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Spectrum and transition rates of theXX chain analyzed via Bethe ansatz

Daniel Biegel,1 Michael Karbach,1,2 Gerhard Mu¨ller,2 and Klaus Wiele1
1Bergische Universita¨t Wuppertal, Fachbereich Naturwissenschaften, Physik, D-42097 Wuppertal, Germany

2Department of Physics, University of Rhode Island, Kingston, Rhode Island 02881-0817, USA
~Received 8 September 2003; published 6 May 2004!

As part of a study that investigates the dynamics of thes5
1
2 XXZ model in the planar regimeuDu,1, we

discuss the singular nature of the Bethe ansatz equations for the caseD50 (XX model!. We identify the
general structure of the Bethe ansatz solutions for the entireXX spectrum, which include states with real and
complex magnon momenta. We discuss the relation between the spinon or magnon quasiparticles~Bethe
ansatz! and the lattice fermions~Jordan-Wigner representation!. We present determinantal expressions for
transition rates of spin-fluctuation operators between Bethe wave functions and reduce them to product ex-
pressions. We apply the formulas to two-spinon transition rates for chains with up toN54096 sites.

DOI: 10.1103/PhysRevB.69.174404 PACS number~s!: 75.10.2b

I. INTRODUCTION

The key to a meaningful interpretation of experimental or
computational data for the low-temperature dynamics of
quantum many-body systems is a thorough understanding of
the nature of the physical vacuum and the dynamically rel-
evant collective excitations including their quasiparticle
composition. In completely integrable systems, the quasipar-
ticle configurations that produce particular collective excita-
tions can be investigated closely. The identity of the former
is preserved by conservation laws notwithstanding their mu-
tual interaction.1,2 Integrable Hamiltonians that depend on
continuous parameters make it possible to observe how the
physical vacuum transforms gradually and, occasionally,
changes abruptly across a quantum phase transition. Along
the way, the configurations of quasiparticles in the collective
excitations are subject to change as well.

Recently, we investigated the metamorphosis of the physi-
cal vacuum and the dynamically relevant quasiparticles
~magnons, spinons,c, c* ) of the one-dimensional~1D! s
5 1

2 Heisenberg antiferromagnet (XXX model! by varying
the~integrability preserving! external magnetic field.3,4 Intro-
ducing instead a uniaxial exchange anisotropy also preserves
integrability. The parameterD, which controls the anisotropy
in the 1Ds5 1

2 XXZ model,5

H8 (
n51

N

$Sn
xSn11

x 1Sn
ySn11

y 1DSn
zSn11

z %2D
N

4
, ~1.1!

affects the physical vacuum and the quasiparticle configura-
tions differently. In both situations, the Bethe ansatz is an
ideal framework for studying quasiparticles, their transfor-
mations, and their interactions.

The main focus in this paper is on a technical point of
considerable importance in the study of theXXZ model,
namely, the identification of the general structure of the
Bethe ansatz solutions of all eigenstates for the caseD50
(XX model!. This will facilitate tracking allXXZ Bethe an-
satz solutions across the planar regime,uDu,1.

At D50 all states can be characterized as noninteracting
composites of fermions. Understanding the relationship be-
tween the magnon, spinon, and lattice fermion quasiparticles

is important for the interpretation of the excitation spectrum
via dynamical probes as realized experimentally or compu-
tationally. Furthermore, recent advances in calculating tran-
sition rates via Bethe ansatz6–10 offer opportunities to extend
the list of exact results for dynamical properties of theXX
chain.

In Sec. II we analyze the singularities of theXXZ Bethe
ansatz equations forD→0. In Sec. III we discuss the map-
ping between the spinon and fermion compositions of the
XX spectrum. The two-spinon spectrum of the planarXXZ
model including theXX limit is discussed in Sec. IV. In Sec.
V transition rate formulas for theXXZ model are introduced
and further processed for theXX limit. The two-spinon part
of the dynamic spin structure factorS21(q,v) is discussed
in Sec. VI.

II. BETHE ANSATZ EQUATIONS

We consider Hamiltonian~1.1! for evenN and periodic
boundary conditions over the range 0<D<1 of the anisot-
ropy parameter. In the invariant subspace withz component
of the total spinST

z5N/22r , all eigenstates are represented
by r interacting magnons. The magnon momentaki are con-
served in the scattering processes and are determined by the
Bethe ansatz equations:11

eiNki5)
j Þ i

r F2
11ei(ki1kj )22Deiki

11ei(ki1kj )22Deikj
G , i 51, . . . ,r .

~2.1!

The energy and wave number of any suchr-magnon state
depend on the magnon momenta alone:

E5(
i 51

r

~coski2D!, k5(
i 51

r

ki . ~2.2!

