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Abstract: The oxidation state of Earth’s upper mantle both influences and records mantle 

evolution, but systematic fine-scale variations in upper mantle oxidation state have not 

previously been recognized in mantle-derived lavas from mid-ocean ridges. Through a 

global survey of mid-ocean ridge basalt glasses, we show that mantle oxidation state 

varies systematically as a function of mantle source composition. Negative correlations 

between Fe3+/ΣFe ratios and indices of mantle enrichment such as 87Sr/86Sr, 208Pb/204Pb, 

Ba/La, and Nb/Zr ratios reveal that enriched mantle is more reduced than depleted 

mantle. Because upper mantle carbon may act to simultaneously reduce iron and generate 

melts that share geochemical traits with our reduced samples, we propose that carbon 

creates magmas at ridges that are reduced and enriched.  

Main Text: The bulk composition and geophysical properties of Earth’s mantle have 

evolved in response to oxygen fugacity (fO2), a measure of the chemical potential of 

oxygen in solid systems (1, 2). Mantle-derived mid-ocean ridge basalts (MORB) record 

fO2 through the ratio of oxidized to total iron (Fe3+/∑Fe) (3), and because MORB also 

record geochemically distinct mantle reservoirs, the potential exists to discover the 

existence and evolution of heterogeneities in the oxidation state of mantle reservoirs. 



Two previous large (n >75) global surveys of Fe oxidation state in MORB pillow glass 

(4, 5) found no correlation between Fe3+/∑Fe ratios and mantle source composition, 

establishing the paradigm that oceanic upper mantle oxidation state is relatively uniform, 

buffered, and not linked to plate tectonic-scale processes. Other work (6) has proposed 

that enriched mantle domains may be more oxidized than normal MORB. We determined 

high precision (±0.005) Fe3+/∑Fe ratios by micro XANES (7) (8) and trace element 

concentrations on 19 glasses (from 7 geographical locations) that have experienced 

neither substantial fractionation (i.e., primitive MORB with MgO > 8.5 wt.%), nor plume 

influence ((9), Table S1). A partially overlapping set of 22 glasses (from 10 geographical 

locations) from ridge segments without plume influence, irrespective of MgO content, 

additionally have previously published Sr ± Pb ± Nd isotope ratios (Table S1). The 

primitive dataset spans 50% of the global range in Fe3+/∑Fe ratios, while the isotope 

dataset spans the entire global range (Fig. S1). Globally, the Fe3+/∑Fe ratio in MORB 

negatively correlates with MgO concentration, whereby the Fe3+/∑Fe ratio increases by ~ 

0.03 as MgO decreases from 10 to 5 wt.% (8) as Fe2+ preferentially partitions into 

fractionating mafic phases. In order to account for the effect of fractionation, the 

Fe3+/∑Fe ratios have been recalculated to an arbitrary reference value at MgO = 10 wt.%, 

Fe3+/∑Fe(10), analogous to Fe2O3(8) in (4, 8).  This correction is ~2% relative for the 19 

primitive samples and is up to 11% (average 7%) relative for the samples with isotopic 

data, but correlations between Fe3+/∑Fe ratios, trace elements, and isotopes are also 

evident in the uncorrected data (9) (Fig. S1). 

The glasses form sub-parallel arrays in 208Pb/204Pb-206Pb/204Pb space as a function 

of Fe3+/∑Fe ratio, with 208Pb/204Pb ratios increasing as a strong function of decreasing Fe 



oxidation state (Figs. 1a, e). Reduced glasses also possess elevated 87Sr/86Sr ratios and 

tend to have lower 143Nd/144Nd ratios (Figs. 1b, f). Oxygen fugacities, calculated from 

Fe3+/∑Fe ratios and glass compositions (10) and referenced to the quartz-fayalite-

magnetite buffer  (ΔQFM), also correlate with isotopic enrichment (Figs. 1c,d). These 

observations link the Fe oxidation state of erupted MORB to mantle source 

heterogeneity, with enriched samples more reduced than depleted ones, because no 

magmatic process can fractionate these isotopes. Moreover, because these signatures 

require ancient fractionation of radiogenic parent-daughter pairs, these data also require 

preservation of the factors that lead to heterogeneity in Fe3+/∑Fe ratios on plate tectonic 

time scales.  For the primitive samples, Fe3+/∑Fe(10) ratios correlate strongly with 

enrichment in highly incompatible elements (e.g. Ba, Th, Nb) (Fig. 2) such that the most 

enriched samples are also the most reduced. Moderate correlations are also evident 

between Fe3+/∑Fe(10) ratios and depletions of the high field strength elements Hf and Zr 

(Fig. 2e, f). We define a Hf anomaly, Hf/Hf*, relative to elements with similar 

compatibility during mantle melting, such as Sm and Nd (Hf/Hf*=HfN/√(SmN*NdN)) and 

observe that reduced samples also tend to have more negative Hf anomalies (Fig. S3).  

