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Dimer and trimer fluctuations in the s= 1
2 transverseXX chain

Oleg Derzhko,1,2,* Taras Krokhmalskii,1 Joachim Stolze,3 and Gerhard Müller4
1Institute for Condensed Matter Physics, National Academy of Sciences of Ukraine, 1 Svientsitskii Street, L’viv-11 79011, Ukraine

2Max-Planck-Institut für Physik Komplexer Systeme, Nöthnitzer Straße 38, 01187 Dresden, Germany
3Institut für Physik, Universität Dortmund, 44221 Dortmund, Germany

4Department of Physics, University of Rhode Island, Kingston, Rhode Island 02881-0817, USA
sReceived 10 November 2004; published 31 March 2005d

Exact results for the dynamic dimer and trimer structure factors of the one-dimensionals= 1
2 XX model in a

transverse magnetic fieldsizd are presented and discussed in relation to known exact results for the dynamic
spin structure factors. In the framework of the Jordan-Wigner representation, the accessible spectrum of the
dimer fluctuation operator is limited to two-fermion excitations, whereas that of the trimer fluctuation operator
involves two- and four-fermion excitations. The spectral boundaries, soft modes, and singularity structure of
the four-fermion excitation continuum as probed by the dynamic trimer structure factor are examined and
compared to corresponding properties of the two-fermion excitation continuum, as probed by the dynamic
dimer and transverse spin structure factors.

DOI: 10.1103/PhysRevB.71.104432 PACS numberssd: 75.10.2b

I. INTRODUCTION

The theoretical and computational study of frequency-
resolved quantum fluctuations and thermal fluctuations in
many-body model systems is an important area of research
for several reasons. Such fluctuations are observable directly
or indirectly by a host of measuring techniques used in
condensed-matter physics and materials science. The shape
of the spectrumsdispersions, bandwidths, gaps, soft modes,
etc.d, the spectral-weight distributions, and the singularity
structure of the dynamic structure factors as measured or
calculated for specific fluctuation operators yield detailed in-
sights into the state of the material and reveal important
clues about the susceptibility of the system to phase transi-
tions with order parameters modeled after the fluctuation op-
erators at hand.1

An increasing number of exactly solvable quantum many-
body model systems turn out to be relevant for situations
where certain degrees of freedom of a material are kinemati-
cally constrained to one spatial dimension. Many such situ-
ations offer the most detailed comparisons in many-body dy-
namics of exact theoretical results with direct experimental
observation.2–4

Various properties of dynamic spin structure factors of
quantum spin chain models are observable in quasi-one-
dimensional magnetic insulators, for example, via magnetic
neutron scattering.5 The properties of dynamic dimer and
trimer structure factors, on the other hand, are important in-
dicators of structural phase transitions driven by magnetic
interactions, such as in spin-Peierls compounds. Dimer fluc-
tuations are key participants in phonon-assisted optical ab-
sorption processes of magnetic chain compounds and are
thus observable in optical conductivity measurements.6–10

Here we consider the exactly solvables= 1
2 XX chain with

a magnetic field in the direction transverse to the spin cou-
pling sin spin spaced.11,12 The Hamiltonian reads

H = o
n=1

N

Vsn
z + o

n=1

N

Jssn
xsn+1

x + sn
ysn+1

y d. s1.1d

We setgmB=1, "=1, use the exchange constant as the en-
ergy unit, and measure the magnetic fieldV in units of J.
The Jordan-Wigner transformation to spinless lattice fermi-
ons maintains the bilinear operator structure,

H = o
n=1

N

VScn
†cn −

1

2
D +

1

2o
n=1

N

Jscn
†cn+1 − cncn+1

† d. s1.2d

A Fourier transform,ck=N−1/2on=1
N expsikndcn, brings s1.2d

into diagonal form

H = o
k

LkSck
†ck −

1

2
D, Lk = V + J cosk. s1.3d

For periodic boundary conditions ins1.1d the allowed values
of the fermion momentaki depend on whether the numberNf

of fermions in the system is even or odd:ki Phs2p /Ndsn
+ 1

2
dj if Nf is even orki P hs2p /Ndnj if Nf is odd. Fermion

momenta within the first Brillouin zone are specified by in-
tegers n=−N/2 ,−N/2+1,… ,N/2−1 sif N is evend or n
=−sN−1d /2 ,−sN−1d /2+1,… ,sN−1d /2 sif N is oddd. The
Fermi level in the bandLk is controlled by the magnetic field
V. The number of fermions can vary between an empty band
sNf =0d and a full bandsNf =Nd and is related to the quantum
numberSz sthe z component of the total spind of the same
model in the spin representation:Sz=Nf −N/2.