At first glance it looks as if Eqs.~2.1! are drastically sim-
plified in the limit D→0 with all magnon momenta restricted
to solutions ofeiNki5(21)r 21. However, a closer look re-
veals that magnon pairs with momentaki1kj→p for D
→0 are a common occurrence. This opens the door to non-
trivial real and complex solutions of Eqs.~2.1!. The singular
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behavior is related to level degeneracies. Such level cross-
ings, which also occur at other values ofD, have been traced
back to a realization of thesl2 loop algebra symmetry atD
5(q1q21)/2Þ61 with q2N51 for N>2.12–14

In the following, we use the anisotropy parameter

g8arccosD ~0<g<p/2! ~2.3!

and transform the magnon momenta into the rapidities,15

yi8tan
g

2
cot

ki

2
, i 51, . . . ,r . ~2.4!

The Bethe ansatz equations~2.1! thus become

S c2yi1 i

c2yi2 iD
N

5)
j Þ i

r
c1~yi2yj !1 i ~12yiyj !

c1~yi2yj !2 i ~12yiyj !
~2.5!

for i 51, . . . ,r , with c18cotg andc28cot(g/2). Taking the
logarithm yields

Nf~c2yi !52pI i1(
j Þ i

r

fS c1

yi2yj

12yiyj
D , i 51, . . . ,r ,

~2.6!

with f(x)82arctan(x). Expressions~2.2! for energy and
wave number now read

E52
2

c2
211c2

(
i 51

r yi
212yi

~c2yi !
211c2yi

, ~2.7!

k5pr 2
2p

N (
i 51

r

I i . ~2.8!

The trigonometric Bethe ansatz equations~2.6! have the ad-
vantage that each solution is characterized by a set of~inte-
ger or half-integer! Bethe quantum numbersI i . These dis-
criminating markers are used to count and classify the
solutions and are essential for numerical algorithms designed
to find solutions.

A. XX limit

Here we describe the general structure of the solutions of
the Bethe ansatz equations~2.6! in the limit D→0, implying
c1→0 andc2→1. There exist regular solutions and singular
solutions. The latter are characterized by the occurrence of
pairs of rapiditiesyi ,yi8 with the propertyyiyi851. For any
suchcritical pair, the argument off on the right-hand side
of Eqs.~2.6! is indeterminate and must, therefore, be treated
as a limit process. We shall see that some limiting singular
solutions are real while others are complex. An important
fact is that the simplified structure of the Bethe ansatz equa-
tions atD50 affords a universal treatment of the singulari-
ties for arbitraryN. Knowing the general structure of all
Bethe ansatz solutions for this case is a useful reference point
for studies which pursue related goals for theXXX andXXZ
models.16–21

In the absence of any critical pair of rapidities, Eqs.~2.6!
decouple and yield the solutions

yi5tanS pI i

N D⇔ki5p2
2p

N
I i ~2.9!

for i 51, . . . ,r , which are all real. The energy of any such
regular state is

E52(
i 51

r yi
212yi

yi
211yi

5(
i 51

r

coski . ~2.10!

B. Real critical pairs

Now let us assume that among the set of rapidities
y1 , . . . ,yr , there is one critical pair,

yj
0yj*

0
51⇔kj1kj* 5p~mod2p!, ~2.11!

and that it is a real pair. Substituting the ansatz

yi5yi
01c1d i , i 51, . . . ,r , ~2.12!

into Eqs. ~2.6! and taking the limitc1→0 then yields the
noncritical and critical rapidities from successive orders in a
c1 expansion. The noncritical rapiditiesyi , iÞ j , j * , are
given by Eqs.~2.9! as in regular solutions. Thec1 expansion
of Eqs.~2.6! leads to the following equation determining the
critical rapiditiesyj

0 ,yj*
0 :

f~yj
2!5

2

N
fS F s j y j

2

12j j
Gs j D . ~2.13!

Here we have introducedyj
65 1

2 (yj
06yj*

0 ) and we use

j j8
2

N (
iÞ j , j*

r y j
12sinki

~yj
1!212sinki

, ~2.14!

sgnS yj
1

j j
D 52

2

N
~ I j1I j* !, s j8~21! I j 2I j* . ~2.15!

The noncritical ki are from Eq. ~2.9!. Criticality implies
(yj

1)22(yj
2)251. Note that the contributions of the critical

rapidities to the energy~2.10! cancel out. Equation~2.15!
implies that the Bethe quantum numbers of the critical pair
must satisfy

uI j1I j* u5N/2. ~2.16!

