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Dimer and trimer fluctuations in the s=3 transverse XX chain

Oleg Derzhkd,?* Taras Krokhmalskit, Joachim Stolz&,and Gerhard Muller
linstitute for Condensed Matter Physics, National Academy of Sciences of Ukraine, 1 Svientsitskii Street, L'viv-11 79011, Ukraine
°Max-Planck-Institut fiir Physik Komplexer Systeme, Néthnitzer StraRe 38, 01187 Dresden, Germany
SInstitut fur Physik, Universitat Dortmund, 44221 Dortmund, Germany
4Department of Physics, University of Rhode Island, Kingston, Rhode Island 02881-0817, USA
(Received 10 November 2004; published 31 March 2005

Exact results for the dynamic dimer and trimer structure factors of the one-dimens'vobmx model in a
transverse magnetic fieldz) are presented and discussed in relation to known exact results for the dynamic
spin structure factors. In the framework of the Jordan-Wigner representation, the accessible spectrum of the
dimer fluctuation operator is limited to two-fermion excitations, whereas that of the trimer fluctuation operator
involves two- and four-fermion excitations. The spectral boundaries, soft modes, and singularity structure of
the four-fermion excitation continuum as probed by the dynamic trimer structure factor are examined and
compared to corresponding properties of the two-fermion excitation continuum, as probed by the dynamic
dimer and transverse spin structure factors.

DOI: 10.1103/PhysRevB.71.104432 PACS nunt®er75.10—-b
. INTRODUCTION N N
H=2 05+ 2 J(Sishs + S/Sh)- (1.1
n=1 n=1

The theoretical and computational study of frequency-
resolved quantum fluctuations and thermal fluctuations i

fmany-bodly model sySsterr??l |stant_|mportantbarea oglrej_ear(t: gy unit, and measure the magnetic fi€ddin units of J.
or several reasons. such fluctuations are observable direCtiy, o Jordan-Wigner transformation to spinless lattice fermi-

or indirectly by a host of measuring techniques used Ny o maintains the bilinear operator structure,
condensed-matter physics and materials science. The shape

e setgug=1, i=1, use the exchange constant as the en-

of the spectrum(dispersions, bandwidths, gaps, soft modes, N N
etc), the spectral-weight distributions, and the singularity H=> Q(cﬁcn—}> + 12 J(C;Cnﬂ_cncgﬂ)_ (1.2
structure of the dynamic structure factors as measured or n=1 2/ 235

calculated for specific fluctuation operators yield detailed in-
sights into the state of the material and reveal importanfA Fourier transform,cK:N‘l’ZE,’}‘:lexp(iKn)cn, brings (1.2
clues about the susceptibility of the system to phase transinto diagonal form
tions with order parameters modeled after the fluctuation op-
erators at hand. : 1

An increasing number of exactly solvable quantum many- H=2X AK(CKCK - 5) Ac=Q+Jcosk. (1.3
body model systems turn out to be relevant for situations "

where certain degrees of freedom of a material are kinemati|3Or periodic boundary conditions id.1) the allowed values

cally constrained to one spatial dimension. Many such S'tubf the fermion momenta; depend on whether the numbdér

namics of exact theoretial results with direct experimental’, S1TIONS I the systern is even or odae {(2m/N)(
P +2)} if N; is even ork e {(27r/N)n} if N; is odd. Fermion

observatiorf* momenta within the first Brillouin zone are specified by in-
Various properties of dynamic spin structure factors Oftegersn=—N/2,—N/2+1,...,N/2—1 (if N is even or n

quantum spin chain models are observable in qua5|-one:-_(N_1)/2,_(N_1)/2_|_1,m’(N_l)/2 (if N is odd. The

dimensional magnetic insulators, for example, via magnetllc“—ermi level in the band, is controlled by the magnetic field

tn(_autront sc?tten][]@.tThe pro{)hert'ii ofhdyr(;amlc _dlmert ar;q ). The number of fermions can vary between an empty band
rimer structure tactors, on the other hand, are importan 'n(Nf:O) and a full bandN;=N) and is related to the quantum

dicators of structural phase transitions driven by magneti(ﬁumbersz (the z component of the total spirof the same
interactions, such as in spin-Peierls compounds. Dimer ﬂucr'nodel in the spin representatiog=N;—N/2

tuations are key participants in phonon-assisted optical ab- 1ha dimer and trimer fluctuation operators for th&
sorption processes of magnetic chain compounds and ag&odel(1.1) will be introduced in Sec. II. The two- and four-
thus observable in optical conductivity measuremémts.  fermjion dynamic structure factors associated with these fluc-

