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Spectrum and transition rates of the XX chain analyzed via Bethe ansatz

Daniel Biegel' Michael KarbacH;? Gerhard Miiler,? and Klaus Wielé
IBergische UniversitaWuppertal, Fachbereich Naturwissenschaften, Physik, D-42097 Wuppertal, Germany
°Department of Physics, University of Rhode Island, Kingston, Rhode Island 02881-0817, USA
(Received 8 September 2003; published 6 May 2004

As part of a study that investigates the dynamics ofshes XXZ model in the planar regimg\| <1, we
discuss the singular nature of the Bethe ansatz equations for theAeaBe(XX mode). We identify the
general structure of the Bethe ansatz solutions for the ei{rspectrum, which include states with real and
complex magnon momenta. We discuss the relation between the spinon or magnon quasifBetbles
ansatz and the lattice fermiongJordan-Wigner representationVe present determinantal expressions for
transition rates of spin-fluctuation operators between Bethe wave functions and reduce them to product ex-
pressions. We apply the formulas to two-spinon transition rates for chains with Ng- 4096 sites.

DOI: 10.1103/PhysRevB.69.174404 PACS nunider75.10—b

[. INTRODUCTION is important for the interpretation of the excitation spectrum
via dynamical probes as realized experimentally or compu-
The key to a meaningful interpretation of experimental ortationally. Furthermore, recent advances in calculating tran-
computational data for the low-temperature dynamics ofition rates via Bethe ansitZ° offer opportunities to extend
guantum many-body systems is a thorough understanding dlie list of exact results for dynamical properties of X
the nature of the physical vacuum and the dynamically relchain.
evant collective excitations including their quasiparticle In Sec. Il we analyze the singularities of tXeXZ Bethe
composition. In completely integrable systems, the quasipamansatz equations fak—0. In Sec. Il we discuss the map-
ticle configurations that produce particular collective excita-ping between the spinon and fermion compositions of the
tions can be investigated closely. The identity of the formerXX spectrum. The two-spinon spectrum of the plaka¢Z
is preserved by conservation laws notwithstanding their mumodel including theX X limit is discussed in Sec. IV. In Sec.
tual interaction:? Integrable Hamiltonians that depend on V transition rate formulas for th&XZ model are introduced
continuous parameters make it possible to observe how thend further processed for theX limit. The two-spinon part
physical vacuum transforms gradually and, occasionallypf the dynamic spin structure fact& . (q,w) is discussed
changes abruptly across a quantum phase transition. Along Sec. VI.
the way, the configurations of quasiparticles in the collective
excitations are subject to change as well. Il. BETHE ANSATZ EQUATIONS
Recently, we investigated the metamorphosis of the physi-
cal vacuum and the dynamically relevant quasiparticles We consider Hamiltoniari1.1) for evenN and periodic
(magnons, spinonsy, ¢*) of the one-dimensionélD) s boundary conditions over the ranges@ <1 of the anisot-
:% Heisenberg antiferromagnexxx mode) by Varying ropy parameter. In the invariant Subspace VZiktDmponent
the (integrability preservingexternal magnetic field* Intro- ~ of the total spinS;=N/2—r, all eigenstates are represented
ducing instead a uniaxial exchange anisotropy also preservéyy r interacting magnons. The magnon momekjtare con-
integrability. The parameteX, which controls the anisotropy served in the scattering processes and are determined by the
in the 1Ds=3 XXZ model® Bethe ansatz equations:
N . ' 1+ elkitk) — A gk
H=3 {SﬁsmﬁS%S%HMSﬁSﬁH}—A;, (1. eMi=T] i=1,...r.
=

| 1+eitati)—pael |’

2.1
affects the physical vacuum and the quasiparticle configura- @
tions differently. In both situations, the Bethe ansatz is anl e energy and wave number of any suemagnon state
ideal framework for studying quasiparticles, their transfor-depend on the magnon momenta alone:
mations, and their interactions. ; ;

The main focus in this paper is on a technical point of _ o _ .
considerable importance in the study of tX&XZ model, E‘El (coski—A), "‘; ki 22
namely, the identification of the general structure of the

Bethe ansatz solutions of all eigenstates for the dasé® At first glance it looks as if Eqg2.1) are drastically sim-
(XX mode). This will facilitate tracking allXXZ Bethe an-  plified in the limit A— 0 with all magnon momenta restricted
satz solutions across the planar regirae,<1. to solutions ofeN%=(—1)""1. However, a closer look re-

At A=0 all states can be characterized as noninteractingeals that magnon pairs with momeriatk;j— = for A
composites of fermions. Understanding the relationship be—0 are a common occurrence. This opens the door to non-
tween the magnon, spinon, and lattice fermion quasiparticlesivial real and complex solutions of Eg&.1). The singular
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behavior is related to level degeneracies. Such level cross-
ings, which also occur at other values/f have been traced

back to a realization of thel, loop algebra symmetry at
=(q+q 1)/2# +1 with g>N=1 for N=2.12714
In the following, we use the anisotropy parameter

(2.3

and transform the magnon momenta into the rapidifies,

y=arccod (0=sy=m/2)

k.