The generalization of this solution to the case ofs real
critical pairs,

yj l

0 yj
l*

0
51, l 51, . . . ,s, ~2.17!

with Bethe quantum numbers satisfyinguI j l
1I j

l*
u5N/2 is

straightforward. The noncritical rapidities are as in Eq.~2.9!
and the critical pairs are determined from

f~yj l

2!5
2

N
fS F s j l

y j l

2

12j j l

Gs j lD , l 51, . . . ,s ~2.18!

with j j l
,s j l

as defined in Eqs.~2.14! and ~2.15!.
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C. Complex critical pairs

Next we consider the case of a single complex conjugate
critical pair

y15y2* 5u1 iv ~2.19!

among the set of rapiditiesy1 , . . . ,yr . Equations~2.6!, re-
written as real equations, read

Nf~c2yi !52pI i1(
j 53
j Þ i

r

fS c1~yi2yj !

12yiyj
D

1fS 2c1@~yi2u!~12yiu!1yiv
2#

~12yiu!21~yiv !22c1
2@~yi2u!21v2#

D
~2.20!

for i 53, . . . ,r and

NfS 2c2u

12c2
2~u21v2!

D 52p~ I 11I 2!1(
i 53

r

@2pI i

2Nf~c2yi !#, ~2.21!

NwS 2c2v

11c2
2~u21v2!

D
5wS 4vc1~12u22v2!

~12u22v2!21~2vc1!2D
1(

j 53

r

wS 2c1v~12yj
2!

~12yju!21~yjv !21c1
2@~yj2u!21v2#

D
~2.22!

with w(x)82atanh(x) for the critical pair. TheXX limit is
performed along the pathu5u02c1u1, v5v02c1v1. The
only possible complex solutions that can survive the limit
c1→0 are critical pairs. The noncritical roots are again as in
Eq. ~2.9!. The critical pair of rapidities is now determined by
the equation

S 11v0

12v0D N

5S 12j11v0

12j12v0D 2

, u0
21v0

251, ~2.23!

where

j1[
2

N (
i 53

r
u02sinki

~u0!212sinki

, ~2.24!

sgnS u0

j1
D52

2

N
~ I 11I 2!. ~2.25!

As is custom,1 we shall replaceI 11I 2 by a single Bethe
quantum numberI (* )6N/2. We then haveI (* )50 for all
complex critical pairs.

D. Generic case

Suppose we havet critical pairs of complex conjugate
solutions,y15u11 iv15y2* , . . . ,y2t215ut1 iv t5y2t* , and
s pairs of critical real solutions, Jl5$ j l , j l* %,$2t
11, . . . ,r %, l 51, . . . ,s. Then the real solutions in the limit
c1→0 are of the form

yi
05tan

p

N
I i , i ¹$1, . . . ,2t% ø ø

l 51

s

Jl , ~2.26!

f~yj l

2!5
2

N
f~@s j l

y j l

2/~12j j l
!#s j l!, l 51, . . . ,s,

~2.27!

with

j j l
8

2

N F (
i 52t11

iÞ j l , j l*

r y j l

12sinki
0

yj l

1212sinki
0

12(
i 51

t y j l

12~ui
0!21

yj l

1212~ui
0!21G .

~2.28!

For the complex solutions we obtain

S 11v i
0

12v i
0D N

5S 12j i1v i
0

12j i2v i
0D 2

, ~2.29!

~ui
0!21~v i

0!251, i 51, . . . ,t, ~2.30!

with

j i8
2

N F (
j 52t11

r ui
02sinkj

0

ui
0212sinkj

0
12(

j 51
j Þ i

t ui
02~uj

0!21

~ui
0!212~uj

0!21G .

~2.31!

Energy and momentum of the state are determined by the
noncritical roots alone:

E52 (
i 52t11

iÞ j 1 , . . . ,j l*

r

cosS 2p

N
I i D , ~2.32!

k5p~r 2s2t !2
2p

N (
i 52t11

iÞ j 1 , . . . ,j l*

r

I i~mod2p!. ~2.33!

This prescription for handling Bethe ansatz solutions in the
XX limit will guarantee that allXXZ Bethe eigenstates can
be traced continuously across the pointD50. Because of the
higher symmetry at D50 and the associated level
degeneracies,12–14 the relationship between the~real and
complex! Bethe eigenstates and the~always real! Jordan-
Wigner eigenstates of theXX chain is nontrivial. The two
representations will now be compared for all energy levels.

III. SPINONS VERSUS FERMIONS

The full spectrum of theXXZ model can be accounted for
as composites ofinteracting spinonswith spin 1/2 and semi-
onic exclusion statistics.22 For theXX case an alternative and
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equivalent interpretation of the complete spectrum can be
established on the basis ofnoninteracting spinless lattice fer-
mions. How are spinon configurations related to fermion
configurations in single nondegenerate eigenstates and in
groups of degenerate eigenstates?