Here we consider the exactly solvalsie; XX chain with  tuation operators will be discussed in Secs. Il and IV, re-
a magpnetic field in the direction transverse to the spin couspectively. Finally, in Sec. V we give the conclusions and
pling (in spin spacg!*?> The Hamiltonian reads perspectives for future work.

1098-0121/2005/710)/10443212)/$23.00 104432-1 ©2005 The American Physical Society
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Il. FLUCTUATION OPERATORS AND DYNAMIC T,= %q‘ﬁ_z + Sr1y§>;+2
STRUCTURE FACTORS L A . )
= 5(CrCn+2 = CnCruz2 = 2CCre1CrraCni2 + 2CiCri1Cns1Cria)
(2.6)

respectively. There is no unique way of defining dimer and

trimer fluctuation operators. The most suitable choice de-

pends on the nature and symmetry of the model system at

hand. The operator.5) and(2.6) have the advantage that

Associated with each fluctuation operat@rl) is a dynamic ~ the associated dynamic structure factdsp(«,w) and

structure factor, Sr1(k,w) can be analyzed exactly for tl&;% transverseXX
chain(1.1) in the fermion representation.

Most fluctuation operators of interest are constructed from
local operatorg\,, of the model system under consideration

N
1
A== explikn)A,. (2.2
VNn:1

exp(— BE,/) , 5 As a motivation for the dimer and trimer operators used in
San(k,0) = 27> TK)\ (ANl - B+ Ey), this study, we offer a twofold argument. For a completely
N dimerized state, where nearest-neighbor spin correlations al-

(2.2 ternate between zero and a nonzero value along the chain,
the operator/ND,, plays the role of dimer-order parameter.

which describes fluctuations of a specific kind. H&feand  |Likewise, for a completely trimerized state, where next-
I\) are the eigenvalues and the eigenvectorsiphndZ is  nearest neighbor spin correlations assume a period-three se-
the partition function. Of particular interest is the zero- quence of values Zero, zero, NONZzero, the operdT:szwls
temperature limiffT=0 (i.e., BHOO), where the thermal fluc- p|ays the role of trimer-order parameter_
tuations fade away leaving pure quantum fluctuations in the Conversely, if we perturb the uniforfXX Hamiltonian
wake. What remains ir2.2) are transitions between the (1.1) by interactions of the form
ground state and all excited states that can be reached by the

fluctuation operatoA, N

HDZSE cogmn)D, (2.7
(,84’30) n=1
Siak,w) = 272 (GIAMNPSw=-w,), w,=E,-Egs. o
A
(2.3 N

2
. Hr=g3) co —Wn>Tn, 2.8

The dynamically relevant spectrum observable(22) or n=1 3

(2.3) may vary considerably between fluctuation operators. o o
Among other things, the spectrum is sensitive to their symllhe ground state becomes dlmenzed. or tnmenzed,. respec-
metry properties. tively. In the former case, nearest-neighbor correlations are

For thes=3 transverse&XX chain(1.1), the most important modified by period-two perturbative corrections of order -
and most widely studied dynamic structure factors are thos&$ and in the latter case by period-three corrections of order

for the local spin operators ~28 738, te. _ _
We may formally introduce the polymer fluctuation opera-
) 1 ) ”5 ) tor of orderl, Pf(”, via (2.1) from
S,=CCh— =, Sy=sytisi=cpexp im2 clg |,
2 =1 Pg) = S + S (2.9
n-1
- . . It includes the dimer and trimer operators ferl,2, respec-
— XY= - Te.

