to measure sensitivity.  

 To show for purposes of comparison the effectiveness of r on sensitivity 2 . 

Although may be used in practice, we illustrate by considering some particular cases that 

the 3-dimensional processes’ covariance matrix shifts from  to 1 at time point 0i i k  , 

(0ki). One of the cases is the dispersion shift is in such a way that 

1

1

1 0.5 1.5

0.5 2 0.75

1.5 0.75 3



 
 

  
 
  

      (16) 

Substituting (16) in (14), we calculate 2  for different r and k (k defined previously 

relating to the time point.). The result, shown in Figure 2, indicates that larger r yields 



 

 

higher sensitivity 2 . If r is equal to unity (which be rare, if at all) it would not indicate 

that EWMA charts are not superior to ordinary Shewhart control charts [Shewhart, 1931 

and 1939]. We also examined several cases of 1

1

  .  As long as the variance for each 

process increases (i.e. the diagonal elements of 1

1

   are great than one), larger r is 

preferred. This indicates that the current sample information is more important.  

From the analysis, we see the selection of the exponential coefficient is crucial in the 

decision to conclude that the process is out of control or not. The process being the surveillance 

indicates that for MEWMA control charts the coefficient is a crucial parameter for assessing 

whether that each sample observation is in-control or out of control. Some solutions to this is to 

determine the optimal coefficient in the MEWMA and find that value for the coefficient that 

minimizes the sum of squares of the error term for the predations. This would be a multivariate 

least squares solution. 

The 3-dimensional processes’ covariance matrix shifts from  to 1 at time 

point 0i i k  , (0ki). One of the cases is the dispersion shift is in such a way that 

1

1

1 0.5 1.5

0.5 2 0.75

1.5 0.75 3



 
 

  
 
  

      (16) 

 

Substituting (16) in (14), we calculate 2  for different r and k (k defined previously 

relating to the time point.). The result, shown in Figure 2, indicates that larger r yields 

higher sensitivity 2 . If r is equal to unity (which be rare, if at all) it would not indicate 

that EWMA charts are not superior to ordinary Shewhart control charts. We also 

examined several cases of 1

1

  .  As long as the variance for each process increases (i.e. 



 

 

the diagonal elements of 1

1

   are great than one), larger r is preferred. This indicates 

that the current sample information is more important. If at least one of the process 

variances decreases rather than increases, smaller r is preferred.  

Under Summary 

  We studied the construction of MEWMA process control as it applies in health 

care applications.. We proposed sensitivity ratios as a measure of the effects of the mean 

shift and dispersion shift. Using this sensitivity measure, we designed the optimal 

exponential weighting factor, which is consistent to results reported before in control 

chart applications. Although ARL is the usual measure for SPC chart performance, it is 

by no means the only criterion, and it has shortcomings. Our proposed sensitivity 

measure has certain advantages. It is directly derived from the distributions of the process 

statistic; hence, it is not constrained. This makes the sensitivity measure have a broad 

range to fit varying situations. Furthermore, we see and examine the benefits of 

monitoring by MEWMA methods over the simpler univariate and EWMA methods. 

  We discussed the MEWMA chart on processes in presence of serial correlation by 

considering an adjustment to the best exponential weighting factor according to the information 

on serial correlation. In a future study, one may determine if the mean shift and variability shift 

occur at the same time and determine the magnitude of these effects. We can surmise that the 

issue if greatest when one effect is much greater than the other. However, this will be for future 

study. Future research, will be in the development of improvements in charts based on ARL. In 

depth knowledge on the distribution of the chart statistic may suggest a special way of 

constructing the variance-covariance matrix for the MEWMA scheme on multivariate 

moving-average processes.  Using the sensitivity measure, we may investigate the role of 

serial correlation of the process in the structure of the chart statistic, and its impact on the 



 

 

sensitivity performance for a special process pattern (VMA (1)). This allows us to 

consider adjusting the optimal exponential weighting factor according to the information 

on serial correlation.  

 Future studies could examine the process monitoring when mean and variation shifts 

occur simultaneously. Which shift would have the greater effect on the monitoring the 

forecast and which shift dominates and at what levels? There is much to learn from using 

MEWMA especially in the light of economic and social processes which may have much 

great numbers of variables to consider than many applications in health sciences. 
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Figure 1 (a) The Sensitivity Factor rkS  for Mean Shift, large i (i=200) 

'': k=1;   '- .': k=2;   '': k=3;   '+': k=5;   '': k=7 
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Figure 1 (b) The Sensitivity Factor rkS  for Mean Shift, large i (i=200) 

'': k=5;   '- .': k=10;   '': k=15;   '+': k=20;   '': k=30 
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Figure 1 (c). The Sensitivity Factor rkS   for Mean Shift, small i (i=10) 

'': k=1;   '- .': k=2;   '': k=3;   '+': k=5;   '': k=7 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. The Sensitivity 2  of M-EWMA Chart for Dispersion Shift, (i=40) 

'': k=5;   '- .': k=10;   '': k=15;   '+': k=20;   '': k=30 
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Figure 3 (a) ( )rkS   for Sensitivity 2  of M-EWMA Chart for Dispersion Shift, k=2 

Staring State (i=10)  

'- .':  = -0.8;   '':  = -0.5; ‘+’:  = -0.2;   '':  =0;  '':  =0.2; ‘’:  =0.5; ‘- -‘: =0.8; 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3 (b) ( )rkS   for Sensitivity 2  of M-EWMA Chart for Dispersion Shift, k=5 

Staring State (i=10)  

'- .':  = -0.8;   '':  = -0.5; ‘+’:  = -0.2;   '':  =0;  '':  =0.2; ‘’:  =0.5; ‘- -‘: =0.8; 
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Figure 3 (c) ( )rkS   for Sensitivity 2  of M-EWMA Chart for Dispersion Shift, k=10 

Steady State (i=100)  

'- .':  = -0.8;   '':  = -0.5; ‘+’:  = -0.2;   '':  =0;  '':  =0.2; ‘’:  =0.5; ‘- -‘: =0.8; 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3 (d) ( )rkS   for Sensitivity 2  of M-EWMA Chart for Dispersion Shift, k=30 

Steady State (i=100)  

'- .':  = -0.8;   '':  = -0.5; ‘+’:  = -0.2;   '':  =0;  '':  =0.2; ‘’:  =0.5; ‘- -‘: =0.8; 
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