Consider the 2N-dimensional Hilbert space for evenN
divided into subspaces characterized byn1 spinons with spin
up and n2 spinons with spin down. Equivalent quantum
numbers are the total number of spinons and thez compo-
nent of the total spin:

2n5n11n2 , 2ST
z5n12n2 . ~3.1!

The dimensionality of each such subspace is22

W~n1 ,n2!5)
s

S ds1ns21

ns
D , ~3.2!

ds5 1
2 ~N11!2 1

2 (
s8

~ns82dss8!, ~3.3!

where s56 denotes the spinon polarization. Summing
W(n1,2n2n1) over n or n1 yields

(
n51

N/2

W5S N

n1
D , (

n150

2n

W5S N11

2n D , ~3.4!

respectively. The double sum yields 2N. In Table I we list the
subspace dimensionalities for the caseN58.

TheXX Hamiltonian in the fermion representation, trans-
formed from Eq.~1.1! at D50 by the Jordan-Wigner map-
ping to a system of free spinless fermions, reads23

H f5(
p

cosp cp
†cp , ~3.5!

where the allowed values of the fermion momentapi depend
on whether the numberNf of fermions in the system is even
or odd:

piP$~2p/N!~n11/2!% ~Nf even!, ~3.6a!

piP$~2p/N!n% ~Nf odd!, ~3.6b!

for n50,1, . . . ,N21. The number of fermions (0<Nf

<N) is related to the quantum numberST
z in the spin repre-

sentation:ST
z5N/22Nf . No matter whetherNf is even or

odd, there areN distinct one-particle states. Every one-
particle state can be either empty or singly occupied, yield-
ing a total of 2N distinct many-particle states with energy and
wave number

E2EF5(
i 51

Nf

cospi , k5(
i 51

Nf

pi . ~3.7!

The lowest-energy state in eachST
z subspace is unique. The

fermion configuration in reciprocal space of each lowest-
energy state forN58 is shown in Fig. 1.

For the further subdivision of eachST
z subspace, we intro-

duce the wave numbers

kc
6

p
516S 1

2
1

ST
z

N D ~3.8!

shown as vertical bars in Fig. 1, dividing the band into two
regions, one in the center and the other in the wings. Given
that the lowest-energy state atST

z>0 has all particles in the
center region, we can characterize all excitations as
nc-particle states. Likewise, all excitations from the lowest-
energy state atST

z<0 can be characterized asnc-hole states.
The range of this second quantum number isnc

50,1, . . . ,N/22uST
z u. The number of fermion states charac-

terized bync particles ornc holes in the above sense is then
found to be as expression~3.2! previously used for spinons,
now with

n5nc1uST
z u, n65nc1uST

z u6ST
z . ~3.9!

The next goal is to bring the mapping down to energy
levels ~at fixed wave numbers! within each (n1 ,n2) sub-
space or, in the fermion language, (ST

z ,nc) subspace.24 We
note that for givenST

z>0 the number of fermions is equal to

TABLE I. DimensionalitiesW(n1 ,n2) of the invariant sub-
spaces with 2n spinons and spinST

z5n12n2 for a chain of length
N58. The equivalent quantum numbers in the fermion representa-
tion areNf5N/22ST

z , nc5n2uST
z u.

n12n2 n50 n51 n52 n53 n54 (nW

8 1 1
6 7 1 8
4 15 12 1 28
2 10 30 15 1 56
0 1 16 36 16 1 70

22 10 30 15 1 56
24 15 12 1 28
26 7 1 8
28 1 1

(n1
W 1 36 126 84 9 256

FIG. 1. Configuration in reciprocal space of theNf5N/22ST
z

fermions in the lowest-energy eigenstate for givenST
z of a chain

with N58 spins. The positions of the fermions are denoted by full
circles, and those of vacancies by open circles. The fermion mo-

mentap̄i are in units of 2p/N. The vertical bars are at wave num-

bers ~also in units of 2p/N) k̄c
25N/42ST

z /2 and k̄c
153N/4

1ST
z /2.
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the number of magnons in Bethe ansatz states. Moreover, the
fermion energy-momentum relation~3.7! is equivalent to the
magnon energy-momentum relation~2.10!. The exception
are the critical magnon pairs, whose momenta are different
~real or complex! from the corresponding fermion momenta
~always real!. Critical pairs only occur in degenerate levels
and do not contribute to the energy of the state.

This mapping between energy levels provides a useful
tool for determining the Bethe quantum numbers of eigen-
states directly from the momenta of the fermion configura-
tions. For all noncritical rapidities, we have

2p

N
I i5p2pi . ~3.10!