The dimer and trimer fluctuation operators for theXX
models1.1d will be introduced in Sec. II. The two- and four-
fermion dynamic structure factors associated with these fluc-
tuation operators will be discussed in Secs. III and IV, re-
spectively. Finally, in Sec. V we give the conclusions and
perspectives for future work.
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II. FLUCTUATION OPERATORS AND DYNAMIC
STRUCTURE FACTORS

Most fluctuation operators of interest are constructed from
local operatorsAn of the model system under consideration

Ak =
1

ÎN
o
n=1

N

expsikndAn. s2.1d

Associated with each fluctuation operators2.1d is a dynamic
structure factor,

SAAsk,vd = 2po
ll8

exps− bEl8d

Z
ukl8uAkullu2dsv − El + El8d,

s2.2d

which describes fluctuations of a specific kind. HereEl and
ull are the eigenvalues and the eigenvectors ofH, andZ is
the partition function. Of particular interest is the zero-
temperature limitT=0 si.e., b→`d, where the thermal fluc-
tuations fade away leaving pure quantum fluctuations in the
wake. What remains ins2.2d are transitions between the
ground state and all excited states that can be reached by the
fluctuation operatorAk

SAAsk,vd =
sb→`d

2po
l

ukGSuAkullu2dsv − vld, vl = El − EGS.

s2.3d

The dynamically relevant spectrum observable ins2.2d or
s2.3d may vary considerably between fluctuation operators.
Among other things, the spectrum is sensitive to their sym-
metry properties.

For thes= 1
2 transverseXX chains1.1d, the most important

and most widely studied dynamic structure factors are those
for the local spin operators

sn
z = cn

†cn −
1

2
, sn

+ = sn
x + isn

y = cn
† expSipo

j=1

n−1

cj
†cjD,

sn
− = sn

x − isn
y = expS− ipo

j=1

n−1

cj
†cjDcn. s2.4d

At zero temperature the dynamic spin structure factor
Szzsk ,vd is known to couple exclusively to the continuum of
particle-hole excitations in the fermion representation,
whereasSxxsk ,vd=Syysk ,vd couples to excitations involving
an arbitrarily high number of fermion excitations from the
ground state.13,14

The fluctuation operators considered here are constructed
from local spin operators on nearest and next-nearest neigh-
bor sites. The dimer fluctuation operatorDk and trimer fluc-
tuation operatorTk are obtained vias2.1d from

Dn = sn
xsn+1

x + sn
ysn+1

y = 1
2scn

†cn+1 − cncn+1
† d s2.5d

and

Tn = sn
xsn+2

x + sn
ysn+2

y

= 1
2scn

†cn+2 − cncn+2
† − 2cn

†cn+1
† cn+1cn+2 + 2cncn+1

† cn+1cn+2
† d,

s2.6d

respectively. There is no unique way of defining dimer and
trimer fluctuation operators. The most suitable choice de-
pends on the nature and symmetry of the model system at
hand. The operatorss2.5d and s2.6d have the advantage that
the associated dynamic structure factorsSDDsk ,vd and
STTsk ,vd can be analyzed exactly for thes= 1

2 transverseXX
chain s1.1d in the fermion representation.

As a motivation for the dimer and trimer operators used in
this study, we offer a twofold argument. For a completely
dimerized state, where nearest-neighbor spin correlations al-
ternate between zero and a nonzero value along the chain,
the operatorÎNDp plays the role of dimer-order parameter.
Likewise, for a completely trimerized state, where next-
nearest neighbor spin correlations assume a period-three se-
quence of values zero, zero, nonzero, the operatorÎNT2p/3
plays the role of trimer-order parameter.