Si=s-is exp( ”Tgl G CJ)C”‘ 24 tively: Pf]”:Dn, Pf):Tn. From the fermion representation

of the polymer operato(2.9) as carried out explicitly if2.5)

At zero temperature the dynamic spin structure facto@nd (2.6) for the lowest two orders, it is evident that the

S,{k,w) is known to couple exclusively to the continuum of dynamic polymer structure fact@pp(«, w) at zero tempera-

particle-hole excitations in the fermion representationture will involve 2m-fermion excitations witm=1,2,...,!

whereasS,(«, 0) =S,,(x, ») couples to excitations involving from the ground state. For an infinitely long chai— o)

an arbitrarily high number of fermion excitations from the the polymer fluctuation operator and the funct®gp(«, »)

ground staté314 may thus serve useful roles in attempts to understand the
The fluctuation operators considered here are constructegnormously complex dynamic spin structure factors

from local spin operators on nearest and next-nearest neigx(x, @) =S,(x, ®). Such tools by which the complexity of

bor sites. The dimer fluctuation opera@y, and trimer fluc-  the dynamically relevant excitation spectrum can be gradu-

tuation operatoiT,. are obtained vig2.1) from ally and systematically increased are not only useful for the
calculations in the fermion representation as performed here
Dy =88, + 8l = 3(chen — ccliy) (2.5)  but also for the recently developed techniques of calculating
transition rates for theXX model in the framework of the
and Bethe ansat?>'” The time-dependent polymer correlation

104432-2
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function is related, in the limik— oo, to time-dependent spin
correlation functions as follows:

(1—%)
(PUOPUAO)) — 2AS(DSm(0))% + 2SS, (0)).
(2.10

Note that(si(t)s!,,(0)) is nonzero only ifQ} # 0.

Ill. TWO-FERMION DYNAMIC STRUCTURE FACTORS

We start with the dynamic quantities, which are governed
by particle-hole excitations. The equilibrium time-dependent

correlation functions for the operatos§t) andD,(t) can be
evaluated directly

<S§(t)3§+u(0)> -(s)?

E e_I(Kl K2 exn] (A AKZ)t]nKl(l - nKz)’

= \2
o (3.1
(Dn(t)Dpyi(0)) = (D)?
NZKZK col f1T K2 Kl K2 ikl
Xe;p(zl[Akl - Akz]t)nkl(l —n), (3.2

wheren,=1/[1+exgBA,)] is the Fermi function and

1o 1 BA,
(sz)—ﬁrgl(sﬁ)——ﬁ%tanhT, (3.3
1 N
(D)= 2 (Do) = (3.4
n=1
The associated dynamic structure factors,
N »
Saalk, @) = >, exp(— ixl) J dt expli wt)
=1 —o0
X{(An(t) = (A (A (0) = (A)), (3.9

all of which involve two-fermion transitions, are obtained by
Fourier transform. The resulting expressions forc can
be brought into the form

Sk w) = f drgne (1-n, ) dlo+ A=Ay

Ne(1 =N,y )

=> : (3.6)
* . K K
K 2 Jsm—cos<—+;<*>
2 2
CO§<§ + K*)nK*(l - nK+K*)
Sop(K, @) = 2, , (3.7

*
K

. K K
2‘Jsm—cos<—+;<*)
2 2

where -m< k* < 7 are the solutions of the equation

PHYSICAL REVIEW B 71, 104432(2005

2 2

8 1

2

14

K

FIG. 1. S,{x,w) at T=0 and(a) 1=0, (b) 1=0.3,(c) 2=0.9,
and(d) at T—o (independent of); only =0 is shown.

)

The dynamic structure factor8.6) and (3.7) are gov-
erned by the two-fermion(particle-hole excitation con-
tinuum, the properties of which were examined in Refs. 18
and 19. This continuum is well visible in Figs. 1 and 2. At
zero temperatureT=0, the two-fermion excitation con-
tinuum has the following lower, middle and upper bound-
aries in the( k, w)-plane(we assume that€ «< 7 in the rest
of the equations of this section; these equations are valid also
for —7m< k<0 after the change — —«)

=-2] sinf sin(f + (3.8
w = 2 2 .