For real critical pairs, the Bethe quantum numbers are, in
general, shifted relative to the positions predicted by Eq.
~3.10!, but in such a wayuI j1I j* u5N/2 is maintained. Com-
plex critical pairs are specified by a single Bethe quantum
numberI (* )50 as discussed in Sec. II C. In the following,
we look more closely at the two-spinon excitations in the
two representations.

IV. TWO-SPINON SPECTRUM

A. Planar XXZ model

Returning to theXXZ model ~1.1!, we note that there
exist two-spinon states withST

z50,61. At D51 these states
are either triplets ~with total spin ST51) or singlets
(ST50). There are1

8 N(N12) triplet levels and1
8 N(N22)

singlet levels, distinguishable by their Bethe quantum
numbers.17,25 Integrability guarantees that each eigenstate
anywhere in the planar regime can be traced back to the
point of higher symmetry without ambiguity. This justifies
that we use theST multiplet labels for states atD,1.

At finite N andD,1, the two-spinon triplet components
with ST

z561 remain degenerate~because of reflection sym-
metry in spin space! but are no longer degenerate with the
two-spinon triplet components withST

z50. We shall see that
at D50, a subset of18 N(N22) states from the latter set
becomes degenerate with the two-spinon singlets.

We have tracked the Bethe ansatz solutions of every two-
spinon state forN58 from D51 to D50, indeed across this
highly singular point of the Bethe ansatz equations all the
way to D521. Here we briefly report on what we found
along the stretch 0,D,1.26 For all states, solutions of the
Bethe ansatz equations were found for which all magnon
momentaki ~or all rapiditiesyi) vary continuously across the
parameter regime.

The two-spinon triplets withST
z51 are easy to handle

numerically. All rapidities yi are finite and real. Two-
spinon triplets withST

z50, by contrast, tend to pose some
computational challenges. AtD51 all such states start
out with one ki50 magnon, implyingyi56`. While
this singular behavior is benign,17 numerical problems
are caused by the fact that in some statesyi stays infinite
at D,1, whereas in other states it becomes finite. The
majority of states from this set have one real critical pair
at D50. Toensure continuity of the Bethe ansatz solutions

when D is varied, it is sometimes necessary to change the
values of two Bethe quantum numbers leaving their sum
invariant.

The two-spinon singlets are far more difficult to handle
numerically. Each such state has one complex-conjugate
pair of rapidities. A numerical analysis of two-spinon singlets
at D51 was reported in Ref. 17. Again, continuity of
the solutions may make it necessary to change some Bethe
quantum numbers along the way. AtD50 each state from
this set with one complex-conjugate critical pair becomes
degenerate with a two-spinon triplet state that has one real
critical pair.

B. XX limit

According to the scheme developed in Sec. III, the two-
spinon states withST

z51 comprise all configurations in
which no state with positive energy in the fermion band is
occupied. These are the fermion configurations withnc50.
TheN/211 single-particle states which are accessible under
this restriction and among which theN/221 fermions can be
distributed do indeed produceN(N12)/8 distinct eigen-
states. All possible configurations forN58, generated sys-
tematically across the allowed range in reciprocal space, are
depicted in Fig. 2.

No critical pairs can be formed in any of these states,
which makes it straightforward to calculate transition rates
for fairly long chains~see Sec. VI!.

The two-spinon states withST
z50 comprise all (nc51)

states relative to the ground-state configuration in the fer-
mion band. Removing one ofN/2 fermions from the ground-
state configuration and placing it into one of theN/2 empty
single-particle states yieldsN2/4 distinct eigenstates but only
N(N12)/8 distinct levels in the (k,E) plane because of de-
generacies. All possible configurations forN58 including
the ground state, generated systematically across the allowed
range in reciprocal space, are depicted as rows of full circles
in Fig. 3.

FIG. 2. Set ofN(N12)/8 two-spinon states withST
z51 at D

50 for N58 as specified by the fermion momenta~top scale! or

Bethe quantum numbers~bottom scale!. The wave numbersk̄ and

fermion momentap̄i are in units of 2p/N. The dashed lines repre-

sentk̄c
2 andk̄c

1 . The energies aree5E2EG relative to the ground
state withEG522.613.
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There areN(N22)/8 twofold degenerate levels in the
(k,E) plane with the two states distinguished by one pair of
fermions. The two fermions in question~full circles con-
nected by a line in Fig. 3! add up topmod(2p), thus con-
tributing nothing to the energy~3.7!. Additionally, there exist
N/2 nondegenerate (nc51) states at wave numbersNk/2p
51,3, . . . ,N21 representing the highest-energy two-spinon
state for those wave numbers.