Conversely, if we perturb the uniformXX Hamiltonian
s1.1d by interactions of the form

HD = «o
n=1

N

cosspndDn s2.7d

or

HT = «o
n=1

N

cosS2p

3
nDTn, s2.8d

the ground state becomes dimerized or trimerized, respec-
tively. In the former case, nearest-neighbor correlations are
modified by period-two perturbative corrections of order −«,
+« and in the latter case by period-three corrections of order
−1

2«, −1
2«, +«.

We may formally introduce the polymer fluctuation opera-
tor of orderl, Pk

sld, via s2.1d from

Pn
sld = sn

xsn+l
x + sn

ysn+l
y . s2.9d

It includes the dimer and trimer operators forl =1,2, respec-
tively: Pn

s1d=Dn, Pn
s2d=Tn. From the fermion representation

of the polymer operators2.9d as carried out explicitly ins2.5d
and s2.6d for the lowest two orders, it is evident that the
dynamic polymer structure factorSPPsk ,vd at zero tempera-
ture will involve 2m-fermion excitations withm=1,2,… , l
from the ground state. For an infinitely long chainsN→`d
the polymer fluctuation operator and the functionSPPsk ,vd
may thus serve useful roles in attempts to understand the
enormously complex dynamic spin structure factors
Sxxsk ,vd=Syysk ,vd. Such tools by which the complexity of
the dynamically relevant excitation spectrum can be gradu-
ally and systematically increased are not only useful for the
calculations in the fermion representation as performed here
but also for the recently developed techniques of calculating
transition rates for theXX model in the framework of the
Bethe ansatz.15–17 The time-dependent polymer correlation
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function is related, in the limitl →`, to time-dependent spin
correlation functions as follows:

kPn
sldstdPn+m

sld s0dl →
sl→`d

2ksn
xstdsn+m

x s0dl2 + 2ksn
xstdsn+m

y s0dl2.

s2.10d

Note thatksn
xstdsn+m

y s0dl is nonzero only ifVÞ0.

III. TWO-FERMION DYNAMIC STRUCTURE FACTORS

We start with the dynamic quantities, which are governed
by particle-hole excitations. The equilibrium time-dependent
correlation functions for the operatorssn

zstd andDnstd can be
evaluated directly

ksn
zstdsn+l

z s0dl − kszl2

=
1

N2 o
k1,k2

e−isk1−k2dl expfisLk1
− Lk2

dtgnk1
s1 − nk2

d,

s3.1d

kDnstdDn+ls0dl − kDl2

=
1

N2 o
k1,k2

cos2
k1 + k2

2
e−isk1−k2dl

3expsifLk1
− Lk2

gtdnk1
s1 − nk2

d, s3.2d

wherenk=1/f1+expsbLkdg is the Fermi function and

kszl =
1

N
o
n=1

N

ksn
zl = −

1

2N
o
k

tanh
bLk

2
, s3.3d

kDl =
1

N
o
n=1

N

kDnl = −
1

2N
o
k

cosk tanh
bLk

2
. s3.4d

The associated dynamic structure factors,

SAAsk,vd = o
l=1

N

exps− ikldE
−`

`

dt expsivtd

3k(Anstd − kAl)(An+ls0d − kAl)l, s3.5d

all of which involve two-fermion transitions, are obtained by
Fourier transform. The resulting expressions forN→` can
be brought into the form

Szzsk,vd =E
−p

p

dk1nk1
s1 − nk1+kddsv + Lk1

− Lk1+kd

= o
k!

nk!s1 − nk+k!d

2UJ sin
k

2
cosSk

2
+ k!DU , s3.6d

SDDsk,vd = o
k!