LY ki
yi—tanfcotE, i=1,.../. (2.9
The Bethe ansatz equatiofs 1) thus become
(02Yi+i N: ci(yi—y) +i(1-yiy;) 2.5
Coyi—i) i calYi—y) —i(1-yiyj) '

fori=1,...r, with c;=coty andc,=cot(y/2). Taking the
logarithm yields

y,) .
i=1,...r,
“1yy,
(2.6)

with ¢(x)=2arctang). Expressions(2.2) for energy and
wave number now read

Ne(coy) =2l +2 ¢(

-1

R e
E=m—— 2 ————, 2.7
Cy " Cpi=1 (Cyi) ~+Cyy;
2 r
kzwr——wE l; (2.9
N =1

The trigonometric Bethe ansatz equatid@<$) have the ad-
vantage that each solution is characterized by a séntd-
ger or half-integer Bethe quantum numbels. These dis-

criminating markers are used to count and classify the
solutions and are essential for numerical algorithms design

to find solutions.

A. XX limit

PHYSICAL REVIEW B 69, 174404 (2004

al; 2@
yi:ta W @ki:W_WIi (29)

fori=1,...r, which are all real. The energy of any such
regular state is

(2.10

B. Real critical pairs

Now let us assume that among the set of rapidities

Yi. - - -,Y;, there is one critical pair,
Y{Y5 =1k +kjx = m(mod2m), (2.11)
and that it is a real pair. Substituting the ansatz
yi=y’+ci8, i=1,...r, (2.12

into Egs. (2.6) and taking the limitc;—0 then yields the
noncritical and critical rapidities from successive orders in a
c, expansion. The noncritical rapiditieg, i#j,j*, are
given by Eqs(2.9) as in regular solutions. Thg, expansion

of Egs.(2.6) leads to the following equation determining the
critical rapiditiesy?,y{, :

. y
won=se[ 2] )

Here we have mtroducexziJ

(2.13

2(yJ y]*) and we use

2 O y; —sink;
= - 2.1
‘ Nig]‘* (y;)~*t=sink; (219
Yy 2 .
s r(g ) (| ), o=(—1"i7N (2.15
J

eIflhe noncriticalk; are from Eq.(2.9). Criticality implies

(v;)?—(y; )?=1. Note that the contributions of the critical
rapidities to the energy2.10 cancel out. Equatiori2.15
implies that the Bethe quantum numbers of the critical pair

Here we describe the general structure of the solutions ofmust satisfy

the Bethe ansatz equatio(®s6) in the limit A—0, implying

c,1—0 andc,—1. There exist regular solutions and singular
solutions. The latter are characterized by the occurrence of

pairs of rapiditiesy;,y; with the propertyy;y;{ =1. For any

The generalization of this solution to the casesafeal
critical pairs,

suchcritical pair, the argument oty on the right-hand side
of Egs.(2.6) is indeterminate and must, therefore, be treated 00 _1 |
as a limit process. We shall see that some limiting singular yllyi* '
solutions are real while others are complex. An important
fact is that the simplified structure of the Bethe ansatz equa With Bethe quantum numbers sat|sfy||11g +|J*| Ni2 1S
tions atA=0 affords a universal treatment of the singulari- Straightforward. The noncritical rapidities are as in E9)
ties for arbitraryN. Knowing the general structure of all and the critical pairs are determined from
Bethe ansatz solutions for this case is a useful reference point e
for studies which pursue related goals for XX andXXZ Ty | =1 s
i—¢, , -
with §j|,cr]-| as defined in Eqg2.14) and(2.15.