In summary, theN2/4 (nc51) states in the fermion rep-
resentation atD50 originate from the set ofN(N12)/8
two-spinon triplets withST

z50 and the set ofN(N22)/8
two-spinon singlets. Each singlet becomes degenerate with a
triplet at D50, while N/2 triplets remain nondegenerate.
When analyzed via Bethe ansatz, the two states of each de-
generate two-spinon level withST

z50 have one critical pair
of magnon momenta as described in Sec. II. Our analysis
shows that the critical pair is real for the triplet state and
complex for the singlet state. This is consistent with the
known two-string nature of the two-spinon singlets and one-
string nature of the two-spinon triplets atD51.

In the states with real critical pairs, a solution may only
exist for Bethe quantum numbers that are shifted relative to
those predicted by Eq.~3.10! but still satisfy Eq.~2.16!. The
latter are indicated in Fig. 3 by open circles. In states with
complex conjugate critical pairs, two of the Bethe quantum
numbers~3.10! are replaced by a single numberI (* )50 rep-
resenting the critical pair.

The actual Bethe ansatz solutions forN58 pertaining to
all N2/4 two-spinon states withST

z50 are listed in Table II
~triplets! and Table III~singlets!. In some instances, different
configurations of Bethe quantum numbers lead to equivalent
Bethe wave functions. Only one configuration is represented
in Fig. 3.27

V. MATRIX ELEMENTS VIA BETHE ANSATZ FOR DÄ0

We start from the determinantal expressions for the tran-
sition rates

FIG. 3. Ground state and set ofN2/45N(N12)/81N(N
22)/8 two-spinon states withST

z50 for N58. The positions of the
full circles in relation to the top scale denote the fermion momenta
and those in relation to the bottom scale the Bethe quantum num-
bers predicted via Eq.~3.10!. The critical pairs among them are
connected by a solid line. The open circles and squares denote the
actual Bethe quantum numbers associated with the critical pairs for

real and complex rapidities, respectively. The wave numbersk̄ and

fermion momentap̄i are in units of 2p/N. The dashed lines repre-

sentk̄c
2 and k̄c

1 .

TABLE II. Wave number, energy, magnon momenta, Bethe quantum numbers, and rapidities of the

N(N12)/8 two-spinon triplet components withST
z50 atD50 for N58. The quantitiesk̄,k̄i are in units of

2p/N.

k̄ E2EG k̄1 k̄2 k̄3 k̄4
I 1 I 2 I 3 I 4 y1 y2 y3 y4

0 0.000 2.5 3.5 4.5 5.5 1.5 0.5 20.5 21.5 0.668 0.199 20.199 20.668
1 0.765 2.5 3.5 4.5 6.5 1.5 0.5 20.5 22.5 0.668 0.199 20.199 21.497
2 1.307 2.5 3.5 5.110 6.890 1.5 0.521.5 22.5 0.668 0.199 20.466 22.147
3 1.307 2.5 4.5 4.728 7.272 1.520.5 20.5 23.5 0.668 20.199 20.294 23.402

1.848 2.5 3.5 5.5 7.5 1.5 0.5 21.5 23.5 0.668 0.199 20.668 25.027
4 0.765 3.5 4 4.5 0 0.520.5 20.5 23.5 0.199 0 20.199 2`

1.848 2.5 4 5.5 0 1.520.5 21.5 23.5 0.668 0 20.668 2`

5 1.307 0.728 3.272 3.5 5.5 3.5 0.5 0.521.5 3.402 0.294 0.199 20.668
1.848 0.5 2.5 4.5 5.5 3.5 1.5 20.5 21.5 5.027 0.668 20.199 20.668

6 1.307 1.110 2.890 4.5 5.5 2.5 1.520.5 21.5 2.147 0.466 20.199 20.668
7 0.765 1.5 3.5 4.5 5.5 2.5 0.5 20.5 21.5 1.497 0.199 20.199 20.668
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Ml
m~q!8

u^c0uSq
mucl&u2

ic0i2icli2
, m5z,1,2, ~5.1!

betweenXXZ eigenstates characterized by realki for the
spin operators

Sq
m5

1

AN
(

n
eiqnSn

m , m5z,1,2. ~5.2!

These expressions, which were derived in Ref. 10 based on
previous work reported in Refs. 6–8, have the form

Ml
z~q!5

N

4

Kr~$yi
0%!

Kr~$yi%!

UdetS G2
2

N
1D U2

detK~$yi
0%!detK~$yi%!

, ~5.3!

Ml
6~q!5S Kr 61~$yi%!

Kr~$yi
0%!

D 61 udetG6u2

detK~$yi%!detK~$yi
0%!

,

~5.4!

where

Kab55
cosg

N

K~ya ,yb!

k~ya!
, aÞb

12
cosg

N (
j Þa

r
K~ya ,yj !

k~ya!
, a5b,

~5.5!

Gab8FN~ya
0 ,yb!S 1

G~ya
0 ,yb!

)
j 51

r G~yj
0 ,yb!