cos2Sk

2
+ k!Dnk!s1 − nk+k!d

2UJ sin
k

2
cosSk

2
+ k!DU , s3.7d

where −pøk!øp are the solutions of the equation

v = − 2J sin
k

2
sinSk

2
+ k!D . s3.8d

The dynamic structure factorss3.6d and s3.7d are gov-
erned by the two-fermionsparticle-holed excitation con-
tinuum, the properties of which were examined in Refs. 18
and 19. This continuum is well visible in Figs. 1 and 2. At
zero temperature,T=0, the two-fermion excitation con-
tinuum has the following lower, middle and upper bound-
aries in thesk ,vd-planeswe assume that 0økøp in the rest
of the equations of this section; these equations are valid also
for −pøkø0 after the changek→−kd

vl

uJu
= 2 sin

k

2
UsinSk

2
− aDU , s3.9d

vm

uJu
= 2 sin

k

2
sinSk

2
+ aD , s3.10d

vu

uJu
=52 sin

k

2
sinSk

2
+ aD , if 0 ø k ø p − 2a,

2 sin
k

2
, if p − 2a ø k ø p,

s3.11d

respectively. The parametera=arccossV / uJud varies fromp

FIG. 1. Szzsk ,vd at T=0 andsad V=0, sbd V=0.3, scd V=0.9,
and sdd at T→` sindependent ofV; only vù0 is shownd.
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whenV=−uJu to 0 whenV= uJu. Thev profiles at fixedk of
the two-fermion dynamic structure factors may exhibit
square-root divergencessa common density-of-states effect
in one dimensiond whenv→2uJusinsk /2d. At T.0 the lower
boundary of two-fermion excitation continuum is smeared

out. The spectral weight ins3.6d ands3.7d is now confined to
uvuø2uJusinsk /2d.

Closed-form expressions for the two-fermion dynamic
structure factorss3.6d and s3.7d exist in the low- and high-
temperature limits. AtT=0 we have

Szzsk,vd =
1

Î4J2 sin2 k

2
− v2

·HQsv − vldQsvu − vd, if 0 ø k ø p − 2a,

fQsv − vld + Qsv − vmdgQsvu − vd, if p − 2a ø k ø p,
s3.12d

SDDsk,vd =

Î4J2 sin2 k

2
− v2

4J2 sin2 k

2

·HQsv − vldQsvu − vd, if 0 ø k ø p − 2a,

fQsv − vld + Qsv − vmdgQsvu − vd, if p − 2a ø k ø p,
s3.13d

and atT→` we have

Szzsk,vd =
1

2Î4J2 sin2 k

2
− v2

QS2uJusin
k

2
− uvuD , s3.14d

SDDsk,vd =

Î4J2 sin2 k

2
− v2

8J2 sin2 k

2

QS2uJusin
k

2
− uvuD . s3.15d

The zero-temperature results forSzzsk ,vd can be found in
Eq. s2.3d of Ref. 18 and forSDDsk ,vd at V=0 in Eq.s3.2d of
Ref. 8.

In Figs. 1 and 2 we show the dynamic structure factors
s3.6d ands3.7d at zero temperatureT=0 and different values
of the transverse fieldfFigs. 1sad–1scd and 2sad–2scdg, and at
T→` fFigs. 1sdd and 2sddg. The results forT→` are inde-
pendent ofV. As we can see, the two-fermion dynamic
structure factors are nonzero within the two-fermion excita-
tion continuum in thesk ,vd plane. Their spectral-weight dis-
tributions are controlled by the Fermi functions, the multi-
plicity of the solution of Eq.s3.8d, the singularities in the
density of one-particle states, and the explicit form of the rest
of the integrand ins3.6d ands3.7d. Another two-fermion dy-
namic quantity will be presented in Sec. IV, namely, the two-
fermion contribution to the dynamic trimer structure factor,
STT

s2dsk ,vd.

IV. FOUR-FERMION DYNAMIC STRUCTURE FACTOR

Next we consider the dynamics of the trimer fluctuations.
The method remains the same but its execution is more te-
dious. In addition to two-fermion transitions also four-
fermion transitions contribute to the trimer fluctuations. The
expression for the equilibrium time-dependent trimer-trimer
correlation function reads

kTnstdTn+ls0dl − kTl2

=
1

N2 o
k1,k2

Cs2dsk1,k2de−isk1−k2dl expfisLk1
− Lk2

dtg

3nk1
s1 − nk2

d +
1

N4 o
k1,k2,k3,k4

Cs4dsk1,k2,k3,k4d

3e−isk1+k2−k3−k4dl expfisLk1
+ Lk2

− Lk3
− Lk4

dtg

3 nk1
nk2

s1 − nk3
ds1 − nk4

d, s4.1d

where
FIG. 2. SDDsk ,vd at T=0 andsad V=0, sbd V=0.3, scd V=0.9,

and sdd at T→` sindependent ofV; only vù0 is shownd.
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kTl =
1