=1,...8 (2.17)

(2.18

2
models!®~2 Py;)= Nd’(
In the absence of any critical pair of rapidities, EG56)

decouple and yield the solutions

174404-2
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C. Complex critical pairs

PHYSICAL REVIEW B 69, 174404 (2004

D. Generic case

Next we consider the case of a single complex conjugate Suppose we have critical pairs of complex conjugate

critical pair
u+iv

(2.19
. Equations(2.6), re-

y1=Y5 =

among the set of rapiditieg,, . ...y,
written as real equations, read

Cl(yi_yj)>

N¢(CZYi)=27T|i+j23 d’( -y,

j#i
( 2¢4[(y;i—u)(1—yu) +yiv?]
(1—yiu)?+ (yiv)?—ci(yi—u)?+0v?]

(2.20
fori=3,...r and
2c,U B r
(m —27T(|1+|2)+i23[277|i
~Ne(cyi)], 2.2
N 2C—2”>
¢ 1+C%(u2+1}2)
_ ( 4vcy(1—u?—v?) )
= (1—U2—U2)2+(20C1)2
+2 ( 2clv(1—yj2)
(1=-yju)?+(yp)>+eil(y;—u?+v?]
(2.22

with ¢(x)=2atanhk) for the critical pair. TheXX Iimit is
performed along the path=u®—c,u?, v=0v°-cv?’. The

only possible complex solutions that can survive the limit
c,—0 are critical pairs. The noncritical roots are again as in
Eq. (2.9). The critical pair of rapidities is now determined by

the equation

1+00\" [1-g+0%%
=|——| , uptuvg=1, (2.2
1-0° (1—51— orvoTh (229
where
2 & u’—sink;
_Z , 2.2
Y |=23 (u®)~I—sink; (2.24
r(uo) 2(| +1,) (2.25
sgn —|=—— : :
g & N1tz

As is custont, we shall replacd ;+1, by a single Bethe
quantum numbet™*)=N/2. We then havd *)=0 for all
complex critical pairs.

solutions,y;=u;+ivi=Yy3, ... Yo_1=Ut+iv=Yy3, and
s pairs of critical real solutions, 7,={j,,j{}C{2t
. I} 1=1,... s Then the real solutions in the limit

c,;—0 are of the form

T S
=tanli, ie{l,....2}U Uag, @26
=1
.2 - .
$(y;) =y doyy; [(1= )17, 1=1,...5,
(2.27
with
C2f &y sink? Ly—)
SN ey Ttosink Sy t-)
i#]) J|
(2.28
For the complex solutions we obtain
1+00\" [1-g+0°
: (2.29
1-vf 1—§i—Ui
W2+ (w)H%=1, i=1,...1, (2.30
with
- 2] up—sinky Looul-)t
TN j=2t+1 u smk? l;ll (u?)*l_(u?)fl .
(2.3)

Energy and momentum of the state are determined by the
noncritical roots alone:

' 2
E=- 2 cos(—ﬂ-li), (2.32
i=21+1 N
i1, ik
)
k=m(r—s—t)= |=;+1 l;(mod2m). (2.33

This prescription for handling Bethe ansatz solutions in the
XX limit will guarantee that alXXZ Bethe eigenstates can
be traced continuously across the pdint 0. Because of the
higher symmetry atA=0 and the associated level
degeneracie¥1* the relationship between th&eal and
compleX Bethe eigenstates and thalways real Jordan-
Wigner eigenstates of thEX chain is nontrivial. The two
representations will now be compared for all energy levels.

Ill. SPINONS VERSUS FERMIONS

The full spectrum of th&XXZ model can be accounted for
as composites dhteracting spinonsvith spin 1/2 and semi-
onic exclusion statistic& For theX X case an alternative and
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TABLE I. DimensionalitiesW(n, ,n_) of the invariant sub- p, 0 1 2 3 4 5 6 7 8
spaces with & spinons and spis;=n, —n_ for a chain of length , e
N=8. The equivalent quantum numbers in the fermion representa- St =4 o o o o o o o o
tion areNy=N/2—S%, n;=n—|S. 30[0o o o e o o o
2 o|lo o e e o o] o
n,—n_ n=0 n=1 n=2 n=3 n=4 s ,W 10 o|lo e e e o] o
0o o o|e e e e]|oO0 oO
8 1 1 .10 0 e|e e e|e o©
6 [ 8 2 o e e|e e|e e O
4 15 12 1 28 3 0 ° ° ° | ° | Py ° Y
2 10 3 15 1 56 4 e o e e | e o o o
0 1 16 36 16 1 70
-2 10 30 15 1 56 FIG. 1. Configuration in reciprocal space of tNg=N/2— St
-4 15 12 1 28 fermions in the lowest-energy eigenstate for giv&nof a chain
-6 7 1 8 with N=8 spins. The positions of the fermions are denoted by full
_g 1 1 circles,_and those of vacancies by open circles. The fermion mo-
S, W 1 36 126 84 9 256  Mentap; are in units of 2r/N. TFE vertical bars are at wave num-
- bers (also in units of 2r/N) k; =N/4—S3/2 and k7 =3N/4
+S4/2.
equivalent interpretation of the complete spectrum can be
established on the basis wbéninteracting spinless lattice fer- pie{(2m/N)n} (N; odd), (3.6b

mions How are spinon configurations related to fermion

configurations in single nondegenerate eigenstates and Tﬂr n_=0,1, - N=1. The number of_fermlong, €ON;
groups of degenerate eigenstates? <N) is related to the quantum numbgf in the spin repre-