2—25|n— sm(f— ) (3.9
1] 21727« '
ﬁ":zsinfsin(’—‘m), (3.10
19| 2 2
. K [ K ,
Zsm—sm(—+a>, if0 < k<w-2a,
wy 2 2
i
I ZSing, if m—2a< k<,
(3.11

respectively. The parameter=arcco$()/|J|) varies from=

104432-3
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whenQ=-|J| to 0 whenQ=|J|. The w profiles at fixedx of  out. The spectral weight if8.6) and(3.7) is now confined to
the two-fermion dynamic structure factors may exhibit|w|<2|J|sin(«x/2).

square-root divergencds common density-of-states effect  Closed-form expressions for the two-fermion dynamic
in one dimensiopwhenw— 2|J|sin(«/2). At T>0 the lower  structure factorg3.6) and (3.7) exist in the low- and high-
boundary of two-fermion excitation continuum is smearedtemperature limits. AT=0 we have

1 O(w=- )0 (w, - w), fO0<k<mw-2a,
SZAK! (1)) = ) . (312)
LK [O(w-w)+0(w-w]O(w,-w), If T-2a<k=<m,
4J2 Slr'l2 E - w2
Jaremr K- 2
4 SInZZ @ O(w- )0 (0w, - w), if0 < k<m-2a,
Sop(k,0) = - _ (3.13
472 sir? K [O(w=w)+O(w-0)]0(w,—w), if T-2a< k=<,
2
[
and atT—« we have The zero-temperature results f8f(«x,w) can be found in
Eq. (2.9 of Ref. 18 and foiSyp(«,w) atQ=0 in Eq.(3.2) of
Ref. 8.
S, rw) = 1 @<2|J|sin5 - |w>1 (3.14 In Figs. 1 and 2 we show the dynamic structure factors
2\/4J2 Sir? K 2 (3.6) and(3.7) at zero temperaturé=0 and different values
—~— T w
2

of the transverse fielfFigs. 1a)-1(c) and Za)—-2(c)], and at
T—oo [Figs. 1d) and 2d)]. The results fofT — o are inde-
pendent of(). As we can see, the two-fermion dynamic
structure factors are nonzero within the two-fermion excita-

A7 sird K_ w2 tion continuum in the k, w) plane. Their spectral-weight dis-

_ 2 . K tributions are controlled by the Fermi functions, the multi-

Spo( @) = B ®(2|J|S'n§ - |‘”|>' (3.19 plicity of the solution of Eq.(3.9), the singularities in the

8 sir? > density of one-particle states, and the explicit form of the rest
of the integrand in3.6) and(3.7). Another two-fermion dy-
namic quantity will be presented in Sec. 1V, namely, the two-
feg)mion contribution to the dynamic trimer structure factor,

+(K, ).

IV. FOUR-FERMION DYNAMIC STRUCTURE FACTOR

Next we consider the dynamics of the trimer fluctuations.
The method remains the same but its execution is more te-
dious. In addition to two-fermion transitions also four-
fermion transitions contribute to the trimer fluctuations. The
expression for the equilibrium time-dependent trimer-trimer
correlation function reads

(TaO T (0)) = (T

1 )
= 5.2 C2cy k)™ exgli(A,, = A ]
kq.ko

1
X nKl(l - nK2) + W‘ 2 C(4)(Kl! K2, K3, K4)

K1,K2,K3,K4

et al expli(Ay + Ay, = A = A )t]

Xn.n.(1-n.)(1-n,), 4.1
FIG. 2. Sp(k,w) at T=0 and(a) =0, (b) 2=0.3,(c) 2=0.9, e 3 4
and(d) at T—< (independent of); only w=0 is shown. where

104432-4
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N
1
M =13 (T =c,+ 26 - 200,

n=1

(4.2)

C@ (K, kg) = (1 = 2c0)% COS (k1 + Kp) + 4Cy(1 — 2c0)

x{co§<xl+ %) + cos?-(%1 + Kz)]

+4c2(cog Ky + COF Kky) + 8(— Cy + C2 + 2¢4C,)

K1t Kk K1~ K

+8c¢% cog S

X cog

+4c,(1 - 2¢cy - 4cz)<cos’- % +cog %) +4c,

- 8¢, — 8% + 4¢3 + 16c4C; — 8CoC, + 16¢,C;,

(4.3
C(4)(K1, K2,K3,K4) = 16 S”’? Kl; 2 S|n2 K3; K4
+ Ky + K3t
oL %‘ (4.4)
Here we have introduced the functionc,=(1/