N
o
n=1

N

kTnl = c2 + 2c1
2 − 2c0c2, s4.2d

Cs2dsk1,k2d = s1 − 2c0d2 cos2sk1 + k2d + 4c1s1 − 2c0d

3Fcos2Sk1 +
k2

2
D + cos2Sk1

2
+ k2DG

+ 4c1
2scos2 k1 + cos2 k2d + 8s− c2 + c1

2 + 2c0c2d

3cos2
k1 + k2

2
+ 8c1

2 cos2
k1 − k2

2

+ 4c1s1 − 2c0 − 4c2dScos2
k1

2
+ cos2

k2

2
D + 4c2

− 8c1 − 8c1
2 + 4c2

2 + 16c0c1 − 8c0c2 + 16c1c2,

s4.3d

Cs4dsk1,k2,k3,k4d = 16 sin2
k1 − k2

2
sin2 k3 − k4

2

3cos2
k1 + k2 + k3 + k4

2
. s4.4d

Here we have introduced the functioncp=s1/
Ndokcosspkdnk. For N→` and at zero temperature we have
c0=1 if Vø−uJu, c0=a /p if − uJuøVø uJu, c0=0 if uJuøV,
cp=s−sgnsJddp sinspad / sppd if uVuø uJu andcp=0 otherwise
sp=1,2,…d. At T→` we havecp= 1

2dp,0. The resulting dy-
namic trimer structure factors3.5d for N→` then has the
following form:

STTsk,vd = STT
s2dsk,vd + STT

s4dsk,vd, s4.5d

where

STT
s2dsk,vd =E

−p

p

dk1C
s2dsk1,k1 + kdnk1

s1 − nk1+kd

3dsv + Lk1
− Lk1+kd, s4.6d

STT
s4dsk,vd =

1

4p2E
−p

p

dk1E
−p

p

dk2E dk3C
s4dsk1,k2,k3,k1 + k2

− k3 + kdnk1
nk2

s1 − nk3
ds1 − nk1+k2−k3+kd

3dsv + Lk1
+ Lk2

− Lk3
− Lk1+k2−k3+kd. s4.7d

The spectral weight in this quantity comes from both the
two-fermion sone particle and one holed excitation con-
tinuum and the four-fermionstwo particles and two holesd
excitation continuum. Let us first discuss the properties of
the four-fermion excitation continuum and then the proper-
ties of STTsk ,vd. At T=0 the four-fermion excitation con-
tinuum sfor J=−uJu,0d is determined by the conditions

v

uJu
= cosk1 + cosk2 − cosk3 − cosk4,

k = − k1 − k2 + k3 + k4fmods2pdg, cosk1 ù
V

uJu
,

cosk2 ù
V

uJu
, cosk3 ø

V

uJu
, cosk4 ø

V

uJu
, s4.8d

−pøk1,2,3øp , −pøkøp. Equationss4.8d imply that the
four-fermion excitation continuumslike the two-fermion ex-
citation continuumd exists only if the magnetic field does not
exceed the saturation field:uVuø uJu.

An analytical expression for the lower boundary of the
four-fermion excitation continuum in thesk ,vd plane de-
pends onV and k and is given by one of the following
expressionsssee the Appendix for additional detailsd:

vl
s1d

uJu
= 2 sin

uku
2

sinSa −
uku
2
D , s4.9d

vl
s2d

uJu
= 4 cos

k

4
cosSa +

uku
4
D , s4.10d

vl
s3d

uJu
= − 2 sinSa +

uku
2
DsinS2a +

uku
2
D , s4.11d

vl
s4d

uJu
= − 2 sinSa −

uku
2
DsinS2a −

uku
2
D , s4.12d

FIG. 3. Lower boundaryvl =minsvl
s jdd, j =1,… ,5 of the four-

fermion excitation continuum vs wave numberk and transverse
field V sfor uJu=1d.
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FIG. 4. Lower and upper
boundaries of the two- and four-
fermion continua for uJu=1 and
V=0, 0.3, 0.6, and 0.9. The two-
fermion continuum is shown
shaded.