Consider the Y-dimensional Hilbert space for evel ~ Sentation:Sy=N/2—N;. No matter whetheN; is even or
divided into subspaces characterizedhyspinons with spin  ©dd, there areN distinct one-particle states. Every one-
up andn_ spinons with spin down. Equivalent quantum partlcle state can pe either empty or singly qccupled, yield-
numbers are the total number of spinons andzlempo- N9 a total of 2 distinct many-particle states with energy and
nent of the total spin: wave number

N¢ N¢

2n=n,+n_, 2Si=n,-n_. (3.2 E—E.= cospi, k= p;. 3.7
=1 =1

The dimensionality of each such subspacd is
The lowest-energy state in ea8h subspace is unique. The

_ dy+n,—1 fermion configuration in reciprocal space of each lowest-
w(n, ,n)=]] , (3.2 AHon O
P n, energy state foN=8 is shown in Fig. 1.
For the further subdivision of ea®f subspace, we intro-
N L duce the wave numbers
de=3(N+1)=32 (Nyr—8y01), (33

o ke (1St

where o=+ denotes the spinon polarization. Summing ?_1— §+N (3.8

W(n,,2n—n,) overnor n, yields . N - .
shown as vertical bars in Fig. 1, dividing the band into two

N/2 N 2n N+ 1 regions, one in the center and the other in the wings. Given
> W=( ) > W=< ) (3.4  that the lowest-energy state $=0 has all particles in the
n=1 N+ 2 center region, we can characterize all excitations as
respectively. The double sum yield¥.2n Table | we list the nc-particle states. Likewise, all excitations from the lowest-
subspace dimensionalities for the cae 8. energy state a&7<0 can be characterized ag-hole states.
The XX Hamiltonian in the fermion representation, trans- The range of this second quantum number g
formed from Eq.(1.1) at A=0 by the Jordan-Wigner map- =0.1, ... N/2—=|Sj|. The number of fermion states charac-

n;=0

ping to a system of free spinless fermions, réads terized byn, particles om. holes in the above sense is then
found to be as expressidf.2) previously used for spinons,
t now with
H¢=>, cosp CoCp s (3.5
P n=ng+|SE, n.=n+|SH =S, (3.9

where the allowed values of the fermion momeptalepend

on whether the numbe; of fermions in the system is even  The next goal is to bring the mapping down to energy
or odd: levels (at fixed wave numbeyswithin each @, ,n_) sub-

space or, in the fermion language§?(n.) subspacé? We
pie{(27/N)(n+1/2)} (N; even, (3.6a note that for giverS;=0 the number of fermions is equal to

174404-4
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the number of magnons in Bethe ansatz states. Moreover, thp, ¢ 1 ~2 3 4 5 6 7 8
fermion energy-momentum relati@B.7) is equivalent to the _ . .

magnon energy-momentum relatiég@.10. The exception *=! pe e €=0906
are the critical magnon pairs, whose momenta are differen’ 2 A * ! €=119
(real or complex from the corresponding fermion momenta 3 P * €=1906
(always real. Critical pairs only occur in degenerate levels 3 c® e ! €=0.906
and do not contribute to the energy of the state. 4 e * * €= 1613
This mapping between energy levels provides a useful 3 ve e *. €=1906
tool for determining the Bethe quantum numbers of eigen- * ¢ e €=0.199
states directly from the momenta of the fermion configura- 3 ! e ® €=0906
tions. For all noncritical rapidities, we have 6 I . ¢ o £=1.199
7 ‘ . . o | £=0.906

27T I T T T T T T T T T T T T T T T 1

Wli=7r— p; - (3.10 L 4 3 2 1 0 -1 -2 -3 -4

: ez
For real critical pairs, the Bethe quantum numbers are, in FIG. 2. Set ofN(N+2)/8 two-spinon states witBr=1 at A

general, shifted relative to the positions predicted by Eq=0 for N=8 as specified by the fermion momeritap scal¢ or