By contrast, oxidation state does not correlate with ratios of mid- to heavy-REE such as 

Sm/Yb or Dy/Yb; the heavy rare earth element (HREE) patterns in these samples are flat 

(Fig. S4).  

These data require a process that links source enrichment to a reduced oxidation 

state. This is contrary to the relationship expected if redox heterogeneities simply 

reflected a difference in partitioning between the two Fe species (i.e., DFe3+< DFe2+) (4, 5), 

or if enriched MORB derived from graphite-buffered melting at greater depth (6, 11), 



both of which would predict MORB enriched in incompatible elements to be more 

oxidized. Garnet-bearing lithologies previously implicated in the generation of enriched 

MORB [e.g. (12)] might hold back Fe3+ during melting; however, a silicate melt of a 

garnet-bearing source is inconsistent with the trace and major element characteristics of 

our reduced samples (SM text, Figs. S4, S5).  Here we hypothesize that control over the 

Fe oxidation state of MORBs is exercised by another incompatible element: carbon. 

Carbon concentration has the potential to control the eruptive Fe3+/∑Fe ratios of 

MORBs such that the most reduced basalts derive from sources with greater carbon 

concentrations (13). This is because reduced carbon, stabilized at depth by lower fO2 (2), 

must fully oxidize upon ascent to be consistent with the oxidation state of the erupted 

basalts (8). Ferric iron becomes reduced in the process in proportion to the initial carbon 

content (13, 14). To generate the observed range of Fe3+/∑Fe ratios in either the primitive 

or isotope data sets solely through reduction of Fe2O3 by carbon requires variations in 

mantle C on the order of 80 to 170 ppm.  Independent estimates of mantle C 

concentration, which co-vary with enrichment (15), range from ~ 16 (depleted mantle) to 

> 300 ppm (enriched mantle) (16). Thus carbon may exert a primary influence on MORB 

oxidation state even if the erupted melts are too oxidized to be in equilibrium with 

graphite (8). 

We cannot directly assess the relationship between carbon and oxidation state in 

our samples because CO2 is partially degassed from most, if not all, MORB (17). Mantle 

carbon is constrained in two locations, however, and we note that trace element and 

carbon-enriched sample 2πD43 (‘popping rock’) suggests a mantle source with ~159 ppm 

CO2 (18) and is more than two standard deviations more reduced than the global mean, 



whereas the trace element-depleted Siqueiros fracture zone basalts indicate ~72 ppm CO2 

in the source (19) and are among the most oxidized in our suite (Figs. 2, S1). Critically, 

some of the geochemical signatures most highly correlated with oxidation state (e.g., 

isotopes tending toward the EM-1 (‘enriched mantle’) end-member (20), elevated Ba/La, 

Th/La, Nd/Hf, Ba/Rb, Nb/Ta, Nb/La ratios and negative Hf anomalies are not easily 

generated by silicate melting but are a natural consequence of melting in the presence of 

carbon (SM text and Fig. S3). Low-degree carbonatitic or kimberlitic melts may extract 

the highly incompatible elements to the melt phase while leaving Hf and Zr in the residue 

(21-23). Carbonatitic melts also fractionate radiogenic parent-daughter pairs, such that 

carbonatitic melts evolve more radiogenic Sr, Pb, and less radiogenic Nd isotopic ratios 

over time, toward the EM-1 mantle component (22).  Our samples are geographically 

distributed (Fig. S2) and are not genetically related. Thus it is not sensible to develop a 

petrogenetic model that accounts for each sample’s full major, trace, and radiogenic 

element signature. We do show in Figs. 1 and 2, however, that addition of a few tenths of 

a percent of low-degree carbonatitic melt of subducted material to depleted silicate melt 

generates trace element and isotopic arrays that reproduce the most salient geochemical 

signatures associated with low Fe3+/∑Fe ratio (SM text). 