N)=,cogpx)n,. For N— o and at zero temperature we have

Co=1if Q<-|J|, cp=al/m if =|J<=Q=<|J|, ;=0 if |J/<Q,
c,=(-sgnJ))P sin(pa)/ (pm) if |Q|=<|J| andc,=0 otherwise
(p=1,2,...). At T—o we havecpzﬁﬁpyo. The resulting dy-
namic trimer structure factof3.5) for N— o then has the
following form:

Srr(k, ) = SA(x, 0) + S (k,0), (4.5
where
§|'2'|)'(K! w) = fﬂ dch(Z)(Kl! K1t K)nK]_(l - nKl+K)
Xé(w-'- Akl_A'K1+K)! (46)

1 aa aa
Hl0) = ﬁf dKlf dKZJ drsC (e, kg, K, K1 + Ky

T K3 + K)nkanz(l - nK3)(1 - nK1+K2_K3+K)

X 5(('0 + AKl + AKZ - AK3 - AK1+K2—K3+K) :

(4.7)

The spectral weight in this quantity comes from both the

two-fermion (one particle and one hgleexcitation con-
tinuum and the four-fermioritwo particles and two holes

PHYSICAL REVIEW B 71, 104432(2005

w
m = COSKq t COSKy — COSKk3 — COSKy,

K== Ky~ Ko+ K3+ kg mod2m)], COSk; =

I’

COSky = COSKk3 < COSKk, < (4.9

Q Q Q
NE NE N
—T<kKyp3<m, —7<k<m. Equations(4.8) imply that the
four-fermion excitation continuurtlike the two-fermion ex-
citation continuum exists only if the magnetic field does not
exceed the saturation fieltd|<|J|.

An analytical expression for the lower boundary of the
four-fermion excitation continuum in théx,w) plane de-
pends on{) and x and is given by one of the following
expressiongsee the Appendix for additional details

ﬁzZSinMsin(a—m), (4.9
|J| 2 2
o K |«
——=4cos—cod a+— |, (4.10
19| 4 4

(3)
(1)| . |K|> . ( |K|)
_:_2 + — 2 + — , 41
3 su’(a > sin| 2« > (4.11

(4)
b 2 sir(a— m)sin(Za— m)
19| 2 2

excitation continuum. Let us first discuss the properties of
the four-fermion excitation continuum and then the proper- F|G. 3. Lower boundaryplzmin(wl(ﬂ), j=1,...,5 of the four-
ties of Srr(k,w). At T=0 the four-fermion excitation con- fermion excitation continuum vs wave numberand transverse

tinuum (for J=—-|J|<0) is determined by the conditions

field Q (for |J|=1).

104432-5
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Q=0.3

Q=09

k=0

K=1/2

K=2mn/3

S(k,w)

1.5

g

et
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FIG. 4. Lower and upper
boundaries of the two- and four-
fermion continua for|Jj=1 and
=0, 0.3, 0.6, and 0.9. The two-
fermion continuum is shown
shaded.

FIG. 5. S(k,w) as given in
(4.289 vs w at k=0,7/2,27w/3,7
with  S(kq,ko,x3,k)=1 (bold
curves, and S(kq,ky,K3,K)
= nKlnxz(l _nx3)(1 - nK1+K2_K3+K)
for =0 (solid curves, (1=0.3
(long-dashed curves 1=0.6
(short-dashed curvigs =0.9
(dotted curves \Vertical lines
mark the values o:b(s”, j=1,2,3as
given in (4.25—4.27). Note the
different vertical scales left and
right.
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4
a
3
8 24
| -~
04—
o 1 _ 2 3
K
4
b
L L
o 1 2 3
K
4
[+
)
3

FIG. 6. S;(x,w) atT=0 andQ)=0. Separate plots are shown for
(@ SA(x, ), (b) Sk, ), and(c) the suMSr(x, w).