(3.10, but in such awajllj+lj*|:N/2 is maintained. Com- Bethe quantum numbefbottom scalg The wave numberk and
plex critical pairs are specified by a single Bethe quantunfermion momenta; are in units of 2r/N. The dashed lines repre-
numberl *)=0 as discussed in Sec. Il C. In the following, sentk; andk_ . The energies are=E—Eg relative to the ground
we look more closely at the two-spinon excitations in thestate withEg= —2.613.
two representations.

when Ais varied, it is sometimes necessary to change the

IV. TWO-SPINON SPECTRUM values of two Bethe quantum numbers leaving their sum
invariant.
A. Planar XXZ model The two-spinon singlets are far more difficult to handle

Returning to theXXZ model (1.1), we note that there numerically. Each such state has_ one complex-co_njugate
exist two-spinon states wit=0,+1. At A=1 these states pair of rapidities. A numerical analysis of two-spinon singlets
are either triplets(with total spin S;=1) or singlets &t A=1 was reported in Ref. 17. Again, continuity of
(S;=0). There are:N(N+2) triplet levels andiN(N—2) the solutions may make it necessary to change some Bethe
singlet levels, distinguishable by their Bethe quantumduantum numbers along the way. At=0 each state from
numbers:”2 Integrability guarantees that each eigenstateth's set with one complex-conquate critical pair becomes
anywhere in the planar regime can be traced back to thge_tgeneraFe with a two-spinon triplet state that has one real
point of higher symmetry without ambiguity. This justifies critical pair.
that we use thé&; multiplet labels for states af<1. o

At finite N andA<1, the two-spinon triplet components B. XX limit

with St=+1 remain degenerai@ecause of reflection sym-  According to the scheme developed in Sec. Ill, the two-
metry in spin spagebut are no longer degenerate with the spinon states withS2=1 comprise all configurations in
two-spinon triplet components wits;=0. We shall see that which no state with positive energy in the fermion band is
at A=0, a subset offN(N—2) states from the latter set occupied. These are the fermion configurations wighO.
becomes degenerate with the two-spinon singlets. TheN/2+ 1 single-particle states which are accessible under

We have tracked the Bethe ansatz solutions of every twothis restriction and among which tihg2— 1 fermions can be
spinon state foN=8 fromA =1 toA=0, indeed across this distributed do indeed producB(N+2)/8 distinct eigen-
highly singular point of the Bethe ansatz equations all thestates. All possible configurations fdt=8, generated sys-
way to A=—1. Here we briefly report on what we found tematically across the allowed range in reciprocal space, are
along the stretch @A <1.%° For all states, solutions of the depicted in Fig. 2.
Bethe ansatz equations were found for which all magnon No critical pairs can be formed in any of these states,
momentek; (or all rapiditiesy;) vary continuously across the which makes it straightforward to calculate transition rates
parameter regime. for fairly long chains(see Sec. Vil

The two-spinon triplets withS;=1 are easy to handle The two-spinon states witB;=0 comprise all fi.=1)
numerically. All rapiditiesy; are finite and real. Two- states relative to the ground-state configuration in the fer-
spinon triplets withS:=0, by contrast, tend to pose some mion band. Removing one ®§/2 fermions from the ground-
computational challenges. AA=1 all such states start state configuration and placing it into one of tR& empty
out with one k;=0 magnon, implyingy;=*o. While single-particle states yield$?/4 distinct eigenstates but only
this singular behavior is benidgi, numerical problems N(N+2)/8 distinct levels in thek,E) plane because of de-
are caused by the fact that in some statestays infinite  generacies. All possible configurations filr=8 including
at A<1, whereas in other states it becomes finite. Thethe ground state, generated systematically across the allowed
majority of states from this set have one real critical pairrange in reciprocal space, are depicted as rows of full circles
at A=0. Toensure continuity of the Bethe ansatz solutionan Fig. 3.