The deep Earth is a large reservoir for carbon, continually replenished by 

subduction (24, 25) and thus the mixtures of low-degree carbonatitic and/or kimberlitic 

melts and high-degree silicate melts may be widespread depending on the distribution of 

carbon in the deep Earth (13, 23, 26). Prior to 2.3Ga, anoxic conditions at Earth’s surface 

(27) would have resulted in subduction of reduced carbon associated with trace- and 

isotopically-enriched sediment and crust into mantle that was already relatively oxidized 



(28). Subduction at 2.8 Ga may have created reduced domains in the mantle while 

enabling carbonate-fluxed melting to fractionate parent-daughter pairs consistent with 

those observed (Fig. 1).  Today, the mantle’s descending fO2 gradient should immobilize 

carbon through redox freezing (29); however, the potential of subducted carbonate to 

generate mobile reduced carbon species (2) cannot be ruled out. Any mobilization of 

reduced carbon may, upon decompression, result in melts that are simultaneously 

enriched and reduced (SM text, Fig. S6). Additional mechanisms may exist to create 

geochemically enriched reducing domains in the mantle (30), but their geochemical 

implications for MORB are still unknown. 

Our observations have important implications for the persistence of 

heterogeneities in mantle oxidation state through time. Far from being homogeneous or 

well-buffered, the mantle appears capable of retaining oxidation state information over 

plate tectonic time scales. This implies that redox-active elements such as H, C, S and Fe 

do not buffer the upper mantle at uniform fO2. Rather, the Fe3+/∑Fe ratios of MORB, like 

arcs (31), reflect variations in their sources. 
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Fig. 1.  Decrease in Fe3+/∑Fe(10) ratio as a function of isotopic enrichment. 208Pb/204Pb 

and 87Sr/86Sr versus Fe3+/∑Fe(10) ratio (A, B) and calculated 1-atm fO2 (C, D), with 

Fe3+/∑Fe(10) ratio accounting for 50 and 44% of the variance in these isotopic ratios, 

statistically significant at P ≤ 0.001 (F Test results, Table S3). Filled circles show 

individual analyses and open diamonds show the regional average and 1σ variability for 

each geographic location. 208Pb/204Pb versus 206Pb/204Pb (E) and 87Sr/86Sr vs 143Nd/144Nd 

(F), as a function of Fe3+/∑Fe(10) ratio, showing a decrease in the oxidation state of Fe in 

the glasses as a function of isotopic enrichment. Colorbar shows the relative Fe 

oxidation state of each sample. Curve 1 models 0.1% additions of a low-degree 

carbonatitic melt of subducted material to Depleted-Depleted MORB Mantle (D-DMM; 

star), generated 2Ga after subduction. Depleted (square) and Enriched (hexagon) MORB 

mantle shown for reference (20). Curve 2  demarcates additions of a low-degree 

carbonatitic melt of the same subducted source material as 1, but with the carbonatitic 

melt generated immediately following subduction at 2.8Ga. The difference between these 

two curves is timing of the parent-daughter fractionation introduced by carbonatitic 

melting, where curve 1 assumes no fractionation of the subducted material until melting 

beneath the mid-ocean ridge and curve two assumes carbonatitic melt-induced 

fractionation immediately following subduction. Model details are in the SM text. Errors 

in isotopic ratios are as provided by the authors of those studies. 

 

Fig. 2. Decrease in Fe3+/∑Fe(10) ratios with trace element enrichment in primitive 

glasses with >8.5wt.% MgO. (A-B) Ba/La and Th/La decreasing as a function of 

Fe3+/∑Fe(10) ratio and the fO2 of the source mantle at the average pressure and temperature 



of melt segregation (~ 0.7 – 1.3 GPa) relative to the QFM buffer  (8) (C-D), with 

Fe3+/∑Fe(10) ratio accounting for 53 and 43% of the variance in these trace element ratios, 

statistically significant at P ≤ 0.002 (F Test results, Table S3). Filled circles show 

individual analyses and open diamonds show the regional average and 1σ variability for 

each geographic location (“popping rock” Ba/La = 13.2, Th/La = 0.11, Fe3+/∑Fe(10) = 

0.137). (E-F) Co-variation of Ba/La with Nd/Hf ratios and Th/La with Nb/Zr ratios as a 

function of Fe3+/∑Fe(10) ratio. Lines model 0.1% additions (+) of a low-degree 

carbonatitic melt of subducted material (SM Text) to depleted sample VG5211 from 

Siquerios (SM Text). D-DMM (star) shown with silicate melt trajectory to 1% melt 

fraction. Errors in trace element ratios are smaller than the symbol size. 
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