FIG. 5. Ssk ,vd as given in
s4.28d vs v at k=0,p /2 ,2p /3 ,p
with Ssk1,k2,k3,kd=1 sbold
curvesd, and Ssk1,k2,k3,kd
=nk1

nk2
s1−nk3

ds1−nk1+k2−k3+kd
for V=0 ssolid curvesd, V=0.3
slong-dashed curvesd, V=0.6
sshort-dashed curvesd, V=0.9
sdotted curvesd. Vertical lines
mark the values ofvs

s jd, j =1,2,3 as
given in s4.25d–s4.27d. Note the
different vertical scales left and
right.
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vl
s5d

uJu
= − 4 sin

uku
4

sinSa −
uku
4
D . s4.13d

The range ink over which for a givenV one of the expres-
sions s4.9d–s4.13d forms the lower boundary of the four-
fermion continuum can be read off Fig. 3. The darkness in
this gray-scale plot is a measure of the size of the energy
threshold of the four-fermion continuumswhite means zero
excitation energy, i.e., a soft moded. The boundary between
the regioni swherevl

sid is the lower boundaryd and the region
j swherevl

s jd is the lower boundaryd follows from the match-
ing condition vl

sid=vl
s jd and is given by the formulauku

= l i jsad where

l12sad = 4 arctan
tana − Îtan2 a − 3

3
, uku ø

2p

3
,

s4.14d

l13sad = p − a,
p

2
ø uku ø

2p

3
, s4.15d

l14sad = 2a, s4.16d

l23sad = 2p − 4a, s4.17d

l34sad = uku + cosa −
1

2
,

2p

3
ø uku ø p, s4.18d

l45sad = 4a. s4.19d

The boundary between regions 2 and 4 is determined by the
cubic equation

FIG. 6. STTsk ,vd at T=0 andV=0. Separate plots are shown for
sad STT

s2dsk ,vd, sbd STT
s4dsk ,vd, andscd the sumSTTsk ,vd.

FIG. 7. STTsk ,vd at T=0 andV=0.3. Separate plots are shown
for sad STT

s2dsk ,vd, sbd STT
s4dsk ,vd, andscd the sumSTTsk ,vd.
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Ssinuku − 2 sin
uku
2
Dtan3 a + S3 + 2 cos

k

2
+ 3 coskDtan2 a

− S2 sin
uku
2

+ 3 sinukuDtana + 3 + 2 cos
k

2
− cosk = 0.

s4.20d

Typical lower boundaries of the four-fermion continuum for
several values ofV can be seen in Fig. 4. The soft modes
according tos4.9d–s4.13d are given by

uk0u = h0,2p − 4a,2a,4aj. s4.21d

Alternatively, the soft modess4.21d may be determined di-
rectly from s4.8d. They occur when cosk1=cosk2=cosk3
=cosk4=cosa.

The upper boundary of the four-fermion continuum for
0øVø uJu /Î2 is given by

vu
s1d

uJu
= 4 cos

k

4
. s4.22d

For uJu /Î2øVø uJu the upper boundary is given bys4.22d
only if ukuø4a, whereas, if 4aø ukuøp, it is given by

vu
s2d

uJu
= 4 cos

k

4
cosSa −

uku
4
D s4.23d

ssee the Appendixd. The upper boundaries of the four-
fermion continuum for several values ofV can be seen in
Fig. 4 in comparison with the corresponding two-fermion
continuum.

The four-fermion continuum always contains the two-
fermion continuum. The lower boundaries coincide in part.
The upper boundaries are different. In the zero field case we
have vl = uJusinuku for both continua. The upper boundaries

FIG. 8. STTsk ,vd at T=0 andV=0.6. Separate plots are shown
for sad STT

s2dsk ,vd, sbd STT
s4dsk ,vd, andscd the sumSTTsk ,vd.