174404-5
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~
oo

There areN(N—2)/8 twofold degenerate levels in the
€=0 (k,E) plane with the two states distinguished by one pair of

=i
<
—_
R e e
[
(oY)
[
=~
[ ]
[
L]

6
1
3 & T e—e e €= 1307 fermions. The two fermions in questioffull circles con-
: : nected by a line in Fig.)3add up tormod(2w), thus con-
4 7o ¢ €=1848  tributing nothing to the energ§B.7). Additionally, there exist
; ® N L e €= 1.848 N/2 nondegeneraten{=1) states at wave numbelsk/27
R : e o o =1,3,... N—1 representing the highest-energy two-spinon
6 ! o ! €=1307  state for those wave numbers.
4 o o o ; £=0.765 In summary, theN?/4 (n.=1) states in the fermion rep-
- o : resentation al=0 originate from the set oN(N+2)/8
3 : *o ° : =107 two-spinon triplets withS;=0 and the set oN(N—2)/8
6 p—— ¢ . £=1.307 two-spinon singlets. Each singlet becomes degenerate with a
o | e o o | triplet at A=0, while N/2 triplets remain nondegenerate.
! €=0765 When analyzed via Bethe ansatz, the two states of each de-
1 A Le £=0.765 generate two-spinon level wit8;=0 have one critical pair
, ‘e e . —' o £z 1307 of magnon momenta as described in Sec. Il. Our analysis
| | shows that the critical pair is real for the triplet state and
3 . @ &__® -  e=1307 complex for the singlet state. This is consistent with the
4 ° ° ——o £ 0765 known two-string nature of the two-spinon singlets and one-
; o ° string nature of the two-spinon triplets At=1.
2 p® & e/ e=1307 In the states with real critical pairs, a solution may only
3 ‘e e o ! o ._,ss ©Xistfor Bethe quantum numbers that are shifted relative to
: : those predicted by Eq3.10 but still satisfy Eq.(2.16). The
4 @ §——®— 8% =184 latter are indicated in Fig. 3 by open circles. In states with
s | e oo €= 1307 complex conjugate critical pairs, t_WO of the Bethe quantum
o ° - numbers(3.10 are replaced by a single numHét)=0 rep-
L resenting the critical pair.

The actual Bethe ansatz solutions for=8 pertaining to
FIG. 3. Ground state and set dfiZ4=N(N+2)/8+N(N  all N?/4 two-spinon states witl$;=0 are listed in Table Il
—2)/8 two-spinon states witB>=0 for N=8. The positions of the  (triplets) and Table Ili(singlets. In some instances, different
full circles in relation to the top scale denote the fermion momentaconfigurations of Bethe quantum numbers lead to equivalent
and those in relation to the bottom scale the Bethe quantum nunBethe wave functions. Only one configuration is represented
bers predicted via Eq(3.10. The critical pairs among them are in Fig. 3%
connected by a solid line. The open circles and squares denote the
actual Bethe quantum numbers associated with the critical pairs forV_ MATRIX ELEMENTS VIA BETHE ANSATZ FOR A=0
real and complex rapidities, respectively. The wave numkessd
fermion momenta; are in units of 2r/N. The dashed lines repre-
sentk; andk, .

We start from the determinantal expressions for the tran-
sition rates

TABLE II. Wave number, energy, magnon momenta, Bethe quantum numbers, and rapidities of the
N(N+ 2)/8 two-spinon triplet components wisf=0 atA=0 for N=8. The quantitiex,k; are in units of

27/N.

k E-Eg E E ?3 E I I I3 l4 Y1 Y2 Y3 Ya

0 0.000 2.5 35 4.5 55 15 05-05 —-15 0.668 0.199 —0.199 —0.668
1 0.765 2.5 35 4.5 65 15 05-05 —-25 0.668 0.199 —0.199 —1.497
2 1.307 2.5 35 5110 6.890 15 05-15 —-25 0.668 0.199 —0.466 —2.147
3 1.307 2.5 45 4728 7.272 1505 —-05 —35 0.668 —0.199 —0.294 —3.402

1.848 25 3.5 55 75 15 05-15 —35 0.668 0.199 —0.668 —5.027
4 0.765 3.5 4 4.5 0 05-05 -05 —-35 0.199 0 -0199 -

1.848 25 4 5.5 0 15-05 —-15 —3.5 0.668 0 -0668 —=
5 1.307 0.728 3.272 35 55 35 05 0515 3.402 0.294 0.199 —0.668

1.848 0.5 25 45 55 35 15-05 —-15 5.027 0.668 —0.199 —0.668
6 1.307 1.110 2.890 4.5 565 25 15-05 —-15 2147 0.466 —0.199 —0.668
7 0.765 15 35 45 55 25 05-05 —-15 1497 0.199 —-0.199 —0.668
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TABLE lll. Wave number, energy, magnon momenta, Bethe quantum numbers, and rapidities of the
N(N—2)/8 two-spinon singlets at=0 for N=8. The quantitiek,k; are in units of 2r/N.