£2—4sinm sin(a—ﬂ). (4.13
19| 4 4

The range ink over which for a giver() one of the expres-
sions (4.9 —(4.13 forms the lower boundary of the four-
fermion continuum can be read off Fig. 3. The darkness in
this gray-scale plot is a measure of the size of the energy
threshold of the four-fermion continuuhite means zero
excitation energy, i.e., a soft modd’he boundary between
the regioni '(wherewl(') is the lower boundapyand the region

j (wherew,(” is the lower boundanyfollows from the match-

ing condition wl(')=w|(” and is given by the formuldx]

:Iij(a) where
tana — \tarf o — 3 27
l1o(a) = 4 arctan 3 . K= 3

PHYSICAL REVIEW B 71, 104432(2005

0 2 3
K
4 b
| 1 1
0 1 2 3
K
4 c

l13(@) =7 - a, g$ |«| <

l14(@) = 2a,

los(@) =27 - 4a,

1
l34(@) = |k| + cosa - >

|45(C¥) =4a.

(4.19 cubic equation

104432-7

?l

FIG. 7. Sri(k,w) at T=0 andQ2=0.3. Separate plots are shown
for (&) S2(x,w), (b) S (x,®), and(c) the sUMSr(x, w).

(4.15

(4.16

(4.17)

(4.19

(4.19

The boundary between regions 2 and 4 is determined by the
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0

4
4 b
34 3
8 24 8 2
14 1
T T T —
0

1 2 3
K

b

T T T T

1 2 3
K

0 1 . 2 3
4 c c
3
8 24 38
14
L) 1 = 1 £ 1
0 1 - 2 3 0 1 - 2 3

FIG. 8. Sr(k,w) at T=0 and=0.6. Separate plots are shown FIG. 9. Sti(k,w) at T=0 andQ2=0.9. Separate plots are shown

for (@ S3(x, ), (b) Sk, w), and(c) the sumSry(x, w). for () S, ), (0) Syy(x,w), and (o) the sumSrr(x, ).
B —
(smlxl 2sin" tarf a + 3+2cos,, +3 cosk tarf a TT”|:4cos£. (4.22

- (2 sin%| +3 sir1;<|)tana+3 +2 cosg -cosk=0.

(4.20 For [|/\2<Q=<|J| the upper boundary is given k.22
' only if || <4a, whereas, if &<|«|<m, it is given by

Typical lower boundaries of the four-fermion continuum for

. . (2)
several values of) can be seen in Fig. 4. The soft modes Wy _ K _ M)
according to(4.9—(4.13 are given hy 9] =4 COS4 cos<a 4 (4.23
|o| =10, 27 - 4a, 2a, 4a}. (4.2)  (see the Appendix The upper boundaries of the four-

fermion continuum for several values €f can be seen in
Fig. 4 in comparison with the corresponding two-fermion
Alternatively, the soft mode$4.21) may be determined di- continuum.

rectly from (4.8). They occur when c08;=C0Sk,=C0Sk3 The four-fermion continuum always contains the two-

=CO0Sk,=CO0Sa. fermion continuum. The lower boundaries coincide in part.
The upper boundary of the four-fermion continuum for The upper boundaries are different. In the zero field case we

0<Q=<|J|/\2 is given by have w,=|J|sin«| for both continua. The upper boundaries

104432-8
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are w,=4|J|cogx/4) and w,=2|J|sin(|«|/2) for the two- and  four-fermion continuum remains an extended region,
four-fermion continua, respectively. As the saturation fieldbounded byw =4J|sir’(«x/4) and w,=4|J|cog(x/4), and
Q=|J| is approached from below, the two-fermion con-then disappears abruptly.

tinuum narrows to a branch and then disappears whereas the Now consider the equation