FIG. 9. STTsk ,vd at T=0 andV=0.9. Separate plots are shown
for sad STT

s2dsk ,vd, sbd STT
s4dsk ,vd, andscd the sumSTTsk ,vd.
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arevu=4uJucossk /4d andvu=2uJusinsuku /2d for the two- and
four-fermion continua, respectively. As the saturation field
V= uJu is approached from below, the two-fermion con-
tinuum narrows to a branch and then disappears whereas the

four-fermion continuum remains an extended region,
bounded byvl =4uJusin2sk /4d and vu=4uJucos2sk /4d, and
then disappears abruptly.

Now consider the equation

Îo
j=1

3 H ]

]k j
fcosk1 + cosk2 − cosk3 − cossk + k1 + k2 − k3dgJ2

= 0. s4.24d

It is satisfied for

vs
s1d

uJu
= 2 sin

uku
2

, s4.25d

vs
s2d

uJu
= 4 sin

uku
4

, s4.26d

vs
s3d

uJu
= 4 cos

k

4
. s4.27d

Thus, for k or v approaching the curvess4.25d–s4.27d in
sk ,vd space, the quantity

Ssk,vd =E
−p

p

dk1E
−p

p

dk2E
−p

p

dk3Ssk1,k2,k3,kd

3 dfv − uJucosk1 − uJucosk2 + uJucosk3

+ uJucossk + k1 + k2 − k3dg s4.28d

exhibits cusp singularitiessakin to density-of-states effects in
three dimensionsd. The exact nature of the cusps also de-
pends on the factorSsk1,k2,k3,kd, which varies between
different dynamic structure factors with a four-fermion part.
It always includes the factornk1

nk2
s1−nk3

ds1−nk1+k2−k3+kd as
can be seen in expressions4.7d. In Fig. 5 we show thev
dependence of Ssk ,vd as given by s4.28d at k
=0,p /2 ,2p /3 ,p when Ssk1,k2,k3,kd=1 and when
Ssk1,k2,k3,kd=nk1

nk2
s1−nk3

ds1−nk1+k2−k3+kd for several
values ofV.

At T.0 the lower boundary of the four-fermion excita-
tion continuum is smeared out and the upper boundary be-
comesvu=4uJucossk /4d.

The properties of the multimagnon continua of quantum
spin chains have been examined in some detail in the recent
paper of Barnes.20 In particular, the lower and upper bound-
aries of the two- and higher-magnon continua were deter-
mined. It was shown that the boundary curves under certain
conditions may exhibit discontinuous changes in composi-
tion and cusps. Moreover, a behavior of the density ofstwo-
and higher-magnond states on the continuum boundaries and
within the continuum was considered and the existence of
discontinuities was pointed out. These features of one-
dimensional quantum spin systems are expected to become

accessible experimentally in high-resolution inelastic neutron
scattering on alternating chain and ladder materials.

Interestingly, thes= 1
2 transverseXX chain, which can be

mapped onto noninteracting spinless fermions, provides an
excellent example of a system whose dynamic properties are
governed by continua of multifermion excitations. In particu-
lar, the dynamics of trimer fluctuations provides a direct mo-

FIG. 10. STTsk ,vd at T→` sindependent ofV; only vù0 is
shownd. Separate plots are shown forsad STT

s2dsk ,vd, sbd STT
s4dsk ,vd,

and scd the sumSTTsk ,vd.
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tivation for analyzing the four-fermion excitation continuum.
Unlike in the analysis reported in Ref. 20, where the statis-
tics of the elementary excitationssmagnonsd is not known,
here the quasiparticles are known to be fermions and the
consequences are fully taken into account.

Finally, let us examine the explicit expression for the dy-
namic trimer structure factorSTTsk ,vd s4.5d. In Figs. 6–9 we
present the zero-temperature dynamic trimer structure factor
at different values ofV. In Fig. 10 we present the same
quantity at infinite temperature. We show separately the two-
fermion contributionspanels a in Figs. 6–10d and the four-
fermion contributionspanels b in Figs. 6–10d as well as the
sum of these contributionsspanels c in Figs. 6–10d. We ob-
serve how the spectral weight is spread across the four-
fermion continuum. We also see that the two-fermion contri-
bution stands out in terms of spectral weight. The two- and
four-fermion contributions are comparable in intensity atT
=0 and smallV. As V increases the two-fermion contribu-
tion becomes more important and it completely dominates as
V→ uJu. In the high-temperature limit the two-fermion con-
tribution is very dominant, but the four-fermion continuum is
still in evidence.