| (%)

k E-Es Kk* ks Ky I3 ls u v Y3 Ya
2 1.307 4 3.5 2.5 0 0.5 1.5 —-0.765 —-0.644 0.199 0.668
3 1.307 4 4.5 2.5 0 -05 1.5 —0.541 -0.841 —-0.199 0.668
4 0.765 4 45 35 0 -05 0.5 0 1 —0.199 0.199
1.848 4 55 2.5 0 -15 1.5 0 1 —0.668 0.668
5 1.307 4 55 3.5 0 -15 0.5 0.541 0.841 —-0.668 0.199
6 1.307 4 55 4.5 0 —-15 -05 0.765 0.644 —-0.668 —0.199
(ol St )2 s [6OR e GO )
M;j(q):—! Iu':z!+l_1 (51) Fab:FN(ya!yb)
ol 2l 12 G(y2,yp)i=1 G(¥;:¥b)

betweenXXZ eigenstates characterized by rdalfor the

spin operators

1

VN

Sh= En‘,eiq”sg, w=z,+,—.

These expressions, which were derived in Ref. 10 based on

G* 0, r—1 G* Q,
. *(yg yb)_ *(y, yb))' 57
G*(Ya,Yp)i=1 G*(Y;,Yp)
r,=1, a=1,...r, b=1,...r—-1, (5.8
(5.2)
icr({yibﬁiljj [K(yi Yl (5.9

previous work reported in Refs. 6—8, have the form

2 2
e gy N D ool -
NVT LK AYD dek({y?)dek({y )"
M:(q):(Krtl({Yi}))+l |deﬁ‘i|2
: Kyt | deK({y})deK{yh)'
where
cosy K(ya,yn) atb
Ko N K(ya) '
ab™ _ cosy L K(Yauyp) —b
N j#a K(Ya) , 1
E 1 £ Gy
ab— FN(Ya Yb G(yg,yb)i=1 G(yjiyb)
1 L GR(y)yp)

G(Yr+1.YD) 1x G(Y; YD)
G(Ya.yp) i=1 G(Y}.yp)
+G*(yr+1,y8) ' G*(yj,yﬁ))

G*(Ya.Yp) i=1 G*(y}.yp)
Iy =1, a=1,...r+1, b=1,...,

+ * (/0 ; *
G*(Ya.Yp)i=1 G*(Y;j.Ypn)

I3=Fn(Ya.Y0)

(1-y?)(1—y'?)sirfy

K(y,y")= ——, (5.10
(y=y")?+(1-y?)(1-y'?)sinfy
(5.3
(y t—y)siny
K(y)= -t (5.1)
ycot(y/2) +[ycot(y/2)]
(y—y"coty+i(1-yy’)
G(y,y')= , 5.1
E(y.y)? 1 J1-y'21+y?+(y?—1)cosy
NY.Y ) =50 B .
2N J1-y*  (y—y')siny
(5.13
(5.5 Performing theXX limit, y— #/2, in these expressions is
straightforward as long as no critical pairs of rapidities are
present:
(1-y*)(1-y'?)
K(y,y')=——"——— (5.14
(1-yy")?
_1 y
59 K(y)= >, (5.19
y "ty
Gly.y") =i ——2 (5.16
F(y.y) = 1 J1-y'?1+y? (517
TN Ty gy |
dekK=1 (5.18
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Switching back from the noncritical rapidities via BEQ.9), 400
y;=cot(k/2), to the noncritical magnon momerka we can 7

bring expressiort5.4) into the form

rei K+ k;

l_r[Hcos2

i
M;\r(q)_r-#l k0+k0|dets+|2’

JHso_

i<j <]

2/N
N p=1,...y
S1p=1{ sink,—sinkp , a=1,...
1, b=r+1
ror—1 0
ki +k
IT IT coz—-
M} (q) e |dets ™
d 0 52ki+kj1_’I S'2|<?+k?'
0
i<j 2 i< 2
2/IN
S b=1,...57-1
Sp=1 sinki—sink, a=1,...
1, b=r

PHYSICAL REVIEW B 69, 174404 (2004

12

N2 Mmoo

FIG. 4. Scaled two-spinon transition rate®?), (7, o)
=N%M, (%) at A=0 (data for chains of size N
=512,1024,2048,4096). The inset shows the same quantity multi-
plied by w? .