3 2
J
\/E {a_[COSKl + COSK, — COSK3 — COS K + K1 + Ky — Kg)]} =0. (4.249
j=1 L oK
|
It is satisfied for accessible experimentally in high-resolution inelastic neutron
@ scattering on alternating chain and ladder materials.
Os _ 5o m Interestingly, thes=2 transverseXX chain, which can be
=2sin—, (4.25 o2 v 9 , . .
9| 2 mapped onto noninteracting spinless fermions, provides an
excellent example of a system whose dynamic properties are
w? A governed by continua of multifermion excitations. In particu-
W =4 S'”Z’ (4.26 lar, the dynamics of trimer fluctuations provides a direct mo-
4
w(s) K h 2
S
—— =4 cos—. 4.2
Thus, for k or w appro_aching the curvegt.25—(4.27 in 8 2
(k,w) space, the quantity
w w w 1 -1
S(K,w):f dKlf dsz dr3S(Kkq, Ko, K3, K)
X 8w - |J|cosk, — |J|cosk, + [J|cos ks 0 1ok 2 3
+|J|cogk + Ky + Ky — Kk3)] (4.28 4 =
exhibits cusp singularitie@kin to density-of-states effects in
three dimensions The exact nature of the cusps also de- 34
pends on the factoB(«q, k,, k3, k), wWhich varies between
different dynamic structure factors with a four-fermion part. 8 24
It always includes the factar, n,(1-n,)(1 =N+ te) S
can be seen in expressidA.7). In Fig. 5 we show thew 1 R
dependence of S(k,w) as given by (4.28 at « a
=0,7/2,27/3,m when S(ki,ky,k3,x)=1 and when
Sy, K2, K3, K) =N Ne(1=N ) (1N v fOr several 0 1 » 2 3
values of(). p
At T>0 the lower boundary of the four-fermion excita- c
tion continuum is smeared out and the upper boundary be- 1
comesw,=4|J|cog «/4). 31
The properties of the multimagnon continua of quantum 1

spin chains have been examined in some detail in the recent
paper of Barne? In particular, the lower and upper bound-
aries of the two- and higher-magnon continua were deter-
mined. It was shown that the boundary curves under certain
conditions may exhibit discontinuous changes in composi-
tion and cusps. Moreover, a behavior of the densitytwb-

and higher-magndrstates on the continuum boundaries and
within the continuum was considered and the existence of FIG. 10. Si(x,w) at T—« (independent of); only =0 is
discontinuities was pointed out. These features of oneshown. Separate plots are shown @) S2(x,w), (b) Sk, ),
dimensional quantum spin systems are expected to becona@d(c) the sumS;(«, w).

0

1 2 3
K
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tivation for analyzing the four-fermion excitation continuum. cludes one- and three-dimensional density-of-states features
Unlike in the analysis reported in Ref. 20, where the statis{van Hove singularities

tics of the elementary excitatiorignagnong is not known, An alternative technique to evaluate dynamic structure
here the quasiparticles are known to be fermions and théactor of quantum spin chains is based on the Bethe ansatz
consequences are fully taken into account. solutions>16:17 Recently such an approach has been applied

Finally, let us examine the explicit expression for the dy-to the s:% XX chain® Moreover, the relation between
namic trimer structure fact®@r(«x, ) (4.5). In Figs. 6-9 we  spinons or magnon quasiparticles and Jordan-Wigner fermi-
present the zero-temperature dynamic trimer structure factawns was discussed in some detail. It will be interesting to
at different values of(). In Fig. 10 we present the same interpret the two- and four-fermion excitations discussed
guantity at infinite temperature. We show separately the twohere in terms of the Bethe ansatz solution as studied in Ref.
fermion contribution(panels a in Figs. 6-30and the four-  16.
fermion contribution(panels b in Figs. 6-10as well as the
sum of these contribution@anels c in Figs. 6-10We ob-
serve how the spectral weight is spread across the four- ACKNOWLEDGMENTS
fermion continuum. We also see that the two-fermion contri-  Thjs study was performed within the framework of the

bution stands out in terms of spectral weight. The two- andsTCu Project No. 1673. 0.D., J.S., and G.M. thank the Wil-
four-fermion contributions are comparable in intensityTat hejm und Else Heraeus-Stiftung for the kind hospitality dur-
=0 and small). As () increases the two-fermion contribu- jng the 288. WE-Heraeus-Seminar on the Theme of “Quan-
tion becomes more important and it completely dominates agm Magnetism: Microscopic Techniques for Novel States of
Q—1J]. In the high-temperature limit the two-fermion con- watter” (Bad Honnef, 2002 when the present study was
tribution is very dominant, but the four-fermion continuum is |aynched. 0.D. acknowledges the kind hospitality of the Uni-
still in evidence. versity of Dortmund in the spring of 2003 when part of the
work was done. O.D. expresses gratitude to the Max-Planck-
Institut fir Physik Komplexer Systeni{®resden for its hos-
pitality in the spring of 2004.