V. CONCLUSIONS

In summary, we have investigated some aspects of the
dynamics of thes= 1

2 transverseXX chain, examining, in par-
ticular, the dynamics of dimer and trimer operators. For this
purpose we have calculated several dynamic structure factors
on a rigorous basis within the Jordan-Wigner representation.
Although the dynamic dimer structure factorSDDsk ,vd and
the dynamic transverse spin structure factorSzzsk ,vd are
governed by fermionic one-particle–one-hole excitations, the
dynamic trimer structure factorSTTsk ,vd also contains con-
tributions from two-particle–two-hole excitations. We have
described the structure of the two- and four-fermion excita-
tion spectra in some detail and investigated the distribution
of spectral weight inSTTsk ,vd across these continua at zero
and nonzero temperature. In particular, we have established
the boundaries of the four-fermion spectral range, the loca-
tions of soft modes, and the singularity structure, which in-

cludes one- and three-dimensional density-of-states features
svan Hove singularitiesd.

An alternative technique to evaluate dynamic structure
factor of quantum spin chains is based on the Bethe ansatz
solutions.5,16,17 Recently such an approach has been applied
to the s= 1

2 XX chain.16 Moreover, the relation between
spinons or magnon quasiparticles and Jordan-Wigner fermi-
ons was discussed in some detail. It will be interesting to
interpret the two- and four-fermion excitations discussed
here in terms of the Bethe ansatz solution as studied in Ref.
16.
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APPENDIX

To find the lower and upper boundaries of the four-
fermion excitation continuums4.8d at fixed V and −pøk
øp, we search for the extrema ofv / uJu as given ins4.8d and
the values ofk1, k2, k3, andk4 at which such extrema occur.
Typical results are reported in Figs. 11slower boundaryd and
12 supper boundaryd.

In Fig. 11 we show the dependence onuku of k1, k2, k3,
and k4, wherev / uJu assumes a local minimum. We distin-
guish five different regions. The global minimum yields the
lower continuum boundary. If 0økøka,

k1 = a − k, k2 = k3 = k4 = a sA1d

and

FIG. 11. Search for the lower
boundary of the four-fermion ex-
citation continuum. Shown are the
values of k1, k2, k3, and k4 at
which a minimum of v / uJu as
given in s4.8d occurs atV=0.3uJu
and −pøkøp. The dependences
k1 and k3 on k are shown by
dashed curves, the dependences
k2 andk4 on k are shown by dot-
ted curves, the dependence of the
minimal value of v / uJu on k is
shown by solid curves.
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vl

uJu
= cossa − kd − cosa = 2 sin

k

2
sinSa −

k

2
D =

vl
s1d

uJu
;

sA2d

if kaøkøkb,

k1 = k2 = a, k3 = k4 =
k

2
+ a − p sA3d

and

vl

uJu
= 2 cosa − 2 cosSk

2
+ a − pD

= 4 cos
k

4
cosSa +

k

4
D =

vl
s2d

uJu
, sA4d

etc. The values ofka, kb, kc, andkd follow from the match-
ing conditions.

In Fig. 12 we show the dependence onuku of k1, k2, k3,
and k4, wherev / uJu assumes a local maximum. We distin-
guish two different regions. The global maximum yields the
upper continuum boundary. If 0økøkA,

k1 = k2 = −
k

4
, k3 = k4 = − p +

k

4
sA5d

and

vu

uJu
= 4 cos

k

4
=

vu
s1d

uJu
; sA6d

if kAøkøp,

k1 = k2 = − a, k3 = k4 = − a − p +
k

2
sA7d

and

vu

uJu
= 2 cosa + 2 cosSa −

k

2
D = 4 cos

k

4
cosSa −

k

4
D =

vu
s2d

uJu
,

sA8d

etc. From the matching condition we findkA=4a.
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