G~yj ,yb!

1
1

G* ~ya
0 ,yb!

)
j 51

r G* ~yj
0 ,yb!

G* ~yj ,yb!
D , ~5.6!

Gab
1 8FN~ya ,yb

0!S G~yr 11 ,yb
0!

G~ya ,yb
0!

)
j 51

r G~yj ,yb
0!

G~yj
0 ,yb

0!

1
G* ~yr 11 ,yb

0!

G* ~ya ,yb
0!

)
j 51

r G* ~yj ,yb
0!

G* ~yj
0 ,yb

0!
D ,

Ga,r 11
1 81, a51, . . . ,r 11, b51, . . . ,r ,

Gab
2 8FN~ya

0 ,yb!S G~yr
0 ,yb!

G~ya
0 ,yb!

)
j 51

r 21 G~yj
0 ,yb!

G~yj ,yb!

1
G* ~yr

0 ,yb!

G* ~ya
0 ,yb!

)
j 51

r 21 G* ~yj
0 ,yb!

G* ~yj ,yb!
D , ~5.7!

Gar
2 81, a51, . . . ,r , b51, . . . ,r 21, ~5.8!

Kr~$yi%!8)
i , j

r

uK~yi ,yj !u, ~5.9!

K~y,y8!8
~12y2!~12y82!sin2g

~y2y8!21~12y2!~12y82!sin2g
, ~5.10!

k~y!8
~y212y!sing

ycot~g/2!1@ycot~g/2!#21
, ~5.11!

G~y,y8!8
~y2y8!cotg1 i ~12yy8!

A12y2A12y82
, ~5.12!

FN~y,y8!8
1

2N

A12y82

A12y2

11y21~y221!cosg

~y2y8!sing
.

~5.13!

Performing theXX limit, g→p/2, in these expressions is
straightforward as long as no critical pairs of rapidities are
present:

K~y,y8!5
~12y2!~12y82!

~12yy8!2
, ~5.14!

k~y!5
y212y

y211y
, ~5.15!

G~y,y8!5 i
12yy8

A12y2A12y82
, ~5.16!

FN~y,y8!5
1

2N

A12y82

A12y2

11y2

y2y8
, ~5.17!

detK51. ~5.18!

TABLE III. Wave number, energy, magnon momenta, Bethe quantum numbers, and rapidities of the

N(N22)/8 two-spinon singlets atD50 for N58. The quantitiesk̄,k̄i are in units of 2p/N.

k̄ E2EG k̄* k̄3 k̄4
I (* ) I 3 I 4 u v y3 y4

2 1.307 4 3.5 2.5 0 0.5 1.5 20.765 20.644 0.199 0.668
3 1.307 4 4.5 2.5 0 20.5 1.5 20.541 20.841 20.199 0.668
4 0.765 4 4.5 3.5 0 20.5 0.5 0 1 20.199 0.199

1.848 4 5.5 2.5 0 21.5 1.5 0 1 20.668 0.668
5 1.307 4 5.5 3.5 0 21.5 0.5 0.541 0.841 20.668 0.199
6 1.307 4 5.5 4.5 0 21.5 20.5 0.765 0.644 20.668 20.199
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Switching back from the noncritical rapidities via Eq.~2.9!,
yi5cot(ki/2), to the noncritical magnon momentaki , we can
bring expression~5.4! into the form

Ml
1~q!5

)
i 51

r

)
j 51

r 11

cos2
ki

01kj

2

)
i , j

r 11

cos2
ki1kj

2 )
i , j

r

cos2
ki

01kj
0

2

udetS 1u2,

S ab
1 8H 2/N

sinka2sinkb
0

, b51, . . . ,r

1, b5r 11

, a51, . . . ,r 11,

Ml
2~q!5

)
i 51

r

)
j 51

r 21

cos2
ki

01kj

2

)
i , j

r 21

cos2
ki1kj

2 )
i , j

r

cos2
ki

01kj
0

2

udetS 2u2,

~5.19!

S ab
2 8H 2/N

sinka
02sinkb

, b51, . . . ,r 21

1, b5r

a51, . . . ,r ,

~5.20!

where S 6 are Cauchy-type matrices, whose determinants
can be evaluated explicitly:

detS 15S 2

ND r )
i , j

r

~sinki
02sinkj

0!)
i , j

r 11

~sinkj2sinki !

)
i 51

r

)
j 51

r 11

~sinkj2sinki
0!

,

detS 25S 2

ND r 21 )
i , j

r

~sinkj
02sinki

0!)
i , j

r 21

~sinki2sinkj !

)
i 51

r

)
j 51

r 21

~sinki
02sinkj !

.