In summary, we have investigated some aspects of the
dynamics of thes=% transverse&XX chain, examining, in par- APPENDIX
ticular, the dynamics of dimer and trimer operators. For this
purpose we have calculated several dynamic structure factors To find the lower and upper boundaries of the four-
on a rigorous basis within the Jordan-Wigner representatiorfermion excitation continuunt4.8) at fixed () and -w<«
Although the dynamic dimer structure factSsp(x,w) and <, we search for the extrema af/|J| as given in(4.8) and
the dynamic transverse spin structure fac®jy«,w) are the values ok, «,, k3, andk, at which such extrema occur.
governed by fermionic one-particle—one-hole excitations, thdypical results are reported in Figs. (lbwer boundaryand
dynamic trimer structure factd(«, ) also contains con- 12 (upper boundary
tributions from two-particle—two-hole excitations. We have In Fig. 11 we show the dependence @ of i, x, ks,
described the structure of the two- and four-fermion excita@nd 4, where w/|J| assumes a local minimum. We distin-
tion spectra in some detail and investigated the distributiorguish five different regions. The global minimum yields the
of spectral weight irSi(«x, ») across these continua at zero lower continuum boundary. If € k< «,,
and nonzero temperature. In particular, we have established

V. CONCLUSIONS

the boundaries of the four-fermion spectral range, the loca- etk KRelgTksa (A1)
tions of soft modes, and the singularity structure, which in-and
1.5 1.5 1
H " / S
LAY A FIG. 11. Search for the lower
o AN A H boundary of the four-fermion ex-
A A citation continuum. Shown are the

05 1 05 values of k;, kp, k3 and k, at
\/\ \/\ V\ which a minimum of w/|J| as
0 0 - given in (4.8) occurs at2=0.3J|
and -7 < k<. The dependences
0.5 o 0.5 1 k1 and k3 on x are shown by
dashed curves, the dependences
Ko and k4 on k are shown by dot-
P ted curves, the dependence of the
15 15 4 / minimal value of w/|J| on « is
T y T T T T T T T T T y T — shown by solid curves.

K, K
K3 Ky

v m

N,
\
\
\
_l. N
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4 4 -
5 /\ ? ///‘_\ FIG. 12. Search for the upper
5 b / boundary of the four-fermion ex-
- - citation continuum. Shown are the
o 1 . 14 values of kq, ky, k3, and k, at
* ¥ which a maximum ofw/|J| as
< 04 \\ £ o given in (4.8) occurs at2=0.9J
———— ] and -7 < k< . The dependences
14 14 of k1(=ky) and k3(=k,) on k are
shown by dashed curves, the de-
-2 -2 A - pendence of the maximal value of
—~ wl/lJ| on k is shown by solid
3 2 -l 0 1 2 3 3002 4 1 2 3
LS
w; g ) 56 K . ( K) w|(1) K LK (A5)
— =C08a—k)—COosa=ZsSINZSIla— < |=—7, K1=Ky=—", K3=Kp=—m+—
N 2 2/ || VA 4
A2
(A2) and
if kKa<kK=<ky,
P wy 4 K wfjl) (A6)
— - —=4c0s— = ;
K1= Ky = @, K3—K4—5+a’—’77 (A3) 13| 4|
and if ka<k<mm,
“ 2 cosa—2 005< . )
= - —+ta-m
|J| “ 2 KI=Ky=—a, K3=Ks=—a—m+_ (A7)
4 cos— cos( + K) o (A4)
= — at—|=—,
4 4/ || and
etc. The _v.alues Ok, Ky, ke @ndky follow from the match- o, p p w&z)
ing conditions. 722003a+200 a— = :4cos£—1 co =y :T’
In Fig. 12 we show the dependence |af of «;, k, k3, I 1
and k4, wherew/|J| assumes a local maximum. We distin- (A8)
guish two different regions. The global maximum yields the
upper continuum boundary. IfQ k=< ka, etc. From the matching condition we fingl =4a.
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