(5.19 In the corresponding reduction of the transition régeS)

for the parallel spin fluctuations, a complication arises,

caused by the possibility that some magnon momenta of the
" two states might be identical. However, this singular behav-
Y ior turns out to be instrumental for the exact evaluation of

M3(q). A nonzero result is only possible if the two sets of

(520 Bethe quantum numberd (¥} and{l;} differ by no more

where S* are Cauchy-type matrices, whose determinant$han one element. For all such transitions the rate is

can be evaluated explicitly:

r+1

(5.23

ZIH

A(Q)

H (smko—ska)H (sink; —sink;)

i<j

in agreement with a well-known result derived in the fermion

deTS*z(N> —T
i1;[l J_1:[1 (sink; —sink?)

r—1

representatiof®
In the following application of the transition rate expres-

sions to aT=0 spin dynamic structure factor of theX
model we have chosen a situation where excited states with-
out critical rapidities are important. The calculation of tran-

sink{ —sink sink; — sink; e IS . :
r- 1H ( )H ( ) sition rates with critical pairs requires further developmental

det?‘z(li) -
11 H (sink?—sink;)
=151

work.

VI. TWO-SPINON TRANSITION RATES

gh'? refucsc(ats) 'f[he tranter[mn r_e::]es tfor_tt_helpea)r_;n)gndlcular tspm From recent studies in the framework of the algebraic
uctuationsbetween states without critical paits compact 5 5vsis for the infinite chaif?:3°we know that the relative

product expressions:

r+1 0 1,0
K —K; k —k:
IT s 1 s
4 1<j 2 i<j 2
My (q)= r T+1 . ,

Il ZH sir? '_

r—1 0 0
k ki ki — K]
[] s ’H i’ =

i<j 1<j

integrated intensity of the two-spinon contribution to the dy-
namic structure factor

(5.21) S (q)=272 My (@dw=w) (6.

probing the spin fluctuations perpendicular to the symmetry
axis of theXXZ model is 73% for the Heisenberg cask (
=1) and steadily growing toward 100% on approach of the
Ising case A =x).
(5.22 The nonzero two-spinon intensity is reflected in the recip-
rocal finiteN scaling behavior of the transition rates
M@ (g,0,)=NM; (q) and the scaled density of states
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D@(q,w,)=27/[N(wy 41— wy)], (6.2 of S_,(qg,w). A distinct singularity structure and spectral-
weight distribution which is a property of alln@-spinon ex-
citations combined will emerge in the limiN— oo,
S? (q,0)=M@,(q,0)D?(q, ) (6.3 Consequenltly, the exactly known Ieading'singularities at
] . o =012 ... in thefrequency-dependent spin autocorrela-
converge toward a piecewise smooth function in the limitgn, functionCI>5+(w)=ff”(dq/2w)8_+(q,w), as worked
N—e, re.prgsentln'g the regglt of the.|nf|n|te cham. out in Ref. 32, for example, are not attributable to specific
A qualitatively different finiteN scaling behavior is found 2m-fermion excitations, because the integrated intensity of

in rgrt]r?bxt)i(ncisoesaz(m l;orptgf tmo;fgégﬁ?oérigfe'iopo r?éi‘f‘ each 2n-fermion contribution taken in isolation is likely to
contributing tos-1(q, ). vanish in the limitN— .

verge toward a nonvanishi_ng piecewise smooth function they To reconstruct the spectral-weight distribution of
must be scaled differentiyv @ (g.w)= N¥2M, (q). This is S_.(g,w) atA=0 and to determine its singularity structure
illustrated in Fig. 4 forg=ar. In th‘,:;‘/zm%'” plot we show j the Jimit N— o from finite-N data for excitation energies
data forN=512,1024,2048,4096 ¢8°“M, () Versusw, .  and transition rates we need to be able to properly handle
The scaling is near perfect across the band. The divergenggsthe wave functions with critical pairs of rapidities. We
building up asN—c in this quantity is stronger;-w~?, already know(Sec. I) how to solve the Bethe ansatz equa-
than the known infrared singularity in the dynamic structuretions for all eigenstates in the limit—0. One challenging
factor’* S_,(q,w)~w ™% as documented by the inset to problem for the calculation of transition rates is that Bethe
Fig. 4. wave functions with critical pairs thus obtained vanish iden-

Given the nonreciprocal scaling behavior of the transitiontica"y as pointed out in Ref. 33. However, our numerical
rates and density of states, the relative intensity of the twognalysis strongly suggests that the vanishing niperi| in
spinon dynamic structure fact®?) (q,) vanishes in the the denominator of Eq(5.1) is compensated by the vanish-
limit N—cc. Hence the singularity structure of the function ing transition rate in the numerator to produce a unique finite
M(_Zl(q,w) has no direct bearing on the singularity structureratio in the limitA—0.3*

which makes the product
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