This reduces the transition rates for the perpendicular spin
fluctuations~between states without critical pairs! to compact
product expressions:

Ml
1~q!5

)
i , j

r 11

sin2
ki2kj

2 )
i , j

r

sin2
ki

02kj
0

2

)
i 51

r

N2)
j 51

r 11

sin2
ki

02kj

2

, ~5.21!

Ml
2~q!5

)
i , j

r 21

sin2
ki2kj

2 )
i , j

r

sin2
ki

02kj
0

2

)
j 51

r 21

N2)
i 51

r

sin2
ki

02kj

2

. ~5.22!

In the corresponding reduction of the transition rate~5.3!
for the parallel spin fluctuations, a complication arises,
caused by the possibility that some magnon momenta of the
two states might be identical. However, this singular behav-
ior turns out to be instrumental for the exact evaluation of
Ml

z(q). A nonzero result is only possible if the two sets of
Bethe quantum numbers$I i

(0)% and $I i% differ by no more
than one element. For all such transitions the rate is

Ml
z~q!5

1

N
, ~5.23!

in agreement with a well-known result derived in the fermion
representation.28

In the following application of the transition rate expres-
sions to aT50 spin dynamic structure factor of theXX
model we have chosen a situation where excited states with-
out critical rapidities are important. The calculation of tran-
sition rates with critical pairs requires further developmental
work.

VI. TWO-SPINON TRANSITION RATES

From recent studies in the framework of the algebraic
analysis for the infinite chain,29,30 we know that the relative
integrated intensity of the two-spinon contribution to the dy-
namic structure factor

S21~q,v!52p(
l

Ml
2~q!d~v2vl! ~6.1!

probing the spin fluctuations perpendicular to the symmetry
axis of theXXZ model is 73% for the Heisenberg case (D
51) and steadily growing toward 100% on approach of the
Ising case (D5`).

The nonzero two-spinon intensity is reflected in the recip-
rocal finite-N scaling behavior of the transition rates
M 21

(2) (q,vl)5NMl
2(q) and the scaled density of states

FIG. 4. Scaled two-spinon transition ratesM̄ 21
(2) (p,v)

5N3/2Ml
2(p) at D50 ~data for chains of size N

5512,1024,2048,4096). The inset shows the same quantity multi-
plied by vl

2 .
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D (2)~q,vl!52p/@N~vl112vl!#, ~6.2!

which makes the product

S21
(2) ~q,v!5M 21

(2) ~q,v!D (2)~q,v! ~6.3!

converge toward a piecewise smooth function in the limit
N→`, representing the result of the infinite chain.

A qualitatively different finite-N scaling behavior is found
in the XX case (D50) for the two-spinon transition rates
contributing toS21(q,v). For the transition rates to con-
verge toward a nonvanishing piecewise smooth function they
must be scaled differently:M̄ 21

(2) (q,v)5N3/2Ml
2(q). This is

illustrated in Fig. 4 forq5p. In the main plot we show
data forN5512,1024,2048,4096 ofN3/2Ml

2(p) versusvl .
The scaling is near perfect across the band. The divergence
building up asN→` in this quantity is stronger,;v22,
than the known infrared singularity in the dynamic structure
factor,31 S21(q,v);v23/2, as documented by the inset to
Fig. 4.

Given the nonreciprocal scaling behavior of the transition
rates and density of states, the relative intensity of the two-
spinon dynamic structure factorS21

(2) (q,v) vanishes in the
limit N→`. Hence the singularity structure of the function
M̄ 21

(2) (q,v) has no direct bearing on the singularity structure

of S21(q,v). A distinct singularity structure and spectral-
weight distribution which is a property of all 2m-spinon ex-
citations combined will emerge in the limitN→`.

Consequently, the exactly known leading singularities at
v50,1,2, . . . in the frequency-dependent spin autocorrela-
tion functionF0

21(v)5*2p
1p(dq/2p)S21(q,v), as worked

out in Ref. 32, for example, are not attributable to specific
2m-fermion excitations, because the integrated intensity of
each 2m-fermion contribution taken in isolation is likely to
vanish in the limitN→`.

To reconstruct the spectral-weight distribution of
S21(q,v) at D50 and to determine its singularity structure
in the limit N→` from finite-N data for excitation energies
and transition rates we need to be able to properly handle
Bethe wave functions with critical pairs of rapidities. We
already know~Sec. II! how to solve the Bethe ansatz equa-
tions for all eigenstates in the limitD→0. One challenging
problem for the calculation of transition rates is that Bethe
wave functions with critical pairs thus obtained vanish iden-
tically as pointed out in Ref. 33. However, our numerical
analysis strongly suggests that the vanishing normicli in
the denominator of Eq.~5.1! is compensated by the vanish-
ing transition rate in the numerator to produce a unique finite
ratio in the limit D→0.34
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